EP1141211B1 - Teilchenförmig konfektionierte acetonitril-derivate als bleichaktivatoren in festen reinigungsmitteln - Google Patents

Teilchenförmig konfektionierte acetonitril-derivate als bleichaktivatoren in festen reinigungsmitteln Download PDF

Info

Publication number
EP1141211B1
EP1141211B1 EP99962240A EP99962240A EP1141211B1 EP 1141211 B1 EP1141211 B1 EP 1141211B1 EP 99962240 A EP99962240 A EP 99962240A EP 99962240 A EP99962240 A EP 99962240A EP 1141211 B1 EP1141211 B1 EP 1141211B1
Authority
EP
European Patent Office
Prior art keywords
weight
bleach
formula
compound
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99962240A
Other languages
English (en)
French (fr)
Other versions
EP1141211A2 (de
Inventor
Christian Nitsch
Horst-Dieter Speckmann
Jürgen Härer
Andreas Lietzmann
Susan P. Huestis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19857596A external-priority patent/DE19857596A1/de
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP1141211A2 publication Critical patent/EP1141211A2/de
Application granted granted Critical
Publication of EP1141211B1 publication Critical patent/EP1141211B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3902Organic or inorganic per-compounds combined with specific additives
    • C11D3/3905Bleach activators or bleach catalysts
    • C11D3/3907Organic compounds
    • C11D3/3917Nitrogen-containing compounds
    • C11D3/3927Quarternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3902Organic or inorganic per-compounds combined with specific additives
    • C11D3/3905Bleach activators or bleach catalysts
    • C11D3/3935Bleach activators or bleach catalysts granulated, coated or protected
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0034Fixed on a solid conventional detergent ingredient
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • C11D17/0078Multilayered tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/046Salts
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/168Organometallic compounds or orgometallic complexes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3902Organic or inorganic per-compounds combined with specific additives
    • C11D3/3905Bleach activators or bleach catalysts
    • C11D3/3907Organic compounds
    • C11D3/3917Nitrogen-containing compounds
    • C11D3/3925Nitriles; Isocyanates or quarternary ammonium nitriles

Definitions

  • the present invention relates to the use of ready-made particles Acetonitrile derivatives as activators for in particular inorganic peroxygen compounds for bleaching tea stains on dishes and cleaning agents for dishes containing such activators.
  • Inorganic peroxygen compounds especially hydrogen peroxide and solid peroxygen compounds, which dissolve in water to release hydrogen peroxide, such as sodium perborate and sodium carbonate perhydrate, have long been used as oxidizing agents for disinfection and bleaching purposes.
  • the oxidizing effect of these substances in dilute solutions depends strongly on the temperature; For example, with H 2 O 2 or perborate in alkaline bleaching liquors, sufficiently quick bleaching of soiled textiles can only be achieved at temperatures above about 80 ° C.
  • the oxidation effect of the inorganic peroxygen compounds can be improved by the addition of so-called bleach activators, for which numerous suggestions, especially from the substance classes of the N- or O-acyl compounds, for example multiply acylated alkylenediamines, in particular tetraacetylethylenediamine, acylated glycolurils, in particular tetraacetylglycoluril, N- acylated hydantoins, hydrazides, triazoles, Hydrotriazine, urazoles, diketopiperazines, sulfuryl amides and cyanurates, also carboxylic anhydrides, especially phthalic anhydride, Carbonklareester, especially sodium nonanoyloxybenzenesulfonate, sodium isononanoyloxybenzenesulfonate and acylated sugar derivatives, such as pentaacetylglucose, are known in the literature.
  • the bleach activators for which numerous suggestions
  • Another one especially for cleaning agents for automatic dishwashing is the need to use corrosion inhibitors for silverware in such agents to incorporate, especially if the agents are the bleaching or Contain oxidizing agents based on oxygen.
  • Silver can when cleaning with sulfur-containing substances that are dissolved or dispersed in the rinse water are reacting, because when cleaning dishes in household dishwashers are leftovers and, among other things, mustard, peas, egg and others sulfur-containing compounds such as mercaptoamino acids introduced into the washing liquor.
  • the much higher temperatures during machine washing and the longer ones Contact times with the sulfur-containing food residues favor compared to manual flushing tarnishing silver. Due to the intensive cleaning process in the dishwasher also completely degreases the silver surface and thereby more sensitive to chemical influences.
  • tarnishing silver becomes particularly acute if it is an alternative to the Sulfur-containing substances oxidatively "defusing" active chlorine compounds active oxygen compounds, such as sodium perborate or sodium percarbonate are used, which for the removal, bleachable stains, such as for example tea stains / tea deposits, coffee residues, dyes from vegetables, lipstick residues and the like serve.
  • active chlorine compounds such as sodium perborate or sodium percarbonate are used, which for the removal, bleachable stains, such as for example tea stains / tea deposits, coffee residues, dyes from vegetables, lipstick residues and the like serve.
  • Such active oxygen bleaching agents are usually used together with bleach activators used in automatic dishwashing detergents.
  • These funds generally consist of the following function blocks: builder component (complexing agent / dispersant), Alkali carrier, bleaching system (combination of bleach and bleach activator), Enzyme and surfactant.
  • builder component complexing agent / dispersant
  • Alkali carrier Alkali carrier
  • bleaching system combination of bleach and bleach activator
  • Enzyme and surfactant Among those that occur when using such structured means Flushing conditions generally not only form sulfidic, but also but through the oxidizing attack of the intermediate peroxides or the active oxygen also oxidic deposits on the silver surfaces.
  • a subclass of the particulate agents are cleaning agents in tablet form.
  • Tableted detergents have compared to powdered or liquid products A number of advantages: They are easier to dose and to handle due to its compact structure, advantages in storage and transport. It there is therefore an extremely broad state of the art in washing and Detergent tablets, which can also be found in an extensive patent literature reflected.
  • the developers of tablet-shaped products came up with the idea early on come determined over differently composed areas of the molded body Ingredients only under defined conditions in the washing or cleaning cycle release, in order to improve the cleaning success.
  • the Core / shell tablets and ring / core tablets well known from pharmacy in particular multilayered molded articles, which are used today for many Areas of washing and cleaning or hygiene are offered.
  • Multi-phase cleaning tablets for the toilet are used, for example, in Europe Patent application EP 0 055 100 described.
  • This document discloses blocks of toilet detergent, which is a molded body made from a slowly soluble detergent composition include in which a bleach tablet is embedded. This font at the same time reveals the most diverse forms of design in a multi-phase manner Formgroiper.
  • the molded articles are produced according to the teaching of this document either by inserting a compressed bleach tablet into a mold and Pour this tablet around with the detergent composition, or by Pour some of the detergent composition into the mold, followed by the Insert the compressed bleach tablet and possibly pour it over with another detergent composition.
  • European patent application EP 0 481 547 also describes multi-phase detergent tablets, those according to this document for machine dishwashing should be used. These tablets have the shape of core / shell tablets and are produced by gradually compressing the components: Compression of a bleaching agent composition into a shaped body which is incorporated in a a polymer composition half-filled die is inserted, which then with filled up another polymer composition and one with a polymer jacket provided bleach molding is pressed. The procedure is then followed by an alkaline detergent composition repeated so that a three-phase molded body results.
  • N-alkyl ammonium nitriles of the type described above by formula (I) known in granular form have been assembled, with the support materials for the N-alkyl-ammonium nitriles for example called silica, silicates and aluminum oxide become.
  • N-alkyl ammonium nitriles that have been made up in granular form are, for example, as carrier materials for the N-alkyl ammonium nitriles Silicic acid, silicates and aluminum oxide can be called.
  • the invention relates to the use of compounds of the general formula I which are made up in particulate form with the aid of inorganic carrier materials which contain silicon R 1 R 2 R 3 N + CH 2 CN X - in which R 1 , R 2 and R 3 are, independently of one another, an alkyl, alkenyl or aryl group having 1 to 18 C atoms, the groups R 2 and R 3 also being part of a heterocycle which includes the N atom and optionally further hetero atoms and X is a charge-balancing anion, as activators for in particular inorganic peroxygen compounds in solid cleaning agents, in particular for dishes, which are used in essentially aqueous cleaning solutions.
  • R 1 is preferably an alkyl group with 1 to 3 carbon atoms, in particular a methyl group.
  • the anions X - include in particular the halides such as chloride, fluoride, iodide and bromide, nitrate, hydroxide, hexafluorophosphate, sulfate, hydrogen sulfate, methosulfate and ethosulfate, chlorate, perchlorate, and the anions of carboxylic acids such as formate, acetate, benzoate or citrate , Preference is given to the use of compounds of the formula I in which X is sulfate, hydrogen sulfate or methosulfate.
  • the compound according to general formula I is in the cleaning agents in Particulate form, that is applied to an inorganic Carrier material used.
  • the application to the carrier material can be done in this way happen that one in an aqueous solution, the compound according to formula I, as in In the context of their manufacture, the carrier material is stirred in and the aqueous Solvent is removed in vacuo, if appropriate at elevated temperature.
  • the silicon-containing inorganic carrier materials such are preferably used whose inner surface area ranging from 10 m 2 / g to 500 m 2 / g, more preferably 100m 2 / g to 450 m 2 / g is.
  • Silicates, silicas, silica gels and clays and mixtures thereof are suitable, for example.
  • the carrier material is preferably free of zeolites.
  • Silicas that have been produced using a thermal process can be used as well as silicas produced by wet processes.
  • Silica gels are colloidal silicas with elastic to solid consistency and a largely loose pore structure, which results in a high fluid absorption capacity They can be produced by the action of mineral acids on water glass Clays are naturally occurring crystalline or amorphous silicates of aluminum, iron, magnesium, calcium, potassium and sodium, for example kaolin, talc, pyrophyllite, attapulgite, sepiolite, montmorillionite and bauxite
  • the use of aluminum silicate as a carrier material or as a component of a carrier material mixture is possible, and the carrier material preferably has particle sizes in the range from 100 ⁇ m to 1.5 mm.
  • the particulate compounds of formula I are preferably 10 to 50 parts by weight of the silicon-containing carrier material and 50 to 90 parts by weight the compound of formula I.
  • the particulate made with the support material containing silicon Acetonitrile derivative can additionally be an organic material with a melting point above 40 ° C, especially non-ionic surfactant and / or with such to be enveloped. This can reduce the decay properties of the corresponding particle in affect aqueous systems and / or its storage stability positively.
  • An acetonitrile derivative according to formula I which is made up in this way in particulate form preferably incorporated into cleaning agents for use in cleaning solutions are provided for dishes for bleaching colored stains.
  • bleaching means both bleaching on its own Dish dirt, especially tea, as well as the bleaching of dirt detached from the surface of the dishwashing liquid Roger that.
  • the invention relates to solid cleaning agents for dishes and among them preferably those for use in machine cleaning processes, the one above Compound according to formula I described in a corresponding particulate Knfetation ist included, and a process for cleaning dishes using such a compound.
  • the use according to the invention as a bleach activator essentially consists in Presence of a dish surface contaminated with colored stains to create, among which a peroxidic oxidizing agent and the bleach activating Acetonitrile derivative can react with each other, with the aim of stronger to obtain oxidizing secondary products.
  • a peroxidic oxidizing agent and the bleach activating Acetonitrile derivative can react with each other, with the aim of stronger to obtain oxidizing secondary products.
  • Such conditions lie in particular then when both reactants meet in aqueous solution. This can by separately adding the peroxygen compound and the acetonitrile derivative to one if necessary, detergent-containing solution.
  • an inventive Dishwashing detergent containing the bleach activating acetonitrile derivative and optionally an oxidizing agent containing peroxygen preferably selected from the group includes organic peracids, hydrogen peroxide, perborate and percarbonate as well as their mixtures.
  • the peroxygen compound can also separately, in bulk or as a preferably aqueous solution or suspension for Solution can be added if a peroxide-free cleaning agent is used.
  • the conditions can be varied widely depending on the intended use. So come in addition to purely aqueous solutions, also mixtures of water and suitable organic solutions Solvents as a reaction medium in question.
  • the quantities of peroxygen compounds used are generally chosen so that in the solutions between 10 ppm and 10% active oxygen, preferably between 50 ppm and 5,000 ppm Active oxygen is present.
  • the amount of bleach activating used Acetonitrile derivative depends on the application. Depending on the desired degree of activation become 0.00001 mol to 0.25 mol, preferably 0.001 mol to 0.02 mol activator per mole of peroxygen compound used, but in special cases these limits are also exceeded or fallen below.
  • Another object of the invention is a solid detergent for dishes, which 1 wt .-% to 10 wt .-%, in particular 2 wt .-% to 6 wt .-% of a Acetonitrile derivative according to formula I in particulate as described above Assembled form in addition to usual ingredients compatible with the compound contains.
  • the solid cleaning agents according to the invention which are in powder or tablet form Solids, homogeneous solutions or suspensions can also be present Bleach activator used according to the invention in principle all known and in such Contain common ingredients.
  • the agents according to the invention can in particular builder substances, surface-active surfactants, peroxygen compounds, water-miscible organic solvents, enzymes, sequestering agents, electrolytes, pH regulators and other auxiliaries, such as silver corrosion inhibitors, foam regulators, contain additional bleach-boosting active ingredients as well as colors and fragrances.
  • a cleaning agent according to the invention can also have an abrasive effect Components, in particular from the group comprising quartz flours, wood flours, Plastic flours, chalks and micro glass balls and their mixtures.
  • Abrasives are preferably not present in the cleaning agents according to the invention 20 wt .-%, in particular from 5 wt .-% to 15 wt .-%, contain.
  • Another object of the invention is a means for machine cleaning Tableware containing 15% by weight to 70% by weight, in particular 20% by weight to 60% by weight water-soluble builder component, 5% by weight to 25% by weight, in particular 8% by weight up to 17% by weight of bleaching agent based on oxygen, in each case based on the total agent, which is a bleach activating acetonitrile derivative according to formula I, especially in Amounts from 2% to 6% by weight in particulate as described above contains form.
  • Such an agent is in a preferred embodiment lower alkaline, i.e. its 1% by weight solution has a pH value from 8 to 11.5, in particular from 9 to 11.
  • alkali phosphates which in Form of their alkaline neutral or acidic sodium or potassium salts can.
  • alkali phosphates which in Form of their alkaline neutral or acidic sodium or potassium salts can.
  • alkali phosphates which in Form of their alkaline neutral or acidic sodium or potassium salts can.
  • examples include trisodium phosphate, tetrasodium diphosphate, disodium dihydrogeridiphosphate, Pentasodium triphosphate, so-called sodium hexametaphosphate, oligomeric trisodium phosphate with degrees of oligomerization from 5 to 1000, especially 5 to 50, as well as mixtures of sodium and potassium salts. Your quantities can range up to about 55% by weight based on the total agent.
  • water-soluble builder components are organic, for example Polymers of native or synthetic origin, especially polycarboxylates act as a co-builder especially in hard water regions. Be considered for example polyacrylic acids and copolymers of maleic anhydride and acrylic acid as well as the sodium salts of these polymer acids. Commercial products are for Example Sökalan® CP 5, CP 10 and PA 30 from BASF.
  • Useful polymers of native origin include, for example, oxidized starches, such as known for example from international patent application WO 94/05762, and polyamino acids such as polyglutamic acid or polyaspartic acid.
  • hydroxycarboxylic acids such as Mono-, dihydroxysuccinic acid, ⁇ -hydroxypropionic acid and gluconic acid.
  • To the preferred Builder components include the salts of citric acid, in particular Sodium citrate.
  • Anhydrous trisodium citrate and preferably come as sodium citrate Trisodium citrate dihydrate.
  • Trisodium citrate dihydrate can be fine or coarse-crystalline powder can be used.
  • the pH value set can also be at least partially proportional to the corresponding co-builder salts mentioned acids are present.
  • the use of sodium percarbonate has particular advantages in cleaning agents for dishes, since it has a particularly favorable effect on the corrosion behavior on glasses.
  • the Oxygen-based bleach is therefore preferably an alkali percarbonate, especially sodium percarbonate.
  • too known peroxycarboxylic acids for example dodecanediperic acid or phthalimidopercarboxylic acids, which may optionally be substituted on the aromatic, are included.
  • the addition of small amounts of known bleach stabilizers such as for example of phosphonates, borates or metaborates and metasilicates and magnesium salts such as magnesium sulfate may be useful.
  • bleach activating acetonitrile derivatives essential to the invention according to formula I known conventional bleach activators, that is Compounds containing aliphatic peroxocarboxylic acids under perhydrolysis conditions preferably 1 to 10 carbon atoms, in particular 2 to 4 carbon atoms, and / or optionally substituted perbenzoic acid result can be used.
  • acylates are preferred Alkylenediamines, especially tetraacetylethylenediamine (TAED), acylated Triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), acylated glycolurils, especially tetraacetylglycoluril (TAGU), N-acylimides, especially N-nonanoylsuccinimide (NOSI), carboxylic anhydrides, in particular Phthalic anhydride, acylated polyhydric alcohols, especially triacetin, ethylene glycol diacetate, 2,5-diacetoxy-2,5-dihydrofuran and those from the German Patent applications DE 196 16 693 and DE 196 16 767 known enol esters as well acetylated sorbitol and mannitol or their in the European Patent application EP 0 525 239 mixtures described (
  • German patent application DE 196 16 769 known hydrophilically substituted acylacetals and in German patent application DE 196 16 770 and international Patent application WO 95/14075 described acyllactams are also preferred used. Also known from German patent application DE 44 43 177 Combinations of conventional bleach activators can be used. such conventional bleach activators are in the usual range, preferably in Quantities from 0.1% by weight to 10% by weight, in particular 0.5% by weight to 7% by weight, based on total mean.
  • the sulfonimines and / or bleach-enhancing transition metal salts or transition metal complexes known from European patents EP 0 446 982 and EP 0 453 003 may also be present as so-called bleaching catalyst.
  • the transition metal compounds in question include, in particular, the manganese, iron, cobalt, ruthenium or molybdenum salen complexes known from German patent application DE 195 29 905 and their N-analog compounds known from German patent application DE 196 20 267, which consist of German patent application DE 195 36 082 known manganese, iron, cobalt, ruthenium or molybdenum carbonyl complexes, the manganese, iron, cobalt, ruthenium, molybdenum, titanium, described in German patent application DE 19605688 Vanadium and copper complexes with nitrogenous tripod ligands, the cobalt, iron, copper and ruthenium amine complexes known from German patent application DE 196 20 411, the manganese, copper described in German patent application DE 44 16 438 and cobalt complexes, the cobalt complexes described in European patent application EP 0 272 030, the manganese complexes known from European patent application EP 0 693 550 ,
  • bleach activators and transition metal bleach catalysts are known, for example, from German patent application DE-196 13 103 and international patent application WO 95/27775.
  • Bleach-enhancing transition metal salts and / or complexes, in particular with the central atoms Mn, Fe, Co, Cu, Mo, V, Ti and / or Hin, are used in customary amounts, preferably up to 1% by weight, in particular from 0.0025% by weight. % to 0.5% by weight and particularly preferably from 0.01% by weight to 0.1% by weight, in each case based on the total agent.
  • the particularly preferred bleach catalyst complexes include cobalt, iron, copper and ruthenium-amine complexes, for example [Co (NH 3 ) 5 Cl] Cl 2 and / or [Co (NH 3 ) 5 NO 2 ] Cl 2 .
  • the agents contain, in addition to the bleach activator according to formula I, which is made up in particulate form, a bleach-intensifying active ingredient combination which, according to European patent application EP 0 832 969, consists of intimately mixing a water-soluble salt of a divalent transition metal, selected from cobalt, iron, copper and ruthenium, and also their mixtures, a water-soluble ammonium salt and optionally an oxidizing agent based on peroxygen and inert carrier material are available in amounts of preferably 0.25% by weight to 25% by weight, in particular 1% by weight to 10% by weight; A preferred use of the bleach activator of the formula I, which is made up in particulate form, takes place in the presence of such a combination of active substances.
  • the machine dishwashing detergents according to the invention preferably contain the customary alkali carriers such as, for example, alkali silicates, alkali carbonates and / or alkali hydrogen carbonates.
  • Alkali silicates can be used in amounts of up to 40% by weight, based on the total agent. However, the use of the highly alkaline metasilicates as alkali carriers is preferably avoided entirely.
  • the alkali carrier system preferably used in the agents according to the invention is a mixture of carbonate and hydrogen carbonate, preferably sodium carbonate and hydrogen carbonate, which is contained in an amount of up to 50% by weight, preferably 5% by weight to 40% by weight , Depending on which pH is ultimately desired, the ratio of carbonate and bicarbonate used can be varied.
  • agents according to the invention are 20% by weight to 60% by weight of water-soluble organic builder, in particular alkali citrate, 3% by weight to Contain 20 wt .-% alkali carbonate and 5 wt .-% to 40 wt .-% alkali disilicate.
  • anionic, nonionic and / or amphoteric surfactants in particular weakly foaming nonionic surfactants, can also be added to the agents according to the invention, which serve to better detach fatty soils, as wetting agents and, if appropriate, as granulating aids in the preparation of the cleaning agents.
  • Their amount can be up to 20% by weight, in particular up to 10% by weight, and is preferably in the range from 0.5% by weight to 5% by weight.
  • Extremely low-foaming compounds are usually used in particular in cleaning agents for use in automatic dishwashing processes.
  • C 12 -C 18 alkyl polyethylene glycol polypropylene glycol ethers each containing up to 8 moles of ethylene oxide and propylene oxide units in the molecule.
  • you can also use other known low-foaming nonionic surfactants such as C 12 -C 18 alkyl polyethylene glycol polybutylene glycol ether, each with up to 8 moles of ethylene oxide and butylene oxide units in the molecule, end-capped alkyl polyalkylene glycol mixed ethers and the foaming but ecologically attractive C 8 -C 14- alkyl polyglucosides with a degree of polymerization of about 1 to 4 (e.g.
  • surfactants from the family of glucamides such as, for example, alkyl-N-methyl-glucamides, in which the alkyl part preferably originates from a fatty alcohol with the C chain length C 6 -C 14 . It is partially beneficial. if the surfactants described are used as mixtures, for example the combination of alkyl polyglycoside with fatty alcohol ethoxylates or glucamide with alkyl polyglycosides.
  • cleaning agents according to the invention can be used for cleaning silver corrosion inhibitors are used in dishes.
  • Preferred silver corrosion inhibitor are organic sulfides such as cystine and cysteine, divalent or trivalent Phenols.
  • optionally alkyl, aminoalkyl or aryl substituted triazoles such as Becizotriazole, isocyanuric acid, manganese, cobalt, titanium, zirconium, hafnium, vanadium or cerium salts and / or complexes in which the metals mentioned depend on the metal are in one of the oxidation states II, III, IV, V or VI.
  • the content of silver corrosion inhibitors in agents according to the invention is preferably in the range of 0.01% by weight to 1.5% by weight, in particular from 0.1% by weight to 0.5% by weight.
  • the manganese (III) - or known from international patent application WO 94/19445 Manganese (IV) complexes which in international patent application WO 94/07981 as Silver protection agent disclosed cysteine, which in the German patent application DE 195 18 693 as having a silver corrosion inhibiting effect alone or in particular in Combination with isocyanuric acid described cystine, and / or that in the German patent applications Titanium, described in DE 43 25 922 and DE 43 15 397, Zirconium, hafnium, vanadium, cobalt or cerium salts and / or complexes in which the metals are in one of the oxidation states II, III, IV, V or VI, and mentioned there Manganese (II) salts or complexes for preventing silver corrosion in the invention Funds are used.
  • the agents according to the invention can contain enzymes such as proteases, amylases, Contain pullulanases, cutinases and lipases, for example proteases such as BLAP®, Optimase®, Opticlean®, Maxacal®, Maxapem®, Esperase®, Savinase®, Purafect® OxP and / or Durazym®, amylases such as Termamyl®, Amylase-LT®, Maxamyl®, Duramyl® and / or Purafect® OxAm, lipases such as Lipolase®, Lipomax®, Lumafast® and / or Lipozym®.
  • proteases such as BLAP®, Optimase®, Opticlean®, Maxacal®, Maxapem®, Esperase®, Savinase®, Purafect® OxP and / or Durazym®
  • amylases such as Termamyl®, Amylase-LT®, Max
  • the optionally used enzymes can, as for example in the international patent applications WO 92/11347 or WO 94/23005
  • Carriers can be adsorbed and / or embedded in coating substances to protect them against premature Protect inactivation. They are in the cleaning agents according to the invention preferably in amounts up to 2% by weight, in particular from 0.1% by weight to 1.5% by weight. contain, particularly preferably enzymes stabilized against oxidative degradation, such as from international patent applications WO 94/02597, WO 94/02618, WO 94/18314, WO 94/23053 or WO 95/07350, known, are used become.
  • the cleaning agents foam too much during use, they can still preferably up to 6% by weight, in particular about 0.5% by weight to 4% by weight of one foam-suppressing compound, preferably from the group of silicone oils, mixtures made of silicone oil and hydrophobicized silica, paraffins, paraffin-alcohol combinations, hydrophobicized silica, the bis fatty acid amides, and others other known commercially available defoamers can be added.
  • one foam-suppressing compound preferably from the group of silicone oils, mixtures made of silicone oil and hydrophobicized silica, paraffins, paraffin-alcohol combinations, hydrophobicized silica, the bis fatty acid amides, and others other known commercially available defoamers can be added.
  • foam-suppressing compound preferably from the group of silicone oils, mixtures made of silicone oil and hydrophobicized silica, paraffins, paraffin-alcohol combinations, hydrophobicized silica, the bis fatty acid amides, and
  • the agents according to the invention cannot system and result from a self-determined pH value environmentally compatible acids, especially citric acid, acetic acid, tartaric acid, malic acid, Lactic acid, glycolic acid, succinic acid, glutaric acid and / or adipic acid, however also mineral acids, especially sulfuric acid or alkali hydrogen sulfates, or bases, in particular ammonium or alkali metal hydroxides.
  • environmentally compatible acids especially citric acid, acetic acid, tartaric acid, malic acid, Lactic acid, glycolic acid, succinic acid, glutaric acid and / or adipic acid
  • mineral acids especially sulfuric acid or alkali hydrogen sulfates, or bases, in particular ammonium or alkali metal hydroxides.
  • pH regulators are preferably not more than 10% by weight, in particular, in the agents according to the invention from 0.5% by weight to 6% by weight.
  • disintegration aids so-called tablet disintegrants
  • disintegration accelerators are understood as auxiliary substances which are necessary for the rapid disintegration of Tablets in water or gastric juice and ensure the release of the pharmaceuticals in an absorbable form.
  • the premixes to be compressed into tablets contain 0.5 to 10% by weight, preferably 1 to 5% by weight and in particular 2 to 4% by weight, of a disintegration aid, in each case based on the premix.
  • Disintegrants based on cellulose are used as preferred disintegrants in the context of the present invention, so that preferred detergent tablets contain such a disintegrant based on cellulose in amounts of 0.5 to 10% by weight, preferably 1 to 5% by weight and in particular 2 to 4% by weight .-% contain.
  • Pure cellulose has the formal gross composition (C 6 H 10 O 5 ) n and, formally speaking, is a ⁇ -1,4-polyacetal of cellobiose, which in turn is made up of two molecules of glucose.
  • Suitable celluloses consist of approx. 500 to 5000 Glucose units and consequently have average molecular weights of 50,000 to 500,000.
  • Cellulose-based disintegrants which can be used in the context of the present invention are also cellulose derivatives which can be obtained from cellulose by polymer-analogous reactions. Such chemically modified celluloses include, for example, products from esterifications or etherifications in which hydroxy hydrogen atoms have been substituted. However, celluloses in which the hydroxyl groups have been replaced by functional groups which are not bound via an oxygen atom can also be used as cellulose derivatives.
  • the group of cellulose derivatives includes, for example, alkali celluloses, carboxymethyl cellulose (CMC), cellulose esters and ethers and aminocelluloses.
  • the cellulose derivatives mentioned are preferably not used alone as disintegrants, but are used in a mixture with cellulose.
  • the content of cellulose derivatives in these mixtures is preferably below 50% by weight, particularly preferably below 20% by weight, based on the cellulose-based disintegrant. Pure cellulose which is free of cellulose derivatives is particularly preferably used as the cellulose-based disintegrant.
  • Microcrystalline cellulose can be used as a further cellulose-based disintegrant or as a component of this component.
  • microcrystalline cellulose is obtained by partial hydrolysis of celluloses under conditions which only attack and completely dissolve the amorphous areas (approx. 30% of the total cellulose mass) of the celluloses, but leave the crystalline areas (approx. 70%) undamaged.
  • a subsequent disaggregation of the microfine celluloses produced by the hydrolysis provides the microcrystalline celluloses, which have primary particle sizes of approximately 5 ⁇ m and can be compacted, for example, into granules with an average particle size of 200 ⁇ m.
  • the agents according to the invention are preferably powdered, granular or tablet-shaped preparations in a known manner, for example by Mixing, granulating, roller compacting and / or by spray drying the thermally resilient components and admixing the more sensitive components, which include in particular enzymes, bleaching agents and the bleach activator, can be produced.
  • agents according to the invention in the form of non-dusting, storage-stable free-flowing powders and / or granules with high bulk densities in the range of 800 up to 1000 g / l can be achieved in that the Builder components with at least a portion of liquid mixture components mixed by increasing the bulk density of this premix and subsequently - if desired after intermediate drying - the other components of the agent, including the particulate made up bleaching catalyst according to formula I with which premix thus obtained combined.
  • agents according to the invention are in the form compressed body, in particular tablets, before, for the manufacture of which Premix containing all the ingredients suitable above for agents according to the invention can, pressed.
  • the premix can be obtained from the be composed of different substances. Independent of Composition of the premixes to be compressed can have physical parameters the premixes are chosen so that advantageous molded body properties result.
  • the particulate to be pressed has Premixed bulk weights above 600 g / l, preferably above 700 g / l and especially above 800 g / l.
  • the compressed particulate premix has a particle size distribution in which less than 10% by weight, preferably less than 7.5% by weight, and in particular less than 5% by weight of the particles are larger than 1600 ⁇ m or smaller than 200 ⁇ m.
  • the particulate premix to be compressed has a particle size distribution in which more than 30% by weight, preferably more a particle size than 40% by weight and in particular more than 50% by weight of the particles show between 600 and 1000 ⁇ m.
  • the premix is made in a so-called The die is compacted between two punches to form a solid compact.
  • This process which is briefly referred to below as tableting, is divided into four Sections dosing, compression (elastic deformation), plastic deformation and Ejection.
  • the premix is first introduced into the die, the filling quantity and so that the weight and shape of the resulting molded body by the position of the lower stamp and the shape of the press tool can be determined.
  • the constant one Dosage even at high molding throughputs is preferably over a volumetric dosage of the premix reached.
  • the upper plunger touches the premix when tabletting and descends further of the lower stamp. With this compression, the particles of the premix pressed closer together, with the void volume within the filling between the stamps decreases continuously. From a certain position of the upper stamp (and thus from a certain pressure on the premix) the plastic begins Deformation in which the particles flow together and it to form the Shaped body comes.
  • premixed particles are crushed and it comes at even higher pressures to sinter the premix.
  • phase of elastic deformation is shortened more and more, so that the resulting shaped bodies can have more or less large cavities.
  • the finished molded body is made using the lower stamp pressed out of the die and by subsequent transport devices carried away. At this point, only the weight of the molded body is final determined because the compacts due to physical processes (stretching, crystallographic effects, cooling etc.) can still change their shape and size.
  • Tableting takes place in commercially available tablet presses, which are basically single or Double stamps can be equipped. In the latter case, not only the Upper stamp used to build up pressure, the lower stamp also moves during of the pressing process towards the upper punch, while the upper punch presses down.
  • Eccentric tablet presses are preferably used for small production quantities, where the stamp or stamps are attached to an eccentric disc, which in turn an axis with a certain rotational speed is mounted. The movement this ram is comparable to the way a conventional four-stroke engine works.
  • the pressing can be done with an upper and lower stamp, but it can also several stamps can be attached to an eccentric disc, the number of Die holes are expanded accordingly.
  • the throughputs of eccentric presses vary from a few hundred to a maximum of 3000 tablets per hour depending on the type.
  • rotary tablet presses are usually selected, on which a so-called matrix table a larger number of matrices circular is arranged.
  • the number of matrices varies between 6 and 55, depending on the model Larger matrices are also commercially available.
  • Every die is on the die table an upper and lower stamp assigned, again the pressure is active only by the upper or lower stamp, but can also be built up by both stamps.
  • the Matrix table and the stamp move around a common vertical Axis, the stamp with the help of rail-like cam tracks during circulation in the positions for filling, compression, plastic deformation and discharge to be brought.
  • Rotary tablet presses can also be equipped with single or multiple tools, so that, for example, an outer circle with 50 and an inner circle with 35 holes can be used for pressing at the same time.
  • the throughputs are more modern Rotary tablet presses are over a million tablets per hour.
  • Suitable tableting machines are available, for example, from the Apparatebau company Holzwarth GbR, Asperg, Wilhelm Fette GmbH, Schwarzenbek, Hofer GmbH, Weil, KILIAN, Cologne, KOMAGE, Kell am See, KORSCH Pressen GmbH, Berlin, Mapag Maschinenbau AG, Bern (CH) and Courtoy N.V., Halle (BE / LU).
  • Particularly suitable is for example the hydraulic double pressure press HPF 630 from LAEIS, D.
  • the moldings can be in a predetermined spatial shape and a predetermined size are manufactured. Practically all sensibly manageable come as a room shape Configurations into consideration, for example, the training as a board, the staff or Bar shape, cubes, cuboids and corresponding room elements with flat side surfaces as well as in particular cylindrical configurations with circular or oval Cross-section. This last embodiment covers the form of presentation from the tablet up to compact cylinder pieces with a ratio of height to diameter above 1.
  • the spatial shape of another embodiment of the shaped body is in its dimensions adapted the dosing chamber of commercial dishwashers, so that the Shaped bodies can be metered directly into the induction chamber without a metering aid where they are released from during the cleaning process. It goes without saying but also an easy use of the detergent tablets via dosing aids possible.
  • stands for diametral fracture stress (DFS) in Pa
  • P is the force in N which leads to the pressure exerted on the molded body, which is the Breakage of the molded body causes
  • D is the molded body diameter in meters
  • t is the height of the moldings.
  • a particulate premix is pressed into a shaped body. Rather, extend the process to the extent that one in a conventional manner produces multilayered molded articles by making two or more premixes prepares that are pressed together. This is the premix that is filled in first slightly pre-pressed to create a smooth and parallel to the bottom of the molding To get top, and after filling the second premix to the finished Molded body finally pressed. In the case of three-layer or multi-layer moldings, each is carried out Pre-mix addition another pre-compression before adding the last Premixed the molded body is finally pressed.
  • Agents for cleaning dishes according to the invention can be used both in household dishwashers as used in commercial dishwashers. The addition is done by hand or by means of suitable dosing devices.
  • the application concentrations in the cleaning liquor are usually about 1 to 8 g / l, preferably 2 to 5 g / l.
  • a machine wash program is generally followed by some on the Cleaning cycle following intermediate rinse cycles with clear water and one. Rinse aid supplemented with a common rinse aid and ended. After this Drying is completely clean and in when using agents according to the invention hygienically perfect dishes.
  • Two-phase tablets M1 were produced by pressing the ingredients listed in the table below Composition of the 2-phase tablet (% by weight, based on the entire tablet) first phase second phase sodium tripolyphosphate 30 25 Na perborate monohydrate 10 - MMA Granulatat 3 - Polycarboxylate (Sokalan® CP5) 1 - nonionic surfactant 2 - sodium 15 - Sheet-silicate (SKS-6) 6 - Complexing agent (Turpinal® 2NZ) Protease Granules (Blap 200) - 2 Amylase granules (Duramyl® 60 T) - 2 dye - 0.9 Perfume - 0.1
  • tablets of the same composition were otherwise produced, which instead of the MMA granules were a mixture of 2% by weight of TAED ( V1 ) or 2% by weight of N-methylmorpholinium acetonitrile methosulfate ( V2 ) or 2% by weight of N-methylmorpholinium acetonitrile -Hydrogen sulfate (V3) each containing 1 wt .-% silica.
  • Table 2 shows the cleaning grades for the freshly prepared agents (initial value) and agents stored for 2 weeks (room temperature or 30 ° C, 80% relative humidity). cleaning notes output value Storage at room temperature Storage at 30 ° C, 80% rel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)

Description

Die vorliegende Erfindung betrifft die Verwendung von in Teilchenform konfektionierten Acetonitril-Derivate als Aktivatoren für insbesondere anorganische Persauerstoffverbindungen zum Bleichen von Tee-Anschmutzungen an Geschirr sowie Reinigungsmittel für Geschirr, die derartige Aktivatoren enthalten.
Anorganische Persauerstoffverbindungen, insbesondere Wasserstoffperoxid und feste Persauerstoffverbindungen, die sich in Wasser unter Freisetzung von Wasserstoffperoxid lösen, wie Natriumperborat und Natriumcarbonat-Perhydrat, werden seit langem als Oxidationsmittel zu Desinfektions- und Bleichzwecken verwendet. Die Oxidationswirkung dieser Substanzen hängt in verdünnten Lösungen stark von der Temperatur ab; so erzielt man beispielsweise mit H2O2 oder Perborat in alkalischen Bleichflotten erst bei Temperaturen oberhalb von etwa 80 °C eine ausreichend schnelle Bleiche verschmutzter Textilien. Bei niedrigeren Temperaturen kann die Oxidationswirkung der anorganischen Persauerstoffverbindungen durch Zusatz sogenannter Bleichaktivatoren verbessert werden, für die zahlreiche Vorschläge, vor allem aus den Stoffklassen der N- oder O-Acylverbindungen, beispielsweise mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin, acylierte Glykolurile, insbesondere Tetraacetylglykoluril, N-acylierte Hydantoine, Hydrazide, Triazole, Hydrotriazine, Urazole, Diketopiperazine, Sulfurylamide und Cyanurate, außerdem Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, Carbonsäureester, insbesondere Natrium-nonanoyloxy-benzolsulfonat, Natrium-isononanoyloxybenzolsulfonat und acylierte Zuckerderivate, wie Pentaacetylglukose, in der Literatur bekannt geworden sind. Durch Zusatz dieser Substanzen kann die Bleichwirkung wäßriger Peroxidflotten so weit gesteigert werden, daß bereits bei Temperaturen um 60 °C im wesentlichen die gleichen Wirkungen wie mit der Peroxidflotte allein bei 95 °C eintreten.
Im Bemühen um energiesparende Wasch- und Bleichverfahren gewinnen in den letzten Jahren Anwendungstemperaturen deutlich unterhalb 60 °C, insbesondere unterhalb 45 °C bis herunter zur Kaltwassertemperatur an Bedeutung.
Bei diesen niedrigen Temperaturen läßt die Wirkung der bisher bekannten Aktivatorverbindungen in der Regel erkennbar nach. Es hat deshalb nicht an Bestrebungen gefehlt, für diesen Temperaturbereich wirksamere Aktivatoren zu entwickeln, ohne daß bis heute ein überzeugender Erfolg zu verzeichnen gewesen wäre.
Ein insbesondere bei Reinigungsmitteln für das maschinelle Geschirrspülen weiteres Problem ist die Notwendigkeit, in derartige Mittel Korrosionsinhibitoren für Tafelsilber einzuarbeiten, insbesondere wenn die Mittel die in neuerer Zeit üblichen Bleich- beziehungsweise Oxidationsmittel auf Sauerstoffbasis enthalten. Silber kann beim Reinigen mit schwefelhaltigen Substanzen, die im Spülwasser gelöst beziehungsweise dispergiert sind, reagieren, denn bei der Reinigung von Geschirr in Haushaltsgeschirrspülmaschinen werden Speisereste und damit unter anderem auch Senf, Erbsen, Ei und sonstige schwefelhaltige Verbindungen wie Mercaptoaminosäuren in die Spülflotte eingebracht. Auch die während des maschinellen Spülens viel höheren Temperaturen und die längeren Kontaktzeiten mit den schwefelhaltigen Speiseresten begünstigen im Vergleich zum manuellen Spülen das Anlaufen von Silber. Durch den intensiven Reinigungsprozeß in der Spülmaschine wird die Silberoberfläche außerdem vollständig entfettet und dadurch empfindlicher gegenüber chemischen Einflüssen.
Das Problem des Silberanlaufens wird insbesondere dann akut, wenn alternativ zu den schwefelhaltige Substanzen oxidativ "entschärfenden" Aktivchlorverbindungen Aktivsauerstoffverbindungen, wie beispielsweise Natriumperborat oder Natriumpercarbonat eingesetzt werden, welche zur Beseitigung, bleichbarer Anschmutzungen, wie beispielsweise Teeflecken/Teebeläge, Kaffeerückstände, Farbstoffe aus Gemüse, Lippenstiftreste und dergleichen dienen.
Derartige Aktivsauerstoff-Bleichmittel werden, in der Regel zusammen mit Bleichaktivatoren in maschinellen Spülmitteln eingesetzt. Diese Mittel bestehen im allgemeinen aus den folgenden Funktionsbausteinen: Builderkomponente (Komplexbildner/Dispergiermittel), Alkaliträger, Bleichsystem (Kombination aus Bleichmittel und Bleichaktivator), Enzym und Tensid. Unter den bei Einsatz derartig aufgebauter Mittel auftretenden Spülbedingungen bilden sich in Gegenwart von Silber in der Regel nicht nur sulfidische, sondern durch den oxidierenden Angriff der intermediär gebildeten Peroxide beziehungsweise des Aktivsauerstoffs auch oxidische Beläge auf den Silberoberflächen.
Aus der internationalen Patentanmeldung WO 98/23719 ist bekannt, däß Verbindungen der allgemeinen Formel I R1R2R3N+CH2CN X- in denen R1, R2 und R3 unabhängig voneinander eine Alkyl-, Alkenyl oder Arylgruppe mit 1 bis 18 C-Atomen ist, wobei die Gruppen R2 und R3 auch Teil eines das N-Atom und gegebenenfalls weitere Heteroratome einschließenden Heterocyclusses sein können, und X ein ladungsausgleichendes Anion ist, als Aktivatoren für insbesondere anorganische Persauerstoffverbindungen in wäßrigen Reinigungslösungen für Geschirr verwendet werden können. Dadurch erhält man eine Verbesserung der Oxidations- und Bleichwirkung insbesondere anorganischer Persauerstoffverbindungen bei niedrigen Temperaturen unterhalb von 80°C, insbesondere im Temperaturbereich vom ca. 15°C bis 55°C. Die Verbindungen gemäß allgemeiner Formel (I) sind insbesondere in Kombination mit weiteren Inhaltsstoffen von Wasch- und Reinigungsmitteln normalerweise wenig lagerstabil und insbesondere äußerst empfindlich gegenüber Feuchtigkeit. Einige der besonders gut bleichverstärkend wirksamen Vertreter der Verbindungen gemäß allgemeiner, Formel (I) sind bei Raumtemperatur flüssig; andere fallen im Rahmen ihrer Herstellung in flüssiger Form, zum Beispiel als wäßrige Lösung, an und lassen sich nur unter erheblichen Verlusten aus dieser in den reinen Feststoff überführen. In beiden Fällen bereitet ihr Einsatz in festen, beispielsweise teilchenförmigen Mitteln Schwierigkeiten.
Eine Unterklasse der teilchenförmigen Mittel sind Reinigungsmittel in Tablettenform. Tablettierte Reinigungsmittel haben gegenüber pulverförmigen oder flüssigen Produkten eine Reihe von Vorzügen: Sie sind einfacher zu dosieren und zu handhaben, und haben aufgrund ihrer kompakten Struktur Vorteile bei der Lagerung und beim Transport. Es existiert daher ein äußerst breiter Stand der Technik zu Wasch- und Reinigungsmittelformkörpern, der sich auch in einer umfangreichen Patentliteratur niederschlägt. Schon früh ist dabei den Entwicklern tablettenförmiger Produkte die Idee gekommen, über unterschiedlich zusammengesetzte Bereiche der Formkörper bestimmte Inhaltsstoffe erst unter definierten Bedingungen im Wasch- oder Reinigungsgang freizusetzen, um so den Reinigungserfolg zu verbessern. Hierbei haben sich neben den aus der Pharmazie hinlänglich bekannten Kern/Mantel-Tabletten und Ring/Kern-Tabletten insbesondere mehrschichtige Formkörper durchgesetzt, die heute für viele Bereiche des Waschens und Reinigens oder der Hygiene angeboten werden.
Mehrphasige Reinigungstabletten für das WC werden beispielsweise in der europäischen Patentanmeldung EP 0 055 100 beschrieben. Diese Schrift offenbart Toilettenreinigungsmittelblöcke, die einen geformten Körper aus einer langsam löslichen Reinigungsmittel-Zusammensetzung umfassen, in den eine Bleichmitteltablette eingebettet ist. Diese Schrift offenbart gleichzeitig die unterschiedlichsten Ausgestaltungsformen mehrphasiger Formköiper. Die Herstellung der Formkörper erfolgt nach der Lehre dieser Schrift entweder durch Einsetzen einer verpreßten Bleichmitteltablette in eine Form und Umgießen dieser Tablette mit der Reinigungsmittelzusammensetzung, oder durch Eingießen eines Teils der Reinigungsmittelzummensetzung in die Form, gefolgt vom Einsetzen der verpreßten Bleichmitteltablette und eventuell nachfolgendes Übergießen mit weiterer Reinigungsmittelzusammensetzung.
Auch die europäische Patentanmeldung EP 0 481 547 beschreibt mehrphasige Reinigungsmittelformkörper, die gemäß dieser Schrift für das maschinelle Geschirrspülen eingesetzt werden sollen. Diese Formkörper haben die Form von Kern/Mantel-Tabletten und Werden durch stufenweises Verpressen der Bestandteile hergestellt: Zuerst erfolgt die Verpressung einer Bleichmittelzusammensetzung zu einem Formkörper, der in eine mit einer Polymerzusammensetzung halbgefüllte Matrize eingelegt wird, die dann mit weiterer Polymerzusammensetzung aufgefüllt und zu einem mit einem Polymermantel versehen Bleichmittelformkörper verpreßt wird. Das Verfahren wird anschließend mit einer alkalischen Reinigungsmittelzusammensetzung wiederholt, so daß sich ein dreiphasiger Formkörper ergibt.
Aus der internationalen Patentanmeldung WO 98/23531 sind N-Alkyl-Ammoniumnitrile der oben durch Formel (I) umschriebenen Art bekannt, die in granularer Form konfektioniert worden sind, wobei als Trägermaterialien für die N-Alkyl-Ammoniumnitrile beispielsweise Kieselsäure, Silikate und Aluminiumoxid genannt werden.
Die amerikanische Patentanmeldung US 5 814 242 beschreibt Bleichzusammensetzungen enthaltend N-Alkyl-Ammoniumnitrile.
Auch die internationalen Patentanmeldung WO 98/231002 offenbart N-Alkyl-Ammoniumnitrile, die in granularer Form Konfektioniert worden sind, wobei als Trägermaterialien für die N-Alkyl-Ammoniumnitrile beispielsweise Kieselsäure, Silikate und Aluminiumoxid genannt werden.
Es wurde nun gefunden, daß derart teilchenförmig konfektionierte Acetonitril-Derivate unter Beseitigung der oben genannten Nachteile lagerstabil in feste, insbesondere tablettenförmige Reinigungsmittel eingearbeitet werden können, wobei als weiterer Vorteil eine erhöhte Bleichleistung im Vergleich zu Mitteln auftritt, welche das Acetonitril-Derivat als einfache Zumisch- beziehungsweise Einzelkomponente enthalten.
Gegenstand der Erfindung ist die Verwendung von mit Hilfe anorganischer Trägermaterialien, welche Silizium enthalten, teilchenfönnig konfektionierter Verbindungen der allgemeinen Formel I R1R2R3N+CH2CN X- in denen R1, R2 und R3 unabhängig voneinander eine Alkyl-, Alkenyl oder Arylgruppe mit 1 bis 18 C-Atomen ist, wobei die Gruppen R2 und R3 auch Teil eines das N-Atom und gegebenenfalls weitere Heteroratome einschließenden Heterocyclusses sein können, und X ein ladungsausgleicherides Anion ist, als Aktivatoren für insbesondere anorganische Persauerstoffverbindungen in festen Reinigungsmitteln insbesondere für Geschirr, die in im wesentlichen wäßrigen Reinigungslösungen zum Einsatz kommen.
Die Herstellung von Verbindungen gemäß Formel I kann nach bekannten Verfahren oder in Anlehnung an diese erfolgen, wie sie zum Beispiel von Abraham in Progr. Phys. Org. Chem. 11 (1974), S. 1ff, oder von Arnett in J. Am. Chem. Soc. 102 (1980), S. 5892ff veröffentlicht worden sind. Einige Verbindungen gemäß allgemeiner Formel I und ihre Herstellung sind in der internationalen Patentanmeldung WO 96/40661 beschrieben.
Besonders bevorzugt ist die Verwendung von Verbindungen gemäß Formel I, in denen R2 und R3 unter Einbeziehung des quaternären N-Atoms einen Morpholinium-Ring bilden. In diesen ist R1 vorzugsweise eine Alkylgruppe mit 1 bis 3 C-Atomen, insbesondere eine Methylgruppe.
Zu den Anionen X- gehören insbesondere die Halogenide wie Chlorid, Fluorid, Iodid und Bromid, Nitrat, Hydroxid, Hexafluorophosphat, Sulfat, Hydrogensulfat, Metho- und Ethosulfat, Chlorat, Perchlorat, und die Anionen von Carbonsäuren wie Formiat, Acetat, Benzoat oder Citrat. Bevorzugt ist der Einsatz von Verbindungen gemäß Formel I, in denen X- Sulfat, Hydrogensulfat oder Methosulfat ist.
Die Verbindung gemäß allgemeiner Formel I wird in den Reinigungsmitteln in teilchenförmig konfektionierter Form, das heißt aufgebracht auf ein anorganisches Trägermaterial, eingesetzt. Dabei kann das Aufbringen auf das Trägermaterial derart geschehen, daß man in eine wäßrige Lösung, der Verbindung gemäß Förmel I, wie sie im Rahmen deren Herstellung anfällt, das Trägermaterial einrührt und das wäßrige Lösungsmittel im Vakuum, gegebenenfalls bei erhöhter Temperatur, abzieht. Man kann die Lösung der Verbindung gemäß Formel I aber auch auf das Trägermaterial aufsprühen und dabei oder gegebenenfalls anschließend einem Trocknungsprozeß unterwerfen. Dabei ist es bevorzugt, wenn die durch den Konfektionierungsprozeß entstehenden Teilchen einen Durchmesser im Bereich von 0,4 mm bis 1,2 mm aufweisen.
Als Silizium enthaltende anorganische Trägermaterialien werden vorzugsweise solche verwendet, deren innere Oberfläche im Bereich von 10 m2/g bis 500 m2/g, insbesondere 100m2/g bis 450 m2/g liegt. Geeignet sind beispielsweise Silikate, Kieselsäuren, Kieselgele und Tone sowie deren Gemische. Das Trägermaterial ist jedoch vorzugsweise frei von Zeolithen.
Kieselsäuren, die nach einem Thermalprozeß (Flammenhydrolyse von SiCl4 hergestellt worden sind (sogenannte pyrogene Kieselsäuren), sind ebenso brauchbar wie durch Naßverfahren hergestellte Kieselsäuren. Kieselgele sind colloidale Kieselsäuren mit elastischer bis fester Konsistenz und einer weitgehend losen Porenstruktur, wodurch sich ein hohes Flüssigkeitsaufnahmevermögen ergibt. Sie können durch Einwirken von Mineralsäuren auf Wasserglas hergestellt werden. Tone sind natürlich vorkommende kristalline oder amorphe Silikate des Aluminiums, Eisens, Magnesiums, Calciums, Kaliums und Natriums, zum Beispiel Kaolin, Talkum, Pyrophyllit, Attapulgit, Sepiolit, Montmorillionit und Bauxit. Auch der Einsatz von Aluminiumsilikat als Trägermaterial oder als Komponente einer Trägermaterialmischung ist möglich. Vorzugsweise weist das Trägermaterial Teilchengrößen im Bereich von 100 µm bis 1,5 mm auf.
In den teilchenförmig konfektionierten Verbindungen der Formel I liegen vorzugsweise 10 bis 50 Gew.-Teile des Silizium enthaltenden Trägermaterials und 50 bis 90 Gew.-Teile der Verbindung gemäß Formel I vor.
Das mit Hilfe des Silizium enthaltenden Trägermaterials teilchenförmig konfektionierte Acetonitril-Derivat kann zusätzlich ein organisches Material mit einem Schmelzpunkt über 40 °C, insbesondere nichtionisches Tensid enthalten und/oder mit einem solchen umhüllt sein. Dies kann die Zerfallseigenschaften des entsprechenden Teilchens in wäßrigen Systmen und/oder seine Lagerstabilität positiv beeinflussen.
Ein derart teilchenförmig konfektioniertes Acetonitril-Derivat gemäß Formel I wird vorzugsweise in Reinigungsmittel eingearbeitet, die für den Einsatz in Reinigungslösungen für Geschirr zum Bleichen von' gefärbten Anschmutzungen vorgesehen sind. Dabei wird unter dem Begriff der Bleiche sowohl das Bleichen von sich auf der Geschirroberfläche befindendem Schmutz, insbesondere Tee, als auch das Bleichen von in der Geschirrspülflotte befindlichem, von der Oberfläche abgelöstem Schmutz verstanden.
Weiterhin betrifft die Erfindung feste Reinigungsmittel für Geschirr und unter diesen vorzugsweise solche für den Einsatz in maschinellen Reinigungsverfahren, die eine oben beschriebene Verbindung gemäß Formel I in entsprechender teilcheförmiger Knfektionierung enthalten, und ein Verfahren zur Reinigung von Geschirr unter Einsatz einer derartig konfektionierten Verbindung.
Die erfindungsgemäße Verwendung als Bleichaktivator besteht im wesentlichen darin, in Gegenwart einer mit gefärbten Anschmutzungen verunreinigten Geschirroberfläche Bedingungen zu schaffen, unter denen ein peroxidisches Oxidationsmittel und das bleichaktivierende Acetonitril-Derivat miteinander reagieren können, mit dem Ziel, stärker oxidierend wirkende Folgeprodukte zu erhalten. Solche Bedingungen liegen insbesondere dann vor, wenn beide Reaktionspartner in wäßriger Lösung aüfeinander treffen. Dies kann durch separate Zugabe der Persauerstoffverbindung und des Acetonitril-Derivats zu einer gegebenenfalls reinigungsmittelhaltigen Lösung geschehen. Besonders vorteilhaft wird das erfindungsgemäße Verfahren jedoch unter Verwendung eines erfindungsgemäßen Reinigungsmittels für Geschirr, welches das bleichaktivierende Acetonitril-Derivat und gegebenenfalls ein persauerstoffhaltiges Oxidationsmittel, vorzugsweise ausgewählt aus der Gruppe umfassend organische Persäuren, Wasserstoffperoxid, Perborat und Percarbonat sowie deren Gemische, enthält, durchgeführf. Die Persauerstoffverbindung kann auch separat, in Substanz oder als vorzugsweise wäßrige Lösung oder Suspension, zur Lösung zugegeben werden, wenn ein peroxidfreies Reinigungsmittel verwendet wird.
Je nach Verwendungszweck können die Bedingungen weit variiert werden. So kommen neben rein wäßrigen Lösungen auch Mischuhgen aus Wasser und geeigneten organischen Lösungsmitteln als Reaktionsmedium in Frage. Die Einatzmengen an Persauerstoffverbindungen werden im allgemeinen so gewählt, daß in den Lösungen zwischen 10 ppm und 10 % Aktivsauerstoff, vorzugsweise zwischen 50 ppm und 5 000 ppm Aktivsauerstoff vorhanden sind. Auch die verwendete Menge an bleichaktivierendem Acetonitril-Derivat hängt vom Anwendungszweck ab. Je nache gewünschtem Aktivierungsgrad werden 0,00001 Mol bis 0,25 Mol, vorzugsweise 0,001 Mol bis 0,02 Mol-Aktivator pro Mol Persauerstoffverbindung verwendet, doch können in besonderen Fällen diese Grenzen auch über- oder unterschritten werden.
Ein weiterer Gegenstand der Erfindung ist ein festes Reinigungsmittel für Geschirr, welches 1 Gew.-% bis 10 Gew.-%, insbesondere 2 Gew.-% bis 6 Gew.-% eines Acetonitril-Derivats gemäß Formel I in wie oben beschrieben teilchenförmig konfektionierter Form neben üblichen, mit der Verbindung verträglichen Inhaltsstoffen enthält.
Die erfindungsgemäßen festen Reinigungsmittel, die als pulver- oder tablettenförmige Feststoffe, homogene Lösungen oder Suspensionen vorliegen können, können außer dem erfindungsgemäß verwendeten Bleichaktivator im Prinzip alle bekannten und in derartigen Mitteln üblichen Inhaltsstoffe enthalten. Die erfindungsgemäßen Mittel können insbesondere Buildersubstanzen, oberflächenaktive Tenside, Persauerstoffverbindungen, wassermischbare organische Lösungsmittel, Enzyme, Sequestrierungsmittel, Elektrolyte, pH-Regulatoren und weitere Hilfsstoffe, wie Silberkorrosionsinhibitoren, Schaumregulatoren, zusätzliche bleichverstärkende Wirkstoffe sowie Farb- und Duftstoffe enthalten.
Ein erfindungsgemäßes Reinigungsmittel kann darüber hinaus abrasiv wirkende Bestandteile, insbesondere aus der Gruppe umfassend Quarzmehle, Holzmehle, Kunststoffmehle, Kreiden und Mikroglaskugeln sowie deren Gemische, enthalten. Abrasivstoffe sind in den erfindungsgemäßen Reinigungsmitteln vorzugsweise nicht über 20 Gew.-%, insbesondere von 5 Gew.-% bis 15 Gew.-%, enthalten.
Ein weiterer Erfindungsgegenstand ist ein Mittel zum maschinellen Reinigen von Geschirr, enthaltend 15 Gew.-% bis 70 Gew.-%, insbesondere 20 Gew.-% bis 60 Gew.-% wasserlösliche Builderkomponente, 5 Gew.-% bis 25 Gew.-%, insbesondere 8 Gew.-% bis 17 Gew.-% Bleichmittel auf Sauerstoffbasis, jeweils bezogen auf das gesamte Mittel, welches ein bleichaktivierendes Acetonitril-Derivat gemäß Formel I, insbesondere in Mengen von 2 Gew.-% bis 6 Gew.-%, in wie oben beschrieben teilchenförmig konfektionierter Form enthält. Ein derartiges Mittel ist in einer bevorzugten Ausführungsform niederalkalisch, das heißt seine 1-gewichtsprozentige Lösung weist einen pH-Wert von 8 bis 11,5, insbesondere von 9 bis 11 auf.
Als wasserlösliche Builderkomponenten insbesondere in derartigen niederalkalischen Reinigungsmitteln kommen prinzipiell alle in Mitteln für die maschinelle Reinigung von Geschirr üblicherweise eingesetzten Builder in Frage, zum Beispiel Alkaliphosphate, die in Form ihrer alkalischen neutralen oder sauren Natrium- oder Kaliumsalze vorliegen können. Beispiele hierfür sind Trinatriumphosphat, Tetranatriumdiphosphat, Dinatriumdihydrogeridiphosphat, Pentanatriumtriphosphat, sogenanntes Natriumhexametaphosphat, oligomeres Trinatriumphosphat mit Oligomerisierungsgraden von 5 bis 1000, insbesondere 5 bis 50, sowie Gemische aus Natrium- und Kaliumsalzen. Ihre Mengen können im Bereich von bis zu etwa 55 Gew.-%, bezogen auf das gesamte Mittel liegen. Weitere mögliche wasserlösliche Builderkomponenten sind zum Beispiel organische Polymere nativen oder synthetischen Ursprungs, vor allem Polycarboxylate, die insbesondere in Hartwasserregionen als Co-Builder wirken. In Betracht kommen beispielsweise Polyacrylsäuren und Copolymere aus Maleinsäureanhydrid und Acrylsäure sowie die Natriumsalze dieser Polymersäuren. Handelsübliche Produkte sind zum Beispiel Sökalan® CP 5, CP 10 und PA 30 der Firma BASF. Zu den als Co-Builder brauchbaren Polymeren nativen Ursprungs gehören beispielsweise oxidierte Stärken, wie zum Beispiel aus der internationalen Patentanmeldung WO 94/05762 bekannt, und Polyaminosäuren wie Polyglutaminsäure oder Pölyasparaginsäure. Weitere mögliche Builderkomponenten sind natürlich vorkommende Hydroxycarbonsäuren wie zum Beispiel Mono-, Dihydroxybernsteinsäure, α-Hydroxypropionsäure und Gluconsäure. Zu den bevorzügten Builderkomponenten gehören die Salze der Citronensäure, insbesondere Natriumcitrat. Als Natriumcitrat kommen wasserfreies Trinatriumcitrat und vorzugsweise Trinatriumcitratdihydrat in Betracht. Trinatriumcitratdihydrat kann als fein- oder grobkriställines Pulver eingesetzt werden. In Abhängigkeit vom letztlich in den erfindungsgemäßen Mitteln eingestellten pH-Wert können zumindest anteilig auch die zu den genannten Co-Builder-Salzen korrespondierenden Säuren vorliegen.
Als Bleichmittel auf Säuerstoffbasis kommen in erster Linie Alkaliperboratmono- beziehungsweise -tetrahydrat und/oder Alkalipercarbonat sowie Alkalipersulfate, -persilikate und -percitrate in Betracht, wobei Natrium das bevorzugte Alkalimetall ist. Der Einsatz von Natriumpercarbonat hat insbesondere in Reinigungsmitteln für Geschirr Vorteile, da es sich besonders günstig auf das Korrosionsverhalten an Gläsern auswirkt. Das Bleichmittel auf Sauerstoffbasis ist deshalb vorzugsweise ein Alkalipercarbonat, insbesondere Natriumpercarbonat. Zusätzlich oder insbesondere alternativ können auch bekannte Peroxycarbonsäuren, zum Beispiel Dodecandipersäure oder Phthalimidopercarbonsäuren, die gegebenenfalls am Aromaten substituiert sein können, enthalten sein. Überdies kann auch der Zusatz geringer Mengen bekannter Bleichmittelstabilisatoren wie beispielsweise von Phosphonaten, Boraten beziehungsweise Metaboraten und Metasilikaten sowie Magnesiumsalzen wie Magnesiumsulfat zweckdienlich sein.
Zusätzlich zu den erfindungswesentlichen bleichaktivierenden Acetonitril-Derivaten gemäß Formel I können bekannte konventionelle Bleichaktivatoren, das heißt Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin (DADHT), acylierte Glykölurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat, 2,5-Diacetoxy-2,5-dihydrofuran und die aus den deutschen Patentanmeldungen DE 196 16 693 und DE 196 16 767 bekannten Enolester sowie acetyliertes Sorbitol und Mannitol beziehungsweise deren in der europäischen Patentanmeldung EP 0 525 239 beschriebene Mischungen (SORMAN), acylierte Zuckerderivate, insbesondere Pentaacetylglukose (PAG), Pentaacetylfruktose, Tetraacetylxylose und Octaacetyllactose sowie acetyliertes, gegebenenfalls N-alkyliertes Glucamin und Gluconolacton, und/oder N-acylierte Lactame, beispielsweise N-Benzoylcaprolactam, die aus den internationalen Patentanmeldungen WO 94/27970, WO 94/28102, WO 94/28103, WO 95/00626, WO 95/14759 und WO 95/17498 bekannt sind. Die aus der deutschen Patentanmeldung DE 196 16 769 bekannten hydrophil substituierten Acylacetale und die in der deutschen Patentanmeldung DE 196 16 770 sowie der internationalen Patentanmeldung WO 95/14075 beschriebenen Acyllactame werden ebenfalls bevorzugt eingesetzt. Auch die aus der deutschen Patentanmeldung DE 44 43 177 bekannten Kombinationen konventioneller Bleichaktivatoren können eingesetzt werden. Derartige konventionelle Bleichaktivatoren sind im üblichen Mengenbereich, vorzugsweise in Mengen von 0,1 Gew.-% bis 10 Gew.-%, insbesondere 0,5 Gew.-% bis 7 Gew.-%, bezogen auf gesamtes Mittel, enthalten.
Zusätzlich zu den oben aufgeführten konventionellen Bleichaktivatoren oder an deren Stelle können auch die aus den europäischen Patentschriften EP 0 446 982 und EP 0 453 003 bekannten Sulfonimine und/oder bleichverstärkende Übergangsmetallsalze beziehungsweise Übergangsmetallkomplexe als sogenannte Bleichkätalysatoren enthalten sein. Zu den in Frage kommenden Übergangsmetallverbindungen gehören insbesondere die aus der deutschen Patentanmeldung DE 195 29 905 bekannten Mangan-, Eisen-, Cobalt-, Ruthenium- oder Molybdän-Salenkomplexe und deren aus der deutschen Patentanmeldung DE 196 20 267 bekannte N-Analogverbindungen, die aus der deutschen Patentanmeldung DE 195 36 082 bekannten Mangan-, Eisen-, Cobalt-, Ruthenium- oder Molybdän-Carbonylkomplexe, die in der deutschen Patentanmeldung DE 19605688 beschriebenen Mangan-, Eisen-, Cobalt-, Ruthenium-, Molybdän-, Titan-, Vanadium- und Kupfer-Komplexe mit stickstoffhaltigen Tripod-Liganden, die aus der deutschen Patentanmeldung DE 196 20 411 bekannten Cobalt-, Eisen-, Kupfer- und Ruthenium-Amminkomplexe, die in der deutschen Patentanmeldung DE 44 16 438 beschriebenen Mangan-, Kupfer- und Cobalt-Komplexe, die in der europäischen Patentanmeldung EP 0 272 030 beschriebenen Cobalt-Komplexe, die aus der europäischen Patentanmeldung EP 0 693 550 bekannten Mangan-Komplexe, die aus der europäischen Patentschrift EP 0 392 592 bekannten Mangan-, Eisen-, Cobalt- und Kupfer-Komplexe und/oder die in der europäischen Patentschrift EP 0 443 651 oder den europäischen Patentanmeldungen EP 0 458 397, EP 0 458 398, EP 0 549 271, EP 0 549 272, EP 0 544 490 und EP 0 544 519 beschriebenen Mangan-Komplexe. Kombinationen aus Bleichaktivatoren und Übergangsmetall-Bleichkatalysatoren sind beispielsweise aus der deutschen Patentanmeldung DE-196 13 103 und der internationalen Patentanmeldung WO 95/27775 bekannt. Bleichverstärkende Übergangsmetallsalze und/oder -komplexe, insbesondere mit den Zentralatomen Mn, Fe, Co, Cu, Mo, V, Ti und/oder Rü, werden in üblichen Mengen, vorzugsweise bis zu 1 Gew.%, insbesondere von 0,0025 Gew.-% bis 0,5 Gew.-% und besonders bevorzugt von 0,01 Gew.-% bis 0,1 Gew.-%, jeweils bezogen auf gesamtes Mittel, eingesetzt. Zu den besonders bevorzugten Bleichkatalysatorkomplexen gehören Cobalt-, Eisen-, Kupfer- und Ruthenium-Amminkomplexe, beispielsweise [Co(NH3)5Cl]Cl2 und/oder [Co(NH3)5NO2]Cl2. In einer weiteren bevorzugten Ausgestaltung enthalten die Mittel zusätzlich zu dem teilchenförmig konfektionierten Bleichaktivator gemäß Formel I eine bleichverstärkende Wirkstoffkombination, die gemäß der europäischen Patentanmeldung EP 0 832 969 durch inniges Vermischen eines wasserlöslichen Salzes eines zweiwertigen Übergangsmetalles, ausgewählt aus Cobalt, Eisen, Kupfer und Ruthenium sowie deren Mischungen, eines wasserlöslichen Ammoniumsalzes und gegebenenfalls eines Oxidationsmittels auf Persauerstoffbasis sowie inerten Trägermaterials erhältlich ist, in Mengen von vorzugsweise 0,25 Gew.-% bis 25 Gew.-%, insbesondere 1 Gew.-% bis 10 Gew.-%; eine bevorzugte Verwendung des teilchenförmig konfektionierten Bleichaktivators gemäß Formel I findet in Gegenwart einer derartigen Wirkstoffkombination statt.
Vorzugsweise enthalten die erfindungsgemäßen maschinellen Geschirreinigungsmittel die üblichen Alkaliträger wie zum Beispiel Alkalisilikate, Alkalicarbonate und/oder Alkalihydrogencarbonate. Zu den üblicherweise eingesetzten Alkaliträgern zählen Carbonate, Hydrogencarbonate und Alkalisilikate mit einem Molverhältnis SiO2/M2O (M = Alkaliatom) von 1 : 1 bis 2,5 : 1. Alkalisilikate können dabei in Mengen von bis zu 40 Gew.-%, bezogen auf das gesamte Mittel, enthalten sein. Auf den Einsatz der hoch alkalischen Metasilikate als Alkaliträger wird jedoch vorzugsweise ganz verzichtet. Das in den erfindungsgemäßen Mitteln bevorzugt eingesetzte Alkaliträgersystem ist ein Gemisch aus Carbonat und Hydrogencarbonat, vorzugsweise Natriumcarbonat und -hydrogencarbonat, das in einer Menge von bis zu 50 Gew.-%, vorzugsweise 5 Gew.-% bis 40 Gew.-%, enthalten ist. Je nachdem, welcher pH-Wert letztendlich gewünscht wird, kann man das Verhältnis von eingesetztem Carbonat und eingesetztem Hydrogencarbonat variieren.
In einer weiteren Ausführungsform erfindungsgemäßer Mittel sind 20 Gew.-% bis 60 Gew.-% wasserlöslicher organischer Builder, insbesondere Alkalicitrat, 3 Gew.-% bis 20 Gew.-% Alkalicarbonat und 5 Gew.-% bis 40 Gew.-% Alkalidisilikat enthalten.
Den erfindungsgemäßen Mitteln können gegebenenfalls auch anionische, nichtionische und/oder amphotere Tenside, insbesondere schwach schäumende nichtionische Tenside zugesetzt werden, die der besseren Ablösung fetthaltiger Anschmutzungen, als Netzmittel und gegebenenfalls im Rahmen der Herstellung der Reinigungsmittel als Granulierhilfsmittel dienen. Ihre Menge kann bis zu 20 Gew.-%, insbesondere bis zu 10 Gew.% betragen und liegt vorzugsweise im Bereich von 0,5 Gew.-% bis 5 Gew.-%. Üblicherweise werden insbesondere in Reinigungsmitteln für den Einsatz in maschinellen Geschirrspülverfahren extrem schaumarme Verbindungen eingesetzt. Hierzu zählen vorzugsweise C12-C18-Alkylpolyethylenglykol-polypropylenglykolether mit jeweils bei zu 8 Mol Ethylenoxid- und Propylenoxideinheiten im Molekül. Man kann aber auch andere bekannt schaumarme nichtionische Tenside verwenden, wie zum Beispiel C12-C18-Alkylpolyethylenglykol-polybutylenglykolether mit jeweils bis zu 8 Mol Ethylenoxid- und Butylenoxideinheiten im Molekül, endgruppenverschlossene Alkylpolyalkylenglykolmischether sowie die zwar schäumenden, aber ökologisch attraktiven C8-C14-Alkylpolyglucoside mit einem Polymerisierungsgrad von etwa 1 bis 4 (z. B. APG® 225 und APG® 600 der Firma Henkel) und/oder C12-C14-Alkylpolyethylenglykole mit 3 bis 8 Ethylenoxideinheiten im Molekül. Ebenfalls geeignet sind Tenside aus der Familie der Glucamide wie zum Beispiel Alkyl-N-Methyl-Glucamide, in denen der Alkylteil bevorzugt aus einem Fettalkohol mit der C-Kettenlänge C6-C14 stammt. Es ist teilweise vorteilhaft. wenn die beschriebenen Tenside als Gemische eingesetzt werden, zum Beispiel die Kombination Alkylpolyglykosid mit Fettalkoholethoxylaten oder Glucamid mit Alkylpolyglykosiden.
Gewünschtenfalls können in erfindungsgemäßen Reinigungsmitteln für die Reinigung von Geschirr Silberkorrosionsinhibitoren eingesetzt werden. Bevorzugte Silberkorrosionsschutzmittel sind organische Sulfide wie Cystin und Cystein, zwei- oder dreiwertige Phenole. gegebenenfalls alkyl-, aminoalkyl- oder arylsubstituierte Triazole wie Becizotriazol, Isocyanursäure, Mangan-, Cobalt-, Titan-, Zirkonium-, Hafnium-, Vanadium- oder Cersalze und/oder -komplexe, in denen die genannten Metalle je nach Metall in einer der Oxidationsstufen II, III, IV, V oder VI vorliegen. Der Gehalt an Silberkorrosionsinhibitoren in erfindungsgemäßen Mitteln liegt vorzugsweise im Bereich von 0,01 Gew.-% bis 1,5 Gew.-%, insbesondere von 0,1 Gew.-% bis 0,5 Gew.-%. So können die aus der internationalen Patentanmeldung WO 94/19445 bekannten Mangan(III)- oder Mangan(IV)-Komplexe, das in der internationalen Patentanmeldung WO 94/07981 als Silberschutzmittel offenbarte Cystein, das in der deutschen Patentanmeldung DE 195 18 693 als mit silberkorrosionsinhibierender Wirkung allein oder insbesondere in Kombination mit Isocyanursäure beschriebene Cystin, und/oder die in den deutschen Patentanmeldungen DE 43 25 922 beziehungsweise DE 43 15 397 beschriebenen Titan-, Zirkonium-, Hafnium-, Vanadium-, Cobalt- oder Cersalze und/oder -komplexe, in denen die Metalle in einer der Oxidationsstufen II, III, IV, V oder VI vorliegen, und dort genannte Mangan(II)salze oder -komplexe zur Verhinderung der Silberkorrosion in erfindungsgemäßen Mitteln eingesetzt werden.
Zusätzlich können die erfindungsgemäßen Mittel Enzyme wie Proteasen, Amylasen, Pullulanasen, Cutinasen und Lipasen enthalten, beispielsweise Proteasen wie BLAP®, Optimase®, Opticlean®, Maxacal®, Maxapem®, Esperase®, Savinase®, Purafect® OxP und/oder Durazym®, Amylasen wie Termamyl®, Amylase-LT®, Maxamyl®, Duramyl® und/oder Purafect® OxAm, Lipasen wie Lipolase®, Lipomax®, Lumafast® und/oder Lipozym®. Die gegebenenfalls verwendeten Enzyme können, wie zum Beispiel in den internationalen Patentanmeldungen WO 92/11347 oder WO 94/23005 beschrieben, an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Inaktivierung zu schützen. Sie sind in den erfindungsgemäßen Reinigungsmitteln vorzugsweise in Mengen bis zu 2 Gew.-%, insbesondere von 0,1 Gew.-% bis 1,5 Gew.-%. enthalten, wobei besonders bevorzugt gegen oxidativen Abbau stabilisierte Enzyme, wie zum Beispiel aus den internationalen Patentanmeldungen WO 94/02597, WO 94/02618, WO 94/18314, WO 94/23053 oder WO 95/07350, bekannt, eingesetzt werden.
Sofern die Reinigungsmittel bei der Anwendung zu stark schäumen, können ihnen noch vorzugsweise bis zu 6 Gew.-%, insbesondere etwa 0,5 Gew.-% bis 4 Gew.-% einer schaumdrückenden Verbindung, vorzugsweise aus der Gruppe der Silikonöle, Gemische aus Silikonöl und hydrophobierter Kieselsäure, Paraffine, Parafin-Alkohol-Kombinationen, hydrophobierter Kieselsäure, der Bisfettsäureamide, und sonstiger weiterer bekannter im Handel erhältliche Entschäumer zugesetzt werden. Weitere fakultative Inhaltsstoffe in den erfindungsgemäßen Mitteln sind zum Beispiel Parfümöle.
Zur Einstellung eines gewünschten, sich durch die Mischung der übrigen Komponenten nicht von selbst ergebenden pH-Werts können die erfindungsgemäßen Mittel system- und umweltverträgliche Säuren, insbesondere Citronensäure, Essigsäure, Weinsäure, Äpfelsäure, Milchsäure, Glykolsäure, Bernsteinsäure, Glutarsäure und/oder Adipinsäure, aber auch Mineralsäuren, insbesondere Schwefelsäure oder Alkalihydrogensulfate, oder Basen, insbesondere Ammonium- oder Alkalihydroxide, enthalten. Derartige pH-Regulatoren sind in den erfindungsgemäßen Mitteln vorzugsweise nicht über 10 Gew.-%, insbesondere von 0,5 Gew.-% bis 6 Gew.-%, enthalten.
Um den Zerfall erfindungsgemäßer Mittel, insbesondere wenn diese als hochverdichtete Formkörper vorliegen, zu erleichtern, ist es möglich, Desintegrationshilfsmittel, sogenannte Tablettensprengmittel, in diese einzuarbeiten, um die Zerfallszeiten zu verkürzen. Unter Tablettensprengmitteln beziehungsweise Zerfallsbeschleunigern werden gemäß Römpp (9. Auflage, Bd. 6, S. 4440) und Voigt "Lehrbuch der pharmazeutischen Technologie" (6. Auflage, 1987, S. 182-184) Hilfsstoffe verstanden, die für den raschen Zerfall von Tabletten in Wasser oder Magensaft und für die Freisetzung der Pharmaka in resorbierbarer Form sorgen. Diese Stoffe, die auch aufgrund ihrer Wirkung als "Spreng"mittel bezeichnet werden, vergrößern bei Wasserzutritt ihr Volumen, wobei einerseits das Eigenvolumen vergrößert (Quellung), andererseits auch über die Freisetzung von Gasen ein Druck erzeugt werden kann, der die Tablette in kleinere Partikel zerfallen läßt. Altbekannte Desintegrationshilfsmittel sind beispielsweise Carbonat/Citronensäure-Systeme, wobei auch andere organische Säuren eingesetzt werden können. Quellende Desintegrationshilfsmittel sind beispielsweise synthetische Polymere wie Polyvinylpyrrolidon (PVP) oder natürliche Polymere bzw. modifizierte Naturstoffe wie Cellulose und Stärke und ihre Derivate, Alginate oder Casein-Derivate. In bevorzugten Verfahrensvarianten enthalten die zu Tabletten zu verpressenden Vorgemische 0,5 bis 10 Gew.-%, vorzugsweise 1 bis 5 Gew.-% und insbesondere 2 bis 4 Gew.-% eines Desintegrationshilfsmittels, jeweils bezogen auf das Vorgemisch. Als bevorzugte Desintegrationsmittel werden im Rahmen der vorliegenden Erfindung Desintegrationsmittel auf Cellulosebasis eingesetzt, so daß bevorzugte Reinigungsmittelformkörper ein solches Desintegrationsmittel auf Cellulosebasis in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise 1 bis 5 Gew.-% und insbesondere 2 bis 4 Gew.-% enthalten. Reine Cellulose weist die formale Bruttozusammensetzung (C6H10O5)n auf und stellt formal betrachtet ein β-1,4-Polyacetal von Cellobiose dar, die ihrerseits aus zwei Molekülen Glucose aufgebaut ist Geeignete Cellulosen bestehen dabei aus ca. 500 bis 5000 Glucose-Einheiten und haben demzufolge durchschnittliche Molmassen von 50.000 bis 500.000. Als Desintegrationsmittel auf Cellulosebasis verwendbar sind im Rahmen der vorliegenden Erfindung auch Cellulose-Derivate, die durch polymeranaloge Reaktionen aus Cellulose erhältlich sind. Solche chemisch modifizierten Cellulosen umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy-Wasserstoffatome substituiert wurden. Aber auch Cellulosen, in denen die Hydroxy-Gruppen gegen funktionelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Cellulose-Derivate einsetzen. In die Gruppe der Cellulose-Derivate fallen beispielsweise Alkalicellulosen, Carboxymethylcellulose (CMC), Celluloseester und -ether sowie Aminocellulosen. Die genannten Cellulosederivate werden vorzugsweise nicht allein als Desintegrationsmittel eingesetzt, sondern in Abmischung mit Cellulose verwendet. Der Gehalt dieser Mischungen an Cellulosederivaten beträgt vorzugsweise unterhalb 50 Gew.%, besonders bevorzugt unterhalb 20 Gew.-%, bezogen auf das Desintegrationsmittel auf Cellulosebasis. Besonders bevorzugt wird als Desintegrationsmittel auf Cellulosebasis reine Cellulose eingesetzt, die frei von Cellulosederivaten ist. Als weiteres Desintegrationsmittel auf Cellulosebasis oder als Bestandteil dieser Komponente kann mikrokristalline Cellulose verwendet werden. Diese mikrokristalline Cellulose wird durch partielle Hydrolyse von Cellulosen unter solchen Bedingungen erhalten, die nur die amorphen Bereiche (ca. 30% der Gesamt-Cellulosemasse) der Cellulosen angreifen und vollständig auflösen, die kristallinen Bereiche (ca. 70%) aber unbeschadet lassen. Eine nachfolgende Desaggregation der durch die Hydrolyse entstehenden mikrofeinen Cellulosen liefert die mikrokristallinen Cellulosen, die Primärteilchengrößen von ca. 5 µm aufweisen und beispielsweise zu Granulaten mit einer mittleren Teilchengröße von 200 µm kompaktierbar sind.
Die erfindungsgemäßen Mittel liegen vorzugsweise als pulverförmige, granulare oder tablettenförmige Präparate vor, die in an sich bekannter Weise, beispielsweise durch Mischen, Granulieren, Walzenkompaktieren und/oder durch Sprühtrocknung der thermisch belastbaren Komponenten und Zumischen der empfindlicheren Komponenten, zu denen insbesondere Enzyme, Bleichmittel und der Bleichaktivator zu rechnen sind, hergestellt werden können.
Die Herstellung erfindungsgemäßer Mittel in Form, von nicht staubenden, lagerstabil rieselfähigen Pulvern und/oder Granulaten mit hohen Schüttdichten im Bereich von 800 bis 1000 g/l kann dadurch erfolgen, daß man in einer ersten Verfahrensteilstufe die Builder-Komponenten mit wenigstens einem Anteil flüssiger Mischungskomponenten unter Erhöhung der Schüttdichte dieses Vorgemisches vermischt und nachfolgend - gewünschtenfalls nach einer Zwischentrocknung - die weiteren Bestandteile des Mittels, darunter den teilchenförmig konfektionierten Bleichkatalysator gemäß Formel I, mit dem so gewonnenen Vorgemisch vereinigt.
In einer bevorzugten Ausgestaltung erfindungsgemäßer Mittel liegen diese in Form verpresster Körper, insbesondere Tabletten, vor, zu deren Herstellung man ein Vorgemisch, das alle oben für erfindungsgemäße Mittel geeignete Inhaltsstoffe enthalten kann, verpresst. Das Vorgemisch kann wie vorstehend beschrieben aus den unterschiedlichsten Substanzen zusammengesetzt sein. Unabhängig von der Zusammensetzung der zu verpressenden Vorgemische können physikalische Parameter der Vorgemische so gewählt werden, daß vorteilhafte Formkörpereigenschaften resultieren. So weisen in bevorzugten Varianten die zu verpressenden teilchenförmigen Vorgemische Schüttgewichte oberhalb von 600 g/l, vorzugsweise oberhalb vow 700 g/l und insbesondere oberhalb von 800 g/l auf.
Auch die Partikelgröße in den zu verpressenden Vorgemischen kann zur Erlangung vorteilhafter Formkörpereigenschaften eingestellt werden. In bevorzugten Verfahren weist das verpreßte teilchenförmige Vorgemisch eine Teilchengrößenverteilung auf, bei der weniger als 10 Gew.-%, vorzugsweise weniger als 7,5 Gew.-%, und insbesondere weniger als 5 Gew.-% der Teilchen größer als 1600 µm oder kleiner als 200 µm sind. Hierbei sind engere Teilchengrößenvertetlungen weiter bevorzugt. Besonders vorteilhafte Varianten sind dabei dadurch gekennzeichnet, daß das zu verpressende teilchenformige Vorgemisch eine Teilchengrößenverteilung aufweist, bei der mehr als 30 Gew.-%, vorzugsweise mehr als 40 Gew.-% und insbesondere mehr als 50 Gew.-% der Teilchen eine Teilcherigröße zwischen 600 und 1000 µm ausweisen.
Zur Herstellung tablettenförmiger Formkörper wird das Vorgemisch in einer sogenannten Matrize zwischen zwei Stempeln zu einem festen Komprimat verdichtet. Dieser Vorgang, der im folgenden kurz als Tablettierung bezeichnet wird, gliedert sich in die vier Abschnitte Dosierung, Verdichtung (elastische Verformung), plastische Verformung und Ausstoßen.
Zunächst wird das Vorgemisch in die Matrize eingebracht, wobei die Füllmenge und damit das Gewicht und die Form des entstehenden Formkörpers durch die Stellung des unteren Stempels und die Form des Preßwerkzeugs bestimmt werden. Die gleichbleibende Dosierung auch bei hohen Formkörperdurchsätzen wird vorzugsweise über eine volumetrische Dosierung des Vorgemischs erreicht. Im weiteren Verlauf der Tablettierung berührt der Oberstempel das Vorgemisch und senkt sich weiter in Richtung des Unterstempels ab. Bei dieser Verdichtung werden die Partikel des Vorgemisches näher aneinander gedrückt, wobei das Hohlraumvolumen innerhalb der Füllung zwischen den Stempeln kontinuierlich abnimmt. Ab einer bestimmten Position des Oberstempels (und damit ab einem bestimmten Druck auf das Vorgemisch) beginnt die plastische Verformung, bei der die Partikel zusammenfließen und es zur Ausbildung des Formkörpers kommt. Je nach den physikalischen Eigenschaften des Vorgemisches wird auch ein Teil der Vorgemischpartikel zerdrückt und es kommt bei noch höheren Drücken zu einer Sinterung des Vorgemischs. Bei steigender Preßgeschwindigkeit, also hohen Durchsatzmengen, wird die Phase der elastischen Verformung immer weiter verkürzt, so daß die entstehenden Formkörper mehr oder minder große Hohlräume aufweisen können.
Im letzten Schritt der Tablettierung wird der fertige Formkörper durch den Unterstempel aus der Matrize herausgedrückt und durch nachfolgende Transporteinrichtungen wegbefördert. Zu diesem Zeitpunkt ist lediglich das Gewicht des Formkörpers endgültig festgelegt, da die Preßlinge aufgrund physikalischer Prozesse (Rückdehnung, kristallographische Effekte, Abkühlung etc.) ihre Form und Größe noch ändern können.
Die Tablettierung erfolgt in handelsüblichen Tablettenpressen, die prinzipiell mit Einfachoder Zweifachstempeln ausgerüstet sein können. Im letzteren Fall wird nicht nur der Oberstempel zum Druckaufbau verwendet, auch der Unterstempel bewegt sich während des Preßvorgangs auf den Oberstempel zu, während der Oberstempel nach unten drückt. Für kleine Produktionsmengen werden vorzugsweise Exzentertablettenpressen verwendet, bei denen der oder die Stempel an einer Exzenterscheibe befestigt sind, die ihrerseits an einer Achse mit einer bestimmten Umlaufgeschwindigkeit montiert ist. Die Bewegung dieser Preßstempel ist mit der Arbeitsweise eines üblichen Viertaktmotors vergleichbar. Die Verpressung kann mit je einem Ober- und Unterstempel erfolgen, es können aber auch mehrere Stempel an einer Exzenterscheibe befestigt sein, wobei die Anzahl der Matrizenbohrungen entsprechend erweitert ist. Die Durchsätze von Exzenterpressen variieren je nach Typ von einigen hundert bis maximal 3000 Tabletten pro Stunde.
Für größere Durchsätze wählt man in der Regel Rundlauftablettenpressen, bei denen auf einem sogenannten Matrizentisch eine größere Anzahl von Matrizen kreisförmig angeordnet ist. Die Zahl der Matrizen variiert je nach Modell zwischen 6 und 55, wobei auch größere Matrizen im Handel erhältlich sind. Jeder Matrize auf dem Matrizentisch ist ein Ober- und Unterstempel zugeordnet, wobei wiederum der Preßdruck aktiv nur durch den Ober- bzw. Unterstempel, aber auch durch beide Stempel aufgebaut werden kann. Der Matrizentisch und die Stempel bewegen sich um eine gemeinsame senkrecht stehende Achse, wobei die Stempel mit Hilfe schienenartiger Kurvenbahnen während des Umlaufs in die Positionen für Befüllung, Verdichtung, plastische Verformung und Ausstoß gebracht werden. An den Stellen, an denen eine besonders gravierende Anhebung bzw. Absenkung der Stempel erforderlich ist (Befüllen, Verdichten, Ausstoßen), werden diese Kurvenbahnen durch zusätzliche Niederdruckstücke, Nierderzugschienen und Aushebebahnen unterstützt. Die Befüllung der Matrize erfolgt über eine starr angeordnete Zufuhreinrichtung, den sogenannten Füllschuh, der mit einem Vorratsbehälter für das Vorgemisch verbunden ist. Der Preßdruck auf das Vorgemisch ist über die Preßwege für Ober- und Unterstempel individuell einstellbar, wobei der Druckaufbau durch das Vorbeirollen der Stempelschaftköpfe an verstellbaren Druckrollen geschieht. Rundlaufpressen können zur Erhöhung des Durchsatzes auch mit zwei Füllschuhen versehen werden, wobei zur Herstellung einer Tablette nur noch ein Halbkreis durchlaufen werden muß. Zur Herstellung zwei- und mehrschichtiger Formkörper werden mehrere Füllschuhe hintereinander angeordnet, ohne daß die leicht angepreßte erste Schicht vor der weiteren Befüllung ausgestoßen wird. Durch geeignete Prozeßführung sind auf diese Weise auch Mantel- und Punkttabletten herstellbar, die einen zwiebelschalenartigen Aufbau haben, wobei im Falle der Punkttabletten die Oberseite des Kerns beziehungsweise der Kemschichten nicht überdeckt wird und somit sichtbar bleibt. Auch Rundlauftablettenpressen sind mit Einfach- oder Mehrfachwerkzeugen ausrüstbar, so daß beispielsweise ein äußerer Kreis mit 50 und ein innerer Kreis mit 35 Bohrungen gleichzeitig zum Verpressen benutzt werden. Die Durchsätze moderner Rundlauftablettenpressen betragen über eine Million Formkörper pro Stunde.
Geeignete Tablettiermaschinen sind beispielsweise erhältlich bei den Firmen Apparatebau Holzwarth GbR, Asperg, Wilhelm Fette GmbH, Schwarzenbek, Hofer GmbH, Weil, KILIAN, Köln, KOMAGE, Kell am See, KORSCH Pressen GmbH, Berlin, Mapag Maschinenbau AG, Bern (CH) sowie Courtoy N.V., Halle (BE/LU). Besonders geeignet ist beispielsweise die Hydraulische Doppeldruckpresse HPF 630 der Firma LAEIS, D.
Die Formkörper können dabei in vorbestimmter Raumform und vorbestimmter Größe gefertigt werden. Als Raumform kommen praktisch alle sinnvoll handhabbaren Ausgestaltungen in Betracht, beispielsweise also die Ausbildung als Tafel, die Stab- bzw. Barrenform, Würfel, Quader und entsprechende Raumelemente mit ebenen Seitenflächen sowie insbesondere zylinderförmige Ausgestaltungen mit kreisförmigem oder ovalem Querschnitt. Diese letzte Ausgestaltung erfaßt dabei die Darbietungsform von der Tablette bis zu kompakten Zylinderstücken mit einem Verhältnis von Höhe zu Durchmesser oberhalb 1.
Die Raumform einer anderen Ausführungsform der Formkörper ist in ihren Dimensionen der Dosierkammer handelsüblicher Geschirrspülmaschinen angepaßt, so daß die Formkörper ohne Dosierhilfe direkt in die Einspülkammer eindosiert werden können, von wo aus sie während des Reinigungsvorgangs freigesetzt werden. Selbstverständlich ist aber auch ein Einsatz der Reinigungsmittelformkörper über Dosierhilfen problemlos möglich.
Nach dem Verpressen weisen die Reinigungsmittelformkörper eine hohe Stabilität auf. Die Bruchfestigkeit zylinderförmiger Formkörper kann über die Meßgröße der diametralen Bruchbeanspruchung erfaßt werden. Diese ist bestimmbar nach σ = 2P πDt
Hierin steht σ für die diametrale Bruchbeanspruchung (diametral fracture stress, DFS) in Pa, P ist die Kraft in N, die zu dem auf den Formkörper ausgeübten Druck führt, der den Bruch des Formkörpers verursacht, D ist der Formkörperdurchmesser in Meter und t ist die Höhe der Formkörper.
Bei der Herstellung verpresster Formkörper ist man nicht darauf beschränkt, daß lediglich ein teilchenförmiges Vorgemisch zu einem Formkörper verpreßt wird. Vielmehr läßt sich das Verfahren auch dahingehend erweitern, daß man in an sich bekannter Weise mehrschichtige Formkörper herstellt, indem man zwei oder mehrere Vorgemische bereitet, die aufeinander verpreßt werden. Hierbei wird das zuerst eingefüllte Vorgemisch leicht vorverpreßt, um eine glatte und parallel zum Formkörperboden verlaufende Oberseite zu bekommen, und nach Einfüllen des zweiten Vorgemischs zum fertigen Formkörper endverpreßt. Bei drei- oder mehrschichtigen Formkörpern erfolgt nach jeder Vorgemisch-Zugabe eine weitere Vorverpressung, bevor nach Zugabe des letzten Vorgemischs der Formkörper endverpreßt wird.
Aufgrund des zunehmenden technischen Aufwands sind in der Praxis maximal zweischichtige Formkörper bevorzugt. Dabei können aus der Aufteilung bestimmter Inhaltsstoffe auf die einzelnen Schichten Vorteile erzielt werden. So ist es möglich, einen zweischichtigen Formkörper herzustellen, indem zwei unterschiedliche teilchenförmige Vorgemische aufeinander gepreßt werden, von denen eines ein oder mehrere Bleichmittel und das andere den teilchenförmig konfektionierten Bleichaktivator gemäß Formel I enthält, so daß das entstehende Mittel in einer Schicht das Bleichmittel in Form der insbesondere anorganischen Persauerstoffverbindung und in der zweiten Schicht den teilchenförmig konfektionierten Bleichaktivator gemäß Formel I aufweist. Durch den Einsatz des Bleichaktivators in erfindungsgemäß teilchenförmig konfektionierter Form ist jedoch auch problemlos möglich, das Bleichmittel und den Bleichaktivator in die gleiche Schicht einzuarbeiten und weitere empfindliche Bestandteile, insbesondere Enzyme, in eine separate zweite Schicht des Formkörpers einzuarbeiten.
Erfindungsgemäße Mittel zur Reinigung von Geschirr können sowohl in Haushaltsgeschirrspülmaschinen wie in gewerblichen Spülmaschinen eingesetzt werden. Die Zugabe erfolgt von Hand oder mittels geeigneter Dosiervorrichtungen. Die Anwendungskonzentrationen in der Reinigungsflotte betragen in der Regel etwa 1 bis 8 g/l, vorzugsweise 2 bis 5 g/l.
Ein maschinelles Spülprogramm wird im allgemeinen durch einige auf den Reinigungsgang folgende Zwischenspülgänge mit klarem Wasser und einem. Klarspülgang mit einem gebräuchlichem Klarspülmittel ergänzt und beendet. Nach dem Trocknen erhält man beim Einsatz erfindungsgemäßer Mittel völlig sauberes und in hygienischer Hinsicht einwandfreies Geschirr.
Beispiele
Durch Verpressen der in der nachfolgenden Tabelle angegebenen Inhaltsstoffe wurden 2-Phasen-Tabletten M1 (Gewicht jeweils 25 g) hergestellt
Zusammensetzung der 2-Phasen-Tablette (Gew.-%, bezogen auf die gesamte Tablette)
erste Phase zweite Phase
Natriumtripolyphosphat 30 25
Na-Perborat Monohydrat 10 -
MMA-Granulatat 3 -
Polycarboxylat (Sokalan® CP5) 1 -
Niotensid 2 -
Natriumcarbonat 15 -
Schichtsilikat-(SKS-6) 6 -
Komplexbildner (Turpinal® 2NZ)
Proteasegranulat (Blap 200) - 2
Amylasegranulat (Duramyl® 60 T) - 2
Farbstoff - 0,9
Parfüm - 0,1
Zum Vergleich wurden ansonsten gleich zusammengesetzte Tabletten hergestellt, die statt des MMA-Granulats ein Gemisch aus 2 Gew.-% TAED (V1) beziehungsweise 2 Gew.-% N-Methylmorpholiniumacetonitril-Methosulfat (V2) beziehungsweise 2 Gew.-% N-Methylmorpholiniumacetonitril-Hydrogensulfat (V3) mit jeweils 1 Gew.-% Kieselsäure enthielt. Die Reinigungsmitteltabletten wurden unter Verwendung einer Geschirrspülmaschine Miele® G 590, Wasserhärte 14-16°dH, Betriebstemperatur 45 bzw. 55°C, unter Zusatz einer erhöhten Schmutzbeleastung (frozen cube), wurden jeweils 8 mit standardisiertem Teebelag versehene Tassen gespült und die Belagsentfernung anschließend visuell auf einer Skala von 0 (= unverändert sehr starker Belag) bis 10 (= kein Belag) benotet wurde. In der nachfolgenden Tabelle 2 sind die Reinigungsnoten für die frisch hergestellten Mittel (Ausgangswert) und 2 Wochen gelagerte Mittel (Raumtemperatur oder 30°C, 80% rel. Luftfeuchte) angegeben.
Reinigungsnoten
Ausgangswert Lagerung bei Raumtemperatur Lagerung bei 30°C, 80% rel. LF
M1 bei 45°C 9 9 9
M1 bei 55°C 10 nicht bestimmt nicht bestimmt
V1 bei 45°C 5 5 5
V1 bei 55°C 6 nicht bestimmt nicht bestimmt
V2 bei 45°C 6 4 4
V3 bei 45°C 8 6 6
Man erkennt, daß man die durch MMA erreichbare Leistungsverbesserung gegenüber dem Standard TAED durch die teilchenförmige Konfektionierung stabil in Tabletten einformulieren kann. Gleich gute Ergebnisse wie für das Mittel M1 wurden erhalten, wenn man statt N-Methylmorpholiniumacetonitril-Methosulfat das N-Methylmorpholiniumacetonitril-Hydrogensulfat einsetzte.

Claims (21)

  1. Verwendung von mit Hilfe anorganischer Trägermaterialien, welche Silizium enthalten, teilchenförmig konfektionierter Verbindungen, der allgemeinen Formel I R1R2R3N+CH2CN X- in denen R1, R2 und R3 unabhängig voneinander eine Alkyl-, Alkenyl oder Arylgruppe mit 1 bis 18 C-Atomen ist, wobei die Gruppen R2 und R3 auch Teil eines das N-Atom und gegebenenfalls weitere Heteroratome einschließenden Heterocyclusses sein können, und X ein ladungsausgleichendes Anion ist, als Aktivatoren für insbesondere anorganische Persauerstoffverbindungen in festen Reinigungsmitteln für Geschirr, die in im wesentlichen wäßrigen Reinigungslösungen zum Einsatz kommen, zum Bleichen von Tee-Anschmutzungen.
  2. Verwendung nach Anspruch 1, dadurch gekennzeichnet, daß das Silizium enthaltende anorganische Trägermaterial eine innere Oberfläche im Bereich von 10 m2/g bis 500 m2/g, insbesondere 100 m2/g bis 450 m2/g aufweist.
  3. Verwendung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Silizium enthaltende anorganische Trägermaterial aus der Gruppe umfassend Silikate, Kieselsäuren, Kieselgele und Tone sowie deren Gemische ausgewählt wird.
  4. Verwendung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß in der teilchenförmigen Konfektionierungsform 10 bis 50 Gew.-Teile des Silizium enthaltenden Trägermaterials und 50 bis 90 Gew.- Teile der Verbindung gemäß Formel I vorliegen.
  5. Verwendung. nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß in der Verbindung gemäß Formel I R2 und R3 unter Einbeziehung des quaternären N-Atoms einen Morpholinium-Ring bilden.
  6. Verwendung nach Anspruch 5; dadurch gekennzeichnet, daß in der Verbindung gemäß Formel I R1 eine Alkylgruppe mit 1 bis 3 C-Atomen, insbesondere eine Methylgruppe ist.
  7. Verwendung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das ladungsausgleichende Anion X- aus den Halogeniden, wie Chlorid, Fluorid, Iodid und Bromid, Nitrat, Hydroxid, Hexafluorophosphat, Sulfat, Hydrogensulfat, Metho- und Ethosulfat, Chlorat, Perchlorat und den Anionen von Carbonsäuren, wie Formiat, Acetat, Benzoat oder Citrat, ausgewählt wird.
  8. Verwendung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das ladungsausgleichende Anion X- Sulfat, Hydrogensulfat oder Methosulfat ist.
  9. Verwendung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die zu aktivierende Persauerstoffverbindung aus der Gruppe umfassend organische Persäuren, Wasserstoffperoxid, Perborat und Percarbonat sowie deren Gemische ausgewählt wird.
  10. Verwendung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß gleichzeitig eine bleichverstärkende Wirkstoffkombination, die durch inniges Vermischen eines wasserlöslichen Salzes eines zweiwertigen Übergangsmetalles, ausgewählt aus Cobalt, Eisen, Kupfer und Ruthenium sowie deren Mischungen, eines wasserlöslichen Ammoniumsalzes und gegebenenfalls eines Oxidationsmittels auf Persauerstoffbasis sowie inerten Trägermaterials erhältlich ist, anwesend ist.
  11. Mittel zur Reinigung von Geschirr, dadurch gekennzeichnet, daß es 1 Gew.-% bis 10 Gew.-%, insbesondere 2 Gew.-% bis 6 Gew.-% einer mit Hilfe anorganischer Trägermaterialien, welche Silizium enthalten, teilchenförmig konfektionierter Verbindung der allgemeinen Formel I R1R2R3N+CH2CN X- in der R1, R2 und R3 unabhängig voneinander eine Alkyl-, Alkenyl oder Arylgruppe mit 1 bis 18 C-Atomen ist, wobei die Gruppen R1 und R2 auch Teil eines das N-Atom und gegebenenfalls weitere Heteroratome einschließenden Heterocyclusses sein können, und X ein ladungsausgleichendes Anion ist, neben üblichen, mit der Verbindung gemäß Formel I verträglichen Inhaltsstoffen enthält.
  12. Mittel zum maschinellen Reinigen von Geschirr, enthaltend 15 Gew.-% bis 70 Gew.-%, insbesondere 20 Gew.% bis 60 Gew,% wasserlösliche Builderkomponente, 5 Gew.-% bis 25 Gew.-%, insbesondere 8 Gew.-% bis 17 Gew.-% Bleichmittel auf Sauerstoffbasis, jeweils bezogen auf das gesamte Mittel, dadurch gekennzeichnet, daß es eine mit Hilfe anorganischer Trägermaterialien, welche Silizium enthalten, teilchenförmig konfektionierte Verbindung der allgemeinen Formel I, insbesondere in Mengen von 2 Gew.-% bis 6 Gew.-%, enthält
  13. Mittel nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß es eine Persauerstoffverbindung aus der Gruppe umfassend organische Persäuren, Wasserstoffperoxid, Perborat und Percarbonat sowie deren Gemische enthält.
  14. Mittel nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, daß zusätzlich zu den Verbindungen gemäß Formel I 0,5 Gew.-% bis 7 Gew.-% unter Perhydrolysebedingungen Peroxocarbonsäuren abspaltende Verbindungen anwesend sind.
  15. Mittel nach einem der Ansprüche 11 bis 14, dadurch gekennzeichnet, daß es zusätzlich zu den Verbindungen gemäß Formel I eine bleichverstärkende Wirkstoffkombination, die durch inniges Vermischen eines wasserlöslichen Salzes eines zweiwertigen Übergangsmetalles, ausgewählt aus Cobalt, Eisen, Kupfer und Ruthenium sowie deren Mischungen, eines wasserlöslichen Ammoniumsalzes und gegebenenfalls eines Oxidationsmittels auf Persauerstoffbasis sowie inerten Trägermaterials erhältlich ist, enthält.
  16. Mittel nach einem der Ansprüche 11 bis 14, dadurch gekennzeichnet, daß zusätzlich zu der Verbindung gemäß Formel I bleichkatalysierende Übergangsmetallsalze oder -komplexe, insbesondere in Mengen von 0,0025 Gew.-% bis 0,5 Gew.-%, anwesend sind.
  17. Mittel nach Anspruch 16, dadurch gekennzeichnet, daß zusätzlich zu der Verbindung gemäß Formel I bleichkatalysierende Cobalt-, Eisen-, Kupfer- oder Ruthenium-Amminkomplexe, insbesondere [Co(NH3)5Cl]Cl2 und/oder [Co(NH3)5NO2]Cl2, anwesend sind.
  18. Mittel nach einem der Ansprüche 11 bis 17, dadurch gekennzeichnet, daß es als tablettenförmiger Formkörper vorliegt.
  19. Mittel nach Anspruch 18, dadurch gekennzeichnet, daß der tabletteriförmige Formkörper zweischichtig ist.
  20. Mittel nach Anspruch 19, dadurch gekennzeichnet, daß es in einer Schicht das Bleichmittel in Form der insbesondere anorganischen Persauerstoffverbindung und in der zweiten Schicht den teilchenförmig konfektionierten Bleichaktivator gemäß Formel I aufweist.
  21. Mittel nach Anspruch 19, dadurch gekennzeichnet, daß es das Bleichmittel in Form der insbesondere anorganischen Persauerstoffverbindung und den teilchenförmig konfektionierten Bleichaktivator gemäß Formel I in der gleichen und weitere empfindliche Bestandteile, insbesondere Enzyme, in einer zweiten Schicht aufweist.
EP99962240A 1998-12-15 1999-12-08 Teilchenförmig konfektionierte acetonitril-derivate als bleichaktivatoren in festen reinigungsmitteln Expired - Lifetime EP1141211B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19857596A DE19857596A1 (de) 1998-12-15 1998-12-15 Teilchenförmig konfektionierte Acetonitril-Derivate als Bleichaktivatoren in festen Reinigungsmitteln
DE19857596 1998-12-15
US12691999P 1999-03-29 1999-03-29
US126919P 1999-03-29
PCT/EP1999/009622 WO2000036061A2 (de) 1998-12-15 1999-12-08 Teilchenförmig konfektionierte acetonitril-derivate als bleichaktivatoren in festen reinigungsmitteln

Publications (2)

Publication Number Publication Date
EP1141211A2 EP1141211A2 (de) 2001-10-10
EP1141211B1 true EP1141211B1 (de) 2004-02-25

Family

ID=26050748

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99962240A Expired - Lifetime EP1141211B1 (de) 1998-12-15 1999-12-08 Teilchenförmig konfektionierte acetonitril-derivate als bleichaktivatoren in festen reinigungsmitteln

Country Status (6)

Country Link
US (1) US6407045B1 (de)
EP (1) EP1141211B1 (de)
JP (1) JP2002532615A (de)
KR (1) KR100630289B1 (de)
ES (1) ES2216609T3 (de)
WO (1) WO2000036061A2 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19914811A1 (de) * 1999-03-31 2000-10-05 Henkel Kgaa Enzym- und bleichaktivatorhaltige Wasch- und Reinigungsmittel
DE19914812A1 (de) * 1999-03-31 2000-10-05 Henkel Kgaa Ein- oder mehrphasige Wasch- und Reinigungsmittelformkörper mit speziellen Bleichaktivatoren
DE19914353A1 (de) * 1999-03-31 2000-10-05 Henkel Kgaa Wasch- und Reinigungsmittelformkörper mit speziellen Bleichaktivatoren
DE10038180A1 (de) * 2000-08-04 2002-02-14 Reckitt Benckiser Nv Verwendung eines neuartigen Bleichaktivator-Compounds in Geschirrspülmittelzusammensetzungen
DE10038832A1 (de) * 2000-08-04 2002-03-28 Henkel Kgaa Umhüllte Bleichaktivatoren
DE10038845A1 (de) * 2000-08-04 2002-02-21 Henkel Kgaa Teilchenförmig konfektionierte Acetonitril-Derivate als Bleichaktivatoren in festen Waschmitteln
DE10057045A1 (de) * 2000-11-17 2002-05-23 Clariant Gmbh Teilchenförmige Bleichaktivatoren auf der Basis von Acetonitrilen
DE10121051A1 (de) 2001-04-28 2002-10-31 Clariant Gmbh Builder-Zusammensetzung
DE10159388A1 (de) * 2001-12-04 2003-06-12 Henkel Kgaa Verfahren zur Herstellung von umhüllten Bleichaktivatorgranulaten
DE10161766A1 (de) * 2001-12-15 2003-06-26 Clariant Gmbh Bleichaktivator-Co-Granulate
DE10211389A1 (de) * 2002-03-15 2003-09-25 Clariant Gmbh Ammoniumnitrile und deren Verwendung als hydrophobe Bleichaktivatoren
US20070259801A1 (en) * 2006-03-31 2007-11-08 Szu-Min Lin Composition for a foam pretreatment for medical instruments
DE102006036889A1 (de) * 2006-08-04 2008-02-07 Clariant International Limited Verwendung von Aminoacetonen und deren Salzen als Bleichkraftverstärker für Persauerstoffverbindungen
GB0616439D0 (en) * 2006-08-18 2006-09-27 Reckitt Benckiser Nv Detergent composition
GB0917951D0 (en) * 2009-10-14 2009-11-25 Chemlink Specialities Ltd Composition including one or more hydrolytically unstable components
US10053656B2 (en) * 2013-08-14 2018-08-21 Budich International Gmbh Multiphase detergent tablet

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9011618D0 (en) * 1990-05-24 1990-07-11 Unilever Plc Bleaching composition
US5520835A (en) * 1994-08-31 1996-05-28 The Procter & Gamble Company Automatic dishwashing compositions comprising multiquaternary bleach activators
US5814242A (en) * 1995-06-07 1998-09-29 The Clorox Company Mixed peroxygen activator compositions
US5888419A (en) * 1995-06-07 1999-03-30 The Clorox Company Granular N-alkyl ammonium acetontrile compositions
DE19605526A1 (de) * 1996-02-15 1997-08-21 Hoechst Ag Ammoniumnitrile und deren Verwendung als Bleichaktivatoren
ES2233987T3 (es) * 1996-09-26 2005-06-16 Henkel Kommanditgesellschaft Auf Aktien Combinacion de productos activos cataliticamente para reforzar el efecto de blanqueo.
KR20000057312A (ko) * 1996-11-29 2000-09-15 피프 카렌 에이. N-알킬 암모늄 아세토니트릴 염, 이의 제조방법 및 이를 포함하는 조성물
DE19649375A1 (de) * 1996-11-29 1998-06-04 Henkel Kgaa Acetonitril-Derivate als Bleichaktivatoren in Reinigungsmitteln
US5783540A (en) * 1996-12-23 1998-07-21 Lever Brothers Company, Division Of Conopco, Inc. Machine dishwashing tablets delivering a rinse aid benefit
US5900395A (en) * 1996-12-23 1999-05-04 Lever Brothers Company Machine dishwashing tablets containing an oxygen bleach system
DE19713852A1 (de) * 1997-04-04 1998-10-08 Henkel Kgaa Aktivatoren für Persauerstoffverbindungen in Wasch- und Reinigungsmitteln

Also Published As

Publication number Publication date
WO2000036061A2 (de) 2000-06-22
JP2002532615A (ja) 2002-10-02
KR100630289B1 (ko) 2006-09-29
ES2216609T3 (es) 2004-10-16
US20020032139A1 (en) 2002-03-14
EP1141211A2 (de) 2001-10-10
WO2000036061A3 (de) 2000-09-14
US6407045B1 (en) 2002-06-18
KR20010080769A (ko) 2001-08-22

Similar Documents

Publication Publication Date Title
EP1141211B1 (de) Teilchenförmig konfektionierte acetonitril-derivate als bleichaktivatoren in festen reinigungsmitteln
US20040067863A1 (en) Enclosed bleach activators
EP1305384B1 (de) Teilchenförmig konfektionierte acetonitril-derivate als bleichaktivatoren in festen waschmitteln
DE19908051A1 (de) Verfahren zur Herstellung compoundierter Acetonitril-Derivate
DE19758176A1 (de) Geschirrspülmittelformkörper mit Tensiden
WO1999035235A1 (de) Geschirrspülmittelformkörper mit chlorbleichmitteln
WO1999035233A1 (de) Verfahren zur herstellung eines geschirrspülmittelformkörpers
EP0832969B1 (de) Katalytisch aktive Wirkstoffkombination zur Verstärkung der Bleichwirkung
WO1999035230A1 (de) Geschirrspülmittelformkörper mit spezifischer löslichkeit
DE19758181A1 (de) Geschirrspülmittelformkörper mit Soil-Release-Polymeren
DE19908069A1 (de) Compoundierte Acetonitril-Derivate als Bleichaktivatoren in Reinigungsmitteln
EP1045895A1 (de) Geschirrspülmittelformkörper mit spezifischer geometrie
EP1044255A1 (de) Geschirrspülmittelformkörper mit bleichaktivatoren
DE19857596A1 (de) Teilchenförmig konfektionierte Acetonitril-Derivate als Bleichaktivatoren in festen Reinigungsmitteln
EP1044254A1 (de) Waschaktiver formkörper mit spezifischer oberfläche
WO1999035232A1 (de) Geschirrspülmittelformkörper mit spezifischem volumenverhältnis
EP1969112B1 (de) Reinigungsmittel mit bleichkatalytisch aktiven komplexen
DE19959589A1 (de) Mehrphasige Reinigungsmitteltabletten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010606

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HUESTIS, SUSAN, P.

Inventor name: LIETZMANN, ANDREAS

Inventor name: HAERER, JUERGEN

Inventor name: SPECKMANN, HORST-DIETER

Inventor name: NITSCH, CHRISTIAN

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

XX Miscellaneous (additional remarks)

Free format text: DERZEIT SIND DIE WIPO-PUBLIKATIONSDATEN A3 NICHT VERFUEGBAR.

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59908672

Country of ref document: DE

Date of ref document: 20040401

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040625

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2216609

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20041126

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20071203

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20071221

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20071205

Year of fee payment: 9

Ref country code: FR

Payment date: 20071210

Year of fee payment: 9

Ref country code: ES

Payment date: 20080118

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20071206

Year of fee payment: 9

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20081208

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20090701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090701

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081208

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20081209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081208