EP1044026A2 - Oberflächensterilisierung mit hilfe von ultraviolettem licht und ultraschallwellen - Google Patents

Oberflächensterilisierung mit hilfe von ultraviolettem licht und ultraschallwellen

Info

Publication number
EP1044026A2
EP1044026A2 EP98964066A EP98964066A EP1044026A2 EP 1044026 A2 EP1044026 A2 EP 1044026A2 EP 98964066 A EP98964066 A EP 98964066A EP 98964066 A EP98964066 A EP 98964066A EP 1044026 A2 EP1044026 A2 EP 1044026A2
Authority
EP
European Patent Office
Prior art keywords
ultraviolet light
sterilization
approximately
recited
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98964066A
Other languages
English (en)
French (fr)
Other versions
EP1044026B1 (de
Inventor
Edward V. Rose
William E. Clark, Jr.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Spectrum Environmental Technologies Inc
Original Assignee
Spectrum Environmental Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/999,273 external-priority patent/US6090346A/en
Application filed by Spectrum Environmental Technologies Inc filed Critical Spectrum Environmental Technologies Inc
Publication of EP1044026A2 publication Critical patent/EP1044026A2/de
Application granted granted Critical
Publication of EP1044026B1 publication Critical patent/EP1044026B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultraviolet radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultraviolet radiation

Definitions

  • This invention pertains generally to sterilization methods and, more particularly, to a method and apparatus for sterilizing organic and inorganic matter in a non-aqueous environment and for sterilizing air using a simultaneous combination of ultraviolet light wave energy and ultrasonic wave energy.
  • handling of food products by workers with non-sterilized hands can result in the spread of undesired microorganisms, or conversely, direct contact of food products with contaminated food processing and packaging equipment can also result in the spread of unwanted microorganisms.
  • a commonly used method for sterilizing the hands of medical, dental and food service workers is repeated washing and/or scrubbing of the hands. This procedure can be time consuming as it must be repeated frequently after the worker comes into contact with a potentially contaminated source. Also, this method may not effectively sterilize the worker's hands due to ineffective washing techniques, type of cleaning agents used, or even the length of time spent physically cleaning the hands.
  • Constant, repetitive hand washing can also damage the skin due to use of soaps, detergents and the actual scrubbing actions that remove the skin's natural oils and can leave the skin dehydrated and irritated.
  • the disadvantages of excessive time consumption, non-thorough hand sterilization, and skin irritation may cause the worker to avoid the frequent hand washing required to effectively prevent the spread of potentially infectious microorganisms.
  • Medical and dental instruments and devices are commonly sterilized via use of steam autoclaves and other methods that incorporate the use of heat, steam, gamma radiation, electron beam, and/or chemical agents to remove viable pathogenic microorganisms.
  • the effectiveness of these methods varies and typically require the use of expensive, sophisticated equipment and generally involve a substantial amount of time to complete.
  • some instruments and devices are particularly sensitive to high temperatures, moisture, gamma radiation, electron beams and/or certain chemicals being used, and cannot survive these methods of sterilization. Therefore these instruments, in particular, require other methods of sterilization.
  • ultraviolet light is another method used to sterilize organic and inorganic matter. Exposure to certain ultraviolet light band wavelengths has been discovered to be an effective means of destroying microorganisms.
  • the user places the object or device to be cleaned into a chamber to expose the device or object to be cleaned to a prescribed dose of ultraviolet light.
  • the interior of the cleaning chamber is usually coated with a reflective surface which reflects the light to ensure that all surfaces of the object being sterilized are irradiated with a sufficient amount of the ultraviolet light.
  • the amount of time required for an adequate dosage of the ultraviolet light varies but typically requires at least ten seconds.
  • ultraviolet light for microbiological sterilization of organic and inorganic surface matter has historically been abandoned in favor of more sophisticated methods that employ heat, steam, gamma radiation, electron beams, and/or chemicals. This may be a result of manufacturers' desire to offer more expensive sterilization devices in lieu of simplified technology.
  • the use of ultraviolet light has been relegated to the treatment of air and/or water, which is generally circulated past the ultraviolet light source in a cabinet or the like and then into the sterilization environment.
  • the hand drying process usually entails convecting air over the skin surface for a period of time until the hands are sufficiently dry. This consumes time and may even leave the skin dehydrated. If the item to be sterilized is some other organic material, such as meats, poultry, seafood or vegetables, immersing the item into an aqueous solution can damage or even destroy its properties, thus rendering the food product useless. Similarly, certain medical instruments and devices that need sterilizing become inoperable when they are immersed in an aqueous solution. These instances illustrate the need for a sterilization method which can effectively, frequently, and quickly sterilize organic and inorganic matter in a gaseous environment.
  • the ultrasonic emitting step has been performed in an aqueous solution.
  • an ultraviolet light source is positioned to irradiate a cleaning liquid in a cleaning tank into which the item to be sterilized is immersed.
  • a piezoelectric transducer agitates the liquid ultrasonically causing both microscopic and macroscopic agitation, which dislodges foreign substances from the surface of the item. Because the ultraviolet irradiating step occurs concurrently with the ultrasonic process, the microorganisms dislodged from the item being sterilized are subjected to ultraviolet light, thereby destroying the microorganism.
  • the present invention generally comprises a method and apparatus for sterilizing organic and inorganic materials using a combination of ultraviolet irradiation and ultrasonic emission. More particularly, the combination sterilization method of the present invention is performed in a non-aqueous environment.
  • a typical example would be to sterilize the material while in the presence of a gas, such as air.
  • the air itself can be sterilized.
  • the material could also be sterilized in a vacuum, which those skilled in the art will appreciate is also a non-aqueous environment.
  • the invention departs from the known use of ultraviolet light and ultrasound for sterilization of materials in that the materials are not placed in a liquid, such as water, a chemical cleansing agent or the like, for sterilization.
  • a liquid such as water, a chemical cleansing agent or the like
  • the materials to be sterilized are simply not immersed in a liquid.
  • the ultrasound emissions are applied in a non-aqueous environment such as air.
  • the ultraviolet light is emitted onto the surface of the material to be sterilized at wavelengths which will destroy viable pathogenic microorganisms.
  • the material is subjected to a variable time duration sufficient to ensure complete destruction of microorganisms exposed to the ultraviolet light.
  • the ultrasonic waves cause excitation and oscillation three-dimensionally on all exposed surfaces of the material, thereby causing microorganisms attached but not molecularly bonded to the surface of the material to become dislodged and momentarily airborne.
  • the microorganisms experience a greater surface area exposure to the ultraviolet light energy than would otherwise be exposed if the microorganism were still attached to the surface of the material.
  • the ultraviolet irradiating and ultrasonic excitation steps occur simultaneously to produce the desired effect of increased sterilization efficiency.
  • the object is then removed from the chamber in a sterilized condition.
  • the combined use of ultraviolet light and ultrasound can be applied to mass sterilization of items produced on assembly lines. Because this sterilization method is performed in a non-aqueous environment and, hence does not require immersing the materials in a liquid, the ultraviolet light source and ultrasonic emitter assembly can be placed along the path of a moving conveyor belt. Then, as the mass produced items move along the conveyor belt, they will be exposed to the ultraviolet light from the ultraviolet light source and ultrasonic waves from the ultrasonic emitter. The ultraviolet light irradiation step occurs simultaneously with the ultrasonic wave emission process, thus making only a single exposure event necessary to produce the desired sterilization effect.
  • mass-produced food items such as meats, poultry, seafood and vegetables can be sterilized using this combination method without affecting the taste or texture of the food items being treated.
  • the ability of the combination sterilization method to perform effective sterilization in a non-aqueous environment such as air eliminates the need to expose the food item to any liquid which might affect the texture and/or taste of the food item.
  • the ultraviolet light impinges only on the surface of the food item being sterilized, and not beneath the surface due to its poor penetrating capabilities, the light will not "cook” or alter the interior of the food item or otherwise affect its taste or texture. It will be appreciated, however, that lengthy ultraviolet light exposure times at high power levels could cause a change in the surface characteristics of the food item being sterilized.
  • an object of the invention is to provide a quick, efficient and reliable method for effectively eliminating potentially infectious microorganisms from environmental air using a simultaneous combination of ultraviolet light and ultrasonic waves.
  • Another object of the invention is to provide a combination ultraviolet and ultrasonic sterilization method in which the sterilization is performed in a non-aqueous environment such as air, a gas, air mixed with a gas, or even a vacuum.
  • Another object of the invention is to provide a method of sterilization which can sterilize food items without affecting the texture and/or taste of the food item.
  • Another object of the invention is to provide a method of sterilization which is simple to use and which does not require special training or procedures to implement.
  • FIG. 1 is a flowchart depicting a general method to sterilize organic and inorganic material using simultaneous emission of ultrasonic waves and irradiation of ultraviolet light in accordance with the invention.
  • FIG. 2 is a flowchart depicting a general method to sterilize organic and inorganic material being produced on an assembly line by using simultaneous emission of ultrasonic waves and irradiation of ultraviolet light in accordance with the invention.
  • FIG. 3 is a functional block diagram of a sterilization system for carrying out the method of the invention.
  • FIG. 4 is a functional block diagram of an ultraviolet light circuit of the sterilization system shown in FIG. 3.
  • FIG. 5 is a perspective view of a sterilization chamber useful in practicing the surface sterilization method of the invention.
  • FIG. 6 is schematic illustration of a conveyor system useful in practicing the surface sterilization method of the invention.
  • FIG. 7 is perspective schematic in part of a sterilization chamber useful in practicing the air sterilization method of the invention in a stand-alone mode or in association with a larger air handling system.
  • the present invention comprises a method and apparatus for sterilizing organic and inorganic material by simultaneously exposing the material to ultraviolet light and ultrasonic waves in a non-aqueous environment, such as in air or in a vacuum, wherein the material being sterilized is not being immersed in a liquid.
  • a non-aqueous environment such as in air or in a vacuum
  • non-liquid non-liquid
  • FIG. 1 An example of the steps involved in the sterilization method of the present invention can be seen in FIG. 1.
  • an object or device to be sterilized is placed into an enclosed sterilization chamber which contains the path of ultraviolet light and ultrasonic waves.
  • the surface of the material is simultaneously exposed to ultrasonic waves and ultraviolet light for a period of time ranging from approximately two seconds to six minutes, depending on the surface characteristics of the item being sterilized.
  • the surface of the material is physically excited during irradiation by the ultraviolet light. This causes agitation and oscillation of bacteria and other undesired organisms on the surface of the material, thereby increasing the amount of surface area exposed to the ultraviolet light.
  • the ultraviolet light energy will irradiate all available exposed surfaces of the material being sterilized.
  • the material is then removed from the sterilization chamber at step 16.
  • the present invention uses ultrasonic waves to agitate and oscillate microorganisms on the surface of the material to be sterilized, thereby increasing the surface area of the microorganism that is exposed to the ultraviolet light. This aids in the destruction of the microorganism by the ultraviolet light. In most instances, an ultraviolet irradiation period often seconds to one minute is sufficient, especially for bacterial sterilization. It is known that different amounts of energy in the form of microwatts are required to sterilize various microorganisms, ranging from 3,200 microwatts for common bacteria to over 400,000 microwatts; thus, sterilization for certain molds and fungi may require additional exposure time. Sterilization time may also depend on the porosity of the surface of the item being sterilized.
  • an ultrasonic emitter continuously emits ultrasonic waves while ultraviolet light is cycled on only whenever an object to be sterilized is placed within the sterilization chamber to irradiate the surface of the material being sterilized.
  • the ultrasonic wave emitting step 12 and the ultraviolet light irradiating step 14 must be performed in a simultaneous fashion so that the surface of the material being sterilized is exposed to ultrasonic waves sufficient to cause agitation of microorganisms.
  • the sterilization method of the present invention is performed in an non-aqueous environment such as air
  • items mass produced along an assembly line or transported along a conveyor belt or other transport device can be sterilized by simultaneously exposing the assembly line, conveyor belt or the like to ultraviolet light and ultrasonic waves such that the surface of the items moving along the conveyor belt receives at least a minimum exposure to the ultraviolet light and ultrasonic waves.
  • the items are moved along a conveyor belt or the like into a location where the items can be exposed to ultraviolet light and ultrasonic waves.
  • the items are then simultaneously exposed to ultrasonic waves and ultraviolet light at steps 20 and 22, respectively, and then moved out of the path of the ultrasonic waves and ultraviolet light at step 24 when exposure is complete.
  • the ultrasonic wave emitting step 20 and the ultraviolet light irradiating step 22 are performed in a simultaneous fashion so that the surface of the material is exposed to ultrasonic waves sufficient to cause agitation of microorganisms thereon and/or to produce other potentially desired effects on the surface of the item being treated.
  • a functional block diagram of a sterilization apparatus in accordance with the present invention is shown in which a main switch 26 controls an ultraviolet light circuit 28 to provide ultraviolet light for the ultraviolet irradiating steps described above and an ultrasonic emitter circuit 30 to provide ultrasonic waves for the ultrasonic emission steps described above. Ceramic piezo-electric transducers (not shown in FIG. 3.) are preferably used to emit the ultrasonic waves.
  • Ultraviolet light circuit 28 is preferably powered by a ballast power supply 32 which may be cycled for activation and deactivation by a cycle switch 34.
  • a conventional power supply 36 powers ultrasonic emitter circuit 30.
  • FIG. 4 a functional block diagram of ultraviolet light circuit 28 is shown.
  • Ultraviolet light circuit 28 is preferably a high frequency switching supply operating in the 20 kHz to 52 kHz range, and preferably comprises an EMI filter 38, a rectifier 40, a power factor controller 42, a feedback ballast control circuit 44, an RCL series-parallel lamp resonant output circuit 46, fault detection/shutdown circuitry 48 and a feedback and fault buss 50.
  • Power factor controller 42 is preferably a boost converter operating in critically continuous, free-running mode.
  • Ballast control circuit 44 provides frequency modulation control of lamp resonant output circuit 46.
  • Shutdown circuitry 48 utilizes a lamp circuit detection and comparator logic for the safe and smooth turn-off and automatic re-starting.
  • Feedback control and lamp fault buss 50 are isolated from ballast control section 44 by opto-couplers (not shown).
  • Ballast control section 44 preferably drives four twenty-one watt T5 type lamps (not shown) between a standby mode and a sterilization ("on") mode.
  • the circuit In the standby mode, the circuit maintains the lamps at an approximate 10% to 20% output level.
  • This relatively low output standby mode enhances lamp life and lowers filament temperature between sterilization cycles, but allows for virtually no heat-up time and instantaneous ionization of the lamps to full output when the circuit is switched from the standby mode to the sterilization mode.
  • low pressure mercury vapor lamps such as type T5 lamps available from General Electric or other light tube manufacturers, a life cycle of up to 120,000 cycles can be expected from the lamps due to the design of the circuit as compared to 1,500 to 3,000 cycles when using conventional power supplies.
  • the ultraviolet light is typically emitted at a wavelength between approximately 180 nm and approximately 325 nm, with a wavelength of 254.7 nm having been found most effective for germicidal control, and a power density consistent with that empirically determined as sufficient to accomplish sterilization.
  • Typical power densities range from approximately 400,000 microwatts/cm 2 per second to approximately 1,000,000 microwatts per cm 2 per second, and depend on the type of microorganism being sterilized.
  • the ultrasonic wave energy preferably sweeps within a range of approximately 20 kHz to approximately 52 kHz in a sawtooth pattern having a cycle period of approximately 800 milliseconds per sweep.
  • a steady 24.7 kHz transducer frequency has been found to be very effective for excitation of microorganisms on human skin, as well as for removing from the surface of the object being sterilized, all non-skinned microorganisms.
  • the ultrasonic output from each transducer is preferably approximately 119 dB measured at a distance of 0.5 meter from the transducer with a maximum power output of approximately 7 watts using, for example, piezoelectric transducers like those available from Motorola or other ultrasonic transducer vendors.
  • the ultrasonic emission by itself does not eliminate the microorganisms on the item being sterilized; however, the ultrasonic waves cause the microorganisms to become agitated and begin to oscillate, thereby exposing more surface area of the microorganism to ultraviolet light for irradiation.
  • the ultrasonic waves will cause dust particles to become excited and/or oscillate, thereby causing microorganisms on the surface of the dust particles to dislodge and become airborne so as to expose more surface area of the particles to ultraviolet light for irradiation.
  • the ultrasound emissions can cause particles to break up, thus contorting the particles into different shapes for more effective sterilization.
  • an embodiment of the present invention is shown as comprising a sterilization chamber 60 with approximate internal dimensions of either: (a) 25"x25"x25" with 4-T5 bulbs on each side wall and two transducers at the inside top middles of opposing side walls; or
  • At least one ultraviolet tube 62 such as the T5 model previously mentioned is mounted on opposing side walls and, if desired, a reflector 64 may be positioned behind tubes 62 to direct the sterilizing light wave energy generated therein toward the central portion of chamber 60.
  • At least one source of ultrasonic wave energy 66 is mounted in chamber 60, for instance in the top middle of a side wall of chamber 60, and is aligned to provide agitating ultrasonic wave energy into the central portion of chamber 60.
  • two sources of ultrasonic wave energy 66 (shown in broken lines) are mounted in chamber 60, in the inside top middle of opposing side walls of chamber 60. Objects to be sterilized may be placed directly on the bottom floor of chamber 60 or placed on a shelf therein if desired.
  • Chamber 60 is equipped for standard 120- volt, single-phase electrical power, has a 6" or 8" vent opening for incoming cooling air on the back (not shown), and may include single stage air-filters on the back.
  • An exhaust fan 65 may be mounted on the top of chamber 60 to establish a cooling air stream over objects therein.
  • a slide-out front drawer may be employed for convenience in loading objects to be sterilized and an on/off power switch is provided to manually activate the technology. The door and power switch are not shown for purposes of clarity.
  • On/off indicator lights 68 have a green light when chamber 60 is "on" and in the
  • a push button activates chamber 60 for frequent or repeated use so that, when the unit is in the "on” mode, sterilization can be activated by simply pushing the button.
  • the "in use” light 68 would then come on, and the chamber 60 would be saturated with a combination of simultaneously applied ultraviolet and ultrasonic energy for a pre-determined time, depending on the object 67 being sterilized and the microorganisms of concern.
  • the "in use” light 68 would then go out, signaling to the user that the cycle has been completed and that it was safe to open the door.
  • a fail-safe mechanism using a contact or vicinity switch 70 may be installed in cooperation with the door functions as a safety precaution.
  • Structural foam on the inside walls is preferred and the exterior skins may be constructed in various metals including stainless steel, depending on the customer, and their needs/applications.
  • FIG. 6 shows an in-line embodiment of the present invention comprising a conveyor belt 72 and conveyor rollers 74 suitable for moving an object 76 to be sterilized through a pair of banks of ultraviolet tubes 78 and reflectors 80.
  • a pair of ultrasonic transducers 82 are suspended proximate the uppermost ultraviolet tubes 78 such that the ultrasonic wave energy generated thereby is directed towards the center portion of belt 72.
  • the ultraviolet tubes 78 and reflectors 80 are similarly positioned to irradiate belt 72 with ultraviolet light and ultrasonic energy waves. Sterilization of the object 76 is accomplished using simultaneous exposure to ultraviolet light and ultrasonic energy waves. If the dimensions of the belt 72 and the bank of ultraviolet tubes 78 is about 25 inches by 25 inches, sterilization may be accomplished using ultrasonic transducers 82 and ultraviolet tubes 78 similar to those shown in FIG. 5 and described previously.
  • FIG. 7 illustrates an exemplary air sterilization unit 84 using sources of ultraviolet wave energy 86 and ultrasonic wave energy 88 as a means for sterilization of a body or stream of air by simultaneous activation of the sources of ultraviolet wave energy 86 and ultrasonic wave energy 88 of the present invention.
  • Air sterilization unit 84 is representative of an upright floor-standing style and typically sized for 150 cfm, 250 cfm, 450 cfm, and 600 cfrn rated capacities, although larger units may be custom designed using the same overall design concept.
  • the 150 cfrn and 250 cfrn units have four T5 type ultraviolet light sources 86 and one ultrasonic transducer 88, while the 450 cfm and 600 cfrn units may have as many as eight T5 ultraviolet light sources 86 and one or two ultrasonic transducers 88.
  • Reflectors 87 may be included to direct ultraviolet radiation towards the central portion of chamber 84.
  • the light tube sources of ultraviolet wave energy 86 are shown mounted on the side wall of chamber 84, it should be appreciated that mounting the tubes 86 in the interior portion of chamber 84 is also an effective positioning as air streams may then flow over the tubes 86.
  • Sterilization chamber 84 contains a commercially available air filter section 90 (shown in broken lines for purposes of clarity), typically comprising gauze, charcoal or HEPA filters, alone or in combination.
  • Air inlet port 92 and outlet port 94 are capable of incorporating either grills or ducted connections depending on the placement and application and are useful in testing described hereinafter.
  • a fan 96 is located in either the inlet port 92 or outlet port 94 to move an air stream to be sterilized through the sterilization chamber 84.
  • An acoustical blanket, insulating foam, or other sound deadening measures to cut down on noise emissions, may be added.
  • the sterilization chamber 84 may be used in conjunction with a conventional HVAC air handling system within a residence, hospital, industrial operation or the like in which a stream of air moves through chamber 84 once and then into the area of use. It should also be appreciated that the sterilization chamber 84 may be used in a stand-alone operation for instance in a residence or office or hospital emergency room in which room air is recirculated through the sterilization chamber 84 using ports 92 and 94.
  • Example 1 Surface Sterilization
  • the purpose of the testing reported herein is to demonstrate the sterilization efficacy of the present inventive simultaneous application of ultraviolet light wave energy and ultrasonic sound wave energy on selected groups of microorganisms including viruses, bacteria, fungi, molds and other unwanted surface and airborne biological contaminants on both solid surfaces and air streams.
  • TSA Tryptic Soy Agar
  • MAC MacConkey
  • ten-fold dilutions were prepared using a 1 ml amount of the previously described suspension and a 9 ml amount of diluent (sterile 0.85% saline). Subsequent ten-fold serial dilutions were prepared in a likewise manner. The number of colony forming units per milliliter in each suspension was determined. This value served to determine the size of the inoculum to use in the test. The suspensions were evaluated by use of the plate count agar method to establish an approximate suspension density of microorganisms.
  • the SCP were applied onto the "before" product test sites, pressed lightly, removed and covered with its lid. The SCP were pressed and not wiped on the product test surface to prevent abnormal distribution of CFU's on the surface.
  • the "after” product test sites were processed in the normal Micro-Clean sterilization procedure as established by Spectrum protocols. Upon completion of this procedure, SCP were applied to the "after” product test sites as previously discussed. Following this sampling, the SCP were labeled, secured with tape, refrigerated and transported to the testing laboratory for analysis. The SCP were incubated at 35 C +/- 2C for 72 hours.
  • the simultaneous application of ultraviolet light wave energy and ultrasonic sound wave energy as a method of sterilization of the present invention was evaluated for efficacy as a stand alone process, in combination with the use of both standard and HEP A filters for performance on airborne microorganisms (bioaerosols), and in a variety of liquids for possible aqueous applications. Testing was performed using multiple time exposures to ascertain the efficacy of the invention on the varying surface types throughout the course of the study. Standard time sequences of 5, 10, 15, 30, 45, and 60 second exposures were established prior to the start of the test study to evaluate and compare any changes in the effectiveness of the technology on the surface types selected and tested.
  • Surface types selected for testing included a variety of plastics, glass, metals, woods, paper, laminates, concrete, and foods with varying textures and surface conditions. Of the selected surface types tested, differentiation in the range of textures, shapes, densities, and uniformity was continuously reviewed to ensure that sufficient quantity of each was represented within the overall test study. And finally, media surface types selected for the study were chosen for their ability to absorb, adsorb, collect, alter, bond, and otherwise affect the various types of microorganisms that were the validation criteria for the testing.
  • Table 1 shows the results of microbial measurements on a variety of samples collected via use of: Tryptic Soy Agar (with panase); Rose Bengal Agar; Mannitol Salt Agar; MacConkey Agar; and/or sterile blank contact plates. All samples were incubated at 28 - 35° C upon delivery to the analytical testing facility. Samples were analyzed for the presence of CFU's at 24 and 48 hour intervals (unless longer incubation times were required for specific agar types) after collection and preparation of the contact plates. Sample collection and analyses were performed by certified and professionally licensed microbiologists.
  • Table 2 shows the results of tests for the presence of microorganisms after the various test objects to be cleaned were sterilized in sterilization chamber 60 using the present inventive simultaneous application of ultraviolet light wave energy and ultrasonic sound wave energy in an air environment. It can be seen that within the range of measurement errors, the sterilization was nearly 100% effective. (e) Test Using High Levels of Microorganisms
  • microbiological suspensions consisting of one or more of the following: saline solution with Penicillium mold species; E. Coli bacteria (ATCC 25923); Staphylococcus epidermidis bacteria (ATCC 12228); and aspergillius flavis mold.
  • Inoculum preparation and applications were administered by trained laboratory personnel in on-site settings under the supervision of professionally licensed and certified microbiologists.
  • Table 3 shows a summary of analytical test results collected from inoculated surface samples prior to sterilization using the present invention. Reported concentrations represent the number of CFU's present in a 25 cm-sq. area. Thirty- five percent of the samples collected were from inoculated surfaces allowed to dry. Surface samples were collected via use of: Tryptic Soy Agar (with panase), Rose Bengal Agar, Mannitol Salt Agar, MacConkey Agar and/or sterile blank contact plates. All samples were incubated at 28 - 35° C upon delivery to the analytical testing facility. Samples were then sterilized in sterilization chamber 60 using the present inventive simultaneous application of ultraviolet light wave energy and ultrasonic sound wave energy in an air environment.
  • Test results obtained from over 1,875 samples of surfaces exposed to the inventive sterilization process showed no signs or symptoms of damage, fatigue, or discoloration as a result of exposure to the technology.
  • repeated exposures to the sterilization process were conducted to ascertain the failure rate from repeated long-term exposure. No samples were identified that revealed visible or other noticeable signs of damage, failure or distress.
  • circuitry to emit ultrasonic waves and ultraviolet light is commercially available and, therefore, is not described in detail herein and does not form a part of the invention as claimed.
  • the present invention provides for the sterilization of objects using a combination of simultaneously applied ultraviolet light and ultrasonic waves in a non- aqueous environment such as air.
  • the simultaneous emission of ultrasound and ultraviolet light complement each other and can effectively sterilize either organic or inorganic items in a gaseous environment.
  • This simultaneous combination of ultraviolet light and ultrasonic waves provides for effective sterilization of items without having to place the item in a water or other liquid solution during exposure to the ultrasonic waves.
  • the present invention also provides for the sterilization of a stream or body of air using a combination of simultaneously applied ultraviolet light and ultrasonic waves.
  • ** 0 - 2 CFU's present denotes statistical margin of error allowed for during sample collection and handling by on-site laboratory personnel.
  • ** 0 - 2 CFU's present denotes statistical margin of error allowed for during sample collection and handling by on-site laboratory personnel.

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Physical Water Treatments (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
EP98964066A 1997-12-29 1998-12-17 Oberflächensterilisierung mit hilfe von ultraviolettem licht und ultraschallwellen Expired - Lifetime EP1044026B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US999273 1997-12-29
US08/999,273 US6090346A (en) 1997-12-29 1997-12-29 Sterilization using ultraviolet light and ultrasonic waves
US09/193,330 US6171548B1 (en) 1997-12-29 1998-11-16 Surface and air sterilization using ultraviolet light and ultrasonic waves
US193330 1998-11-16
PCT/US1998/026915 WO1999033495A2 (en) 1997-12-29 1998-12-17 Surface and air sterilization using ultraviolet light and ultrasonic wawes

Publications (2)

Publication Number Publication Date
EP1044026A2 true EP1044026A2 (de) 2000-10-18
EP1044026B1 EP1044026B1 (de) 2003-11-05

Family

ID=26888894

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98964066A Expired - Lifetime EP1044026B1 (de) 1997-12-29 1998-12-17 Oberflächensterilisierung mit hilfe von ultraviolettem licht und ultraschallwellen

Country Status (10)

Country Link
US (2) US6171548B1 (de)
EP (1) EP1044026B1 (de)
JP (1) JP2001526941A (de)
CN (1) CN1185015C (de)
AT (1) ATE253382T1 (de)
AU (1) AU1926599A (de)
CA (1) CA2316872C (de)
DE (1) DE69819559T2 (de)
HK (1) HK1033790A1 (de)
WO (1) WO1999033495A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3915914A1 (de) * 2020-05-27 2021-12-01 KONE Corporation Aufzugbedienfeld, aufzugsystem und verfahren

Families Citing this family (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6500267B1 (en) * 1998-10-06 2002-12-31 Net Zero, Inc. Reduction of energy consumption in a cooling or heating system through UVC irradiation
US7278272B2 (en) * 1997-02-20 2007-10-09 Steril-Aire, Inc. Marine air conditioner decontamination system
DE60138934D1 (de) * 2000-02-25 2009-07-23 Hitachi Ltd Mischvorrichtung für Analysenautomat
EP1432455A1 (de) * 2001-10-04 2004-06-30 The Johns Hopkins University Neutralisierung von in der luft schwebenden krankheitserregern
WO2003085373A2 (en) * 2001-11-09 2003-10-16 Lockheed Martin Corporation A system for the detection of pathogens in the mail stream
US6753536B2 (en) * 2001-11-28 2004-06-22 Wesley G. Humphreys Apparatus for neutralizing chemical and biological threats
US20030136824A1 (en) * 2001-12-04 2003-07-24 Simon Rudy J. Mailbox
AU2002360838A1 (en) * 2001-12-31 2003-07-24 Lockheed Martin Corporation Method for reducing airborne biological agents while processing mail
WO2003058202A2 (en) * 2001-12-31 2003-07-17 Lockheed Martin Corporation System and method of detecting, neutralizing, and containing suspected contaminated articles
DE60315794T2 (de) * 2002-01-16 2008-06-12 Oy Halton Group Ltd. Vorrichtung und verfahren für ultraviolett-ventilationslampen
US20030150475A1 (en) * 2002-02-11 2003-08-14 Lorne Abrams Method and apparatus for sanitizing reusable articles
US7258882B2 (en) * 2002-03-07 2007-08-21 Thomas R. Hankinson System for maintaining fresh quality and safe food attributes of minimally processed produce
US20040028552A1 (en) * 2002-03-20 2004-02-12 Bhardwaj Mahesh C. Gas contact ultrasound germicide and therapeutic treatment
CA2472807C (en) 2002-04-05 2011-04-05 Sharp Kabushiki Kaisha Method for evaluating elimination of microorganisms and apparatus for evaluating elimination of microorganisms
US7160566B2 (en) * 2003-02-07 2007-01-09 Boc, Inc. Food surface sanitation tunnel
US20040175290A1 (en) * 2003-03-06 2004-09-09 Steril-Aire Usa, Inc. Treatment of air and surfaces in a food processing plant
DE502004005506D1 (de) * 2003-04-25 2007-12-27 Hanspeter Steffen Verfahren und technische ausfü hrung zur desinfektion und hal tbarmachung von lebensmitteln und anderen produkten mittels o3 , o2 , co2 argon, uv-c licht und ultraschall im vakuum
US6905537B1 (en) * 2003-07-09 2005-06-14 Garry Parkinson Isaacs Machine and process for filterless removal of particles and organisms from ambient air, carpets and furnishings
US6848266B1 (en) * 2003-12-02 2005-02-01 Carrier Corporation Control of HVAC system
US20050230639A1 (en) * 2004-04-14 2005-10-20 Kash 'n Gold, Ltd. Knife and kitchen tool sterilizer and holder
US20050230638A1 (en) * 2004-04-14 2005-10-20 Kash 'n Gold, Ltd. Sterilizer for small items used by babies and children
US20070196235A1 (en) * 2004-07-15 2007-08-23 Michael Shur Ultraviolet radiation-based media purification
US7497990B2 (en) * 2004-12-30 2009-03-03 Kimberly-Clark Worldwide Inc. Process for the destruction of microorganisms on a product
US7626187B2 (en) * 2005-06-02 2009-12-01 George Younts Method and apparatus for eradicating undesirable elements that cause disease, ailments or discomfort
US7799137B2 (en) * 2005-07-15 2010-09-21 Stokely-Van Camp, Inc. Resonant frequency bottle sanitation
WO2007035069A1 (en) * 2005-09-23 2007-03-29 Lg Electronics Inc. Sterilizing device with ultraviolet ray and microwave oven having the same
US7634996B2 (en) * 2006-02-14 2009-12-22 Sensor Electronic Technology, Inc. Ultraviolet radiation sterilization
US7553456B2 (en) * 2006-03-02 2009-06-30 Sensor Electronic Technology, Inc. Organism growth suppression using ultraviolet radiation
ITRM20060118A1 (it) * 2006-03-08 2007-09-09 Turatti Srl Procedimento di lavaggio e sterilizzazione di prodotti alimentari in particolare verdure e relativa apparecchiatura
US7372044B2 (en) * 2006-05-17 2008-05-13 Andrew Ross UV sterilization of user interface fomites
US20090246073A1 (en) * 2008-03-26 2009-10-01 Rong Yan Murphy Apparatus and method for inline solid, semisolid, or liquid antimicrobial treatment
US8545915B2 (en) * 2008-05-02 2013-10-01 Oakshire Holdings, Inc. Method and apparatus for vitamin D enhancement in mushrooms
US8058629B2 (en) * 2008-06-19 2011-11-15 Long Catherine L Writing utensil sterilization apparatus
US8980178B2 (en) * 2009-05-23 2015-03-17 Sensor Electronic Technology, Inc. Medium treatment using ultraviolet light
JP5645172B2 (ja) * 2010-03-23 2014-12-24 国立大学法人 宮崎大学 真空及び共振型超音波処理による食品材料における微生物の制御方法及び制御装置
US9024276B2 (en) * 2010-06-23 2015-05-05 Johnson & Johnson Vision Care, Inc. Contact lens storage case surface disinfection
US8357914B1 (en) * 2010-06-28 2013-01-22 Dawn E. Caldwell UV disinfecting apparatus
EP2625263B1 (de) 2010-10-08 2020-03-11 Terumo BCT, Inc. Konfigurierbare verfahren und systeme für züchtung und ernte von zellen in einem hohlfaser-bioreaktorsystem
US8473097B2 (en) * 2010-12-15 2013-06-25 S & S X-Ray Products, Inc Pass-through wall-mounted medications cabinet with UV sterilization
US8624203B2 (en) 2011-02-23 2014-01-07 JLT & Associates, Inc. Conveyor sterilization
DE102011016371B4 (de) * 2011-04-07 2016-06-30 Maryia Mysko Fördereinrichtung für Personen
US8779385B2 (en) * 2011-04-18 2014-07-15 Gilda Noori Method and device for ultraviolet light sterilizing
US9297254B2 (en) 2011-08-05 2016-03-29 Halliburton Energy Services, Inc. Methods for monitoring fluids within or produced from a subterranean formation using opticoanalytical devices
US9222348B2 (en) 2011-08-05 2015-12-29 Halliburton Energy Services, Inc. Methods for monitoring the formation and transport of an acidizing fluid using opticoanalytical devices
US9441149B2 (en) 2011-08-05 2016-09-13 Halliburton Energy Services, Inc. Methods for monitoring the formation and transport of a treatment fluid using opticoanalytical devices
US9206386B2 (en) 2011-08-05 2015-12-08 Halliburton Energy Services, Inc. Systems and methods for analyzing microbiological substances
US8960294B2 (en) 2011-08-05 2015-02-24 Halliburton Energy Services, Inc. Methods for monitoring fluids within or produced from a subterranean formation during fracturing operations using opticoanalytical devices
US8997860B2 (en) 2011-08-05 2015-04-07 Halliburton Energy Services, Inc. Methods for monitoring the formation and transport of a fracturing fluid using opticoanalytical devices
US20130035262A1 (en) * 2011-08-05 2013-02-07 Freese Robert P Integrated Computational Element Analytical Methods for Microorganisms Treated with a Pulsed Light Source
US9395306B2 (en) 2011-08-05 2016-07-19 Halliburton Energy Services, Inc. Methods for monitoring fluids within or produced from a subterranean formation during acidizing operations using opticoanalytical devices
US9999782B2 (en) 2012-04-16 2018-06-19 Sensor Electronic Technology, Inc. Ultraviolet-based sterilization
US9061082B2 (en) * 2012-04-16 2015-06-23 Sensor Electronic Technology, Inc. Ultraviolet-based sterilization
US9702811B2 (en) 2012-04-26 2017-07-11 Halliburton Energy Services, Inc. Methods and devices for optically determining a characteristic of a substance using integrated computational elements
US9658149B2 (en) 2012-04-26 2017-05-23 Halliburton Energy Services, Inc. Devices having one or more integrated computational elements and methods for determining a characteristic of a sample by computationally combining signals produced therewith
US8941046B2 (en) 2012-04-26 2015-01-27 Halliburton Energy Services, Inc. Methods and devices for optically determining a characteristic of a substance
US9080943B2 (en) 2012-04-26 2015-07-14 Halliburton Energy Services, Inc. Methods and devices for optically determining a characteristic of a substance
US9383307B2 (en) 2012-04-26 2016-07-05 Halliburton Energy Services, Inc. Methods and devices for optically determining a characteristic of a substance
US9013702B2 (en) 2012-04-26 2015-04-21 Halliburton Energy Services, Inc. Imaging systems for optical computing devices
US9019501B2 (en) 2012-04-26 2015-04-28 Halliburton Energy Services, Inc. Methods and devices for optically determining a characteristic of a substance
CN104736261B (zh) 2012-08-28 2017-06-16 传感器电子技术股份有限公司 包括紫外线照明的存储系统
CN104853625A (zh) 2012-08-28 2015-08-19 传感器电子技术股份有限公司 多波灭菌系统
US9878061B2 (en) 2012-08-28 2018-01-30 Sensor Electronic Technology, Inc. Ultraviolet system for disinfection
WO2014036080A1 (en) 2012-08-28 2014-03-06 Sensor Electronic Technology, Inc. Ultraviolet gradient sterilization, disinfection, and storage system
US10383964B2 (en) 2012-08-28 2019-08-20 Sensor Electronic Technology, Inc. Storage device including ultraviolet illumination
US10646603B2 (en) 2012-08-28 2020-05-12 Sensor Electronic Technology, Inc. Multi wave sterilization system
US10441670B2 (en) 2012-08-28 2019-10-15 Sensor Electronic Technology, Inc. Storage device including ultraviolet illumination
US9707307B2 (en) 2012-08-28 2017-07-18 Sensor Electronic Technology, Inc. Ultraviolet system for disinfection
US10688210B2 (en) 2012-08-28 2020-06-23 Sensor Electronic Technology, Inc. Storage device including ultraviolet illumination
US9919068B2 (en) 2012-08-28 2018-03-20 Sensor Electronic Technology, Inc. Storage device including ultraviolet illumination
CN105050433A (zh) 2012-08-28 2015-11-11 传感器电子技术股份有限公司 用于消毒的紫外线系统
US9724441B2 (en) 2012-08-28 2017-08-08 Sensor Electronic Technology, Inc. Storage device including target UV illumination ranges
JP6633522B2 (ja) 2013-11-16 2020-01-22 テルモ ビーシーティー、インコーポレーテッド バイオリアクターにおける細胞増殖
US11008547B2 (en) 2014-03-25 2021-05-18 Terumo Bct, Inc. Passive replacement of media
JP6830059B2 (ja) 2014-09-26 2021-02-17 テルモ ビーシーティー、インコーポレーテッド スケジュール化された細胞フィーディング
US9289527B1 (en) * 2015-05-18 2016-03-22 George J. Lichtblau UV disinfection system with ballast current monitoring
WO2017004592A1 (en) 2015-07-02 2017-01-05 Terumo Bct, Inc. Cell growth with mechanical stimuli
KR101762739B1 (ko) 2016-02-15 2017-07-31 한국철도기술연구원 초음파를 이용한 유해 미생물 제거 장치 및 방법
WO2017147460A1 (en) * 2016-02-25 2017-08-31 Ralph Birchard Lloyd System and method for disinfecting an occupied environment using direction controlled germicidal radiation
EP3464565A4 (de) 2016-05-25 2020-01-01 Terumo BCT, Inc. Zellexpansion
US11104874B2 (en) 2016-06-07 2021-08-31 Terumo Bct, Inc. Coating a bioreactor
US11685883B2 (en) 2016-06-07 2023-06-27 Terumo Bct, Inc. Methods and systems for coating a cell growth surface
CN117247899A (zh) 2017-03-31 2023-12-19 泰尔茂比司特公司 细胞扩增
US11624046B2 (en) 2017-03-31 2023-04-11 Terumo Bct, Inc. Cell expansion
US10722083B2 (en) * 2017-10-03 2020-07-28 Thunderhill Investments, LLC Sanitary forced-air hand dryer
US11590248B2 (en) * 2017-10-30 2023-02-28 Hubbell Lighting, Inc. Pulsing high intensity narrow spectrum light
RU2687283C1 (ru) * 2018-11-30 2019-05-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный лесотехнический университет имени Г.Ф. Морозова" Способ получения композиционного материала биотехнологического назначения
US10986917B2 (en) 2019-08-14 2021-04-27 Sdc U.S. Smilepay Spv Multifunctional dental appliance and toothbrush cleaner
CN110898236A (zh) * 2019-11-28 2020-03-24 宇环智能科技(徐州)有限公司 一种生物技术研究用灭菌箱
US20210275714A1 (en) * 2020-03-04 2021-09-09 Lumen Hygienic, LLC Uvc anti-microbial breathing sterilizing modules, masks and devices
DE102020002083A1 (de) 2020-03-20 2021-09-23 Kastriot Merlaku Dekontaminations-Vorrichtung gegen Krankheitserreger
DE102020003042A1 (de) 2020-03-20 2021-09-23 Kastriot Merlaku Dekontaminations-Vorrichtung gegen Krankheitserreger
US11850336B2 (en) * 2020-05-22 2023-12-26 Molekule Group, Inc. UV sterilization apparatus, system, and method for aircraft air systems
US20220168459A1 (en) * 2020-08-20 2022-06-02 Aura Blue Llc Germicidal Lighting With Controlled Ventilation
US11779675B2 (en) 2020-10-19 2023-10-10 Molekule Group, Inc. Air sterilization insert for heating, ventilation, and air conditioning (HVAC) systems
MX2020014241A (es) * 2020-12-18 2022-06-20 Herman Diaz Arias Equipo de sanitizacion opto-sonico.
CN113291552A (zh) * 2021-06-09 2021-08-24 中国科学院电工研究所 一种物流包装箱用快速消杀系统
WO2023043985A1 (en) * 2021-09-16 2023-03-23 Falcon Power, LLC Respirator with air scrubbing system
DE102022000614A1 (de) 2021-12-23 2023-06-29 Kastriot Merlaku Karussell-Tür-Konstruktion

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2249473A (en) 1939-07-12 1941-07-15 Herbert Wolcott Electric sterilizer
GB671922A (en) * 1948-04-22 1952-05-14 Johan Ernst Nyrop A process for the destruction of micro-organisms, viruses and the like in liquids and tissue of vegetable and animal origin
US2814081A (en) 1955-04-27 1957-11-26 Lincoln L Stevenson Rapid hand sanitizer
US3481687A (en) 1965-03-08 1969-12-02 Sherman S Fishman Method and apparatus for ultrasonic sterilization
US3672823A (en) * 1970-03-25 1972-06-27 Wave Energy Systems Method of sterilizing liquids
FR2269275A7 (en) * 1974-04-23 1975-11-21 Buxade Joseph Ultrasonic dry sterilizer for documents esp banknotes - decontaminates without damage to notes or danger to operation
FR2446638A1 (fr) 1979-01-18 1980-08-14 Aussenac Jack Dispositif sono-actinique de nettoyage et d'aseptisation
US4448750A (en) 1981-06-05 1984-05-15 Fuesting Michael L Sterilization method
US4424188A (en) 1981-12-31 1984-01-03 International Paper Company Sterilization of packaging material
DE3500487A1 (de) 1985-01-09 1986-07-10 Hölter, Heinz, Dipl.-Ing., 4390 Gladbeck Uv-ultraschallbesen zur entkeimung von flaechen und koerpern
FR2599255B1 (fr) 1986-05-30 1993-07-02 Chartier Alain Procede et appareillage pour le nettoyage et la sterilisation de produits sensibles aux effets de la chaleur et des agents chimiques, notamment de lentilles de contact.
DE3881473T2 (de) 1987-10-22 1993-09-09 Duthie Jun Robert E Verfahren und sterilisationsvorrichtung.
US5120499A (en) 1990-01-11 1992-06-09 U. V. Black Box Corporation Method and system for asepticizing contact lenses and storing device
US5074322A (en) 1990-12-06 1991-12-24 Jaw Chin Woei Structure of sterilizing hand dryer
US5330722A (en) 1991-02-27 1994-07-19 William E. Pick Germicidal air filter
US5216251A (en) 1991-10-18 1993-06-01 Matschke Arthur L Apparatus and method for a bio-conditioning germicidal dryer
US5449502A (en) 1992-12-30 1995-09-12 Sanden Corp. Sterilizing apparatus utilizing ultrasonic vibration
EP0673656B1 (de) 1994-03-25 1997-08-20 Perentron Engineering Limited Verfahren zum Reinigen von Luft und Vorrichtung zur Durchführung des Verfahrens
CA2191856C (en) 1994-06-02 1999-09-28 Gerald C. Monagan Air purifier
US5466425A (en) 1994-07-08 1995-11-14 Amphion International, Limited Biological decontamination system
WO1996009776A1 (en) 1994-09-27 1996-04-04 Purepulse Technologies, Inc. Photocatalyst and pulsed light synergism in deactivation of contaminants
CA2311806C (en) * 1997-12-03 2004-04-20 Lawrence C. Darwin Water sterilization system incorporating ultrasonic device
IL129564A (en) * 1999-04-23 2004-06-20 Atlantium Lasers Ltd A method for disinfecting and purifying liquids and gases and a device for its use
JP2001187123A (ja) * 1999-12-28 2001-07-10 Tdk Corp 光触媒装置および光触媒浄化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9933495A3 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3915914A1 (de) * 2020-05-27 2021-12-01 KONE Corporation Aufzugbedienfeld, aufzugsystem und verfahren

Also Published As

Publication number Publication date
AU1926599A (en) 1999-07-19
CA2316872C (en) 2005-04-05
US6171548B1 (en) 2001-01-09
DE69819559D1 (de) 2003-12-11
WO1999033495A2 (en) 1999-07-08
CN1283998A (zh) 2001-02-14
WO1999033495A3 (en) 1999-08-26
EP1044026B1 (de) 2003-11-05
DE69819559T2 (de) 2004-09-16
US6576188B1 (en) 2003-06-10
HK1033790A1 (en) 2001-09-21
ATE253382T1 (de) 2003-11-15
CA2316872A1 (en) 1999-07-08
CN1185015C (zh) 2005-01-19
JP2001526941A (ja) 2001-12-25

Similar Documents

Publication Publication Date Title
EP1044026B1 (de) Oberflächensterilisierung mit hilfe von ultraviolettem licht und ultraschallwellen
US20210364171A1 (en) Air treatment systems
US9700642B2 (en) Method and apparatus for sterilizing and disinfecting air and surfaces and protecting a zone from external microbial contamination
US6090346A (en) Sterilization using ultraviolet light and ultrasonic waves
CA2749283C (en) Improved method and apparatus for producing a high level of disinfection in air and surfaces
US8581522B2 (en) Countertop decontaminating device
KR20060118508A (ko) 공기처리방법 및 공기처리기
JP2012516197A5 (de)
CA2575457A1 (en) Method of sterilization and sterilization apparatus
CA2846259A1 (en) Food-handling facility disinfection treatment
CN113041370A (zh) 隧道输送式紫外线新冠病毒杀菌消毒设备
JP2000342662A (ja) 閃光照射による殺菌方法およびその装置
JP2005218850A (ja) 殺菌方法及び殺菌装置
CN209965160U (zh) 一种杀菌保鲜柜
JP2520944Y2 (ja) 空気圧縮装置
Gadelmoula et al. Suitability of ultraviolet (A)-light emitting diode for air stream disinfection
BR102021007678A2 (pt) Câmara de desinfecção para patógenos
CA3205823A1 (en) Methods and systems for decontaminating a surface using germicidal uv light
JP2005143706A (ja) 殺菌方法及び殺菌装置
Ortoneda et al. Use of UV Light for Environmentally Friendly Microbial Control

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000724

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20010607

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031105

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031105

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031105

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031105

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031105

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031105

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031105

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69819559

Country of ref document: DE

Date of ref document: 20031211

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031217

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040205

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040205

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040205

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040806

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20061219

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20061229

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20061231

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070105

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040405

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20061230

Year of fee payment: 9

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20071217

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071217

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071217