EP1042944B1 - Procede et dispositif pour mesurer, etalonner et utiliser des pincettes laser - Google Patents

Procede et dispositif pour mesurer, etalonner et utiliser des pincettes laser Download PDF

Info

Publication number
EP1042944B1
EP1042944B1 EP98966384A EP98966384A EP1042944B1 EP 1042944 B1 EP1042944 B1 EP 1042944B1 EP 98966384 A EP98966384 A EP 98966384A EP 98966384 A EP98966384 A EP 98966384A EP 1042944 B1 EP1042944 B1 EP 1042944B1
Authority
EP
European Patent Office
Prior art keywords
particle
focus
field
particles
forces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98966384A
Other languages
German (de)
English (en)
Other versions
EP1042944A1 (fr
Inventor
Günter FUHR
Thomas Schnelle
Torsten Müller
Hermine Hitzler
Karl-Otto Greulich
Shamci Monajembashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evotec OAI AG
Original Assignee
Evotec OAI AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evotec OAI AG filed Critical Evotec OAI AG
Publication of EP1042944A1 publication Critical patent/EP1042944A1/fr
Application granted granted Critical
Publication of EP1042944B1 publication Critical patent/EP1042944B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H3/00Production or acceleration of neutral particle beams, e.g. molecular or atomic beams
    • H05H3/04Acceleration by electromagnetic wave pressure
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/006Manipulation of neutral particles by using radiation pressure, e.g. optical levitation

Definitions

  • the invention relates to methods and devices for measurement and calibration of optical field traps and determination of optically induced forces in all three spatial directions, applied to micrometer-sized particles and for use optical field traps.
  • Optical field traps also "optical tweezers”, “laser tweezers” or “optical traps” have been around for about two Decades in the fields of biotechnology, medicine and Molecular biology and other technical fields for Positioning and manipulation of micrometer and submicron size Particles used [G. Weber et al. in “Int. Rev. Cytol. "Vol. 131, 1992, p. 1; S.M. Block in” Noninvasive Techniques in Cell Biology “, Wiley-Liss., New York 1990, P. 375]. The development of laser tweezers is particularly successful A. Ashkin back [A. Ashkin in "Phys. Rev. Lett.”, Vol. 24, 1970, p. 156].
  • the principle of particle capture through optical induced forces is based on the fact that in addition to the light pressure, the always pushes a particle away from the light source, gradient forces occur that lead a particle into a Focus arrives or is held steadily in it or with it is moved.
  • the prerequisite is that the absorption and Reflection of the particle is low, while the difference in Refractive index to the surrounding solution should be as large as possible.
  • Electromagnetic field cages go to W. Paul [W. Paul et al. in "Research reports from the Ministry of Economic Affairs of North Rhine-Westphalia", Nos. 415 and 450; W. Paul in “Phys. smooth", 46, 1990, p. 227]. They are used primarily in elementary particle physics for trapping and measuring atomic particles used at low gas pressure. 1993 were the first liquid-filled, three-dimensional microfield cages under Use of dielectrophoretic forces presented [T. speed et al. in "Biochim. Biophys. Acta", Vol. 1157, 1993, p. 127].
  • Variant II [CP Dennis in "Faraday Discuss. Chem. Soc.”, Vol. 90, 1990, p. 209]: The mean deflection of a particle in the laser focus is measured on the basis of Brownian collisions. In principle, measurement in all spatial directions is possible here, but it requires a very precise measurement of the particle movement with submicron accuracy and cannot be used for most Mie particles, since these are too large for a noticeable deflection. In addition, the measurements become more difficult and inaccurate with increasing laser power and that only in the very narrow focal area of the laser can work.
  • Variant III [CP Dennies et al. in "Applied Optics", 1993, p. 1629]: A tearing off of a particle is examined by means of laser tweezers, which is attached to a base in a defined manner. The scattering of an evanescent surface wave with total reflection is used to determine the movement of the object in the z direction (perpendicular to the surface) with an accuracy in the nm range. This method, too, cannot be applied in all spatial directions and, above all, cannot be used quickly, but rather requires a lot of calibration and equipment. In addition, the optical radiation field near the surface does not correspond to the conditions in free solution.
  • a method for setting predetermined adhesion phenomena between individual suspended microscopic particles or to determine the binding forces that occur is not yet available.
  • the invention has for its object improved methods for handling particles with laser tweezers, with which in particular the determination of optically induced Forces or binding forces and the exercise of predetermined ones Forces is made possible.
  • a method according to the invention is intended especially the determination of forces with an increased measuring speed and better reproducibility and accuracy guarantee. Determining forces on microscopic particles are said to work via an electrical Signal in a quickly repeatable and automatable form, the forces with an accuracy in the pN range and below it in any spatial direction should.
  • the object of the invention is also devices to specify the implementation of the procedures.
  • At least one microscopic particle in the focus of an optical cage in a microelectrode assembly and with respect to to position an electrical capture area (or capture point), by electrical field gradients in the microelectrode arrangement is formed.
  • the focus of the optical cage with the particle is initially separated from the capture area, i.e. at a distance from the electrical field minimum of the capture area, which represents an electrical field cage.
  • the field forces in the optical cage and / or in the electrical capture area and / or the distance between the optical cage and the electrical capture range varies until a transition movement of the particle from the focus to the capture area or vice versa.
  • the electric, the catch area has forming field gradients on the particle or particles acting forces, whose fields each have a minimum have.
  • the minimum corresponds to the electric field forces the catch area.
  • the minimum of optical induced forces is the focus of the optical cage. Is between two minima a field barrier exists, which depends on the amplitudes of the effective electric fields, the light output of the optical cage and the distance between the minima.
  • the particle or particles within the Microelectrode arrangement positioned in a predetermined manner or (in the case of several particles).
  • a particle in the focus of an optical cage to determine acting, optically induced forces.
  • only one particle is in focus or temporarily present in the capture area of the microelectrode arrangement.
  • the field properties i.e. the amplitude of the electrical Field, the light output and / or the distance of the minima, is varied until the transition movement of the particle between the minima, i.e. between the focus and the capture area or vice versa.
  • the transition movement is very accurate and can be determined reproducibly. From the to trigger the transition movement required amplitude of the electric fields in the microelectrode arrangement, the optically induced Determine forces in the optical cage.
  • the binding forces between several particles e.g. two particles.
  • this embodiment is a particle in the focus of the optical cage and a Particles arranged in the electrical capture area.
  • the field properties in the microelectrode arrangement vary to determine those field characteristics at which the transition movement of the particle from focus to particle in the catch area or vice versa. This principle is accordingly also with particle groups in the focus or in the capture area realizable.
  • a third important aspect of the invention provided microscopic particles in a microelectrode arrangement with the mentioned, simultaneously available at least two field minima relative to the setting of predetermined field forces to each other at least temporarily in groups or aggregates to position or merge or such groups or disassemble units into parts.
  • This invention Aggregate manipulation is again preferred with the Combined above aspects of the invention can but also regardless of the setting of predetermined (if also unknown) electrical and / or optical field forces be implemented.
  • the invention also relates to a microsystem which is used for Training of an opto-electric double cage set up is by the simultaneous generation of at least two Field minima of an electrical capture area and an optical one Cage is generated.
  • a microsystem which is used for Training of an opto-electric double cage set up is by the simultaneous generation of at least two Field minima of an electrical capture area and an optical one Cage is generated.
  • it has a fluidic microsystem a microelectrode arrangement for generating the electrical capture area and one for the training of the optical Transparent cage within the microelectrode assembly Structure.
  • the microsystem is preferably a fluid one Microsystem that is one-sided towards a light source Generation of the optical cage can be open.
  • “Laser trapping” can be a particle in a local Balance is maintained by an optical trap or an optical cage in the focus of at least one laser beam is formed.
  • a high-frequency microfield cage can a particle be kept in a local equilibrium, that by an electric catch area of the respective realized field distribution is formed.
  • the catch area can, depending on the field distribution, by a point, a line or a room area can be formed.
  • the invention can implemented accordingly with arbitrarily formed catch areas become.
  • the invention is based on the above first point of view in particular, the optically induced Forces in the optical trap (optical cage) the electrical forces on the particle at the transition between the equilibrium states, d. H.
  • the task becomes special solved in that the "laser trapping" in one electrical high-frequency microfield cage, its field forces and electrical field distribution are known and for Coupling the necessary to form the optical cage Laser light is set up.
  • the im Lasertrap (focus) caught particles from the capture point of the Field cage with low electrical catch power in a defined Position at a distance from the snap point can be determined by the following Increase in the amplitude of the electrical control signals the threshold of the field cage can be determined exactly where the electric field forces the particle from the optical Move focus back to the snap point, or vice versa.
  • the coupling of what is required to form the optical cage Laser light is made through various structural measures achieved on the micro field cage. These include in particular the Attaching at least a subset of the electrodes of the microfield cage on a substrate that is transparent and so thin is that a laser light source is sufficiently close to the microfield cage can be performed so that the focus is formed in this becomes.
  • laser tweezers includes the laser light source u. a. a coupling lens numerical aperture as high as possible. This is the Focal length usually in the range of a few hundred micrometers.
  • the transparent substrate thus preferably has one Thickness less than the focal length of the laser light source.
  • the invention allows the qualitative and / or quantitative parameters of the optically induced forces on a particle.
  • the quantitative determination the optically induced forces can come from a few sizes, the z. B. the locations of focus and capture point that Field distribution between the electrodes, the electrical Properties of the particle and its environmental solutions as also the shape, phase position, frequency and amplitude of all electrode signals include. All of these sizes can be independent from the actual measurement or in advance to a purely electrical one Ways or via a unique numerical simulation of the Determine the field distribution in the high-frequency cage.
  • the optically induced Forces that act on the particle can be released the amplitude of the electrical control signals of the electrical Field cage at the transition between equilibria Determine (transitional movement).
  • An advantage of the invention is that the force gradient of the optically induced forces is relatively steep, so that Transition between equilibrium thresholds or by leaps and bounds, making it particularly easy and precise can be registered.
  • this procedure can be automated and for calibration of the laser beam can be used. Let the measurements can be repeated as often as required in a few seconds execute and can also on one and the same particle performed in the environment that will be used later become.
  • absolute values of the optically induced forces can deviations in symmetry of the optical radiation and their Intensity profiles near and in the focal area, i.e. also relative Values to be determined.
  • the invention is with any particles such as synthetic Particles or biological cells or their components implementable.
  • the particle size is in the entire size range of particles that can be manipulated with laser tweezers, preferably with a size smaller than 200 microns.
  • FIG. 1 shows a section of a microsystem according to the invention schematically shown enlarged.
  • the representation shows only a microelectrode arrangement consisting of the microelectrodes 11 to 18 (without control lines) and a between the microelectrodes in a suspension liquid suspended microscopic particle 113.
  • the microelectrodes are in planar form on opposite walls of the Microsystem structure arranged, for example the x-y plane spans a substrate plane.
  • the microelectrodes 11 to 18 are set up with such electrical potentials to be charged that field gradients with a field minimum be formed.
  • the technology of electrode control for Generation of a predetermined minimum is known per se and is therefore not described in detail here.
  • the location of the Field minimum is of the phases and amplitudes of the control potentials dependent on the microelectrodes 11 to 18 and can in be set in a predetermined manner.
  • the catch area or the electric field cage is also called a high-frequency cage, since the microelectrodes preferably with high frequency Control potentials (frequency range see below) for manipulation of microscopic particles based on negative Dielectrophoresis can be applied.
  • optically induced field forces according to the invention on particle 113 takes place in such a way that particle 113 caught in the focus of the laser beam and by a focus shift in the designated position (e.g. at location 114) by the coordinates (x1, y1, z1)) becomes.
  • the focus is shifted by a mechanical change the relative positions of the microsystem and the source of the laser beam 19 by adjusting devices known per se and / or deflection devices of the laser beam.
  • Over a Increasing the amplitude of the high-frequency signals applied to the electrodes become the electrical polarizing forces of the field cage until the particle 113 from the Laser focus is pulled out and into the capture point 110b moved (transition movement between local equilibria in the field minima).
  • the transition between the local equilibria can alternatively can also be done by increasing the laser power and the particle from the catch area of the field cage in the focus is moved and / or by the locations of the snap points or shift the focus and determine the path or distance of the field minima at which the transition movement takes place takes place.
  • the electrical polarizing forces on the particle and the field distribution between the electrodes 11 to 18 are known, there is a direct proportionality between the measurable laser power in the focal area, the Amplitude of the electrical signals and those on the particle acting optically induced forces.
  • the Procedure and displacement of particle 113 in any spatial direction can the ones acting on the concrete particle Determine optically induced forces quantitatively. It deals consequently an electrical calibration of the optically induced opposing forces with little effort is to be provided and allows forces in the range of fN up to a few hundred pN.
  • the optically induced forces are thus in at least one Case from the field or location properties of the particle 113 determined during a transition movement, the electrical Polarizing forces on the particle 113 from the itself computable field distribution between the microelectrodes 11 to 18 and the given when executing the transitional movement
  • Locations of focus 110a and capture point 110b are determined. These locations can be measured with an observation microscope. In all other cases can be based on the above Proportionality a relative determination of the optical induced forces occur.
  • Figure 2 shows an expanded representation of a system to measure the optically induced forces on an im Focus on captured particles.
  • the microfield cage will formed by microelectrodes that face each other Surfaces of the substrates 27, 29 are attached.
  • the substrates 27, 29 are separated by a spacer 28 which forms a suspension room in which to be examined Particle is exposed to the field of the microfield cage.
  • This in Figure 2 upper substrate is thin enough so that the focus of the optical cage is adjustable in the suspension room.
  • Cells or other microparticles suspended in a solution are flushed into the channel 22 via an opening 21 and then enter the field cage 23, the output electrodes 24a-d of which have a high-frequency field (kHz or MHz range, any signal shape (e.g. rectangle -, sine, triangle or other signal forms), amplitude a few mV up to some 10 V)) can be applied.
  • This initially one-sided application of electrical potentials to the microelectrodes only forms an electrical field barrier for flushed-in microparticles in the channel 22. If there is a particle in the cage 23, the input electrodes 25a-d are also switched on and / or the flow is stopped.
  • phase shifts of the electrode signals typical of electrical trapping for two possible alternating field and two rotation field control types (2 * AC field or 2 * red field) are summarized in Table 1.
  • Phase controls of the electrode signals of an octopole Field type El. 25b El. 24b El. 24d El. 25d El. 25a El. 24a El. 24c El.
  • the red field is a torque exerted on the particle to form a rotation (last line of Tab. 1) leads to the determination of the force can be used.
  • the values of the penultimate Row of table 1 is torque compensation.
  • the electrodes are in planar form on two glass substrates 27, 29 with semiconductor technology Methods have been processed overhead using a spacer 28 are mounted liquid-tight so that they are in the sewer liquid 22 immerse. For high laser focusing it is necessary to use one of the glass substrates (here (27)) if possible run thin.
  • the substrate is 27 150 to 200 microns thick, and the substrate 29 consists of 0.5 to 1 mm thick glass or plastic.
  • a particular advantage of the invention is that the method quick and easy especially in the one to be used later Surrounding medium with those to be examined or manipulated Particles applied under comparable conditions can be. Furthermore, this method is not specific Particle and surface shapes limited, but with any Particle geometries can be realized. Even it can Forces on connected groups of particles (e.g. aggregates or the like.) Can be determined in any shape.
  • FIG. 6 shows a microelectrode arrangement in octopole form with the microelectrodes 61 to 68 analogous to FIG. 1.
  • the microelectrodes 61 to 64 or 65 to 68 are in one for implementation of the method according to the invention Microsystem in two spaced apart levels for training of an electric field cage with a capture area arranged or point forming field minimum.
  • the electric one Field cage is inside the microelectrode assembly formed by the cuboid shown in Figure 6 is outlined schematically.
  • Reference numeral 69 denotes one focused in the interior of the microelectrode arrangement Beam of light (preferably laser beam). A first particle in The focus is on the shape of a biological cell 611 of the light beam 69.
  • a second particle which is shown in the Example is also a biological cell 612, is located at the catch point of the electrical field cage. Analogous for the determination of the optically induced forces explained above by observing the transition movement of a particle from The focus in the capture area can now be a determination of the binding forces be carried out between the particles, such as this is explained below.
  • two cells 611, 612 are brought into the interior in succession introduced the microelectrode arrangement 61 to 81.
  • the first cell 611 is flushed into the microelectrode arrangement and after complete control of the octopole field kept in the electric catch area.
  • the first cell 611 with the optical cage through the laser beam 69 is formed, taken over and spaced from the catch area positioned.
  • the second is then rinsed in Cell 612 and its positioning in the capture area, e.g. in the Center of the microelectrode arrangement 61 to 68.
  • biological particles are the same or different Kind or biological cells or cell components on the one hand and / or synthetic particles with predetermined active substances on the other hand.
  • the cells 611, 612 are brought into contact, with an adhesive bond between the two cells is trained.
  • the adhesive bond is, for example brought about by one of the following techniques. First is it is possible to turn off the first cell 611 by turning off the laser beam 69 release and thereby under the effect of electrical Field forces towards the catch area of the electrical field cage to move where the touch of the second cell 612 and the formation of the adhesive bond takes place. Second, it is possible, the focus of the laser beam 69 with respect to the capture area to adjust so that the first cell 611 with the second cell 612 or even in contact with one predetermined force is pressed against this.
  • the mutual The force of pressing the cells together can be derived from the electrical field forces in the catch area and the example optical forces determined according to the technique explained above derive in the focus of the laser beam 69.
  • For quantitative Comparability of the determination of binding forces is the adhesive bonding for a predetermined time range (e.g. approx. 0.1 to 10 seconds). But there are also longer ones Times of e.g. up to 1000 seconds possible.
  • the binding forces (interaction forces, adhesive strength) determined between the cells as follows.
  • the determination of forces is carried out analogously to the determination of the optically induced forces on a single particle Variation of field characteristics and identification of those Field strengths in the electrical capture area and optical cage, in which there is a tear-off movement between the cells. For example, given electrical potential amplitudes repeats the one focused on the first cell 611 Laser beam 69 adjusted so that the focus is from the capture area removed, and if the first cell 611 is not aligned has moved the focus, deferred and with a gradual increased light output.
  • a particular advantage of this procedure is its Repeatability with a given pair of particles and in the Possibility of accurate contact times between cells pretend.
  • the surface receptors of the first cell become then with a test or active substance from a molecular Library in contact with the suspension solution in the microsystem brought. Then a second cell (or a synthetic particles with well binding surface molecules) brought up to the first cell.
  • the binding forces provide e.g. one of the following results. Are the binding sites of the first cell already saturated by the active substance, there is no or one weak binding of the test cell. Otherwise there is a strong one Binding the test cell. This allows biological cells evaluate and in relation to the response to certain active substances sort by.
  • FIG. 7 shows a microelectrode arrangement analogous to Figures 1 and 6 with the microelectrodes 71 to 78 and one in the interior of the microelectrode arrangement focused light beam 79.
  • a first cell 712 in the electrical capture area of the Microelectrode assembly 71 to 78 captured and positioned.
  • a second cell 711 or a synthetic particle with an active substance is captured with the light beam 79 and along a predetermined path 713 on the first cell 712 passed or with for a predetermined contact time brought this into contact.
  • the individual cells can also be cell groups or aggregates for mutual stimulation for a predetermined time Effect of predetermined forces brought together and separated again become.
  • FIG. 8 again shows a microelectrode arrangement with the Microelectrodes 81 to 88 and one in the interior of the microelectrode arrangement focused light beam 89.
  • FIG 811 to 814 shown in the electrical capture range, to which a fifth cell 815 in a predetermined position (corresponding the direction of the arrow) is added.
  • the fifth cell 815 for a predetermined time with a predetermined force pressed against the already formed cell group 811 to 814, to the formation of binding forces in this predetermined To enable relative position.
  • any cell aggregates can be predetermined Build aggregate shapes.
  • This procedure is also implementable with synthetic microparticles that are let it polarize negatively and in the electrical capture range are repelled by the microelectrodes (negative Dielectrophoresis).
  • a device consists of an arrangement a fluidic microsystem 91, an illumination device 92 for producing an optical cage in a microelectrode arrangement of the microsystem 91, where the microsystem 91 and the lighting device 92 with an adjustment device 93 are adjustable relative to each other, and one Observation and / or sensor device 94 (e.g. microscope), as shown schematically in Fig. 9.
  • the microsystem is provided with fluidic and potential control device 95, as is known in itself.
  • the lighting device 92 is, for example, laser tweezers known per se, the light source, for example, a diode laser or a semiconductor laser and one for focusing Includes microscope assembly.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Claims (27)

  1. Procédé pour déterminer ou exercer des forces induites optiquement sur au moins une particule au point focal d'une cage optique, ledit procédé comprenant les étapes suivantes :
    a) Positionnement du point focal dans un système de micro-électrodes doté d'un champ électrique qui présente un gradient de champ formant un domaine d'acquisition électrique tridimensionnel, à une distance du domaine d'acquisition, et
    b) Variation de l'amplitude du champ électrique, du flux lumineux du rayon lumineux formant la cage optique et/ ou de la distance du domaine d'acquisition par rapport au point focal, pour détecter sous laquelle de ces caractéristiques de champ variées se produit un mouvement de transition des particules du point focal au domaine d'acquisition ou inversement et pour constituer une disposition au moins temporaire de la particule dans le domaine d'acquisition.
  2. Procédé selon la revendication 1, dans lequel, pour déterminer les forces induites optiquement, une particule est disposée soit au point focal soit dans le domaine d'acquisition et la force induite optiquement est déterminée à partir de l'amplitude du champ électrique et de la distance du domaine d'acquisition au point focal, le mouvement de transition de la particule s'effectuant, à ce niveau, du point focal jusqu'au domaine d'acquisition ou inversement.
  3. Procédé selon la revendication 2, dans lequel la détermination de la force induite optiquement est répétée pour toutes les directions d'espace intéressantes conformément à l'orientation réciproque de la position du point focal par rapport au domaine d'acquisition.
  4. Procédé selon la revendication 2 ou 3, dans lequel un calibrage de la cage optique s'effectue par la détermination du rapport existant entre le flux lumineux destiné à produire la cage optique et les forces induites respectivement au niveau d'une particule dans une cage optique.
  5. Procédé selon l'une quelconque des revendications 2 à 4, dans lequel la distance entre le point focal et le domaine d'acquisition est d'au moins un dixième du diamètre de la particule.
  6. Procédé selon l'une quelconque des revendications précédentes, dans lequel le domaine d'acquisition est un point d'acquisition qui se trouve au sein du champ de rayonnement de la cage optique, de sorte que, lorsque l'amplitude du signal de l'électrode ou du flux lumineux entre le point d'acquisition et le point focal se réduit ou augmente, la particule se déplace ça et là et que la valeur correspondante de l'amplitude peut être utilisée pour déterminer la force induite optiquement.
  7. Procédé selon la revendication 1, dans lequel sont disposées consécutivement dans le domaine d'acquisition une pluralité de particules qui sont positionnées respectivement avec la cage optique dans le domaine d'acquisition et placées dans celui-ci dans une position prédéterminée relativement aux particules se trouvant déjà éventuellement dans le domaine d'acquisition.
  8. Procédé selon l'une quelconque des revendications 1 à 6, dans lequel s'effectue un alignement du rayon lumineux de la cage optique et/ ou une détermination de la qualité d'acquisition, de la symétrie ou d'autres caractéristiques de calibrage de la cage optique.
  9. Procédé selon l'une quelconque des revendications 1 à 6, dans lequel une caractérisation des particules s'effectue sur la base de la force induite optiquement qui est déterminée.
  10. Procédé pour déterminer les forces de liaison entre les particules microscopiques, dans lequel au moins une première particule est disposée au point focal d'une cage optique et au moins une deuxième particule est disposée dans le domaine d'acquisition tridimensionnel d'un système de micro-électrodes, la première et la deuxième particule étant mises en contact pendant une période de contact prédéterminée, et ensuite, une variation de l'amplitude du champ électrique, du flux lumineux et/ ou de la distance entre le domaine d'acquisition et le point focal étant réalisée jusqu'à ce que l'on constate que, un mouvement de transition étant constitué, la première particule du point focal peut être éloignée du domaine d'acquisition et de la deuxième particule, les forces de liaison entre les particules étant déterminées à partir de l'amplitude du champ électrique et du flux lumineux lors du mouvement de transition.
  11. Procédé selon l'une quelconque des revendications précédentes, dans lequel les électrodes du système de micro-électrodes sont alimentées alternativement par des signaux déphasés de 180° et/ ou par des signaux rotatifs de division de phase prédéterminée.
  12. Procédé selon l'une quelconque des revendications précédentes, dans lequel le domaine d'acquisition est séparé de la cage optique par au moins une barrière de champ.
  13. Procédé selon l'une quelconque des revendications précédentes, dans lequel les mouvements de particules sont détectés optiquement et/ ou électriquement.
  14. Procédé selon l'une quelconque des revendications précédentes, dans lequel les particules synthétiques ou naturelles ont une taille inférieure à 200 µ.
  15. Procédé selon l'une quelconque des revendications précédentes, dans lequel les particules sont des cellules biologiques ou leurs composants.
  16. Procédé selon l'une quelconque des revendications précédentes, dans lequel le mouvement de transition de la particule du domaine d'acquisition au point focal ou inversement est utilisé pour l'alignement de la cage optique.
  17. Dispositif pour déterminer ou exercer des forces induites optiquement sur au moins une particule au point focal d'une cage optique, comprenant :
    un micro-système fluide avec un système de micro-électrodes qui est aménagé pour former un champ électrique avec un domaine d'acquisition tridimensionnel,
    un dispositif d'éclairage qui est aménagé pour former une cage optique au sein d'un système de micro-électrodes du micro-système, et
    un dispositif d'observation et/ ou de détection pour détecter le mouvement des particules au sein du système de micro-électrodes.
  18. Dispositif selon la revendication 17, dans lequel l'agencement de micro-électrodes comprend des électrodes planes qui sont aménagées en groupes sur deux substrats à distance l'un de l'autre, l'un des substrat étant au moins transparent.
  19. Dispositif selon la revendication 19, dans lequel le substrat transparent possède une épaisseur inférieure à 500 µ.
  20. Dispositif selon la revendication 18, dans lequel les électrodes sont aménagées aux surfaces disposées l'une face à l'autre du substrat et dans lequel les substrats sont séparés l'un de l'autre par un écarteur qui forme un espace de suspension dans lequel le point focal de la cage optique peut être injecté par le dispositif d'éclairage à travers un ou plusieurs substrats.
  21. Dispositif selon la revendication 20, dans lequel l'espace de suspension fait partie d'une structure en canal au travers de laquelle les particules peuvent être introduites au moyen d'un courant de solution dans le champ du système de micro-électrodes.
  22. Dispositif selon l'une quelconque des revendications 17 à 21, dans lequel le système de micro-électrodes comprend une pluralité d'électrodes qui sont aménagées pour produire un champ multipolaire avec une répartition du champ électrique symétrique en direction x, y et/ ou z.
  23. Dispositif selon l'une quelconque des revendications 17 à 22, dans lequel les électrodes sont recouvertes d'une couche isolante, diélectrique ou sont constituées essentiellement de métaux inertes par rapport au liquide de suspension du micro-système.
  24. Dispositif selon la revendication 23, dans lequel les électrodes sont constituées de platine, titane, tantale ou or.
  25. Dispositif selon l'une quelconque des revendications 17 à 24, dans lequel les électrodes sont constituées, par des méthodes utilisant les technologies semi-conductrices, de forme tridimensionnelle ou de techniques hybrides.
  26. Utilisation d'un procédé ou d'un dispositif selon l'une quelconque des revendications précédentes pour calibrer une pincette laser.
  27. Utilisation d'un procédé ou d'un dispositif selon l'une quelconque des revendications précédentes pour la stimulation sélective de cellules biologiques.
EP98966384A 1997-12-28 1998-12-21 Procede et dispositif pour mesurer, etalonner et utiliser des pincettes laser Expired - Lifetime EP1042944B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19757785A DE19757785B4 (de) 1997-12-28 1997-12-28 Verfahren zur Bestimmung optisch induzierter Kräfte
DE19757785 1997-12-28
PCT/EP1998/008370 WO1999034653A1 (fr) 1997-12-28 1998-12-21 Procede et dispositif pour mesurer, etalonner et utiliser des pincettes laser

Publications (2)

Publication Number Publication Date
EP1042944A1 EP1042944A1 (fr) 2000-10-11
EP1042944B1 true EP1042944B1 (fr) 2002-07-24

Family

ID=7853326

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98966384A Expired - Lifetime EP1042944B1 (fr) 1997-12-28 1998-12-21 Procede et dispositif pour mesurer, etalonner et utiliser des pincettes laser

Country Status (6)

Country Link
US (1) US6991906B1 (fr)
EP (1) EP1042944B1 (fr)
JP (1) JP2002500110A (fr)
AT (1) ATE221305T1 (fr)
DE (2) DE19757785B4 (fr)
WO (1) WO1999034653A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112880912A (zh) * 2021-01-08 2021-06-01 浙江大学 基于真空全息光镊的空间分辨压强测量系统及方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19939574B4 (de) * 1999-08-20 2010-08-05 Europäisches Laboratorium für Molekularbiologie (EMBL) Verfahren zur dreidimensionalen Objektabtastung
DE10130004C2 (de) * 2001-06-25 2003-04-30 Europ Lab Molekularbiolog Verfahren zur Bestimmung der Position eines Teilchens in einem fokussierten Laserstrahl
ATE285590T1 (de) * 2002-10-25 2005-01-15 Evotec Technologies Gmbh Methode und vorrichtung zur aufnahme dreidimensionaler abbildungen von schwebend gehaltenen mikroobjekten unter verwendung hochauflösender mikroskopie
US7586684B2 (en) * 2005-01-21 2009-09-08 New York University Solute characterization by optoelectronkinetic potentiometry in an inclined array of optical traps
US7745788B2 (en) * 2005-09-23 2010-06-29 Massachusetts Institute Of Technology Optical trapping with a semiconductor
WO2008034102A2 (fr) * 2006-09-15 2008-03-20 Haemonetics Corporation Cartographie de surface par manipulation optique de particules par rapport à une surface fonctionnalisée
DE102007046516A1 (de) 2007-09-28 2009-04-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zur Konditionierung biologischer Zellen
CN101430942B (zh) * 2007-11-06 2011-11-16 瑞鼎科技股份有限公司 一种具有微粒抬升装置的光钳装置
DE102007055598A1 (de) * 2007-11-20 2009-05-28 Universität Bielefeld Verfahren zur Messung der Kraft, die auf ein in einer optischen Pinzette/Falle gefangenes Objekt wirkt und optische Pinzette/Falle
DE102008034089A1 (de) * 2008-07-21 2010-01-28 Universität Bielefeld Verfahren und Vorrichtung zur Messung der Kraft, die auf ein in einer optischen Fallenanordnung gefangenes Objekt wirkt
JP6551149B2 (ja) * 2015-10-22 2019-07-31 株式会社ジェイテクト 微粒子捕捉方法及び光ピンセット装置
JP6582867B2 (ja) * 2015-10-22 2019-10-02 株式会社ジェイテクト 光ピンセット装置
JP6606975B2 (ja) * 2015-10-28 2019-11-20 株式会社ジェイテクト 光ピンセット装置
BR112019017671A2 (pt) 2017-04-23 2020-03-31 Hewlett-Packard Development Company, L.P. Separação de partículas
JP2022535922A (ja) 2019-06-25 2022-08-10 ヒューレット-パッカード デベロップメント カンパニー エル.ピー. チャネルを有する成形構造
CN112466506B (zh) * 2021-01-29 2021-04-27 之江实验室 一种真空光阱起支方法及装置与应用
CN113238075B (zh) * 2021-04-22 2023-02-14 哈尔滨工程大学 一种基于光纤光镊技术的流速计
CN112863728B (zh) * 2021-04-26 2021-07-02 之江实验室 一种基于电场量标定的多维度光镊校准装置及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198369A (en) * 1990-04-25 1993-03-30 Canon Kabushiki Kaisha Sample measuring method using agglomeration reaction of microcarriers
JP3244764B2 (ja) * 1992-04-03 2002-01-07 科学技術振興事業団 微粒子反応とその計測方法
US5620857A (en) * 1995-06-07 1997-04-15 United States Of America, As Represented By The Secretary Of Commerce Optical trap for detection and quantitation of subzeptomolar quantities of analytes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112880912A (zh) * 2021-01-08 2021-06-01 浙江大学 基于真空全息光镊的空间分辨压强测量系统及方法

Also Published As

Publication number Publication date
EP1042944A1 (fr) 2000-10-11
ATE221305T1 (de) 2002-08-15
WO1999034653A1 (fr) 1999-07-08
DE19757785A1 (de) 1999-07-15
US6991906B1 (en) 2006-01-31
DE59804934D1 (de) 2002-08-29
DE19757785B4 (de) 2005-09-01
JP2002500110A (ja) 2002-01-08

Similar Documents

Publication Publication Date Title
EP1042944B1 (fr) Procede et dispositif pour mesurer, etalonner et utiliser des pincettes laser
DE102010023099B3 (de) Verfahren und Vorrichtung zum Charakterisieren von biologischen Objekten
EP1311655B1 (fr) Dispositif et procede pour mettre en contact electrique des cellules biologiques en suspension dans un liquide
DE19544127C1 (de) Verfahren und Vorrichtung zur Erzeugung von Resonanzerscheinungen in Partikelsuspensionen und ihre Verwendung
DE60010666T2 (de) Verfahren und vorrichtung zur programmierbaren behandlung von fluiden
DE60120396T2 (de) Verfahren und vorrichtung für patch-clamp-messungen an zellen
WO2004070361A1 (fr) Detection multiparametre dans un microsysteme fluidique
DE19952322C2 (de) Verfahren und Vorrichtung zur Partikeltrennung
DE102005030859A1 (de) Elektrodenanordnung, deren Verwendung sowie Verfahren zu deren Herstellung
EP1155303B1 (fr) Procede et dispositif pour la detection d'objets microscopiques
EP1525449A1 (fr) Mesure d'impedance dans un microsysteme fluidique
DE102006023238A1 (de) Vorrichtung und Verfahren zur kontaktlosen Fixierung, Positionierung, Freigabe und Entnahme von Partikeln
DE19745807C2 (de) Magnetkugel-Mikrorheometer
WO2005045400A1 (fr) Procede et dispositifs pour examiner un objet deformable
DE19859460C2 (de) Verfahren und Vorrichtung zur elektro-optischen Einzelpartikelspektroskopie
EP1025428B1 (fr) Procede et dispositif pour positionner des microparticules dans des cages de champs
DE102006037739A1 (de) Vorrichtung zur Durchführung eines Analyseverfahrens, insbesondere zur Erkennung biochemischer Moleküle, und mit dieser Vorrichtung ausführbare Analyseverfahren
DE19500683A1 (de) Trapping von Molekülen und Mikropartikeln in Feldkäfigen
DE102004053596B4 (de) Verfahren und Vorrichtungen zur Bearbeitung einzelner biologischer Zellen
DE19605830C1 (de) Lagestabile Positionierung aktiv beweglicher Einzeller
DE102020120425A1 (de) Verfahren und fluidisches Mikrosystem zur dielektrophoretischen Manipulierung von suspendierten Partikeln
DE19857692C1 (de) Verfahren und Vorrichtung zur zellspurbasierten Zelluntersuchung
EP2185680B1 (fr) Dispositif et procédé de conditionnement de cellules biologiques
DE102008007707A1 (de) Verfahren und Vorrichtung zur Beladung eines Biegebalkens
DE19955846A1 (de) Verfahren und Vorrichtung zur Erfassung der Eigenschaften oder Eigenschaftsveränderungen suspendierter mikroskopischer und submikroskopischer Objekte durch Auswertung der frequenzabhängigen Orientierung in planaren Feldern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000707

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010816

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EVOTEC OAI AG

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020724

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20020724

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020724

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020724

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020724

REF Corresponds to:

Ref document number: 221305

Country of ref document: AT

Date of ref document: 20020815

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59804934

Country of ref document: DE

Date of ref document: 20020829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021024

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021025

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: R. A. EGLI & CO. PATENTANWAELTE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20021024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021221

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021231

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030130

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: *EVOTEC OAI A.G.

Effective date: 20021231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030701

26N No opposition filed

Effective date: 20030425

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20031110

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20031217

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040227

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20040330

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041221

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20041221

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A