EP1044258A1 - Geschirrspülmittelformkörper mit chlorbleichmitteln - Google Patents

Geschirrspülmittelformkörper mit chlorbleichmitteln

Info

Publication number
EP1044258A1
EP1044258A1 EP98966385A EP98966385A EP1044258A1 EP 1044258 A1 EP1044258 A1 EP 1044258A1 EP 98966385 A EP98966385 A EP 98966385A EP 98966385 A EP98966385 A EP 98966385A EP 1044258 A1 EP1044258 A1 EP 1044258A1
Authority
EP
European Patent Office
Prior art keywords
molded body
component
body according
group
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98966385A
Other languages
German (de)
English (en)
French (fr)
Inventor
Jürgen Härer
Thomas Otto Gassenmeier
Christian Nitsch
Hans-Josef Beaujean
Bernd Richter
Thomas Möller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP1044258A1 publication Critical patent/EP1044258A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • C11D17/0091Dishwashing tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • C11D17/0078Multilayered tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/18Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3707Polyethers, e.g. polyalkyleneoxides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/395Bleaching agents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/395Bleaching agents
    • C11D3/3953Inorganic bleaching agents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/395Bleaching agents
    • C11D3/3955Organic bleaching agents

Definitions

  • the invention relates to washing or cleaning-active tablets, primarily tablets such as dishwasher tablets, detergent tablets, bleach tablets, stain remover tablets or water softening tablets for household use, in particular for mechanical use, and a process for producing these tablets and their use.
  • Shaped or active cleaning moldings in particular tablets, have a number of advantages over powdery agents, such as advantageous handling, simple metering, and low packaging volume requirements.
  • a good fragrance profile and a defined solubility profile which above all result in high customer satisfaction.
  • the application therefore relates to a molded article containing builder substances, alkali carriers, bleaching agents, enzymes and surfactants, characterized in that in a range of not more than 40% by volume, more than 80% by weight, of a mixture of active substance (I) Bleaching agent from the group of chlorine bleaching agents and a fusible component for solubility control selected from the group of surfactants, paraffins, microwaxes, higher molecular weight polyethylene glycols.
  • a mixture of active substance (I) Bleaching agent from the group of chlorine bleaching agents and a fusible component for solubility control selected from the group of surfactants, paraffins, microwaxes, higher molecular weight polyethylene glycols selected from the group of surfactants, paraffins, microwaxes, higher molecular weight polyethylene glycols.
  • the ingredient (I) can also be a bleach activator, a silver protection agent and / or a soil release compound, an enzyme, a surfactant or a component or a compound for solubility control.
  • the ingredient (I) can also be a mixture of several of these ingredients.
  • the ingredient (I) is a mixture of a component or a compound for solubility control and at least one other ingredient from the group consisting of bleach and / or bleach activator and / or silver protective agent and / or soil release compound and / or enzyme and / or a surfactant.
  • the solubility of the area with the ingredient (I), the surface and the type of compression and the storage stability can also have a decisive influence on the properties of the tablet.
  • the range contains more than 80% by weight, preferably more than 90% by weight, particularly preferably more than 95% by weight, very particularly preferably the total amount of an ingredient (I) present in exactly three spatial directions is surrounded by other ingredients of the molded body.
  • the substance (I) is present, which dissolves faster than the and / or the by more than 5%, preferably more than 10%, very particularly preferably more than 25%, very particularly preferably more than 50% and very preferably more than 100% remaining areas of the molded body.
  • a desirable effect on the overall result can also be obtained if the weight gain of the area with ingredient (I) when stored under normal household conditions, i.e. H. between 15 and 30 ° C. and between 5 and 55% atmospheric humidity, preferably 15 and 35% atmospheric humidity for a period of 30 days, preferably 60 days, particularly preferably 90 days, not more than 50% by weight, preferably not more than 40% %, very particularly preferably not more than 30% by weight, extremely preferably not more than 20% by weight and extremely preferably not more than 10% by weight, at best not more than 5% by weight.
  • a desirable effect on the overall result can also be obtained if the loss of active substance (I) in the area when stored under normal household conditions, i. H. between 15 and 30 ° C. and between 5 and 55% atmospheric humidity, preferably 15 and 35% atmospheric humidity for a period of 30 days, preferably 60 days, particularly preferably 90 days, not more than 50% by weight, preferably not more than 40% %, very particularly preferably not more than 30% by weight, extremely preferably not more than 20% by weight and extremely preferably not more than 10% by weight, at best not more than 5% by weight.
  • a desirable effect on the overall result can also be achieved if the absorption maximum of a 1% solution of a colored area or a colored component when stored under normal household conditions, ie between 15 and 30 ° C. and between 5 and 55% atmospheric humidity, preferably, 15 and 35% atmospheric humidity for a period of 30 days, preferably 60 days, particularly preferably 90 days, not more than 100 wavenumbers, preferably not more than 50 wavenumbers, entirely particularly preferably not more than 30 wave numbers, extremely preferably not more than 20 wave numbers and most preferably not more than 10 wave numbers, at best not more than 5 wave numbers.
  • the molded body according to the invention also has a positive effect if the region with more than 80% by weight, preferably more than 90% by weight, particularly preferably more than 95% by weight, very particularly preferably the total amount of an ingredient present ( I) is surrounded by other ingredients of the molded body in exactly three spatial directions.
  • the solubility can be influenced by components and / or compounds to accelerate solubility (disintegrant) or to delay solubility.
  • disintegrants known in the prior art can be used as disintegrants. Particular reference is made to the textbooks Rompp (9th edition, vol. 6, p. 4440) and Voigt "Textbook of pharmaceutical technology” (6th edition, 1987). Substances such as starch, cellulose and cellulose derivatives, alginates, Dextrans, cross-linked polyvinylpyrrolidones and others; systems made from weak acids and agents containing carbonate, in particular citric acid and tartaric acid in combination with bicarbonate or carbonate and also polyethylene glycol sorbitan fatty acid esters.
  • EP-A-0 466485, EP-A-0 522 766, EP-A-0 711 827, EP-A-0 711 828 and EP-A-0 716 144 describe the production of active cleaning tablets, using compact, particulate material with a particle size between 180 and 2000 ⁇ m.
  • the resulting tablets can both have a homogeneous as well as a heterogeneous structure.
  • EP-A-0 522 766 at least the particles which contain surfactants and builders are coated with a solution or dispersion of a binder / disintegrant, in particular polyethylene glycol.
  • binders / disintegrants are in turn the disintegrants which have already been described several times, for example starches and starch derivatives, commercially available cellulose derivatives such as crosslinked and modified cellulose, microcrystalline cellulose fibers, crosslinked polyvinylpyrrolidones, layered silicates, etc.
  • weak acids such as citric acid or tartaric acid, which in In connection with carbonate-containing sources, when they come into contact with water, they lead to effervescent effects and, according to the definition according to Römpp, belong to the second class of disintegrants. They can be used as coating materials.
  • disintegrants whose particle size distribution (sieve analysis) is designed in such a way that a maximum of 1% by weight, preferably less, of dust components is present and overall (including any dust components present) less than 10% by weight of the disintegrant granules are smaller than 0.2 mm. At least 90% by weight of the disintegrant granules advantageously have a particle size of at least 0.2 mm and a maximum of 3 mm. These disintegrants are particularly suitable for the present invention.
  • Detergent tablets which contain disintegrants in granular or, if appropriate, cogranulated form are also described in German patent applications DE 197 09 991 (Stefan Herzog) and in international patent application WO98 / 40463 (Henkel). These documents can also be found in more detail on the production of granulated, compacted or cogranulated cellulose disintegrants.
  • the particle sizes of such disintegrants are usually above 200 ⁇ m, preferably at least 90% by weight between 300 and 1600 ⁇ m and in particular at least 90% by weight between 400 and 1200 ⁇ m.
  • disintegration aids are preferred as disintegration aids and are commercially available, for example under the name of Arbocel ® TF-30-HG from Rettenmaier available in the present invention.
  • Agents from the group of organic acids such as. B. citric acid, or a mixture of citric acid / bicarbonate and / or the celluloses and cellulose derivatives. If a detergent is contained in the molded body, the dissolution time of the entire molded body is preferably shorter than the duration of the main wash cycle of a conventional dishwasher, i.e. shorter than 40 min, particularly preferably shorter than 30 min, very particularly preferably shorter than 20 min and extremely preferably shorter than 10 min.
  • Paraffins and / or microwaxes and / or the high molecular weight polyethylene glycols which are described in detail in the prior art, are generally used as the material for delaying dissolution.
  • the use of mixtures as mentioned in the unpublished publication DE 197 27 073 and the disclosure of which is hereby expressly incorporated into this document is particularly suitable for the present application.
  • the dissolution time of the entire molded body in 20 ° C. cold water is longer than the pre-rinse cycle of a commercially available dishwasher, that is to say longer than 5 min, preferably longer than 10 min.
  • homogeneous or heterogeneous moldings of known design are provided.
  • These include, in particular, cylindrical tablets, these tablets preferably having a diameter of 15 to 60 mm, in particular 30 +/- 10 mm.
  • the height of these tablets is preferably 5 to 30 mm and in particular 15 to 28 mm.
  • the edge lengths are preferably between 15 to 60 mm, in particular 30 +/- 10 mm.
  • the weight of the individual moldings, in particular the tablets, is preferably 15 to 60 g and in particular 20 to 40 g per molded body or tablet; the consistency of the shaped bodies or tablets, however, usually has values above 1 kg / dm 3 , preferably from 1.1 to 1.4 kg / dm 3 .
  • the water hardness range or the level of contamination 1 or more, for example 2 to 4, moldings, in particular tablets, can be used.
  • Further shaped bodies according to the invention can also have smaller diameters or dimensions, for example around 10 mm.
  • a homogeneous molded body is understood to mean those in which the ingredients of the molded body are homogeneously distributed except for the area with ingredient (I) in such a way that no different ingredients and / or active ingredients are perceptible to the naked eye.
  • the grain structure of the solids used can of course still be recognized.
  • a further area (phase) is present,
  • Heterogeneous shaped bodies are accordingly understood to mean those which do not have a homogeneous distribution of the ingredients present in addition to the ingredient (I).
  • heterogeneous shaped bodies can be produced, for example, by the different ingredients having different colors and / or carrying a different fragrance component.
  • non-uniform (heterogeneous) shaped bodies comprises an embodiment in which a molded body is pressed which, in addition to the area with the ingredient (I), has several layers (phases), that is to say at least two layers. It is e.g. B. possible that these different layers have different disintegration and dissolution rates and / or carry different ingredients. This can result in advantageous application properties of the molded body. For example, if ingredients in the form bodies are included, which mutually influence each other negatively, so it is possible to separate them.
  • a defined sequence of cleaning conditions is to be created in a machine, it is possible to integrate one (or more) component (s) in a (or) the more rapidly disintegrating and / or more quickly soluble layer and the other (n) component Incorporate into one or more slowly disintegrating layers so that one component can act with a lead time or has already reacted if another component goes into solution.
  • a preferred embodiment of the invention consists in that in addition to the area with the ingredient (I) there are two further phases. It is particularly advantageous if the volume ratios of the two further phases are between 10: 1 and 1:10, preferably between 5: 1 and 1: 5, particularly preferably between 2: 1 and 1: 2.
  • Another particularly preferred embodiment is characterized in that three or more further phases are present.
  • the layer structure of the molded body can take place in a stack-like manner, with the inner layer (s) already loosening at the edges of the molded body when the outer layers have not yet been completely detached or disintegrated; however, a complete and / or partial covering of the inner layer (s) can also be achieved by the layers lying further outwards, which leads to a prevention and / or delay in the early dissolution of components of the inner layer (s).
  • a tablet consists of at least three layers, that is to say two outer and at least one inner layer, at least one peroxy bleaching agent being contained in at least one of the inner layers, while in the stack-like tablet the two outer layers and in the case of the shell-like one
  • the outermost layers of the tablet are free of peroxy bleach. It is also possible to spatially separate peroxy bleaching agents and any bleach activators or bleach catalysts and / or enzymes present in a tablet / molded article. Such configurations have the advantage that no undesired interactions would be feared in the molded bodies according to the invention.
  • Another cheap and preferred embodiment of the invention is that one of the bleaching component or components, especially the chlorine component, is not in one phase is made up together with the perfume component.
  • Another cheap and preferred embodiment of the invention consists in that the silver protection component is not made up with one of the bleaching components.
  • Another cheap and preferred embodiment of the invention is that one of the component or components for solubility control is assembled together with the bleach activator.
  • Another cheap and preferred embodiment of the invention is that one of the component or components for solubility control is made up together with the enzymes.
  • Another cheap and preferred embodiment of the invention is that one of the component or components for solubility control is made up together with the bleach.
  • Another cheap and preferred embodiment of the invention is that one of the component or components for solubility control is assembled together with the silver protection component.
  • Another cheap and preferred embodiment of the invention is that one of the component or components for solubility control together with at least 50 wt .-%, preferably more than 70 wt .-%, particularly more than 90 wt .-% of a surfactant or all of them - is mixed.
  • the agents according to the invention are produced by the customary methods of molding production.
  • the ingredient (s) in the form of a liquid generally through solution and / or melt
  • a viscosity of more than 1500 mPas preferably more than 2000 mPas, particularly preferably between 2000 and 15000 mPas, very particularly preferably between 2500 and 7000 mPas and extremely preferably between 3000 and 4000 mPas has proven particularly useful.
  • meltable carrier substances have proven particularly effective. In principle, this includes all substances with a solidification point at or especially above room temperature.
  • Non-ionic surfactants (Dehypon® LT 104, Dehypon® LS 54, Dehydol® LS 30, Lutensol® AT 80), polyethylene glycols with different molecular weights (PEG 400, 12000), soaps (Lorol® C 16 ), Stearates (Cutina® GMS), but also thickened sodium hydroxide solution and meltable salts, such as sodium carbonate - decahydrate.
  • Waxes are particularly preferred as meltable components in the context of the present invention. "Waxing” is understood to mean a number of natural or artificially obtained substances which generally melt above 40 ° C. without decomposition and which are relatively low-viscosity and not stringy even a little above the melting point. They have a strongly temperature-dependent consistency and solubility.
  • the waxes are divided into three groups according to their origin, natural waxes, chemically modified waxes and synthetic waxes.
  • Natural waxes include, for example, vegetable waxes such as candelilla wax, carnauba wax, japan wax, esparto grass wax, cork wax, guaruma wax, rice germ oil wax, sugar cane wax, ouricury wax, or montan wax, animal waxes such as beeswax, shellac wax, walnut, lanolin (wool wax), or broom wax, mineral wax or ozokerite (earth wax), or petrochemical waxes such as petrolatum, paraffin waxes or micro waxes.
  • vegetable waxes such as candelilla wax, carnauba wax, japan wax, esparto grass wax, cork wax, guaruma wax, rice germ oil wax, sugar cane wax, ouricury wax, or montan wax
  • animal waxes such as beeswax, shellac wax, walnut, lanolin (wool wax), or broom wax, mineral wax or ozokerite (earth wax), or
  • the chemically modified waxes include hard waxes such as montan ester waxes, Sassol waxes or hydrogenated jojoba waxes.
  • Synthetic waxes are generally understood to be polyacetylene waxes or polyalkylene glycol waxes.
  • Wax alcohols are higher molecular weight, water-insoluble fatty alcohols with more than 28 to 40 carbon atoms.
  • the wax alcohols occur, for example, in the form of wax esters of higher molecular fatty acids (wax acids) as the main component of many natural waxes.
  • wax alcohols are lignoceryl alcohol (1-tetracosanol) or melissyl alcohol.
  • the fusible component can optionally also contain wool wax alcohols, which means trite phene and steroid alcohols, for example lanolin.
  • fatty acid glycerol esters or fatty acid alkanolamides but also, if appropriate, water-insoluble or only slightly water-soluble polyalkylene glycol compounds can likewise be used at least in part as part of the meltable component.
  • meltable component preferably contains paraffin wax.
  • paraffin wax contents in the coating of approximately 60% by weight, approximately 70% by weight or approximately 80% by weight are particularly suitable, with even higher proportions of, for example, more than 90% by weight being particularly preferred.
  • the fusible component consists exclusively of paraffin wax.
  • Paraffin waxes have the advantage over the other natural waxes mentioned in the context of the present invention that there is no hydrolysis of the waxes in an alkaline detergent environment (as is to be expected, for example, from the wax esters), since paraffin wax contains no hydrolyzable groups.
  • Paraffin waxes consist mainly of alkanes and low levels of iso- and cycloalkanes.
  • the paraffin to be used according to the invention preferably has essentially no constituents with a melting point of more than 70 ° C, particularly preferably of more than 60 ° C. Portions of high-melting alkanes in the paraffin can leave undesired wax residues on the surfaces to be cleaned or the goods to be cleaned if the melting temperature in the detergent solution drops below this. Such wax residues usually lead to an unsightly appearance on the cleaned surface and should therefore be avoided.
  • the coating according to the invention preferably contains at least one paraffin wax with a melting point of about 57 ° C. to about 60 ° C.
  • the paraffin wax content of alkanes, isoalkanes and cycloalkanes which are solid at ambient temperature is as high as possible.
  • the more solid wax components present in a wax at room temperature the more useful it is within the scope of the present invention.
  • With increasing proportion of solid wax components the resilience of the coating to impacts or friction on other surfaces increases, which leads to a longer-lasting protection of the coated particles.
  • High proportions of oils or liquid wax components can weaken the coating, opening pores and exposing the particles made up with the meltable component to the environmental influences mentioned at the beginning.
  • the solidified, meltable component can break under impact or friction.
  • additives can optionally be added to the fusible component. Suitable additives must be able to be mixed completely with the molten wax, must not significantly change the melting range of the coating, must improve the elasticity of the solidified fusible component at low temperatures, must not and must not generally increase the permeability of the solidified fusible component to water or moisture do not increase the viscosity of the melt of the coating material to such an extent that processing becomes difficult or even impossible.
  • Suitable additives which reduce the brittleness of a coating consisting essentially of paraffin at depth Lowering temperatures are, for example, EVA copolymers, hydrogenated resin acid methyl ester, polyethylene or copolymers of ethyl acrylate and 2-ethylhexyl acrylate.
  • the fusible component can also contain one or more of the above-mentioned waxes or wax-like substances as the main constituent.
  • the mixture forming the cover should be such that the cover is at least largely water-insoluble.
  • the solubility in water should not exceed about 10 mg / 1 at a temperature of about 30 ° C. and should preferably be below 5 mg / 1.
  • parts of the molded body and / or components of the molded body are treated by irradiation with microwaves in order to positively influence strength, moisture content and solubility.
  • Special ingredients (I) which are additionally used in the context of the invention are substances which prevent the re-soiling of surfaces and / or facilitate the removal of dirt after a single application (so-called “soil release compounds”).
  • the soil release compounds used according to the invention include all compounds known in the prior art.
  • Cationic polymers such as those used for. B. are known from the following publications:
  • EP-A-0 167 382 EP-A-0 342 997 and DE-OS-26 16 404 cleaning agents are added cationic polymers in order to achieve a streak-free cleaning of the surfaces.
  • EP-A-0 167 382 describes liquid detergent compositions which can contain cationic polymers as thickeners. Hydroxypropyltrimethylammonium guar; Copolymers of aminoethyl methacrylate and acrylamide and copolymers of dimethyldiallylammonium chloride and acrylamide are described.
  • EP-A-0 342 997 describes general-purpose cleaners which can contain cationic polymers, in particular polymers with imino groups being used.
  • DE-OS-26 16 404 describes cleaning agents for glass which contain cationic cellulose derivatives.
  • the addition of the cationic cellulose derivatives in the agents a better drainage of the water in order to obtain streak-free cleaned glass.
  • EP-A-0 467 472 e.g. B. cleaning agents for hard surfaces which contain cationic homo- and / or copolymers as soil-release polymers. These polymers have quaternized ammonium alkyl methacrylate groups as monomer units. These connections are used to equip the surfaces in such a way that the dirt can be removed more easily during the next cleaning process.
  • the cationic polymers are particularly preferably selected from cationic polymers of copolymers of monomers such as trialkylammomumalkyl (meth) acrylate or acrylamide; Dialkyldiallyldiammonium salts; polymer-analogous reaction products of ethers or esters of polysaccharides with ammonium side groups, in particular guar, cellulose and starch derivatives; Polyadducts of ethylene oxide with ammonium groups; quaternary ethylene imine polymers and polyesters and polyamides with quaternary side groups as soil release compounds.
  • monomers such as trialkylammomumalkyl (meth) acrylate or acrylamide; Dialkyldiallyldiammonium salts; polymer-analogous reaction products of ethers or esters of polysaccharides with ammonium side groups, in particular guar, cellulose and starch derivatives; Polyadducts of ethylene oxide with ammonium groups; qua
  • Natural polyuronic acids and related substances as well as polyampholytes and hydrophobized polyampholytes, or mixtures of these substances, are also exceptionally preferred in the context of this application.
  • enzymes between 0 and 5% by weight of enzymes, based on the entire preparation, can be added to the cleaning agent in order to increase the performance of the cleaning agents or to guarantee the same quality of cleaning performance under milder conditions.
  • the most commonly used enzymes include lipases, amylases, cellulases and proteases.
  • Preferred proteases are e.g. B. BLAP®140 from Bio- zym, Optimase®-M-440 and Opticlean®-M-250 from Solvay Enzymes; Maxacal®CX and Maxapem® or Esperase® from Gist Brocades or Savinase® from Novo.
  • cellulases and lipases are Celluzym® 0.7 T and Lipolase® 30 T from Novo Nordisk.
  • Duramyl® and Termamyl® 60 T, and Termamyl® 90 T from Novo, Amylase-LT® from Solvay Enzymes or Maxamyl® P5000 from Gist Brocades find particular use as amylases.
  • Other enzymes can also be used.
  • oxygen bleaching agents preferably the alkali metal perborates and their hydrates and the alkali metal percarbonates, sodium perborate, as the mono- or tetrahydrate, or sodium percarbonate and their hydrates preferably being used in the context of the invention.
  • the persulphates can also be used.
  • Typical oxygen bleaches are also organic peracids.
  • the organic peracids used with preference include above all the excellently active phthalimidoperoxycaproic acid, but in principle all other known peracids can also be used.
  • bleach activators are compounds that contain one or more N or O acyl groups, such as substances from the class of anhydrides, esters, imides and acylated imidazoles or oximes. Examples are tetraacetylethylenediamine TAED, tetraacetylmethylene diamine TAMD and tetraacetylhexylenediamine TAHD, but also pentaacetylglucose PAG, l, 5-diacetyl-2,2-dioxo-hexahydro-l, 3,5-triazine DADHT and isatoic acid anhydride ISA.
  • N or O acyl groups such as substances from the class of anhydrides, esters, imides and acylated imidazoles or oximes. Examples are tetraacetylethylenediamine TAED, tetraacetylmethylene diamine TAMD and tetraacetylhexylenediamine
  • aliphatic peroxocarboxylic acids with preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid can be used as bleach activators.
  • Suitable substances are those which carry O- and / or N-acyl groups of the number of carbon atoms mentioned and / or optionally substituted benzoyl groups.
  • Multi-acylated alkylenediamines in particular tetraacetylethylenediamine (TAED), acylated tria- Zinderivate, in particular l, 5-diacetyl-2,4-dioxohexahydro-l, 3,5-triazine (DADHT), acylated glycolurils, especially tetraacetylglycoluril (TAGU), N-acylimides, especially N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, in particular n-nonanoyl or isononanoyloxybenzenesulfonate (n- or iso-NOBS), carboxylic anhydrides, in particular phthalic anhydride, acylated polyhydric alcohols, in particular triacetin, ethylene glycol diacetate, 2,5-diacetoxy-2,5-dihydrofuran, n-methyl-Mo ⁇ holin
  • hydrophilically substituted acylacetals known from German patent application DE 196 16 769 and the acyl lactams described in German patent application DE 196 16 770 and international patent application WO 95/14075 are also preferably used.
  • the combinations of conventional bleach activators known from German patent application DE 44 43 177 can also be used. Bleach activators of this type are present in the customary quantitative range, preferably in amounts of 1% by weight to 10% by weight, in particular 2% by weight to 8% by weight, based on the total agent.
  • the sulfonimines and / or bleach-enhancing transition metal salts or transition metal complexes known from European patents EP 0446 982 and EP 0 453 003 can also be present as so-called bleaching catalysts.
  • the transition metal compounds in question include, in particular, the manganese, iron, cobalt, ruthenium or molybdenum salen complexes known from German patent application DE 195 29 905 and their N-analog compounds known from German patent application DE 196 20 267, the « Manganese, iron, cobalt, ruthenium or molybdenum carbonyl complexes known from German patent application DE 195 36 082, which are described in German patent application DE 196 05 688 wrote manganese, iron, cobalt, ruthenium, molybdenum, titanium, vanadium and copper complexes with nitrogen-containing tripod ligands, the cobalt, iron, copper and.
  • German patent application DE 196 20 411 Ruthenium-amine complexes the manganese, copper and cobalt complexes described in German patent application DE 44 16 438, the cobalt complexes described in European patent application EP 0 272 030, the manganese complexes known from European patent application EP 0693 550 , the manganese, iron, cobalt and copper complexes known from European patent EP 0 392 592 and / or those described in European patent EP 0 443 651 or European patent applications EP 0 458 397, EP 0 458 398, EP 0 549 271, EP 0 549 272, EP 0 544 490 and EP 0 544 519 described manganese complexes.
  • bleach activators and transition metal bleach catalysts are known, for example, from German patent application DE 196 13 103 and international patent application WO 95/27775.
  • Bleach activators from the group of multi-acylated alkylenediamines in particular tetraacetylethylene diamine (TAED), N-acylimides, in particular N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, in particular n-nonanoyl- or isononanoyloxybenzenesulfonate (NOBS) or isobenzene sulfonate (N-) iso , MMA, preferably in amounts of up to 10% by weight, in particular 0.1% by weight to 8% by weight, particularly 2 to 8% by weight and particularly preferably 2 to 6% by weight, based on the total Means used.
  • TAED tetraacetylethylene diamine
  • NOSI N-nonanoylsuccinimide
  • Bleach-boosting transition metal complexes in particular with the central atoms Mn, Fe, Co, Cu, Mo, V, Ti and / or Ru, preferably selected from the group consisting of manganese and / or cobalt salts and / or complexes, particularly preferably cobalt (ammin) - Complexes, the cobalt (acetate) complexes, the cobalt (carbonyl) complexes, the chlorides of cobalt or manganese, of manganese sulfate are used in conventional amounts, preferably in an amount of up to 5% by weight, in particular 0.0025% by weight. % to 1% by weight and particularly preferably from 0.01% by weight to 0.25% by weight, in each case based on the total composition. But in special cases, more bleach activator can be used.
  • Dishwashing detergents according to the invention may contain corrosion inhibitors as ingredients for protecting the wash ware or the machine, with particular protection agents being of particular importance in the field of automatic dishwashing.
  • corrosion inhibitors as ingredients for protecting the wash ware or the machine, with particular protection agents being of particular importance in the field of automatic dishwashing.
  • the known subsets of the prior art such as. B. in DE 43 25 922, the DE 41 28 672 or DE 43 38 724 described.
  • silver protection agents selected from the group consisting of triazoles, benzotriazoles, bisbenzotriazoles, aminotriazoles, alkylaminotriazoles and transition metal salts or complexes can be used. Benzotriazole and / or alkylaminotriazole are particularly preferably to be used.
  • oxygen and nitrogen-containing organic redox-active compounds such as di- and trihydric phenols, e.g. B. hydroquinone, pyrocatechol, hydroxyhydroquinone, gallic acid, phloroglucin, pyrogallol or derivatives of these classes of compounds.
  • Salt-like and complex-like inorganic compounds such as salts of the metals Mn, Ti, Zr, Hf, V, Co and Ce, are also frequently used.
  • transition metal salts which are selected from the group consisting of manganese and / or cobalt salts and / or complexes, particularly preferably the cobalt (amine) complexes, the cobalt (acetate) complexes, the cobalt (carbonyl) complexes , the chlorides of cobalt or manganese and manganese sulfate.
  • Zinc compounds can also be used to prevent corrosion on the wash ware.
  • all of the ingredients (I) described above can also take on the function of other ingredients if the condition of the inventive area is met by other ingredients.
  • water-soluble and water-insoluble builders can be used especially for binding calcium and magnesium.
  • Water-soluble builders are preferred because they generally have less tendency to form insoluble residues on dishes and hard surfaces.
  • Customary builders which can be present in the scope of the invention between 10 and 90% by weight, based on the entire preparation, are the low molecular weight polycarboxylic acids and their salts, the homopolymeric and copolymeric polycarboxylic acids and their salts, the carbonates, phosphates and silicates .
  • Water-insoluble builders include the zeolites, which can also be used, as well as mixtures of the abovementioned builder substances.
  • Alkali carriers can be present as further constituents.
  • Alkali metal hydroxides, alkali metal carbonates, alkali metal hydrogen carbonates, alkali metal sesquicarbonates, alkali silicates, alkali metal silicates, and mixtures of the abovementioned substances are considered to be alkali carriers, alkali metal carbonates, in particular sodium carbonate, sodium bicarbonate or sodium quartz carbonate being used for the purposes of this invention.
  • a builder system containing a mixture of tripolyphosphate and sodium carbonate is particularly preferred.
  • a builder system containing a mixture of tripolyphosphate and sodium carbonate and sodium disilicate is also particularly preferred.
  • all surfactants can be used as surfactants. Preference is given to the nonionic surfactants and in particular the low-foaming nonionic surfactants, but other low-foaming surfactants are also suitable.
  • the alkoxylated alcohols, particularly the ethoxylated and or propoxylated ones, the alkyl polyglycosides and the alkyl polyglucamides are particularly preferred.
  • alkoxylated alcohols to mean the reaction products of alkylene oxide, preferably ethylene oxide, with alcohols, preferably in the sense of the present invention the longer-chain alcohols (Cio to C 18 , preferably between C 1 and C 16 , such as Cn-, C 12 -, C 13 -, C 1 -, Cj 5 -, C 16 -, C 1 - and C 18 -alcohols).
  • n moles of ethylene oxide and one mole of alcohol form a complex mixture of addition products of different degrees of ethoxylation, depending on the reaction conditions.
  • a further embodiment consists in the use of mixtures of the alkylene oxides, preferably the mixture of ethylene oxide and propylene oxide.
  • final etherification with short-chain alkyl groups such as preferably the butyl group, can also give the substance class of the “closed” alcohol ethoxylates, which can also be used for the purposes of the invention.
  • Highly preferred for the purposes of the present invention are highly ethoxylated fatty alcohols or their mixtures with end-capped fatty alcohol ethoxylates.
  • Alkyl polyglycosides are surfactants which can be obtained by the reaction of sugars and alcohols using the relevant methods of preparative organic chemistry, with a mixture of monoalkylated, oligomeric or polymeric sugars depending on the type of preparation.
  • Preferred alkyl polyglycosides can be alkyl polyglucosi- de, wherein the alcohol is particularly preferably a long-chain fatty alcohol or a mixture of long-chain fatty alcohols and the degree of oligomerization of the sugars is between 1 and 10.
  • Fatty acid polyhydroxylamides are acylated reaction products of the reductive amination of a sugar (glucose) with ammonia, whereby long-chain fatty acids, long-chain fatty acid esters or long-chain fatty acid chlorides are generally used as acylating agents.
  • Secondary amides are formed when reducing with methylamine or ethylamine instead of with ammonia, such as. B. in S ⁇ FW-Journal, 119, (1993), 794-808 is described.
  • Carbon chain lengths of C 6 to C 12 in the fatty acid residue are preferably used.
  • the areas of the molded body can be colored. It is particularly preferred if one or more or all areas of the molded body are colored differently in the molded body. In one special embodiment of the molded body, the color is red. In another special embodiment of the molded body, the color is green. In another special embodiment of the molded body, the color is yellow. In another special embodiment of the molded body, the color is a mixture of different colors.
  • the storage stability of the molded body is particularly important. It is particularly preferred according to the invention if the weight increase in the area of the ingredient (I) when stored under normal household conditions, ie. H. between 15 and 30 ° C. and between 5 and 55% atmospheric humidity, preferably 15 and 35% atmospheric humidity for a period of 30 days, preferably 60 days, particularly preferably 90 days, not more than 50% by weight, preferably not more than 40% %, very particularly preferably not more than 30% by weight, extremely preferably not more than 20% by weight and extremely preferably not more than 10% by weight, at best not more than 5% by weight.
  • normal household conditions ie. H. between 15 and 30 ° C. and between 5 and 55% atmospheric humidity, preferably 15 and 35% atmospheric humidity for a period of 30 days, preferably 60 days, particularly preferably 90 days, not more than 50% by weight, preferably not more than 40% %, very particularly preferably not more than 30% by weight, extremely preferably not more than 20% by weight and extremely preferably not more than 10% by weight, at best not more
  • the loss of active substance of the ingredient (I) during storage under normal household conditions ie between 15 and 30 ° C. and between 5 and 55% atmospheric humidity, preferably 15 and 35% atmospheric humidity, for a period of 30 days , preferably 60 days, particularly preferably 90 days not more than 50% by weight, preferably not more than 40% by weight, very particularly preferably not more than 30% by weight, extremely preferably not more than 20% by weight and most preferably not more than 10% by weight, at best not more than 5% by weight.
  • the absorption maximum of a 1% solution of a colored area or a colored component during storage under normal household conditions ie between 15 and 30 ° C. and between 5 and 55% atmospheric humidity, preferably 15 and 35% Humidity for a period of 30 days, preferably 60 days, particularly preferably 90 days, not more than 100 wave numbers, preferably not more than 50 wave numbers, very particularly preferably not more than 30 wave numbers, extremely preferably not more than 20 wave numbers and extremely preferably not more than 10 wavenumbers, at best not more than 5 wavenumbers.
  • the builder system of the framework recipe above can also be composed as follows (all other ingredients are the same as in a).
  • test formulation (V) was used:
  • each formulation can also be the constituents of an individual phase, ie the proportions then do not relate to the overall formulation as usual, but to the composition of the individual phase.
  • each of the recipes can also contain other ingredients commonly used in MGSM (e.g. fillers, preservatives, etc.) in extremely small quantities, with the other ingredients being proportionately varied accordingly.
  • a preferred embodiment of the molded body of the first claim contains a trough in a tablet, this trough containing the chlorine bleaching ingredient (I).
  • the production takes place in such a way that a depression is embossed into a molded body and this depression is filled.
  • the embossing can be done on a Korsch rotary press.
  • a tablet press from Fette was used.
  • a round tablet shape (26 X 36 mm) was selected and embossed on one side with a stamp 5 mm deep, the base area being chosen such that a volume of 1 ml could be filled in and the tablet subsequently had a smooth surface.
  • a liquid mixture of paraffin and an active ingredient (I) was then introduced and allowed to cool. This cooling can be supported by common equipment methods.
  • the ingredient (I) according to the invention was previously reduced in quantity in the corresponding recipe which surrounds the filled area and was omitted in the surrounding areas in the examples and investigations at hand.
  • the special properties of the agents according to the invention were compared with known agents using the example of storage stability.
  • the special properties of the agents according to the invention were compared with known agents using the example of tea cleaning.
  • the special properties of the agents according to the invention were tested in comparison to known agents using the example of cleaning enzyme-relevant soiling.
  • melt dispersions of dichloroisocyanuric acid were produced in coating substances, which demonstrate the positive effects.
  • trough-shaped bodies weight: 24 g
  • Table 1 shows the composition (in% by weight, based on the premix) and thus the mold body:
  • melt dispersions SDE 1 and 2 were produced, the composition (% by weight, based on the melt) of which is given in the table below:
  • the melt dispersions were introduced into the moldings and allowed to cool.
  • the shaped bodies had a weight of 24 g before filling and were each filled with 1.3 g of the melt dispersion.
  • the cleaning performance of the molded bodies El and E2 filled with the melt dispersions SDE 1 and SDE 2 was tested on tea soiling.
  • a tea stain was produced according to (1) and the soiled cups were cleaned in a household dishwasher: (1) Production of tea soiling
  • 16 l of cold city water (16 ° d) are briefly heated to boiling in a water treatment boiler.
  • 96 g of black tea are drawn in the nylon net with the lid closed for 5 minutes and the tea is transferred to a diving apparatus with heating and agitator.
  • 60 teacups are dipped into the prepared tea brew 25 times at one-minute intervals at 70 ° C. The cups are then removed and placed on a tray with the opening facing down to dry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)
EP98966385A 1997-12-30 1998-12-21 Geschirrspülmittelformkörper mit chlorbleichmitteln Withdrawn EP1044258A1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19758178 1997-12-30
DE19758178A DE19758178A1 (de) 1997-12-30 1997-12-30 Geschirrspülmittelformkörper mit Chlorbleichmitteln
PCT/EP1998/008372 WO1999035235A1 (de) 1997-12-30 1998-12-21 Geschirrspülmittelformkörper mit chlorbleichmitteln
CA002298105A CA2298105A1 (en) 1997-12-30 2000-02-23 Dishwasher detergent shaped bodies containing chlorine bleaching agents

Publications (1)

Publication Number Publication Date
EP1044258A1 true EP1044258A1 (de) 2000-10-18

Family

ID=32471065

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98966385A Withdrawn EP1044258A1 (de) 1997-12-30 1998-12-21 Geschirrspülmittelformkörper mit chlorbleichmitteln

Country Status (9)

Country Link
EP (1) EP1044258A1 (sk)
JP (1) JP2002500271A (sk)
CA (1) CA2298105A1 (sk)
CZ (1) CZ20002495A3 (sk)
DE (1) DE19758178A1 (sk)
HU (1) HUP0101379A2 (sk)
PL (1) PL341351A1 (sk)
SK (1) SK10052000A3 (sk)
WO (1) WO1999035235A1 (sk)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE226979T1 (de) * 1998-07-15 2002-11-15 Henkel Kgaa Verfahren zur herstellung mehrphasiger wasch- und reinigungsmittelformkörper
DE19919445A1 (de) * 1999-04-29 2000-11-02 Henkel Kgaa Wasch- und Reinigungsmittelformkörper mit festen Bindemitteln
GB9911949D0 (en) 1999-05-21 1999-07-21 Unilever Plc Detergent compositions
DE19937428A1 (de) * 1999-08-07 2001-02-08 Henkel Kgaa Reinigungs- und Waschmittelformkörper
DE50011646D1 (de) * 1999-09-10 2005-12-22 Henkel Kgaa Reinigungsmittelkomponente mit feinteiligen feststoffen
DE10005575A1 (de) * 2000-02-09 2001-08-23 Reckitt Benckiser Nv Reinigungsmittelzusammensetzung in Tablettenform
GB2375543A (en) * 2001-05-18 2002-11-20 Reckitt Benckiser Inc Laundry additive compositions
ITMI20050364A1 (it) * 2005-03-08 2006-09-09 Truffini & Regge Farmaceutici Compresse detersive a rilascio controllato
EP2082020B1 (en) * 2006-11-16 2012-08-22 Unilever N.V. Self adhesive hard surface cleaning block
DE102007003885A1 (de) * 2007-01-19 2008-07-24 Lanxess Deutschland Gmbh Geschirrreinigungsmittel
DE102007005503B4 (de) * 2007-01-30 2010-07-29 Rational Ag Verfahren zur Reinigung einer Oberfläche eines Nahrungsmittelbehandlungsgeräts
JP5641759B2 (ja) * 2010-03-31 2014-12-17 小林製薬株式会社 義歯洗浄剤
JP6232246B2 (ja) * 2013-09-26 2017-11-15 シーバイエス株式会社 自動食器洗浄機用洗浄剤組成物およびその使用方法
JP5801941B1 (ja) * 2014-11-21 2015-10-28 株式会社ニイタカ 洗浄剤組成物、食器洗浄方法、液体洗浄剤組成物用キット及びカートリッジ洗浄剤
JP5753962B1 (ja) * 2015-04-13 2015-07-22 株式会社ニイタカ カートリッジ洗浄剤
JP7252601B2 (ja) * 2019-02-08 2023-04-05 株式会社ニイタカ 固形洗浄剤組成物、カートリッジ洗浄剤、洗浄方法、及び、微生物の除菌方法又は菌叢凝塊の除去方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3338836A (en) * 1964-06-29 1967-08-29 Fmc Corp Cleansing tablets
US3329615A (en) * 1964-07-23 1967-07-04 Stauffer Chemical Co Tableted detergent and detergentbleach compositions comprising alkyl orthophosphate salts
US3390092A (en) * 1965-03-30 1968-06-25 Fmc Corp Dishwashing detergent preparations containing sodium or potassium dichloroisocyanurate
US3429821A (en) * 1966-06-21 1969-02-25 American Home Prod Bleaching tablet
AU5337090A (en) * 1989-03-20 1990-10-22 Olin Corporation Alkali metal chloroisocyanurate compositions
US5133892A (en) * 1990-10-17 1992-07-28 Lever Brothers Company, Division Of Conopco, Inc. Machine dishwashing detergent tablets
GB9114184D0 (en) * 1991-07-01 1991-08-21 Unilever Plc Detergent composition
GB9422895D0 (en) * 1994-11-14 1995-01-04 Unilever Plc Detergent compositions
GB9422925D0 (en) * 1994-11-14 1995-01-04 Unilever Plc Detergent compositions
DE19710254A1 (de) * 1997-03-13 1998-09-17 Henkel Kgaa Wasch- oder reinigungsaktive Formkörper für den Gebrauch im Haushalt

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9935235A1 *

Also Published As

Publication number Publication date
CZ20002495A3 (cs) 2001-10-17
WO1999035235A1 (de) 1999-07-15
PL341351A1 (en) 2001-04-09
HUP0101379A2 (hu) 2001-09-28
SK10052000A3 (sk) 2000-12-11
DE19758178A1 (de) 1999-07-01
CA2298105A1 (en) 2000-05-07
JP2002500271A (ja) 2002-01-08

Similar Documents

Publication Publication Date Title
EP1044258A1 (de) Geschirrspülmittelformkörper mit chlorbleichmitteln
DE4315048A1 (de) Verfahren zur Herstellung stabiler, bifunktioneller, phosphat-, metasilikat- und polymerfreier niederalkalischer Reinigungsmitteltabletten für das maschinelle Geschirrspülen
WO1999035225A2 (de) Geschirrspülmittelformkörper mit tensiden
EP1095130A1 (de) Verfahren zur herstellung mehrphasiger wasch- und reinigungsmittelformkörper
EP1044256A1 (de) Verfahren zur herstellung eines geschirrspülmittelformkörpers
EP1141211B1 (de) Teilchenförmig konfektionierte acetonitril-derivate als bleichaktivatoren in festen reinigungsmitteln
DE19851426A1 (de) Verfahren zur Herstellung mehrphasiger Wasch- und Reinigungsmittelformkörper
EP1044253A1 (de) Geschirrspülmittelformkörper mit spezifischer löslichkeit
EP1044257A1 (de) Geschirrspülmittelformkörper mit soil-release-polymeren
EP1044255A1 (de) Geschirrspülmittelformkörper mit bleichaktivatoren
WO1999035236A1 (de) Geschirrspülmittelformkörper mit spezifischer geometrie
WO1999035231A1 (de) Waschaktiver formkörper mit spezifischer oberfläche
EP1045894A1 (de) Geschirrspülmittelformkörper mit spezifischem volumenverhältnis
WO1996037596A1 (de) Maschinelle geschirrspülmittel mit silberkorrosionsschutzmittel
DE19857596A1 (de) Teilchenförmig konfektionierte Acetonitril-Derivate als Bleichaktivatoren in festen Reinigungsmitteln
WO2000049128A1 (de) Farbstabile wasch- und reinigungsmittelformkörper
DE19632283A1 (de) Verwendung von Lipasen in niederalkalischen Mitteln zum Vorspülen im Rahmen des maschinellen Geschirrspülens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000621

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FR GB IT NL

17Q First examination report despatched

Effective date: 20040618

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HENKEL AG & CO. KGAA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080701