EP1059488B1 - Procédé et dispositif pour réchauffer un milieu liquide - Google Patents

Procédé et dispositif pour réchauffer un milieu liquide Download PDF

Info

Publication number
EP1059488B1
EP1059488B1 EP00810417.6A EP00810417A EP1059488B1 EP 1059488 B1 EP1059488 B1 EP 1059488B1 EP 00810417 A EP00810417 A EP 00810417A EP 1059488 B1 EP1059488 B1 EP 1059488B1
Authority
EP
European Patent Office
Prior art keywords
line
thermal system
heat exchanger
medium
control element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00810417.6A
Other languages
German (de)
English (en)
Other versions
EP1059488A3 (fr
EP1059488A2 (fr
Inventor
Erhard Dr. Liebig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1059488A2 publication Critical patent/EP1059488A2/fr
Publication of EP1059488A3 publication Critical patent/EP1059488A3/fr
Application granted granted Critical
Publication of EP1059488B1 publication Critical patent/EP1059488B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/02Feed-water heaters, i.e. economisers or like preheaters with water tubes arranged in the boiler furnace, fire tubes, or flue ways
    • F22D1/12Control devices, e.g. for regulating steam temperature

Definitions

  • the present invention relates to a method for heating a liquid medium by means of a first and at least one subsequent second thermal system, which thermal systems each have at least one heat exchanger through which the medium flows and which second system is operated at a higher temperature level than the first. It further relates to a system for carrying out the method, including a feed line for supplying the medium to be heated.
  • Plants in which a liquid medium passes through a plurality of thermal systems to be heated, optionally evaporated, for example, are present in boilers which are heated by flue gas from burners or exhaust gas from gas turbines.
  • the medium may be water with optional additives.
  • the water in the boiler is heated to a predetermined temperature to be supplied to, for example, an industrial plant, a hot water network, etc., or vaporized to be supplied to, for example, a steam turbine or an industrial steam consumer.
  • the first thermal system in such a boiler which has a first heat exchanger, a Schundbündel, is commonly called economizer.
  • the for preheating the feed water in the boiler provided economizer works due to the temperature conditions preferably at the flue gas or exhaust end of the boiler, ie at relatively low temperatures.
  • the temperature difference between the smoke or exhaust gas and the feed water to be heated is relatively low. This in turn has large heating surfaces and associated large Bankmatimassen result.
  • an economizer for adjusting the temperature requires, for example, a large period of time when the operating conditions change. Furthermore, due to the temperatures and pressures prevailing in the economizer, there is the risk of dew point corrosion.
  • preheated water is added to the feed water at the boiler inlet.
  • this is bypassed by the feed water and made the preheating in a working at a higher temperature level system, for example, a steam generating system at the expense of reducing the production of steam.
  • the invention is thus based on the object to provide a method for heating a liquid medium by means of a first and a subsequent second thermal system with a higher temperature level, according to which under special operating conditions (starting, fuel change) an accelerated increase in the temperature of the first thermal System is enabled. Next, the risk of dew point corrosion is to be reduced.
  • a system for carrying out the method according to the invention is characterized in that the first thermal system has a first heat exchanger with an inlet line adjoining the feed line and an outlet line which extends via a line section to the second thermal system, wherein between the feed line and the inlet line a first control element is arranged, that extends from the feed line equipped with a second control element bypass line to the outlet line that extends from the outlet line, a line section to the second thermal system, and that the outlet line via a recirculation line with a third control element and a first pump with the Inlet line is connected, which recirculation line is arranged parallel to the first heat exchanger.
  • a section of a boiler is used.
  • This section is intended to include a first thermal system and a second thermal system, wherein the second thermal system is operated at a higher temperature level than the first thermal system.
  • the first thermal system comprises the economizer and the second thermal system the evaporator of the boiler. It is irrelevant to the concept of the invention whether the evaporator is a drum circulation evaporator or a forced circulation evaporator, as can be seen from the examples described below.
  • the reference numeral 1 designates the feed water line through which the medium to be heated, i. treated feed water, is supplied.
  • the feed water is conveyed by the feedwater pump 31 to the boiler.
  • the feedwater line 1 ends at a first control element 10.
  • an inlet line 3 extends to a first heat exchanger 2 (the economizer), which is followed by an outlet line 4.
  • the line section 9 leads as an extension of the outlet line 4 to the second thermal system, in the specific case to the steam drum. 6
  • a recirculation line 7 with a first pump 13 and a third control element 12 extends between the outlet line 4 and the inlet line 3, it being apparent from the drawing figure that the first pump 13 is arranged for conveying from the outlet line 4 to the inlet line 3.
  • a fourth control element 14 is arranged in the outlet line 4.
  • the second thermal system comprises a second heat exchanger 5, the exemplary evaporator, which communicates with a container for receiving a quantity of the medium in the liquid state, here specifically with a steam drum 6 in connection.
  • a feed line 15 to the second heat exchanger 5 extends from the second heat exchanger 5, a return line 16 to the steam drum 6.
  • the reference numeral 32 denotes an outlet line of the steam drum 6, for example, to a steam consumer, a steam turbine, a superheater, etc. runs ,
  • the two heat exchangers 2, 5 are heated by a heating gas 56, which in the case of a boiler fired by burners can be flue gas or, in the case of the waste heat utilization of a gas turbine, exhaust gas.
  • a heating gas 56 which in the case of a boiler fired by burners can be flue gas or, in the case of the waste heat utilization of a gas turbine, exhaust gas.
  • the heating of the heat exchanger 2.5 is identical in all embodiments and will therefore not be explained repeatedly.
  • the first control element 10 and the fourth control element 14 are open and the second control element 11 and the third control element 12 are closed.
  • the first pump 13 is out of operation.
  • the circulation in the second thermal system can be done by natural flow, by a pump or a combination of both.
  • the first control element 10 and the fourth control element 14 are at least partially closed, in extreme cases completely.
  • the second control element 11 and the third control element 12 are at least partially, in the extreme case completely open.
  • the pump 13 is in operation.
  • the water to be heated flows in the circuit, in the extreme case with fully closed or open control elements in a completely closed circuit, in the direction of arrow 34 from the cold end to the warm end of the first heat exchanger 2, through the outlet line 4 to the recirculation line 7, flows in Direction of the arrow 35 through the same, then to the inlet line 3 and finally back to the cold end of the first heat exchanger.
  • the water can flow directly into the steam drum 6 via the line section 9.
  • control elements may not necessarily be in a fully closed or fully open position. There are also intermediate positions possible to achieve the best possible effect. Also, controlled movements are provided from one position to the other position, for example, to avoid thermal shock.
  • FIG. 2 shown embodiment is identical to the embodiment according to the first thermal system FIG. 1 ,
  • the second thermal system is a forced once-through evaporator consisting of the second heat exchanger, the evaporator 5, the feed line 15 and the return line 16, which are connected to the evaporator 5, and a separator 6A.
  • the flow through the second thermal system takes place in contrast to the in FIG. 1 shown variant of a drum-circulation evaporator through the line section 9 in the flow line 15, in the direction of arrow 39 through the evaporator 5 and via the return line 16 into the separator 6A.
  • the separator 6A the separation of water and steam takes place.
  • the steam flows over the outlet pipe 32 to a steam consumer or superheater.
  • the water separated in the separator is returned to the evaporator 5.
  • FIGS Figures 1 and 2 A second embodiment of the invention will be described below with reference to FIGS FIG. 3 described, as a variant embodiment again a drum-circulation evaporator is used with the steam drum 6 as a second thermal system. As far as possible, the same reference numbers are used as in FIGS Figures 1 and 2 ,
  • bypass line 8 From the feedwater line 1 branches off a bypass line 8 with a second control element 11, which bypass line 8 extends to the outlet line 4.
  • the line section 9 leads as an extension of the outlet line 4 to the second thermal system, in the specific case to the steam drum 6.
  • the second thermal system has in particular a steam drum 6 with an outlet line 32 and a second heat exchanger 5, via a flow line 15 and a return line 16 is in communication with the steam drum 6.
  • the first control element 10 and the fourth control element 14 are at least partially closed in the extreme case completely.
  • the second control element 11 and the third control element 12 are at least partially, in the extreme case completely opened and the pump 13 is put into operation.
  • the water to be heated flows in the direction of arrow 43 from the warm end to the cold end of the first heat exchanger 2, through the inlet line 3 to the recirculation line 7, flows in the direction of arrow 42 through the same, then to the outlet line 4 and finally back to the warm end of the first heat exchanger.
  • FIG. 4 shows a third embodiment, wherein as a variant embodiment for the second thermal system, a second preheating stage with a second heat exchanger 5 and container 6 is used. As far as possible, the same reference numbers have been chosen as in the previous versions.
  • the second thermal system has in particular a container 6 with an outlet line 32 and a second heat exchanger 5, which communicates via a feed line 15 and a return line 16 with the container 6 in connection.
  • the feed water flowing via the line section 9 in the direction of the arrow 37 into the container 6 can alternatively also flow into the feed line 15, as indicated by the dashed arrow 38.
  • the first control element 10 For accelerated raising the temperature in the first heat exchanger 2, for example when starting the system, the first control element 10, the second control element 11 and the control element 19 in the open position.
  • the third control element 12 and the fourth control element 14 are in the closed position.
  • the first pump 13 in the recirculation line 7 is out of operation.
  • the feed water flowing in through the feedwater line 1 in the direction of the arrow 33 flows through the bypass line 8 in the direction of the arrow 36 and the line section 9 directly into the second thermal system, either into the container 6, as shown by the arrow 37, or alternatively into the flow line 15, as drawn with the dashed arrow 38.
  • the water flows in the direction of arrow 51 through line 17 in the outlet line 4 and the warm end of the first heat exchanger 2. Further, the water flows in the direction of arrow 51 from the warm to the cold end of the first heat exchanger 2 and then to Entrance line 3.
  • this water flow is mixed with the feedwater flow in through the feedwater line 1, whereupon both water flows are passed together through the bypass line 8 and the line section 9 to the second thermal system, i. to the container 6 or the flow line 15 flow.
  • water can flow from the feed line 15 via the line 41 into the line 17.
  • FIG. 5 shows a circuit arrangement according to a fourth embodiment of the invention. This arrangement has according to the embodiment according to FIG. 2 as a second thermal system on a forced once-through evaporator.
  • bypass line 8 From the feedwater line 1 branches off a bypass line 8 with a second control element 11, which bypass line 8 extends to the outlet line 4.
  • the line section 9 leads as an extension of the outlet line 4 to the second thermal system, in the specific case to the feed line 15.
  • the second thermal system has in particular a second heat exchanger to the evaporator 5, which is acted upon by a feed line 15 with feed water and via the return line 16 with the separator 6A is in communication.
  • the flow through the second thermal system takes place through the line section 9 in the flow line 15, in the direction of arrow 39 through the evaporator 5 and via the return line 16 into the separator 6A.
  • the separator 6A the separation of water and steam takes place.
  • the steam flows via the outlet line 32 to a steam consumer or superheater.
  • the water separated in the separator is returned to the evaporator 5.
  • a line 20 extends with a further pump 21 and a further control element 22 to the outlet line 4, in particular to the warm end of the first heat exchanger second
  • the third control element 12 and the fourth control element 14 are closed.
  • the first pump 13 in the recirculation line 7 is not in operation.
  • the first control element 10 in the inlet line 3, the second control element 11 in the bypass line 8 and the control element 22 in the conduit 20 are in the open position, the pump 21 is in operation.
  • the feed water flows from the feedwater line 1 through the bypass line 8 and the line section 9 in the direction of the arrow 36 in the flow line 15 and thus to the second thermal system.
  • FIG. 6 shows a fifth embodiment, wherein as a variant embodiment for the second thermal system, a second preheating stage with a second heat exchanger 5 and a container 6 is used.
  • bypass line 8 From the feedwater line 1 branches off a bypass line 8 with a second control element 11, which bypass line 8 extends to the outlet line 4.
  • a line section 9 leads as an extension of the outlet line 4 to the second thermal system, in the specific case to the container 6.
  • the second thermal system has in particular a container 6 with an outlet line 32 and a second heat exchanger 5, via a Supply line 15 and a return line 16 with the container 6 is in communication.
  • the feed water flowing via the line section 9 in the direction of the arrow 37 into the container 6 can alternatively also flow into the feed line 15, as indicated by the dashed arrow 38.
  • a line 23 with a pump 24 and a control element 25 extends from the second heat exchanger 5 to the cold end of the first heat exchanger 2 and to the inlet line 3.
  • the first control element 10 and the third control element 12 in the closed position and the first pump 13 are out of operation.
  • the second control element 11 and the control element 25 are in the open position and the pump 24 is in operation.
  • the water flows in this embodiment in the direction of arrow 51, through the line 23, further in the direction of arrows 47, 34 and 48 through the first heat exchanger 2 and then together with the incoming feed water line 1 and the bypass line 8 feed water over the line section 9 according to a first variant in the direction of arrow 37 in the container 6 or according to a second variant in the direction of the dashed arrow 38 in the flow line 15th
  • FIG. 7 shows a circuit arrangement according to a sixth embodiment of the invention with a drum-circulation evaporator with the steam drum 6 as a second thermal system.
  • bypass line 8 From the feedwater line 1 branches off a bypass line 8 with a second control element 11, which bypass line 8 extends to the outlet line 4.
  • a line section 9 leads as an extension of the outlet line 4 to the second thermal system, in the specific case to the steam drum 6.
  • the second thermal system has in particular a steam drum 6 with an outlet line 32 and a second heat exchanger 5, which via a flow line 15 and a return line 16th is in communication with the steam drum 6.
  • the feed water flowing via the line section 9 in the direction of the arrow 37 into the steam drum 6 can also alternatively flow into the feed line 15, as indicated by the dashed arrow 38.
  • the steam drum 6 extends a line 26 with a pump 27 and a control element 28 to the cold end of the first heat exchanger 2 and the inlet line.
  • a line 45 branches off from the supply line 15 and merges into the line 26.
  • the first control element 10 and the third control element 12 are closed.
  • the first pump 13 in the recirculation line 7 is out of operation.
  • the second control element 11 in the bypass line 8 and the control element 28 in the line 26 are in the open position, the pump 27 is in operation.
  • the feed water flows from the feedwater line 1 through the bypass line 8 and the line section 9 in the direction of the arrows 36 and 37 in the steam drum 6 or alternatively in the flow line 15, as indicated by the dashed arrow 38.
  • water can flow from the feed line 15 via the line 45 into the line 26.
  • FIG. 8 shows a circuit arrangement according to a seventh embodiment of the invention, wherein as a variant embodiment for the second thermal system, a second preheating stage with a second heat exchanger 5 and with container 6 is used.
  • the feedwater line 1 branches off a bypass line 8 with a second control element 11, which bypass line 8 extends to the outlet line 4.
  • the line section 9 leads as an extension of the outlet line 4 to the second thermal system, in the specific case to the container 6.
  • the second thermal system has in particular a container 6 with an outlet line 32 and a second heat exchanger 5, which via a Supply line 15 and a return line 16 with the container 6 is in communication.
  • the feed water flowing via the line section 9 in the direction of the arrow 37 into the container 6 can alternatively also flow into the feed line 15, as indicated by the dashed arrow 38.
  • a line 29 branches off from the second heat exchanger 5, in which a control element 50 is inserted, which line 29 opens at a point between the control element 49 and the first pump 13 in the recirculation line 7.
  • the first control element 10 and the control element 49 are closed.
  • the control element 11,12 and 50 are in the open position, the first pump 13 is put into operation.
  • the feedwater flows from the feedwater line 1 through the bypass line 8 and the line section 9 in the direction of the arrows 36 and 37 in the steam drum 6 or alternatively in the flow line 15, as indicated by the dashed arrow 38.
  • the arrows 47, 47 and 48 show the flow direction through the first heat exchanger 2.
  • FIG. 9 shows a circuit arrangement according to an eighth embodiment of the invention with a drum-circulation evaporator with the steam drum 6 as a second thermal system.
  • bypass line 8 From the feedwater line 1 branches off a bypass line 8 with a second control element 11, which bypass line 8 extends to the outlet line 4.
  • a line section 9 leads as an extension of the outlet line 4 to the second thermal system, in the specific case to the steam drum 6.
  • the second thermal system has in particular a steam drum 6 with an outlet line 32 and a second heat exchanger 5, via a feed line 15 and a return line 16th is in communication with the steam drum 6.
  • the feed water flowing via the line section 9 in the direction of the arrow 37 into the steam drum 6 can also alternatively flow into the feed line 15, as indicated by the dashed arrow 38.
  • a first variant of the steam drum 6 extends a line 54 in which a control element 55 is inserted to the recirculation line 7 and opens at a point between the other control element 49 and the first pump 13 in the recirculation line. 7
  • a line 30 branches off from the supply line 15 and merges into the line 54.
  • the first control element 10 and the control element 49 is closed.
  • the control elements 11, 12 and 55 are in the open position, the first pump 13 is put into operation.
  • the feedwater flows from the feedwater line 1 through the bypass line 8 and the line section 9 in the direction of the arrows 36 and 37 in the steam drum 6 or alternatively in the flow line 15, as indicated by the dashed arrow 38.
  • water can flow from the feed line 15 via the line 30 into the line 54.
  • the arrows 47, 47 and 48 show the flow direction through the first heat exchanger 2.
  • the invention is in principle independent of the specific design, construction, construction u. Like. The described elements and systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Claims (32)

  1. Procédé pour réchauffer un milieu liquide au moyen d'un premier système thermique (2, 3, 4, 7, 12, 13) et d'au moins un deuxième système thermique (5, 6, 6A, 15, 16) suivant celui-ci, lesquels systèmes thermiques présentent chacun au moins un échangeur de chaleur (2, 5) parcouru par un milieu et lequel deuxième système thermique (5, 6, 6A, 15, 16) fonctionne à un niveau de température plus élevé que le premier système thermique (2, 3, 4, 7, 12, 13), pour l'augmentation accélérée de la température du milieu dans le premier système thermique (2, 3, 4, 7, 12, 13), l'alimentation directe du milieu à celui-ci étant diminuée par une soupape de régulation (10) et dans un cas extrême étant supprimée, et le milieu traversant le premier système thermique (2, 3, 4, 7, 12, 13) étant guidé en circuit, et le milieu à réchauffer acheminé aux systèmes thermiques (2, 3, 4, 7, 12, 13 ; 5, 6, 6A, 15, 16) étant acheminé en partie et dans un cas extrême complètement directement au deuxième système thermique (5, 6, 6A, 15, 16) avant le passage de la soupape de régulation (10).
  2. Procédé selon la revendication 1, caractérisé en ce que le milieu est guidé en circuit exclusivement dans le premier système thermique (2, 3, 4, 7, 12 13).
  3. Procédé selon la revendication 1, caractérisé en ce que le milieu est guidé en circuit de manière combinée dans le premier système thermique (2, 3, 4, 7, 12, 13) et dans le deuxième système thermique (5, 6, 6A, 15, 16).
  4. Procédé selon la revendication 1, caractérisé en ce que le milieu dans le premier système thermique (2, 3, 4, 7, 12, 13) est guidé en circuit depuis l'extrémité froide de son échangeur de chaleur (2) jusqu'à son extrémité chaude.
  5. Procédé selon la revendication 1, caractérisé en ce que le milieu dans le premier système thermique (2, 3, 4, 7, 12, 13) est guidé en circuit depuis l'extrémité chaude de son premier échangeur de chaleur (2) jusqu'à son extrémité froide.
  6. Procédé selon la revendication 3, caractérisé en ce que le milieu est guidé en circuit depuis le deuxième système thermique (5, 6, 6A, 15, 16) jusqu'au premier système thermique (2, 3, 4, 7, 12, 13) et de retour jusqu'au deuxième système thermique (5, 6, 6A, 15, 16) et en ce qu'une alimentation directe du milieu au deuxième système thermique (5, 6, 6A, 15, 16) est établie, en ce que le milieu sortant du premier système thermique (2, 3, 4, 7, 12, 13) est acheminé avec le milieu s'écoulant directement dans le deuxième système thermique (5, 6, 6A, 15, 16) conjointement au deuxième système thermique (5, 6, 6A, 15, 16) et une quantité en excès du milieu est évacuée hors du deuxième système thermique (5, 6, 6A, 15, 16).
  7. Procédé selon la revendication 6, caractérisé en ce que le milieu provenant du deuxième système thermique (5, 6, 6A, 15, 16) est acheminé à l'extrémité chaude du premier échangeur de chaleur (2) du premier système thermique (2, 3, 4, 7, 12, 13).
  8. Procédé selon la revendication 7, caractérisé en ce que le milieu provenant du deuxième échangeur de chaleur (5) du deuxième système thermique (5, 6, 6A, 15, 16) est acheminé à l'extrémité chaude du premier échangeur de chaleur (2) du premier système thermique (2, 3, 4, 7, 12, 13).
  9. Procédé selon la revendication 7, dans lequel le deuxième système thermique (5, 6, 6A, 15, 16) présente un récipient (6, 6A) pour recevoir une quantité du milieu à l'état fluide, caractérisé en ce que le milieu est acheminé depuis le récipient (6, 6A) du deuxième système thermique (5, 6, 6A, 15, 16) à l'extrémité chaude du premier échangeur de chaleur (2) du premier système thermique (2, 3, 4, 7, 12, 13).
  10. Procédé selon la revendication 6, caractérisé en ce que le milieu provenant du deuxième système thermique (5, 6, 6A, 15, 16) est acheminé à l'extrémité froide du premier échangeur de chaleur (2) du premier système thermique (2, 3, 4, 7, 12, 13).
  11. Procédé selon la revendication 10, caractérisé en ce que le milieu provenant du deuxième échangeur de chaleur (5) du deuxième système thermique (5, 6, 6A, 15, 16) est acheminé à l'extrémité froide du premier échangeur de chaleur (2) du premier système thermique (2, 3, 4, 7, 12, 13).
  12. Procédé selon la revendication 11, dans lequel le deuxième système thermique (5, 6, 6A, 15, 16) présente un récipient (6, 6A) pour recevoir une quantité du milieu à l'état fluide, caractérisé en ce que le milieu provenant du récipient (6, 6A) du deuxième système thermique (5, 6, 6A, 15, 16) est acheminé à l'extrémité froide du premier échangeur de chaleur (2) du premier système thermique (2, 3, 4, 7, 12, 13).
  13. Procédé selon la revendication 6, dans lequel le premier système thermique (2, 3, 4, 7, 12, 13) présente une conduite de recirculation (7) s'étendant depuis l'extrémité chaude jusqu'à l'extrémité froide de son premier échangeur de chaleur (2), caractérisé en ce que le milieu provenant du deuxième système thermique (5, 6, 6A, 15, 16) est acheminé par le biais de la conduite de recirculation (7) à l'extrémité froide du premier échangeur de chaleur (2) du premier système (2, 3, 4, 7, 12, 13).
  14. Procédé selon la revendication 13, caractérisé en ce que le milieu provenant du deuxième échangeur de chaleur (5) du deuxième système thermique (5, 6, 6A, 15, 16) est acheminé à la conduite de recirculation (7) du premier système thermique (2, 3, 4, 7, 12, 13).
  15. Procédé selon la revendication 13, dans lequel le deuxième système thermique (5, 6, 6A, 15, 16) présente un récipient (6, 6A) pour recevoir une quantité du milieu à l'état fluide, caractérisé en ce que le milieu provenant du récipient (6, 6A) du deuxième système thermique (5, 6, 6A, 15, 16) est acheminé à la conduite de recirculation (7) du premier système thermique (2, 3, 4, 7, 12, 13).
  16. Installation pour mettre en oeuvre le procédé selon la revendication 1, comprenant une conduite d'alimentation (1) pour l'alimentation du milieu à réchauffer, caractérisée en ce que le premier système thermique (2, 3, 4, 7, 12, 13) présente un premier échangeur de chaleur (2) avec une conduite d'entrée (3) se raccordant à la conduite d'alimentation (1) et une conduite de sortie (4), un premier élément de régulation (10) étant disposé entre la conduite d'alimentation (1) et la conduite d'entrée (3), en ce qu'une conduite de dérivation (8) munie d'un deuxième élément de régulation (11) s'étend depuis la conduite d'alimentation (1) jusqu'à la conduite de sortie (4), en ce qu'une portion de conduite (9) s'étend depuis la conduite de sortie (4) jusqu'au deuxième système thermique (5, 6, 6A, 15, 16), et en ce que la conduite de sortie (4) est en liaison, par le biais d'une conduite de recirculation (7), avec un troisième élément de régulation (12) et une première pompe (13), avec la conduite d'entrée (3), laquelle conduite de recirculation (7) est disposée parallèlement au premier échangeur de chaleur (2).
  17. Installation selon la revendication 16, caractérisée en ce que le deuxième système thermique (5, 6, 6A, 15, 16) présente un deuxième échangeur de chaleur (5) et un récipient (6, 6A) pour recevoir une quantité du milieu à l'état fluide, lequel deuxième échangeur de chaleur (5) est en liaison avec le récipient (6, 6A) par le biais d'une conduite aller (15) s'étendant depuis le récipient (6, 6A) jusqu'au deuxième échangeur de chaleur (5) et d'une conduite retour (16) s'étendant depuis le deuxième échangeur de chaleur (5) de retour jusqu'au récipient (6, 6A).
  18. Installation selon la revendication 17, caractérisée en ce qu'après le point de branchement de la conduite de recirculation (7) depuis la conduite de sortie (4), un quatrième élément de régulation (14) est disposé dans la conduite de sortie (4).
  19. Installation selon la revendication 17, caractérisée en ce que la portion de conduite (9) s'étend jusqu'au récipient (6, 6A) du deuxième système thermique (5, 6, 6A, 15, 16).
  20. Installation selon la revendication 17, caractérisée en ce que la portion de conduite (9) débouche dans la conduite aller (15).
  21. Installation selon la revendication 17, caractérisée en ce qu'une pompe de recirculation (40) est disposée dans la conduite aller (15).
  22. Installation selon la revendication 16, caractérisée en ce que la première pompe (13) disposée dans la conduite de recirculation (7) est réalisée pour refouler le milieu depuis la conduite de sortie (4) jusqu'à la conduite d'entrée (3).
  23. Installation selon la revendication 16, caractérisée en ce que la première pompe (13) disposée dans la conduite de recirculation (7) est réalisée pour refouler le milieu depuis la conduite d'entrée (3) jusqu'à la conduite de sortie (4).
  24. Installation selon la revendication 17, caractérisée en ce que depuis le deuxième échangeur de chaleur (5) part une conduite (17) débouchant dans la conduite de sortie (4) et comprenant une pompe (18) refoulant dans la direction de la conduite de sortie (4) et un élément de régulation (19).
  25. Installation selon la revendication 17, caractérisée en ce que depuis le récipient (6, 6A) part une conduite (20) débouchant dans la conduite de sortie (4) et comprenant une pompe supplémentaire (21) et un élément de régulation supplémentaire (22).
  26. Installation selon la revendication 17, caractérisée en ce que depuis la conduite aller (15) part une conduite (41, 17) débouchant dans la conduite de sortie (4) et comprenant une pompe (18) refoulant dans la direction de la conduite de sortie (4) et un élément de régulation (19).
  27. Installation selon la revendication 17, caractérisée en ce que depuis le deuxième échangeur de chaleur (5) part une conduite (23) débouchant dans la conduite d'entrée (3) et comprenant une pompe (24) refoulant dans la direction de la conduite d'entrée (3) et un élément de régulation (25).
  28. Installation selon la revendication 17, caractérisée en ce que depuis le récipient (6, 6A) part une conduite (26) débouchant dans la conduite d'entrée (3) et comprenant une pompe (27) refoulant dans la direction de la conduite d'entrée (3) et un élément de régulation (28).
  29. Installation selon la revendication 17, caractérisée en ce que depuis la conduite aller (15) part une conduite (45, 26) débouchant dans la conduite d'entrée (3) et comprenant une pompe (27) refoulant dans la direction de la conduite d'entrée (3) et un élément de régulation (28).
  30. Installation selon la revendication 17, caractérisée en ce que depuis le deuxième échangeur de chaleur (5) part une conduite (29) débouchant dans la conduite de recirculation (7) et comprenant un élément de régulation (50).
  31. Installation selon la revendication 17, caractérisée en ce que depuis le récipient (6, 6A) part une conduite (54) débouchant dans la conduite de recirculation (7) et comprenant l'élément de régulation (55).
  32. Installation selon la revendication 17, caractérisée en ce que depuis la conduite aller (15) part une conduite (30, 54) débouchant dans la conduite de recirculation (7) et comprenant l'élément de régulation (55).
EP00810417.6A 1999-06-09 2000-05-15 Procédé et dispositif pour réchauffer un milieu liquide Expired - Lifetime EP1059488B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19926326 1999-06-09
DE19926326A DE19926326A1 (de) 1999-06-09 1999-06-09 Verfahren und Anlage zum Erwärmen eines flüssigen Mediums

Publications (3)

Publication Number Publication Date
EP1059488A2 EP1059488A2 (fr) 2000-12-13
EP1059488A3 EP1059488A3 (fr) 2003-01-02
EP1059488B1 true EP1059488B1 (fr) 2013-12-11

Family

ID=7910694

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00810417.6A Expired - Lifetime EP1059488B1 (fr) 1999-06-09 2000-05-15 Procédé et dispositif pour réchauffer un milieu liquide

Country Status (3)

Country Link
US (2) US6401667B2 (fr)
EP (1) EP1059488B1 (fr)
DE (1) DE19926326A1 (fr)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6855561B2 (en) * 2001-09-10 2005-02-15 Quidel Corporation Method for adding an apparent non-signal line to a lateral flow assay
US6460490B1 (en) * 2001-12-20 2002-10-08 The United States Of America As Represented By The Secretary Of The Navy Flow control system for a forced recirculation boiler
US7243618B2 (en) * 2005-10-13 2007-07-17 Gurevich Arkadiy M Steam generator with hybrid circulation
US7387090B2 (en) * 2005-12-23 2008-06-17 Russoniello Fabio M Method for control of steam quality on multipath steam generator
US7650755B2 (en) * 2007-03-30 2010-01-26 Alstom Technology Ltd. Water recirculation system for boiler backend gas temperature control
US7841304B2 (en) * 2007-05-23 2010-11-30 Uop Llc Apparatus for steam heat recovery from multiple heat streams
US8602316B2 (en) * 2008-03-10 2013-12-10 Robert G. Giannetti Increased efficiency heating system method and apparatus for concrete production
US8230686B2 (en) * 2008-10-09 2012-07-31 Banas John M Start-up system mixing sphere
EP2224164A1 (fr) * 2008-11-13 2010-09-01 Siemens Aktiengesellschaft Procédé destiné au fonctionnement d'un générateur de vapeur à récupération de chaleur
US8286595B2 (en) 2009-03-10 2012-10-16 Babcock & Wilcox Power Generation Group, Inc. Integrated split stream water coil air heater and economizer (IWE)
US20100257837A1 (en) * 2009-04-14 2010-10-14 General Electric Company Systems involving hybrid power plants
US9696027B2 (en) * 2009-12-21 2017-07-04 General Electric Technology Gmbh Economizer water recirculation system for boiler exit gas temperature control in supercritical pressure boilers
DE102010028720A1 (de) * 2010-05-07 2011-11-10 Siemens Aktiengesellschaft Verfahren zum Betreiben eines Dampferzeugers
DE102010048065A1 (de) * 2010-10-12 2012-04-12 Martin GmbH für Umwelt- und Energietechnik Vorrichtung mit einem Wärmetauscher und Verfahren zum Betreiben eines Wärmetauschers einer Dampferzeugungsanlage
US20120234263A1 (en) * 2011-03-18 2012-09-20 Uop Llc Processes and systems for generating steam from multiple hot process streams
US20140060459A1 (en) * 2012-09-06 2014-03-06 Mitsubishi Heavy Industries, Ltd. Heat recovery system and heat recovery method
JP2015010798A (ja) * 2013-07-01 2015-01-19 三浦工業株式会社 ボイラ
KR102347285B1 (ko) * 2014-04-28 2022-01-07 제네럴 일렉트릭 테크놀러지 게엠베하 유체 매질 예열용 시스템 및 방법
EP2940381B1 (fr) * 2014-04-28 2016-12-28 General Electric Technology GmbH Système de préchauffage de milieu fluide
CN107110488B (zh) * 2014-12-19 2020-10-16 通用电器技术有限公司 给水预加热系统旁通
JP2019152357A (ja) * 2018-03-01 2019-09-12 三菱重工エンジニアリング株式会社 排ガスクーラー
US11085336B2 (en) * 2018-12-21 2021-08-10 General Electric Company Method for operating a combined cycle power plant and corresponding combined cycle power plant
US10851990B2 (en) 2019-03-05 2020-12-01 General Electric Company System and method to improve combined cycle plant power generation capacity via heat recovery energy control
EP3835653A1 (fr) * 2019-12-11 2021-06-16 Siemens Aktiengesellschaft Remplissage d'évaporateur à chaud

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2124254A (en) * 1934-03-15 1938-07-19 Ledinegg Max Method of high pressure steam generation
US3250259A (en) * 1959-08-19 1966-05-10 Sulzer Ag Method and apparatus for controlling rate of temperature changes of heat generators during startup and shutdown
GB1269651A (en) * 1969-02-14 1972-04-06 British Nuclear Design Constr Boiler systems for producing steam
US3965675A (en) * 1974-08-08 1976-06-29 Westinghouse Electric Corporation Combined cycle electric power plant and a heat recovery steam generator having improved boiler feed pump flow control
CH599504A5 (fr) * 1975-09-26 1978-05-31 Sulzer Ag
DE59300573D1 (de) * 1992-03-16 1995-10-19 Siemens Ag Verfahren zum Betreiben einer Anlage zur Dampferzeugung und Dampferzeugeranlage.
DE4303613C2 (de) * 1993-02-09 1998-12-17 Steinmueller Gmbh L & C Verfahren zur Erzeugung von Dampf in einem Zwangsdurchlaufdampferzeuger
DE4441008A1 (de) * 1994-11-17 1996-05-23 Siemens Ag Anlage zur Dampferzeugung nach dem Naturumlaufprinzip und Verfahren zum Anstoß des Wasserumlaufs in einer derartigen Anlage
DE19512466C1 (de) * 1995-04-03 1996-08-22 Siemens Ag Verfahren zum Betreiben eines Abhitzedampferzeugers sowie danach arbeitender Abhitzedampferzeuger
BE1010594A3 (fr) * 1996-09-02 1998-11-03 Cockerill Mech Ind Sa Procede de conduite d'une chaudiere a circulation forcee et chaudiere pour sa mise en oeuvre.

Also Published As

Publication number Publication date
EP1059488A3 (fr) 2003-01-02
US6427636B1 (en) 2002-08-06
US20020083903A1 (en) 2002-07-04
US6401667B2 (en) 2002-06-11
EP1059488A2 (fr) 2000-12-13
DE19926326A1 (de) 2000-12-14
US20010025609A1 (en) 2001-10-04

Similar Documents

Publication Publication Date Title
EP1059488B1 (fr) Procédé et dispositif pour réchauffer un milieu liquide
DE19736889C1 (de) Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage und Gas- und Dampfturbinenanlage zur Durchführung des Verfahrens
DE3851245T2 (de) Abhitzesystem.
CH709623A2 (de) Flüssigbrennstoff-Erwärmungs- und Wassereinspritzsystem für ein Kombikraftwerk.
DE1426697B2 (de) Zwangdurchlaufdampferzeuger mit einer Anordnung für das Anfahren und den Teillastbetrieb
DE102018123663A1 (de) Brennstoffvorwärmsystem für eine Verbrennungsgasturbine
EP3017152B1 (fr) Centrale à cycle combiné gaz-vapeur munie d'un générateur de vapeur à récupération de chaleur et un pre-chauffage du carburant
DE10155508C5 (de) Verfahren und Vorrichtung zur Erzeugung von elektrischer Energie
EP0663561B1 (fr) Générateur de vapeur
EP2556218B1 (fr) Procédé de raccordement rapide d'un générateur de vapeur
DE19720789A1 (de) Verfahren und Vorrichtung zur Erzeugung von Dampf
DE1426907B2 (de) Anfahrgefaess fuer dampfkraftanlagen
EP1537358B1 (fr) Generateur de vapeur construit horizontalement
DE4025527C1 (en) Steam boiler with economiser - incorporates combustion chamber with recirculation circuit
DE19734862C2 (de) Wärmekraftwerk mit einer Gasturbine und einem Dampferzeuger für eine Mehrdruck-Dampfturbine
DE69717165T2 (de) Verfahren zum betrieb eines zwanglaufdampferzeugers und dampferzeuger zur ausführung des verfahrens
EP3365534B1 (fr) Procédé de préchauffage d'eau d'alimentation d'une chaudière à vapeur d'une centrale électrique et centrale à vapeur pour la mise en oeuvre du procédé
DE19944920A1 (de) Kombikraftwerk mit Einspritzvorrichtung zum Einspritzen von Wasser in den Frischdampf
DE102010043683A1 (de) Fossil befeuerter Dampferzeuger
DE102016104538B3 (de) Thermisches Dampfkraftwerk mit verbesserter Abwärmenutzung und Verfahren zum Betrieb desselben
EP3224541B1 (fr) Générateur de vapeur à récupération de chaleur
WO2015024886A1 (fr) Centrale thermique à vapeur et procédé permettant de faire fonctionner une centrale thermique à vapeur
EP3472515B1 (fr) Générateur de vapeur vertical à récupération de chaleur
DE1228623B (de) Dampfkraftanlage mit Zwanglaufdampferzeuger und Zwischenueberhitzer
EP2564117B1 (fr) Générateur de vapeur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20030604

AKX Designation fees paid

Designated state(s): DE GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TECHNOLOGY LTD

17Q First examination report despatched

Effective date: 20071029

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130909

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50016341

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM POWER(SCHWEIZ)AG, BADEN, AARGAU, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50016341

Country of ref document: DE

Effective date: 20140206

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50016341

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140912

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50016341

Country of ref document: DE

Effective date: 20140912

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50016341

Country of ref document: DE

Representative=s name: RUEGER | ABEL PATENT- UND RECHTSANWAELTE, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50016341

Country of ref document: DE

Representative=s name: RUEGER ABEL PATENTANWAELTE PARTGMBB, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50016341

Country of ref document: DE

Representative=s name: RUEGER, BARTHELT & ABEL, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50016341

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R082

Ref document number: 50016341

Country of ref document: DE

Representative=s name: RUEGER ABEL PATENT- UND RECHTSANWAELTE, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190418

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190423

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50016341

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20200514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200514