EP1077097A1 - Verwendung von Kunststoff/Kohlenstoff-Aerogelen als Kernwerkstoff - Google Patents

Verwendung von Kunststoff/Kohlenstoff-Aerogelen als Kernwerkstoff Download PDF

Info

Publication number
EP1077097A1
EP1077097A1 EP00116659A EP00116659A EP1077097A1 EP 1077097 A1 EP1077097 A1 EP 1077097A1 EP 00116659 A EP00116659 A EP 00116659A EP 00116659 A EP00116659 A EP 00116659A EP 1077097 A1 EP1077097 A1 EP 1077097A1
Authority
EP
European Patent Office
Prior art keywords
gel
use according
plastic
sol
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00116659A
Other languages
English (en)
French (fr)
Other versions
EP1077097B1 (de
Inventor
Lorenz Ratke
Hans-Peter Titan-Aluminium-Feinguss GmbH Nicolai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TITAN-ALUMINIUM-FEINGUSS GmbH
Deutsches Zentrum fuer Luft und Raumfahrt eV
Original Assignee
TITAN-ALUMINIUM-FEINGUSS GmbH
Deutsches Zentrum fuer Luft und Raumfahrt eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TITAN-ALUMINIUM-FEINGUSS GmbH, Deutsches Zentrum fuer Luft und Raumfahrt eV filed Critical TITAN-ALUMINIUM-FEINGUSS GmbH
Publication of EP1077097A1 publication Critical patent/EP1077097A1/de
Application granted granted Critical
Publication of EP1077097B1 publication Critical patent/EP1077097B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds

Definitions

  • the invention relates to the use of plastic / carbon aerogels as the core material in molding.
  • Cavities within the mold must be stable using a core be preformed. Such kernels are usually because of there prevailing high thermal and mechanical stress plastic-bonded ceramic powders. Disadvantage of Today's core manufacturing process is that removal the cores from the casting are only possible with extremely great effort is (e.g. combustion in an autoclave), the distribution of the sands in the core is inhomogeneous, crack germs exist, which among other things break under can lead to thermal-mechanical stress.
  • Aerogels are highly porous, open-pore oxidic solids that are found in the Rule about sol-gel processes from metal alkoxides by polymerization, Polycondensation to gels and subsequent supercritical drying be won. For a few years now, too Gelling plastics using sol-gel processes and by supercritical Convert drying into a highly porous organic solid (see for example DE 195 23 382 A1, DE 694 09 161 T2 and US-A-5,086,085). Pyrolysis of such plastic aerogels under protective gas or in a vacuum at temperatures above 1000 ° C this converts to carbon aerogels around.
  • plastic and Carbon aerogels have extremely low effective thermal conductivities (In the order of a few mW / K / m) and are considerably lighter.
  • the physical and mechanical properties of plastic and carbon aerogels are documented in the literature (R.W. Pekala, C.T. Alviso, F.M. Kong, S.S. Hulsey; J. Non-Cryst. Solids 145 (1992) 90; R.W. Pekala, C.T. Alviso, Mat. Res. Soc. Symp. Proc. 270 (1992) 3; R. Petricevic, G. Reichenauer, V. Bock, A. Emmerling, J. Fricke; J.Non-Cryst.Solids (1998)). They can be admired by the raw materials, their mixture and the manufacturing process vary widely.
  • the above object is achieved in a first embodiment through the use of highly porous, open-pore plastic and / or Carbon aerogels, obtainable by sol-gel polymerization of organic plastic materials as the core material for molding.
  • Cores of any shape can be produced because the starting solution in a corresponding negative form is inserted and gelled (as material PTFE is particularly suitable for these shapes). It can also through professional adjustment of the composition and gelling conditions the transition from sol to solid gel can be delayed so that A highly viscous, flowable mass is created, which is introduced into every shape can be. It is also possible to use ceramic powder and fiber add to the sol if this is due to the expected mechanical stress appears necessary.
  • the aerogels produced according to the invention are particularly suitable as cores for the formation of cavities when casting aluminum alloys (whereby the mold is practically not heated must, since there is no heat dissipation by them). This increases the economy because energy costs can be reduced.
  • Magnesium and titanium alloys also do not react with carbon, so these carbon aerogels are also suitable for these alloys Offer protective gas or vacuum as the core.
  • a particular advantage of aerogels is that the sol-gel formation can be completed at room temperature.
  • a supercritical Drying, as with the purely inorganic gels, is not necessary. Nevertheless, it is possible to determine the pore size in the micrometer range adjust. When drying in the supercritical temperature range pore sizes in the nanometer range are also possible.
  • the aerogels can also be inorganic or organic Contain filler materials, especially fiber materials. Below become essentially stable materials which are inert under solidification conditions Roger that.
  • Inorganic filler materials of any grain size are selected, for example, from aluminum oxide, titanium dioxide, Zirconia and quartz and their mixtures, each in an amount from 5 to 30% by volume, in particular up to 60% by volume can.
  • organic fillers for example thermoplastic or thermosetting plastic particles, for example to use polystyrene.
  • these materials also melted out during the pyrolysis of the plastic gels or be burned. With the help of such materials, however the shrinkage can be checked during pyrolysis.
  • Plastic aerogels based on resorcinol / formaldehyde are used with a suitable composition and a suitable content of baischen Catalyst at temperatures between 20 and 50 ° C without supercritical Dried transferred to a microstructured plastic airgel can be.
  • the composition is the gelling reaction adjustable so that, for example, initially a highly viscous Liquid is formed which becomes firmer over time / temperature.
  • the cores used according to the invention are particularly suitable for Use in lost wax processes.
  • the desired shapes are made using the usual techniques with the cores and the melt filled and the melt solidified. With the usual Casting techniques, the heat is dissipated via the molded shell or the molding sand.
  • the cores obtained in this way are produced using conventional techniques Wax models used.
  • Wax models used.
  • those after today Core materials customary in the prior art do not absorb heat through the airgel cores because of their effective thermal conductivity is typically only a few mW / km. Thermal loads and thus thermal stresses do not occur in the core body on.
  • the airgel cores can be removed by pyrolysis or high pressure water jet, but also through wetting fluids such as silicone oil, which Fluidize airgel, remove easily from the casting.
  • the gelation temperature and the density of the resulting porous body produce cores for molds, both as plastic and also as carbon airgel, which is superficial on a micrometer scale are smooth and show sharp contours.
  • Production of molds up to the plastic airgel a maximum of 24 hours. Pyrolysis in the absence of air takes place in short times (that of the thickness of the mold is determined; with a 1 cm core the time is for example 24 hours).
  • the shrinkage takes place in the two process steps always isotropic and is only a few percent (the Shrinkage can be reduced by the appropriate choice of composition of the sol, as well as the drying conditions) and is therefore manageable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Laminated Bodies (AREA)
  • Mold Materials And Core Materials (AREA)

Abstract

Gegenstand der Erfindung ist die Verwendung von Kunststoff/Kohlenstoff-Aerogelen als Kernwerkstoff. Verwendung von hochporösen, offenporigen Kunststoff- und/oder Kohlenstoffaerogelen, erhältlich durch Sol-Gel-Polymerisation von organischen Kunststoffmaterialien als Kernwerkstoff für den Formguss.

Description

Gegenstand der Erfindung ist die Verwendung von Kunststoff/Kohlenstoff-Aerogelen als Kernwerkstoff im Formguss.
Gießen in keramischen Formschalen und Formen aus gebundenen Sanden sind Standardgusstechniken, um Präzisionsteile aus verschiedensten Legierungen, insbesondere von Aluminium, Magnesium, Titan oder Graugusslegierungen herzustellen. Die Formen werden in der Regel über das Wachsausschmelzverfahren hergestellt; d. h. ein Wachskörper des zu gießenden Teils wird mit einem Silica-Sol benetzt, in mehreren Schritten besandet, getrocknet und anschließend wird die Formschale gebrannt, wobei das Wachs in einem Autoklaven ausgeschmolzen wird oder verbrennt. Mittels moderner Gussverfahren ist es möglich, konturgerecht und endformnah zu gießen (J.Sprunk, W. Blank, W. Grossmann, E. Hauschild, H. Rieksmeier, H.G. Rosselnbruch; Feinguß für alle Industriebereiche, 2. Auflage, Zentrale für Gussverwendung, Düsseldorf 1987; K.A. Krekeler, Feingießen, in: Handbuch der Fertigungstechnik Bd. 1., Herausgeber: G. Speer, Hanser Verlag, München 1981).
Hohlräume innerhalb der Gussform müssen mittels eines Kernes stabil vorgeformt werden. Solche Kerne werden in der Regel wegen der dort herrschenden hohen thermischen und mechanischen Belastung aus kunststoffgebundenen keramischen Pulvern hergestellt. Nachteil der heute üblichen Verfahren zur Kernherstellung ist, dass die Entfernung der Kerne aus dem Gussstück nur mit extrem hohen Aufwand möglich ist (z.B. Verbrennung im Autoklaven), die Verteilung der Sande im Kern inhomogen ist, Risskeime existieren, die unter anderem zum Bruch unter thermisch-mechanischer Belastung führen können.
Aerogele sind hochporöse, offenporige oxidische Festkörper, die in der Regel über Sol-Gel-Verfahren aus Metallalkoxiden durch Polymerisation, Polykondensation zu Gelen und anschließender überkritischer Trocknung gewonnen werden. Seit einigen Jahren ist es gelungen, auch Kunststoffe über Sol-Gel-Verfahren zu gelieren und durch überkritische Trocknung in einen hochporösen organischen Festkörper umzuwandeln (siehe beispielsweise DE 195 23 382 A1, DE 694 09 161 T2 und US-A-5,086,085). Pyrolyse solcher Kunststoffaerogele unter Schutzgas oder im Vakuum bei Temperaturen oberhalb 1000 °C wandelt diese in Kohlenstoffaerogele um. Wie die oxidischen Aerogele haben Kunststoff- und Kohlenstoffaerogele extrem geringe effektive Wärmeleitfähigkeiten (Größenordnung einige mW/K/m) und sind erheblich leichter. Die physikalischen und mechanischen Eigenschaften von Kunststoff- und Kohlenstoffaerogelen sind in der Literatur dokumentiert (R.W. Pekala, C.T. Alviso, F.M. Kong, S.S. Hulsey; J. Non-Cryst. Solids 145 (1992) 90; R.W. Pekala, C.T. Alviso, Mat. Res. Soc. Symp. Proc. 270 (1992) 3; R. Petricevic, G. Reichenauer, V. Bock, A. Emmerling, J. Fricke; J.Non-Cryst.Solids (1998)). Sie lassen sich durch die Ausgangsstoffe, ihr Gemisch und das Herstellungsverfahren in weiten Grenzen variieren.
Es ist daher Aufgabe der vorliegenden Erfindung Kerne, die quasiadiabatisch sind, deren spezifisches Gewicht eingestellt werden kann, die extrem glatte Oberflächen haben (Rauhigkeit im Bereich von einem Mikrometer), nicht-reaktiv mit Al-, Mg- und Ti-Legierungen sind und vor allem sich durch einen einfachen Wasserhochdruckstrahl oder geeignete, das Aerogel benetzende und zersetzende Fluide entfernen lassen, zur Verfügung zu stellen.
Die vorgenannte Aufgabe wird in einer ersten Ausführungsform gelöst durch die Verwendung von hochporösen, offenporigen Kunststoff- und/oder Kohlenstoffaerogelen, erhältlich durch Sol-Gel-Polymerisation von organischen Kunststoffmaterialien als Kernwerkstoff für den Formguss.
Kerne beliebiger Form lassen sich herstellen, da die Ausgangslösung in eine entsprechende Negativform eingebracht und geliert wird (als Material für diese Formen eignet sich insbesondere PTFE). Zudem kann durch fachmännische Einstellung der Zusammensetzung und Gelierbedingungen der Übergang Sol zum festen Gel so verzögert werden, dass eine hochviskose, fließfähige Masse entsteht, die in jede Form eingebracht werden kann. Es ist zudem möglich, keramische Pulver und Fasern dem Sol hinzuzufügen, wenn dies aufgrund der zu erwartenden mechanischen Belastung notwendig erscheint.
Die erfindungsgemäß hergestellten Aerogele eignen sich insbesondere als Kerne zur Ausbildung von Hohlräumen beim Gießen von Aluminiumlegierungen (wobei die Gussform praktisch nicht aufgeheizt werden muss, da keine Wärmeableitung durch sie selbst erfolgt). Dies erhöht die Wirtschaftlichkeit, da Energiekosten gesenkt werden können. Magnesium- und Titanlegierungen reagieren mit Kohlenstoff ebenfalls nicht, so dass sich diese Kohlenstoffaerogele auch für diese Legierungen unter Schutzgas oder Vakuum als Kern anbieten.
Ein besonderer Vorteil der Aerogele besteht darin, dass die Sol-Gel-Bildung bei Raumtemperatur abgeschlossen werden kann. Eine überkritische Trocknung, wie bei den rein anorganischen Gelen ist nicht erforderlich. Dennoch ist es möglich, die Porengröße im Mikrometerbereich einzustellen. Bei Trocknung im überkritischen Temperaturbereich sind darüber hinaus auch Porengrößen im Nanometerbereich möglich.
Die Aerogele können darüber hinaus auch anorganische oder organische Füllstoffmaterialien, insbesondere Fasermaterialien enthalten. Hierunter werden im wesentlichen bei Erstarrungsbedingungen inerte stabile Materialien verstanden. Anorganische Füllstoffmaterialien beliebiger Korngröße sind beispielsweise ausgewählt aus Aluminiumoxid, Titandioxid, Zirkonoxid und Quarz und deren Gemische, die jeweils in einer Menge von 5 bis 30 Vol.-%., insbesondere bis 60 Vol.-% eingesetzt werden können.
In gleicher Weise ist es aber auch möglich, organische Füllstoffe, beispielsweise thermoplastische oder duroplastische Kunststoffpartikel, beispielsweise Polystyrol einzusetzen. Hierbei ist jedoch zu beachten, dass bei der Pyrolyse der Kunststoffgele diese Materialien mit ausgeschmolzen oder verbrannt werden. Mit Hilfe solcher Materialien ist jedoch eine Kontrolle der Schrumpfung während der Pyrolyse möglich.
Besonders bevorzugt im Sinne der vorliegenden Erfindung werden Kunststoffaerogele auf der Basis Resorcin/Formaldehyd eingesetzt, die bei geeigneter Zusammensetzung und geeignetem Gehalt an baischem Katalysator bei Temperaturen zwischen 20 und 50 °C ohne überkritisches Trocknen in ein mikrostrukturiertes Kunststoffaerogel überführt werden können. Durch Auswahl der Zusammensetzung ist die Gelierungsreaktion so einstellbar, dass beispielsweise zunächst eine hochviskose Flüssigkeit entsteht, die mit der Zeit/Temperatur fester wird.
Somit besteht eine weitere Ausführungsform der vorliegenden Erfindung in der Verwendung von hochporösen, offenporigen Kunststoff- und/oder Kohlenstoffaerogelen, wobei man
  • a) eine Negativform eines Kerns mit einem Kunststoffsol geelgneter Zusammensetzung und einem geeigneten Katalysator füllt,
  • b) das Sol in ein Gel überführt,
  • c) das erstarrte Gel in an sich bekannter Weise in üblichen Wachsmodellen des Fein und Formgusses einsetzt und
  • d) das Gel entfernt.
  • Die erfindungsgemäß eingesetzten Kerne eignen sich besonders zum Einsatz in Wachsausschmelzverfahren.
    Die gewünschten Formen werden nach üblichen Techniken mit den Kernen und der Schmelze gefüllt und die Schmelze erstarrt. Bei den üblichen Gußtechniken, erfolgt die Warmeableitung über die Formschale oder den Formsand.
    Die so gewonnenen Kerne werden nach üblichen Techniken in üblichen Wachsmodellen eingesetzt. Im Gegensatz zu den nach dem heutigen Stand der Technik gebräuchlichen Kernwerkstoffen erfolgt keine Wärmeaufnahme durch die Aerogelkerne, da deren effektive Wärmeleitfähigkeit typischerweise nur wenige mW/Km beträgt. Thermische Belastungen und damit thermische Spannungen treten im Kernkörper nicht auf. Die Aerogelkerne lassen sich durch Pyrolyse oder Wasserhochdruckstrahl, aber auch durch benetzende Fluide wie Silikonöl, die das Aerogel fluidisieren, aus dem Gussstück leicht entfernen.
    Abhängig von der Zusammensetzung der Ausgangslösung, der Gelierungstemperatur und der Dichte des entstehenden porösen Körpers lassen sich Kerne für Gussformen herstellen, sowohl als Kunststoff- wie auch als Kohlenstoffaerogel, die auf einer Mikrometerskala oberflächlich glatt sind und konturscharf abbilden. Erfindungsgemäß benötigt die Herstellung von Formen bis zum Kunststoffaerogel maximal 24 Stunden. Die Pyrolyse unter Luftabschluss erfolgt in kurzen Zeiten (die von der Dicke der Form bestimmt wird; bei einer 1 cm Kern beträgt die Zeit beispielsweise 24 Stunden). Die Schrumpfung erfolgt in den beiden Prozessschritten immer isotrop und beträgt nur wenige Prozent (die Schrumpfung lässt sich durch die geeignete Wahl der Zusammensetzung des Sols beeinflussen, ebenso durch die Trocknungsbedingungen) und ist somit beherrschbar.
    Ausführungsbeispiel:
  • 1. Herstellung der Aerogellösung:
    22 g Resorcinol + 20 ml Formaldehydlösung (37 %ig) + 0,013 g Na2CO3 + 82 ml H2O und Rühren bei Raumtemperatur
  • 2. Mischen der Aerogellösung mit Formsand:
    Beispiel: 10 cm3 Alodur® - Sand mit einer Korngröße von 0,0633 µm bis 0,125 µm nimmt 45 ml Lösung auf. Der Sand wird unter Rühren der Aerogellösung zugefügt.
  • 3. Befüllung der Kernform:
    Befüllung der Kernform unter Rüttel- und Klopfverdichtung
  • 4. Trocknen:
    Trocknen der verschlossenen Form 24 Stunden bei 40 °C im Trockenschrank
  • 5. Endformung
  • 6. Endtrocknen bei Raumtemperatur
  • 7. Einbau des aerogelgebundenen Sandkernes in eine Standardgussform
  • Claims (8)

    1. Verwendung von hochporösen, offenporigen Kunststoff- und/oder Kohlenstoffaerogelen, erhältlich durch Sol-Gel-Polymerisation von organischen Kunststoffmaterialien als Kernwerkstoff für den Formguss.
    2. Verwendung nach Anspruch 1, enthaltend anorganische oder organische Füllstoffmaterialien, insbesondere in Pulver- oder in Faserform.
    3. Verwendung nach Anspruch 2, dadurch gekennzeichnet, dass die anorganischen Füllstoffmaterialien ausgewählt sind aus Aluminiumoxid, Titandioxid, Zinkonoxid und Quarz und deren Gemische, insbesondere in einer Menge von 5 bis 60 Vol.-%.
    4. Verwendung nach Anspruch 2, dadurch gekennzeichnet, dass die Füllstoffe ausgewählt sind aus thermoplastischen oder duroplastischen Kunststoffpartikeln, insbesondere Polystyrol.
    5. Verwendung nach einem der Ansprüche 1 bis 4, umfassend ein Resorcin/Formaldehyd-Sol-Gel und einen basischen Polymerisationskatalysator, insbesondere Ammoniumhydroxid und/oder Natriumcarbonat.
    6. Verwendung nach einem der Ansprüche 1 bis 5, wobei man
      a) eine Negativform eines Kerns mit einem Kunststoffsol geeigneter Zusammensetzung und einem geeigneten Katalysator füllt,
      b) das Sol in ein Gel überführt,
      c) das erstarrte Gel in an sich bekannter Weise in üblichen Wachsmodellen des Fein und Formgusses einsetzt und
      d) das Gel entfernt.
    7. Verwendung nach einem der Ansprüche 1 bis 6, wobei man das Gel durch Wasserhochdruckstrahl entfernt.
    8. Verwendung nach einem der Ansprüche 1 bis 6, wobei man das Gel durch Pyrolyse bei einer Temperatur von wenigstens 1000 °C im Verlauf von 24 Stunden entfernt.
    EP00116659A 1999-08-18 2000-08-02 Verwendung von Kunststoff/Kohlenstoff-Aerogelen als Kernwerkstoff Expired - Lifetime EP1077097B1 (de)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19939062A DE19939062A1 (de) 1999-08-18 1999-08-18 Verwendung von Kunststoff/Kohlenstoff-Aerogelen als Kernwerkstoff
    DE19939062 1999-08-18

    Publications (2)

    Publication Number Publication Date
    EP1077097A1 true EP1077097A1 (de) 2001-02-21
    EP1077097B1 EP1077097B1 (de) 2004-02-11

    Family

    ID=7918729

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP00116659A Expired - Lifetime EP1077097B1 (de) 1999-08-18 2000-08-02 Verwendung von Kunststoff/Kohlenstoff-Aerogelen als Kernwerkstoff

    Country Status (5)

    Country Link
    EP (1) EP1077097B1 (de)
    AT (1) ATE259265T1 (de)
    DE (2) DE19939062A1 (de)
    ES (1) ES2215527T3 (de)
    PT (1) PT1077097E (de)

    Cited By (10)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE10216464A1 (de) * 2002-04-12 2003-10-30 Deutsch Zentr Luft & Raumfahrt Silica gebundene Sande
    DE10216403A1 (de) * 2002-04-12 2003-11-13 Deutsch Zentr Luft & Raumfahrt Aerogelgebundene Formstoffe mit hoher Wärmeleitfähigkeit
    WO2005046909A1 (de) * 2003-11-11 2005-05-26 Deutsches Zentrum für Luft- und Raumfahrt e.V. Füllstoff enthaltende aerogele
    DE10357539A1 (de) * 2003-12-10 2005-07-21 Deutsches Zentrum für Luft- und Raumfahrt e.V. Herstellung von füllstoffhaltigen Aerogelen
    WO2006010449A2 (de) * 2004-07-23 2006-02-02 Ceramtec Ag Innovative Ceramic Engineering Keramische gusskerne
    EP1820582A1 (de) * 2006-01-24 2007-08-22 Deutsches Zentrum für Luft- und Raumfahrt e.V. Aerogel enthaltenden Kerne für den Leichtmetall- und/oder den Feinguss
    EP1852197A1 (de) * 2006-05-06 2007-11-07 Deutsches Zentrum für Luft- und Raumfahrt e.V. Kernwerkstoff aus tonhaltigem Sand mit einem Gehalt an quellfähigen Schichtsilikaten enthaltendem Aerogelsand
    DE102008056842A1 (de) * 2008-11-12 2010-05-20 Deutsches Zentrum für Luft- und Raumfahrt e.V. Gießereikerne mit verbesserten Entkernungseigenschaften II
    DE102008056856A1 (de) * 2008-11-12 2010-05-20 Deutsches Zentrum für Luft- und Raumfahrt e.V. Gießereikerne mit verbesserten Entkernungseigenschaften I
    WO2017102231A1 (de) * 2015-12-15 2017-06-22 Robert Bosch Gmbh Speiser für insbesondere aus gusseisen bestehende gussstücke

    Families Citing this family (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE10126865B4 (de) * 2001-06-01 2005-09-08 Neue Materialien Würzburg GmbH Substrat und Verwendung des Substrats
    DE10227512B4 (de) 2002-06-19 2004-07-08 Georg Fischer Gmbh & Co.Kg Verfahren zur Herstellung von Giesskernen oder Formen, sowie nach diesem Verfahren hergestellte Giesskerne oder Formen
    DE102009024182B3 (de) * 2009-06-08 2011-03-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Bildung und zum Entformen einer Form und/oder eines Kerns beim Formguss

    Citations (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3574548A (en) * 1969-08-11 1971-04-13 Atomic Energy Commission Process for manufacturing a cellular carbon body
    DE2123632B1 (de) * 1971-05-12 1972-08-24 Alcan Aluminiumwerke Leicht enfernbare formteile, insbesondere kerne für giessereizwecke und verfahren zu deren herstellung
    US4032105A (en) * 1975-04-25 1977-06-28 The United States Of America As Represented By The United States Energy Research And Development Administration Mold with improved core for metal casting operation
    DE3004466A1 (de) * 1980-02-07 1981-08-13 Sigri Elektrographit Gmbh, 8901 Meitingen Verfahren zum herstellen eines leicht entfernbaren giesskerns
    US5086085A (en) * 1991-04-11 1992-02-04 The United States Of America As Represented By The Department Of Energy Melamine-formaldehyde aerogels
    JPH0481243A (ja) * 1990-07-23 1992-03-13 Mitsui Petrochem Ind Ltd 溶融金属鋳造用型材
    EP0629810A1 (de) * 1993-06-10 1994-12-21 Praxair Technology, Inc. Kryogenisches System mit niedrigem Wärmeverlust, basierend auf kohärentem Aerogel
    DE19721600A1 (de) * 1997-05-23 1998-11-26 Hoechst Ag Nanoporöse interpenetrierende organisch-anorganische Netzwerke
    EP1036610A1 (de) * 1999-03-17 2000-09-20 Deutsches Zentrum für Luft- und Raumfahrt e.V. Fein- und Formguss in Kunststoff/Kohlenstoffaerogelen

    Family Cites Families (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4402927A (en) * 1980-04-22 1983-09-06 Dardel Guy Von Silica aerogel
    DE19523382C2 (de) * 1995-06-30 2003-04-30 Jochen Fricke Kohlenstoffaerogele und Verfahren zu deren Herstellung

    Patent Citations (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3574548A (en) * 1969-08-11 1971-04-13 Atomic Energy Commission Process for manufacturing a cellular carbon body
    DE2123632B1 (de) * 1971-05-12 1972-08-24 Alcan Aluminiumwerke Leicht enfernbare formteile, insbesondere kerne für giessereizwecke und verfahren zu deren herstellung
    US4032105A (en) * 1975-04-25 1977-06-28 The United States Of America As Represented By The United States Energy Research And Development Administration Mold with improved core for metal casting operation
    DE3004466A1 (de) * 1980-02-07 1981-08-13 Sigri Elektrographit Gmbh, 8901 Meitingen Verfahren zum herstellen eines leicht entfernbaren giesskerns
    JPH0481243A (ja) * 1990-07-23 1992-03-13 Mitsui Petrochem Ind Ltd 溶融金属鋳造用型材
    US5086085A (en) * 1991-04-11 1992-02-04 The United States Of America As Represented By The Department Of Energy Melamine-formaldehyde aerogels
    EP0629810A1 (de) * 1993-06-10 1994-12-21 Praxair Technology, Inc. Kryogenisches System mit niedrigem Wärmeverlust, basierend auf kohärentem Aerogel
    DE19721600A1 (de) * 1997-05-23 1998-11-26 Hoechst Ag Nanoporöse interpenetrierende organisch-anorganische Netzwerke
    EP1036610A1 (de) * 1999-03-17 2000-09-20 Deutsches Zentrum für Luft- und Raumfahrt e.V. Fein- und Formguss in Kunststoff/Kohlenstoffaerogelen

    Non-Patent Citations (1)

    * Cited by examiner, † Cited by third party
    Title
    DATABASE WPI Section Ch Week 199217, Derwent World Patents Index; Class A88, AN 1992-138385, XP002155791 *

    Cited By (16)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE10216464A1 (de) * 2002-04-12 2003-10-30 Deutsch Zentr Luft & Raumfahrt Silica gebundene Sande
    DE10216403A1 (de) * 2002-04-12 2003-11-13 Deutsch Zentr Luft & Raumfahrt Aerogelgebundene Formstoffe mit hoher Wärmeleitfähigkeit
    DE10216403B4 (de) * 2002-04-12 2004-03-18 Deutsches Zentrum für Luft- und Raumfahrt e.V. Aerogelgebundene Formstoffe mit hoher Wärmeleitfähigkeit
    DE10216464B4 (de) * 2002-04-12 2004-04-15 Deutsches Zentrum für Luft- und Raumfahrt e.V. Silica gebundene Kernwerkstoffe, Verfahren zu deren Herstellung und deren Verwendung
    WO2005046909A1 (de) * 2003-11-11 2005-05-26 Deutsches Zentrum für Luft- und Raumfahrt e.V. Füllstoff enthaltende aerogele
    DE10352574A1 (de) * 2003-11-11 2005-06-16 Deutsches Zentrum für Luft- und Raumfahrt e.V. Füllstoff enthaltende Aerogele
    DE10357539A1 (de) * 2003-12-10 2005-07-21 Deutsches Zentrum für Luft- und Raumfahrt e.V. Herstellung von füllstoffhaltigen Aerogelen
    US7812059B2 (en) 2003-12-10 2010-10-12 Deutsches Zentrum Fur Luft Und Raumfahrt E.V. Production of aerogels containing fillers
    WO2006010449A3 (de) * 2004-07-23 2006-08-03 Ceramtec Ag Keramische gusskerne
    WO2006010449A2 (de) * 2004-07-23 2006-02-02 Ceramtec Ag Innovative Ceramic Engineering Keramische gusskerne
    EP1820582A1 (de) * 2006-01-24 2007-08-22 Deutsches Zentrum für Luft- und Raumfahrt e.V. Aerogel enthaltenden Kerne für den Leichtmetall- und/oder den Feinguss
    EP1852197A1 (de) * 2006-05-06 2007-11-07 Deutsches Zentrum für Luft- und Raumfahrt e.V. Kernwerkstoff aus tonhaltigem Sand mit einem Gehalt an quellfähigen Schichtsilikaten enthaltendem Aerogelsand
    DE102008056842A1 (de) * 2008-11-12 2010-05-20 Deutsches Zentrum für Luft- und Raumfahrt e.V. Gießereikerne mit verbesserten Entkernungseigenschaften II
    DE102008056856A1 (de) * 2008-11-12 2010-05-20 Deutsches Zentrum für Luft- und Raumfahrt e.V. Gießereikerne mit verbesserten Entkernungseigenschaften I
    EP2204246A3 (de) * 2008-11-12 2012-01-04 Deutsches Zentrum für Luft- und Raumfahrt e.V. Gießereikerne mit verbesserten Entkernungseigenschaften I
    WO2017102231A1 (de) * 2015-12-15 2017-06-22 Robert Bosch Gmbh Speiser für insbesondere aus gusseisen bestehende gussstücke

    Also Published As

    Publication number Publication date
    ATE259265T1 (de) 2004-02-15
    DE50005241D1 (de) 2004-03-18
    DE19939062A1 (de) 2001-02-22
    PT1077097E (pt) 2004-06-30
    EP1077097B1 (de) 2004-02-11
    ES2215527T3 (es) 2004-10-16

    Similar Documents

    Publication Publication Date Title
    EP1077097B1 (de) Verwendung von Kunststoff/Kohlenstoff-Aerogelen als Kernwerkstoff
    EP1036610B1 (de) Fein- und Formguss in Kunststoff/Kohlenstoffaerogelen
    EP1697273B1 (de) Herstellung von füllstoffhaltigen aerogelen
    EP2916976B1 (de) Verfahren zur herstellung von verlorenen kernen oder formteilen zur gussteilproduktion
    US5468285A (en) Ceramic core for investment casting and method for preparation of the same
    WO2017084851A1 (de) Form, verfahren zu ihrer herstellung und verwendung
    DE102006056093A1 (de) Aerosand-Additive
    EP3478427A1 (de) Kern-hülle-partikel zur verwendung als füllstoff für speisermassen
    DE102006021151A1 (de) Kernwerkstoff aus tonhaltigem Sand enthaltendem Aerogelsand
    EP1820582B1 (de) Aerogel enthaltenden Kerne für den Leichtmetall- und/oder den Feinguss
    EP2193858B1 (de) Gießereikerne mit verbesserten Entkernungseigenschaften II
    EP2308614B1 (de) Grünfeste Aerosande
    DE10216464B4 (de) Silica gebundene Kernwerkstoffe, Verfahren zu deren Herstellung und deren Verwendung
    DE10216403B4 (de) Aerogelgebundene Formstoffe mit hoher Wärmeleitfähigkeit
    EP1682291B1 (de) Füllstoff enthaltende aerogele
    EP1236525A2 (de) Giessform
    WO2006010449A2 (de) Keramische gusskerne
    DE3828884C2 (de)
    EP3852950A1 (de) GIEßKERN FÜR GIEßFORMEN SOWIE VERFAHREN ZU DESSEN HERSTELLUNG
    EP3852949A1 (de) Giesskern für giessformen sowie verfahren zu dessen herstellung
    DE102005030929A1 (de) Keramische Gusskerne
    CA2141769A1 (en) Ceramic core for investment casting and method for preparation of the same
    DE19703176A1 (de) Verfahren zur Herstellung von keramischen oder pulvermetallurgischen Bauteilen
    JPH07268507A (ja) 金属基複合材用プリフォームの製造方法

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20000802

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    AKX Designation fees paid

    Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040211

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040211

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040211

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: RITSCHER & PARTNER AG PATENTANWAELTE

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REF Corresponds to:

    Ref document number: 50005241

    Country of ref document: DE

    Date of ref document: 20040318

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040511

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040511

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040511

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: SC4A

    Free format text: AVAILABILITY OF NATIONAL TRANSLATION

    Effective date: 20040510

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20040611

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040802

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040831

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040831

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2215527

    Country of ref document: ES

    Kind code of ref document: T3

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20041112

    BERE Be: lapsed

    Owner name: DEUTSCHES ZENTRUM FUR LUFT UND RAUMFAHRT E.V. *DLR

    Effective date: 20040831

    Owner name: TITAN ALUMINIUM *FEINGUSS G.M.B.H.

    Effective date: 20040831

    BERE Be: lapsed

    Owner name: TITAN ALUMINIUM *FEINGUSS G.M.B.H.

    Effective date: 20040831

    Owner name: DEUTSCHES ZENTRUM FUR LUFT UND RAUMFAHRT E.V. *DLR

    Effective date: 20040831

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PCAR

    Free format text: RITSCHER & PARTNER AG;RESIRAIN 1;8125 ZOLLIKERBERG (CH)

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20080825

    Year of fee payment: 9

    Ref country code: ES

    Payment date: 20080828

    Year of fee payment: 9

    Ref country code: NL

    Payment date: 20080820

    Year of fee payment: 9

    Ref country code: PT

    Payment date: 20080725

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20080821

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20080822

    Year of fee payment: 9

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: TQ

    Ref country code: FR

    Ref legal event code: TP

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: MM4A

    Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

    Effective date: 20100202

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    Ref country code: NL

    Ref legal event code: V1

    Effective date: 20100301

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20090802

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090831

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090831

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100202

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090802

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100301

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20090803

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090802

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20100818

    Year of fee payment: 11

    Ref country code: FR

    Payment date: 20100819

    Year of fee payment: 11

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090803

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20110831

    Year of fee payment: 12

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20120430

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110802

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110831

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130301

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 50005241

    Country of ref document: DE

    Effective date: 20130301