EP1057369A1 - Chauffage de metaux par induction - Google Patents

Chauffage de metaux par induction

Info

Publication number
EP1057369A1
EP1057369A1 EP99906198A EP99906198A EP1057369A1 EP 1057369 A1 EP1057369 A1 EP 1057369A1 EP 99906198 A EP99906198 A EP 99906198A EP 99906198 A EP99906198 A EP 99906198A EP 1057369 A1 EP1057369 A1 EP 1057369A1
Authority
EP
European Patent Office
Prior art keywords
hose
current conductor
conductor according
brackets
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99906198A
Other languages
German (de)
English (en)
Other versions
EP1057369B1 (fr
Inventor
Richard J. Bissdorf
Werner K. Harnisch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GH Induction Deutschland Induktions Erwarmungs Anlagen GmbH
Original Assignee
Gh Elin Deutschland Induktionserwaermung GmbH
G H ELIN DEUTSCHLAND INDUKTION
Gh Elin Deutschland Induktionserwarmung GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gh Elin Deutschland Induktionserwaermung GmbH, G H ELIN DEUTSCHLAND INDUKTION, Gh Elin Deutschland Induktionserwarmung GmbH filed Critical Gh Elin Deutschland Induktionserwaermung GmbH
Publication of EP1057369A1 publication Critical patent/EP1057369A1/fr
Application granted granted Critical
Publication of EP1057369B1 publication Critical patent/EP1057369B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • H05B6/42Cooling of coils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • H05B6/40Establishing desired heat distribution, e.g. to heat particular parts of workpieces

Definitions

  • the present invention relates to the field of inductive heating of workpieces, in particular a shaping and clamping system for a flexible inductor.
  • Inductive heating of metals in particular has many applications, such as the bonding of body parts, the hardening and tempering of workpieces.
  • Conventional inductors consist of water-cooled rigid copper tubes that are fixed in brackets near the workpiece. Since the heating of the workpiece depends exponentially on the distance between the inductor and the workpiece surface, a separate inductor must be created for each workpiece shape, on which corrections are difficult or impossible.
  • a flexible inductor device is known from RWE Energy "Inductive Heating” (1991). In order to fix the distance from a turbine rotor, this was first provided with an insulating layer and a flexible cable loosely laid in a hose was wound around it and this was cooled with water when the rotor was heated by the eddy current which formed in it, in order to separate the inductor from the to protect existing heat conduction despite the insulation.
  • the distance of the flexible cable is determined by the insulating winding applied to the turbine runner, the hose wall thickness, which is here in the centimeter range, and the irregular position of the current conductor in the hose.
  • Another major disadvantage is that the workpiece to be heated can only be heated when it is stationary due to the geometric coupling with the inductor system. This always leads to comprehensive coil systems whose impedance matching is very cumbersome.
  • the distance between the conductor in the hose and the workpiece surface varies by more than ⁇ 1 cm over the circumferential length. The water is cooled exclusively on the surface of the conductor and the remaining water channel only allows small flow rates in its cross section, so that only low current densities in the frequency range up to a maximum of 4 kHz can be used.
  • a cooled current conductor for the inductive heating of workpieces is known, which can be fixed in contact with the wall of a hose, likewise GB 2 122 057 discloses a (non-flexible) inductor, the individual segments of which are held by holders are portable.
  • EP 0 789 438 A2, DE 195 04 742 A1 and EP 0 774 816 A2 may be mentioned as further prior art. It is disadvantageous in any case that defined distances between the inductor and the workpiece and thus a precise input of power are not possible.
  • the present invention has therefore set itself the task of creating a flexible inductor, in which nevertheless the distances to the workpiece surface are exactly maintained, but these can be varied in a very simple manner, in order to use it to either reproduce contours or produce temperature profiles in the workpiece and also during to be able to change the heating and to create more favorable cooling conditions for the current conductor in order to be able to work with the same conductor system at current densities up to 180 A / mm 2 and frequencies up to 200 kHz.
  • a liquid-cooled or gas-cooled current conductor for the inductive heating of workpieces consisting of a flexible conductor and an electrically insulating hose surrounding it at a distance according to the invention in that the conductor is fixed in the hose axially parallel and free of its wall mutually separate mounts to the workpiece can be variably fixed.
  • the fact that the conductor is fixed in position within the hose has significant advantages. On the one hand, constant volume ratios are created for the flow of the liquid cooling medium, ie the heat transport is constant over the length of the inductor.
  • the hose can be bent, so that contours can be simulated very easily, the brackets fixing it to the workpiece and at the desired distance, so that temperature specifications can be maintained very precisely and also easily changed.
  • the flexible conductor is preferably a copper strand
  • the position fixation in the hose can e.g. through perforated rings pushed onto the conductor or through pins inserted and welded or glued into the tube.
  • the hose has an inner profile which holds the line offset coaxially or laterally parallel.
  • the hose itself can be round, but also, if necessary, also square, e.g. have a square cross-section.
  • the hose itself is preferably fabric-reinforced in order to keep the wall thickness ( ⁇ 3 mm) low even at higher coolant pressures, which has a positive effect on the removal of the heat reflected from the workpiece. At the same time, the efficiency is naturally increased by the more effective cooling.
  • the invention further proposes to use a hose-like hollow strand as a conductor, whereby this makes it possible to also apply coolant to the inside of the conductor, so that heat can also be dissipated from the duct between the sheathed hose and the strand to the inner cooling medium. to further increase the electrical efficiency.
  • the hollow strand advantageously has internals supporting the hose profile, which of course must also be flexible, or consist of separate, independent parts.
  • the inductor with the aid of the cooling medium (water, gas), for which purpose a pressure of about 3 to 10 bar inside the hose is maintained, the coolant flowing at a speed of, for example, about 2 - 10 m / sec.
  • the cooling medium water, gas
  • the distance between the inductor and the workpiece is determined by means of clamps which surround the hose and are open towards the workpiece and into which the hose can be inserted at any point.
  • the distances between the brackets are basically freely selectable.
  • the brackets are connected to brackets which are variable in length and length in order to be able to design the desired contours of the workpiece or the desired heat profile to be generated.
  • the set position of the inductor can of course also be changed slightly during the heating itself. This opens up the possibility of controlling the position of the clamps via a temperature measurement in order to e.g. withdraw after reaching a setpoint, for example to keep it constant after rapid heating.
  • a particularly elegant fixation of the current-carrying conductor is achieved with a helix which is in contact with the inner jacket of the hose and preferably consists of a plastic thread, the cooling medium being guided spirally around the conductor.
  • the helix can be wound around the strand, but it can also be manufactured as an inner profile of the hose or pushed into the hose as a separate part before the conductor is installed.
  • a new type of coolant power connection for an inductor having a hollow strand is proposed.
  • This consists of a metallic nipple with a connection piece, which has a longitudinal bore for the coolant supply and has a union nut on its head as a screw connection.
  • the socket At its free end, the socket has an annular groove into which the hollow strand is inserted. inserts and is fixed in it eg by soldering or squeezing.
  • the power connection is made via the free metal parts of the nipple, which has coolant flowing through it and is therefore also protected against excessive heating.
  • FIG. 1 shows a cross section through an inductor with a central arrangement of the conductor
  • Figure 3 shows an inductor with a waveguide
  • Figure 4 shows an application example
  • FIG. 5 shows another application example
  • Figure 6 shows the connection of a waveguide to the cooling medium.
  • FIG. 1 shows a tube 2 made of, in particular, fabric-reinforced plastic, in the interior of which the flexible conductor 1 is laid coaxially.
  • this consists of a strand whose diameter is adapted to the intended use.
  • the wall thickness of the hose is about 1 to 2 mm.
  • the inside of the tube is provided with profilings 3, which spatially define the conductor 1 in relation to the wall, so that moving the tube 2 to or from a workpiece moves the conductor to exactly the same extent, thus making precise adjustments possible.
  • profilings 3 which spatially define the conductor 1 in relation to the wall, so that moving the tube 2 to or from a workpiece moves the conductor to exactly the same extent, thus making precise adjustments possible.
  • the heating is exponential (square) to the distance of the conductor 1 from the workpiece, so that relatively small distance errors a relatively have a strong impact.
  • the distance between the hose wall and the workpiece is typically about 2 mm.
  • hose 2 Inside the hose 2 there are channels 8, through which cooling water flows, the channels 8 also being able to communicate with one another.
  • the cooling makes it possible to generate temperatures of up to over 800 ° C at the aforementioned small workpiece spacing without additional insulation, without destroying the hose material.
  • a flow speed of about 15 m / sec is maintained in the hose. Since the conductor 1 has water flowing around it, this type of workpiece heating can also be used in potentially explosive applications.
  • the water pressure can be 3 to 10 bar, a high water pressure has the desired effect of stiffening the hose considerably, so that it maintains the characteristics of conventional copper cables through which water flows and therefore very precisely even with a larger distance between the brackets ( Figure 3, 4) can be positioned.
  • Figure 2 shows a variant in which the conductor 1 is offset (towards the workpiece).
  • the conductor 1 is located in a tube 9 which has spacers 10. These can have bores 11 through which the channels 8 are connected to one another to improve the heat transport.
  • the hoses 2 can of course also be of any other shape besides round, e.g. be designed with a square cross section, but this is more likely at low water pressures.
  • FIG. 3 shows a particularly preferred variant of the present invention, in which the conductor 1 is a tubular hollow wire. In the present case, this is centered by the profiles 3 and stabilized in its interior by a cross profile 12, which likewise forms channels 8 'for the cooling water supply. Since copper (stranded wire) is a good heat conductor and the meshes of the stranded wire are also flooded, the cooling of the hose is particularly good and a very high workpiece temperature is possible. 7
  • this figure shows the possibility of attaching the hose to any support structure.
  • the hose 2 is in a clamp 4, which encloses the hose 2 at an angle greater than 180 ° and thus clamps it. Since there is no water pressure in the line when the inductor is installed, it is very easy to clamp the hose in the clamps 4. After applying water pressure, the hose 2 can be detached only with difficulty or not with great force.
  • the clamp has an opening 6 directed towards the workpiece, which is dimensioned such that the durability of the clamp 4 is not impaired by too high a temperature, which of course is also cooled via the hose 2.
  • Figure 4 shows a typical application on a curved workpiece, such as in automotive add-on parts, such as Doors or flaps where the outer and inner panels are to be heated all round or in segments for gluing.
  • a curved workpiece such as in automotive add-on parts, such as Doors or flaps where the outer and inner panels are to be heated all round or in segments for gluing.
  • the flexible inductor hose 2 With the flexible inductor hose 2, the curved contour can be easily reproduced, the hose 2 being in the brackets 4, which are themselves connected to support plates 13 via brackets 7.
  • the brackets 7 have longitudinal adjustments 14, the plates 13 can be set up in height.
  • the temperature of the workpiece can be determined via temperature sensors and the distance to the workpiece 5 can then be regulated in order to be able to set the temperature exactly.
  • FIG. 5 shows an application in which a roller 19 (or a hollow shaft) is heated with rotation. This has a very different mass distribution and geometry over the length.
  • the flexible inductor hose 2 is so spaced with the help of brackets 4 or the brackets 7 and the adjustments 14 or corrected in this regard during heating that the distances correlate with the opposite mass segments, so that the same across the entire component width of the workpiece Temperature gradient is achieved.
  • FIG. 6 shows a connection nipple 18 for connecting the inductor hose 2 to the coolant (liquid, gas).
  • This consists of metal (copper) and has a longitudinal bore 21 in its interior through which the cooling medium is supplied becomes. On its head 22 this carries a union nut 20.
  • the hose 2 is pushed over the connecting piece 23 and secured with a hose clamp 17.
  • the connecting piece 23 has an annular groove 16 into which the hollow wire 24 is inserted and squeezed or soldered.
  • a support body 25 e.g. a cross profile (12, Fig. 3) stabilized and at the periphery of a coil 15 consisting of a plastic thread, which serves as a spacer to the inner jacket of the hose 2.
  • the cooling medium thus flows around the hollow strand 24 in a spiral, so that it is continuously guided from the warm side facing the workpiece to the opposite cold side. An essentially vortex-free flow of the cooling medium with a maximum cross section (without backflow) is thereby achieved.
  • the electrical contacting can be implemented over the nipple 18 over a relatively short distance and ensures a high flexibility of the electricity / water connection.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Induction Heating (AREA)

Abstract

L'invention concerne un conducteur refroidi par un gaz ou un liquide pour le chauffage de pièces par induction, comprenant un conducteur souple et un tuyau électriquement isolant entourant celui-ci à distance, caractérisé en ce que le conducteur dans le tuyau est fixé, dégagé de sa paroi, parallèlement à l'axe et peut être lié à la pièce, en des emplacements variables, par l'intermédiaire de supports séparés les uns des autres.
EP99906198A 1998-02-20 1999-01-23 Chauffage de metaux par induction Expired - Lifetime EP1057369B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19807099 1998-02-20
DE19807099A DE19807099C2 (de) 1998-02-20 1998-02-20 Induktive Erwärmung von Metallen
PCT/EP1999/000442 WO1999043187A1 (fr) 1998-02-20 1999-01-23 Chauffage de metaux par induction

Publications (2)

Publication Number Publication Date
EP1057369A1 true EP1057369A1 (fr) 2000-12-06
EP1057369B1 EP1057369B1 (fr) 2002-04-24

Family

ID=7858364

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99906198A Expired - Lifetime EP1057369B1 (fr) 1998-02-20 1999-01-23 Chauffage de metaux par induction

Country Status (7)

Country Link
US (1) US6323469B1 (fr)
EP (1) EP1057369B1 (fr)
AR (1) AR018288A1 (fr)
AT (1) ATE216828T1 (fr)
AU (1) AU2621499A (fr)
DE (2) DE19807099C2 (fr)
WO (1) WO1999043187A1 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040070938A1 (en) * 2001-01-04 2004-04-15 Hazelton Andrew J. Circulating system for a conductor
DE10203788A1 (de) * 2002-01-31 2003-08-21 Siemens Ag Elektrische Leiteranordnung und Verwendung der elektrischen Leiteranordnung
US7323666B2 (en) 2003-12-08 2008-01-29 Saint-Gobain Performance Plastics Corporation Inductively heatable components
CN101263756B (zh) * 2005-09-13 2010-09-01 株式会社自动网络技术研究所 车辆导体
US20130270259A1 (en) * 2010-11-19 2013-10-17 Andreas Nebelung Device and method for inductively heating metal components during welding, using a cooled flexible induction element
DE102010054363B3 (de) * 2010-12-13 2011-12-29 Benteler Automobiltechnik Gmbh Vorrichtung zur Wärmebehandlung von Langmaterial sowie Verfahren zum Wärmebehandeln eines Langmaterials
DE102011082611A1 (de) * 2011-09-13 2013-03-14 Franz Haimer Maschinenbau Kg Induktionsspuleneinheit
DE102011086212B4 (de) * 2011-11-11 2013-08-01 Universität Stuttgart Vorrichtung zur Verbindung zweier elektrischer Leitungen
DE102014015564A1 (de) * 2014-10-20 2016-04-21 Dynamic E Flow Gmbh Elektrische Kapillarleitereinheit
JP6440057B2 (ja) * 2014-05-16 2018-12-19 住友電工焼結合金株式会社 高周波加熱用コイル
CN104078145B (zh) * 2014-06-27 2017-01-25 安徽弘毅电缆集团有限公司 一种易散热型大载流量电力线缆
DE102017120725A1 (de) * 2017-09-08 2019-03-14 Lisa Dräxlmaier GmbH Entwärmungsvorrichtung für eine elektrische leitung, damit ausgestattete leitungsanordnung und verfahren zum entwärmen einer elektrischen leitung
DE102019205466A1 (de) * 2019-04-16 2020-10-22 Zf Friedrichshafen Ag Kabelmantel für eine Hochstromkabel eines Fahrzeugs

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE523823C (de) 1931-04-28 Hirsch Kupfer Und Messingwerke Spule fuer Induktionsoefen, bestehend aus einem stromleitenden und einem waermeabfuehrenden Teil
DE1733800U (de) * 1954-09-17 1956-11-15 Siemens Ag Niederfrequenzinduktionsspule.
FR1390138A (fr) 1964-04-27 1965-02-19 Deutsche Edelstahlwerke Ag Bobine de chauffage par induction
DE2402851A1 (de) 1974-01-22 1975-07-24 Felten & Guilleaume Kabelwerk Wassergekuehltes hochspannungs-energiekabel
GB1522955A (en) * 1974-12-03 1978-08-31 Rolls Royce Induction heating apparatus
GB2122057B (en) * 1982-05-28 1985-10-23 Glaverbel Glazing panels
GB2130860A (en) * 1982-11-12 1984-06-06 Atomic Energy Authority Uk Induced current heating probe
US4668850A (en) * 1984-01-12 1987-05-26 Akebono Brake Industry Co. Ltd. High frequency induction heating device for brake shoe lining
SU1684940A1 (ru) 1989-01-04 1991-10-15 Научно-Производственное Объединение По Технологии Механосборочного Производства И Специального Технологического Оборудования "Вптитяжмаш" Устройство индукционного нагрева деталей
DE4109818A1 (de) * 1990-12-22 1991-11-14 Edwin Schmidt Verfahren und vorrichtung zum tiefkuehlen elektrischer hohlleiter stromdurchflossener spulen
FR2693072B1 (fr) * 1992-06-24 1994-09-02 Celes Perfectionnements apportés aux bobines de système de chauffage par induction.
US5461215A (en) 1994-03-17 1995-10-24 Massachusetts Institute Of Technology Fluid cooled litz coil inductive heater and connector therefor
DE19504742A1 (de) * 1995-02-14 1996-08-22 Intec Induktions Techn Gmbh Kabel
CA2186336A1 (fr) * 1995-11-15 1997-05-16 Bertil Moritz Cable a isolant gazeux
DE19604480A1 (de) * 1996-02-08 1997-08-14 Asea Brown Boveri Leitungsabschnitt einer gasisolierten Leitung
BR9701473A (pt) 1996-04-22 1998-09-08 Illinois Tool Works Sistema e método para o aquecimento indutivo de uma peça de trabalho e sistema para a aquecimento indutivo segmentado contínuo de uma peça de trabalho

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9943187A1 *

Also Published As

Publication number Publication date
EP1057369B1 (fr) 2002-04-24
DE59901299D1 (de) 2002-05-29
ATE216828T1 (de) 2002-05-15
DE19807099C2 (de) 2000-02-17
DE19807099A1 (de) 1999-09-23
WO1999043187A1 (fr) 1999-08-26
AU2621499A (en) 1999-09-06
AR018288A1 (es) 2001-11-14
US6323469B1 (en) 2001-11-27

Similar Documents

Publication Publication Date Title
EP1057369B1 (fr) Chauffage de metaux par induction
EP2926067B1 (fr) Échangeur de chaleur
EP1262772B1 (fr) Injecteur à commande par température pour dispositif d'analyse
DE19950660B4 (de) Kühlanordnung für einen Motor
DE1234013B (de) Hochtemperaturschneckenextruder fuer Kunststoffe mit Induktionsbeheizung
DE2731027C2 (de) Verfahren zur Herstellung von dünnwandigen Metallrohren
EP2752256B1 (fr) Dispositif pour le formage d'ondulations sur un tuyau
EP2640546B1 (fr) Dispositif et procédé de chauffage inductif de composants métalliques lors du soudage à l'aide d'un élément inductif flexible refroidi
DE3542507C2 (fr)
DE10311512B3 (de) Anlage zur Herstellung von Kabeln
DE2227118C3 (de) Schutzgas-Schweißpistole mit Kühlung durch das Schutzgas
DE102014108919B4 (de) Düsenheizung mit einer Rohrwendelpatrone
EP2781332A1 (fr) Buse de moulage par injection dotée d'un tube de matériau en deux parties
EP3579343B1 (fr) Câble à courant élevé, en particulier pour applications par induction
DE3541641A1 (de) Rohrheizkoerper-heizeinrichtung sowie verfahren zu deren herstellung
DE69921017T2 (de) Verbinden durch Aufschmelzen von Bauteilen aus thermoplastischem Harz
DE1960546B2 (de) Fluessigkeitsgekuehlter elektrischer leiter und verfahren zu seiner herstellung
EP1749592B1 (fr) Dispositif de pliage d'un tube
DE10211703B4 (de) Verfahren zur Herstellung einer feuchtigkeitsdichten Verbindung
DE3130515A1 (de) "statorgehaeuse fuer elektrische kaeltemaschinen und verfahren zu seiner herstellung"
DE3712355A1 (de) Band aus thermoplastischem kunststoff zur abdeckung einer verbindungsstelle und verfahren zu seiner herstellung
EP0230496A1 (fr) Dispositif de réglage de température, en particulier pour liquides ou gaz
DE10027562A1 (de) Verfahren zum Umwandeln verlegter elektrischer Kabel
CH368840A (de) Verfahren und Vorrichtung zum Umhüllen eines Kabels mit einem Metallmantel
DE1908090C (de) Verfahren zur Herstellung von Mikrowellenröhren mit einer Verzögerungsleitung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000811

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010904

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020424

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20020424

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020424

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020424

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020424

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020424

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020424

REF Corresponds to:

Ref document number: 216828

Country of ref document: AT

Date of ref document: 20020515

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: G.H. INDUCTION DEUTSCHLAND INDUKTIONS-ERWAERMUNGS-

REF Corresponds to:

Ref document number: 59901299

Country of ref document: DE

Date of ref document: 20020529

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020724

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020724

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020724

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: G.H. INDUCTION DEUTSCHLAND INDUKTIONS-ERWAERMUNGS-

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20020424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021030

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 1057369E

Country of ref document: IE

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030123

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030123

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030131

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030801

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL