EP1032940B1 - Verfahren zur herstellung eines magnetlegierungspulvers - Google Patents

Verfahren zur herstellung eines magnetlegierungspulvers Download PDF

Info

Publication number
EP1032940B1
EP1032940B1 EP98956933A EP98956933A EP1032940B1 EP 1032940 B1 EP1032940 B1 EP 1032940B1 EP 98956933 A EP98956933 A EP 98956933A EP 98956933 A EP98956933 A EP 98956933A EP 1032940 B1 EP1032940 B1 EP 1032940B1
Authority
EP
European Patent Office
Prior art keywords
powder
alloy
mpa
hydrogen
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98956933A
Other languages
English (en)
French (fr)
Other versions
EP1032940A1 (de
Inventor
Oliver Gutfleisch
Michael Kubis
Axel Handstein
Bernhard Gebel
Karl-Hartmut MÜLLER
Ivor Rex Harris
Ludwig Schultz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institut fuer Festkoerper und Werkstofforschung Dresden eV
Original Assignee
Institut fuer Festkoerper und Werkstofforschung Dresden eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE1997151366 external-priority patent/DE19751366C2/de
Priority claimed from DE19751367A external-priority patent/DE19751367C2/de
Application filed by Institut fuer Festkoerper und Werkstofforschung Dresden eV filed Critical Institut fuer Festkoerper und Werkstofforschung Dresden eV
Publication of EP1032940A1 publication Critical patent/EP1032940A1/de
Application granted granted Critical
Publication of EP1032940B1 publication Critical patent/EP1032940B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0553Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 obtained by reduction or by hydrogen decrepitation or embrittlement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/023Hydrogen absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the invention relates to the field of metallurgical Process engineering and relates to a method of manufacture a magnetic alloy powder for hard magnetic Applications.
  • the powder consists of a samarium-cobalt-based alloy.
  • the powder can be highly coercive Permanent magnets by hot compaction or Plastic binding can be made. With the powder you can such permanent magnets, however, also powder metallurgy by sintering.
  • Sm-Co-based permanent magnets have hitherto been produced primarily by powder metallurgy by sintering (K. Strnat and RMW Strnat, J. Magn. Magn. Mater. 100 (1991) 38).
  • To produce the Sm-Co powder required for this it is already known to first melt a corresponding alloy, to comminute it after solidification and to heat-treat it in a passivation gas below the phase transformation temperature of the alloy (US Pat. No. 5,122,203).
  • Such a production method has the disadvantage that an energy-consuming and time-consuming multi-stage heat treatment is necessary in order to set high coercive field strengths.
  • Such a production method has the disadvantage that additives such as Cu and Zr are necessary for magnets of the Sm 2 Co 17 type in order to set a microstructure which enables a high coercive field strength through the pinning mechanism.
  • additives such as Cu and Zr are necessary for magnets of the Sm 2 Co 17 type in order to set a microstructure which enables a high coercive field strength through the pinning mechanism.
  • these additives reduce the saturation magnetization.
  • the expansion or Stresses caused by the lattice strain lead to inter- and intergranular cracking and eventually to one regular bursting or atomization (Decrepit) the hydrogenated material.
  • This The pulverization process can also be affected of vibrations (DE 28 16 538) or by using a Vibratory mill (CH 560 955) are supported.
  • the hydrogen is then often removed / desorbed during the further processing of the powder produced into the end product in the course of the subsequent process steps, for example during sintering, in which the reaction A x B y H z ⁇ A x B y + z / 2 H 2 expires.
  • This chemical reaction can be represented schematically (using the model substance A x B y mentioned above) as follows: A x B y + z / 2 H 2 ⁇ A x H z + yB
  • the hydrogenated alloy elements are then dehydrated again in a second process stage by means of heat treatment under vacuum conditions, with simultaneous recombination of the alloy composition decomposed in stage 1 in accordance with the following reaction equation: A x H z + yB ⁇ A x B y + z / 2 H 2
  • the HDDR treatment achieves a crystallite size that is in the range of the single-domain particle size, which is approximately 300 nm for Nd 2 Fe 14 B and Sm 2 Fe 17 N 3, for example.
  • This grain refinement which leads to an improvement in the magnetic properties of the magnetic powder, is the main goal of the HDDR treatment and not - as in the HD process - the powder production.
  • the HD process is not identical to the first stage of HDDR treatment, as the first two letters of the abbreviation "HDDR" might suggest.
  • SE-Fe compounds The increasing stabilization of SE-Fe compounds is also known in the case of substitution of Fe by Co (A. Fujita and I.R. Harris, IEEE Trans. Magn. 30 (1994) 860).
  • the invention is based on the object of a method create a technologically manageable and inexpensive manufacture of a hard magnetic, from a Samarium-cobalt-based alloy for existing powder enables high-coercivity permanent magnets.
  • the procedure is based on HDDR treatment, in which a Starting powder in a first stage under Hydrogen hydrogenation with disproportionation of Alloy and in a subsequent second process stage under vacuum conditions with hydrogen desorption Recombination of the alloy is subjected.
  • a Starting powder in a first stage under Hydrogen hydrogenation with disproportionation of Alloy and in a subsequent second process stage under vacuum conditions with hydrogen desorption Recombination of the alloy is subjected.
  • According to the invention becomes a samarium and cobalt containing Starting powder in the first process stage either at a high temperature in the range of 500 ° C to 900 ° C and with a high hydrogen pressure of> 0.5 MPa or else using an intensive fine grinding at a low temperature in the range of 50 ° C to 500 ° C and with treated with a hydrogen pressure of> 0.15 MPa.
  • the intensive fine grinding for a period of 1 h to 100 h performed.
  • a intensive fine grinding according to the invention a powder of an Sm-Co-based alloy or a powder mixture consisting from the individual elements of an Sm-Co-based alloy and / or consisting of one or more, for the production a Sm-Co-based alloy suitable master alloys, be used.
  • the starting powder should be used in the case of a intensive fine grinding preferably with one Hydrogen pressure in the range of 0.5 MPa to 2.5 MPa be finely ground.
  • the hydrogen desorption treatment is expedient on the magnetic powder obtained by means of a heat treatment performed in the range of 500 ° C to 1000 ° C.
  • those starting powders are preferably used which form magnetic alloy powders with the alloy composition Sm x Co 100-x with 10 ⁇ x ⁇ 30 or the alloy composition Sm x Co 100-xabc Fe a Cu b Zr c with 10 ⁇ x ⁇ 30, a ⁇ 45, b ⁇ 15 and c ⁇ 15.
  • a melted Sm 2 (Co, Fe, Cu, Zr) 17 starting alloy as is usually used for the production of Sm-Co sintered magnets and whose coercive field strengths are determined by the pinning mechanism, is crushed down to particle sizes ⁇ 160 ⁇ m and then heated in a hydrogen atmosphere of 2 MPa to a temperature of 600 ° C and held at this temperature for half an hour.
  • the powder is hydrogenated by the hydrogen, whereby the alloy is disproportionated.
  • the powder is then heated up to 750 ° C with constant pumping and held again at this temperature for half an hour.
  • the powder produced in this way has a high coercive field strength H c of approximately 5 kA / cm and can be processed into powerful permanent magnets.
  • An SmCo 5 starting alloy is comminuted to particle sizes of ⁇ 500 ⁇ m and then heated in a hydrogen atmosphere of 2 MPa to a temperature of 600 ° C. and held at this temperature for half an hour. The powder is then heated up to 750 ° C with constant pumping and held again at this temperature for half an hour.
  • the powder produced in this way has a high coercive field strength H c of approximately 10 kA / cm and can be used for the production of powerful permanent magnets.
  • a melted Sm 2 (Co, Fe, Cu, Zr) 17 starting alloy as is usually used for the production of Sm-Co sintered magnets and whose coercive field strengths are determined by the pinning mechanism, is reduced to particle sizes smaller than 160 ⁇ m and then intensively ground with the help of a vibration mill in a hydrogen atmosphere of 1 MPa at a grinding bowl temperature of 350 ° C. for a period of 20 h. In addition to fine grinding, the alloy is disproportionated due to the presence of hydrogen. The powder is then heated to 750.degree. C. to carry out hydrogen desorption while continuously pumping out hydrogen and held at this temperature for half an hour.
  • the powder produced in this way has a high coercive field strength H c of approximately 10 kA / cm and can be processed into powerful permanent magnets.
  • An SmCo 5 starting alloy is ground down to particle sizes smaller than 500 ⁇ m and then ground with the aid of a vibration mill in a hydrogen atmosphere of 1 MPa at a temperature of the grinding bowl of 350 ° C. for a period of 20 h. In addition to fine grinding, the alloy is disproportionated due to the presence of hydrogen. The powder is then heated to 900 ° C. with the continuous pumping out of hydrogen and kept at this temperature for half an hour in order to carry out a hydrogen desorption.
  • the powder produced in this way has a high coercive field strength H c of approximately 30 kA / cm and can be used for the production of powerful permanent magnets.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Description

Technisches Gebiet
Die Erfindung bezieht sich auf das Gebiet der metallurgischen Verfahrenstechnik und betrifft ein Verfahren zur Herstellung eines Magnetlegierungspulvers für hartmagnetische Anwendungen. Das Pulver besteht aus einer Samarium-Kobalt-Basis-Legierung. Mit dem Pulver können hochkoerzitive Permanentmagnete durch Heißkompaktierung oder Kunststoffbindung hergestellt werden. Mit dem Pulver können derartige Permanentmagnete jedoch auch auf pulvermetallurgischem Wege durch Sintern erzeugt werden.
Stand der Technik
Permanentmagnete auf Sm-Co-Basis werden bisher vorwiegend auf pulvermetallurgischem Wege durch Sintern hergestellt (K. Strnat and R. M. W. Strnat, J. Magn. Magn. Mater. 100 (1991) 38). Zur Herstellung des dafür benötigten Sm-Co-Pulvers ist es bereits bekannt, zunächst eine entsprechende Legierung zu erschmelzen, diese nach dem Erstarren zu zerkleinern und in einem Passivierungsgas unterhalb der Phasentransformationstemperatur der Legierung wärmezubehandeln (US 5 122 203). Eine derartige Herstellungsweise hat den Nachteil, daß eine energie- und zeitaufwendige mehrstufige Wärmebehandlung notwendig ist, um hohe Koerzitivfeldstärken einzustellen. Des weiteren hat eine derartige Herstellungsweise den Nachteil, daß für Magnete des Sm2Co17-Typs Additive wie Cu und Zr notwendig sind, um eine Mikrostruktur einzustellen, die eine hohe Koerzitivfeldstärke durch den Pinning-Mechanismus ermöglicht. Diese Additive verringern jedoch die Sättigungsmagnetisierung.
Auf dem Gebiet der Herstellung von Magnetpulvern auf der Basis von Legierungen mit Elementen aus der Gruppe der Seltenen Erden (SE) ist seit langem der HD-Prozess (Hydrid-Dekrepitation) bekannt (US 5 580 396, Spalte 8, Zeilen 30 bis 41; Rare-earth Iron Permanent Magnets, ed. J.M.D. Coey, Oxford 1996, Seiten 346 bis 349 und Seiten 370 bis 380). Dieser Prozess wird eingesetzt zum Zerkleinern von groben, kompakten Legierungskörpern, dient also zur Pulvererzeugung. Dabei wird der Effekt genutzt, dass der in die Zwischenkornphase oder auf die Zwischengitterplätze der SE-Verbindung diffundierte Wasserstoff zu einer Ausdehnung der Zwischenkornphase beziehungsweise zu einer Gitterdehnung der SE-Verbindung führt. Die durch die Ausdehnung bzw. Gitterdehnung hervorgerufenen Spannungen führen zur inter- und intergranularer Rissbildung und schließlich zu einem regelrechten Zerplatzen beziehungsweise Zerstäuben (Dekrepitieren) des hydrierten Materials. Dieser Pulverisierungsvorgang kann auch noch durch die Einwirkung von Vibrationen (DE 28 16 538) oder durch den Einsatz einer Schwingmühle (CH 560 955) unterstützt werden.
Beim Anwenden des HD-Prozesses für eine Verbindung AxBy, in der A ein Element der Seltenen Erden sei und B für ein oder mehrere andere Elemente (zumeist Übergangsmetalle) steht, findet folgende Reaktion statt: AxBy + z/2 H2 → AxByHz
Nach dem eigentlichen HD-Prozess findet dann oftmals bei der Weiterverarbeitung des erzeugten Pulvers zum Endprodukt im Zuge der sich anschließenden Prozessschritte, zum Beispiel beim Sintern, noch ein Entfernen/Desorbieren des Wasserstoffs statt, bei dem die Reaktion AxByHz → AxBy + z/2 H2 abläuft.
Es ist auch bereits bekannt, bei der Herstellung von Magnetpulvern aus insbesondere Nd-Fe-B-Legierungen zur Verbesserung der magnetischen Eigenschaften das Verfahren der HDDR (Hydrierung-Disproportionierung-Desorption-Rekombination) anzuwenden (EP 0 304 054; EP 0 516 264; DE 196 07 747). Bei dieser Behandlung wird das Pulver in einer 1. Verfahrensstufe in einer Wasserstoffatmosphäre mit einem niedrigen Druck im Bereich von 0,8 x 105 Pa bis höchstens 0,15 MPa hydriert. Infolge dieser Wasserstoffbehandlung findet eine chemische Reaktion (Disproportionierung) statt, das heißt, die ursprüngliche Phase zerfällt unter Bildung eines binären Hydrids und der übrigen Elemente oder Kombinationen der Elemente der Ausgangsphase.
Diese chemische Reaktion kann schematisch (unter analoger Verwendung der obengenannten Modellsubstanz AxBy) wie folgt dargestellt werden: AxBy + z/2 H2 → AxHz + yB
Anschließend werden dann in einer 2. Verfahrensstufe mittels einer Wärmebehandlung unter Vakuumbedingungen die hydrierten Legierungselemente wieder dehydriert, bei gleichzeitiger Rekombination der in Stufe 1 zersetzten Legierungszusammensetzung gemäß folgender Reaktionsgleichung: AxHz + yB → AxBy + z/2 H2
Durch die HDDR-Behandlung wird eine Kristallitgröße erreicht, die im Bereich der Eindomänenteilchengröße liegt, die z.B. für Nd2Fe14B und Sm2Fe17N3 etwa 300 nm beträgt. Diese Kornfeinung, die zu einer Verbesserung der magnetischen Eigenschaften des Magnetpulvers führt, ist das Hauptziel der HDDR-Behandlung und nicht - wie beim HD-Prozess - die Pulverherstellung. An dieser Stelle sei ausdrücklich darauf hingewiesen, dass der HD-Prozess nicht mit der ersten Stufe der HDDR-Behandlung identisch ist, wie die ersten beiden Buchstaben der Abkürzung "HDDR" eventuell suggerieren könnten.
In der HDDR-Stufe 1 kommt es beim Aufheizen bis zu den für die oben dargestellte Reaktion notwendigen Temperaturen von 500°C bis 1000°C zwar oft zu der für den HD-Prozess typischen Wasserstoffabsorption wie sie oben in der Gleichung für den HD-Prozess beschrieben ist, jedoch stellt dies nur eine Zwischenreaktion dar, der unmittelbar die Desorption des Wasserstoffs folgt. Die HDDR-Behandlung kann völlig unabhängig vom HD-Prozess durchgeführt werden, wie zum Beispiel mit dem "solid-HDDR"-Prozess gezeigt wurde, bei dem das Wasserstoffgas erst bei der für die Disproportionierung (HDDR-Stufe 1) notwendigen Temperatur in den Reaktor eingelassen wird und es so zu keiner interstitiellen Absorption des Wasserstoffs und damit nicht zum HD-Prozess kommt (Gutfleisch et al., J. Alloys Compd. 215 (1994) 227).
Bekannt ist auch die zunehmende Stabilisierung von SE-Fe-Verbindungen im Falle der Substitution des Fe durch Co (A. Fujita and I. R. Harris, IEEE Trans. Magn. 30 (1994) 860).
Eine Übertragung der für Nd-Fe-B-Magnetpulver bekannten HDDR-Verfahrensbedingungen auf Sm-Co-Magnetpulver ist nicht möglich, da eine Disproportionierungsreaktion, wie sie in der oben dargestellten Stufe 1 der HDDR-Behandlung stattfindet, unter den üblichen HDDR-Bedingungen (500 < T < 1000°C, ~0,1 MPa Wasserstoffdruck) bei Sm-Co-Magnetpulvern wegen der großen Stabilität dieser Legierungen nicht eintritt.
Darstellung der Erfindung
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zu schaffen, das eine technologisch beherrschbare und kostengünstige Herstellung eines hartmagnetischen, aus einer Samarium-Kobalt-Basis-Legierung bestehenden Pulvers für hochkoerzitive Permanentmagnete ermöglicht.
Diese Aufgabe wird nach der Erfindung mit dem in den Patentansprüchen beschriebenen Herstellungsverfahren gelöst.
Das Verfahren basiert auf einer HDDR-Behandlung , bei der ein Ausgangspulver in einer ersten Verfahrensstufe unter Wasserstoff einer Hydrierung mit Disproportionierung der Legierung und in einer anschließenden zweiten Verfahrensstufe unter Vakuumbedingungen einer Wasserstoffdesorption mit Rekombination der Legierung unterworfen wird. Erfindungsgemäß wird dabei ein Samarium und Kobalt enthaltendes Ausgangspulver in der ersten Verfahrensstufe entweder bei einer hohen Temperatur im Bereich von 500 °C bis 900 °C und mit einem hohen Wasserstoffdruck von > 0,5 MPa oder aber unter Anwendung einer intensiven Feinmahlung bei einer niedrigen Temperatur im Bereich von 50 °C bis 500 °C und mit einem Wasserstoffdruck von > 0,15 MPa behandelt.
Beide Verfahrensvarianten führen zur Disproportionierung der Ausgangsphase und zur Bildung eines kristallinen binären Samarium-Hydrids.
Im Falle der Anwendung der hohen Temperatur im Bereich von 500 °C bis 900 °C wird vorzugsweise ein Wasserstoffdruck im Bereich von 1,0 MPa bis 5,0 MPa angewandt.
Gemäß einer zweckmäßigen Ausgestaltung des Verfahrens wird die intensive Feinmahlung während einer Dauer von 1 h bis 100 h durchgeführt.
Als Ausgangspulver kann im Falle der Anwendung einer intensiven Feinmahlung erfindungsgemäß ein Pulver einer Sm-Co-Basis-Legierung oder aber eine Pulvermischung, bestehend aus den einzelnen Elementen einer Sm-Co-Basis-Legierung und/oder bestehend aus einer oder mehreren, zur Herstellung einer Sm-Co-Basis-Legierung geeigneten Vorlegierungen, eingesetzt werden.
Das Ausgangspulver sollte im Falle der Anwendung einer intensiven Feinmahlung vorzugsweise bei einem Wasserstoffdruck im Bereich von 0,5 MPa bis 2,5 MPa feingemahlen werden.
Zweckmäßigerweise wird die Wasserstoffdesorptionsbehandlung an dem erhaltenen Magnetpulver mittels einer Wärmebehandlung im Bereich von 500 °C bis 1000 °C durchgeführt.
Nach der Erfindung werden bevorzugt solche Ausgangspulver eingesetzt, die zu Magnetlegierungspulvern mit der Legierungszusammensetzung SmxCo100-x mit 10 < x < 30 oder der Legierungszusammensetzung SmxCo100-x-a-b-cFeaCubZrc mit 10 < x < 30, a < 45, b < 15 und c < 15 führen.
Mit dem erfindungsgemäßen Verfahren wird eine neue Möglichkeit für die magnetische Härtung von Sm-Co-BasisVerbindungen geschaffen. Durch das Verfahren ergeben sich neue Ansätze für eine Optimierung der magnetischen Eigenschaften von Sm-Co-Magneten, die zu einer Verbesserung der Eigenschaften führt und eine kostengünstige Alternative für die Herstellung solcher Magnete darstellt. Dies schließt die Möglichkeit einer Homogenisierung der Mikrostruktur der Sm-Co-Basisverbindungen ein, wodurch eine langwierige Homogenisierung bei hohen Temperaturen entfallen kann.
Beste Wege zur Ausführung der Erfindung
Nachstehend ist die Erfindung an Hand von Ausführungsbeispielen näher erläutert.
Beispiel 1
Eine erschmolzene Sm2 (Co, Fe, Cu, Zr)17-Ausgangslegierung, wie sie üblicherweise für die Herstellung von Sm-Co Sintermagneten verwendet wird und deren Koerzitivfeldstärken durch den Pinning-Mechanismus bestimmt werden, wird bis auf Partikelgrößen < 160 µm zerkleinert und anschließend in einer Wasserstoffatmosphäre von 2 MPa bis zu einer Temperatur von 600°C aufgeheizt und eine halbe Stunde bei dieser Temperatur gehalten. Durch den Wasserstoff wird das Pulver hydriert, wobei eine Disproportionierung der Legierung stattfindet. Anschließend wird das Pulver unter ständigem Abpumpen bis 750°C aufgeheizt und bei dieser Temperatur erneut eine halbe Stunde gehalten.
Das so hergestellte Pulver weist eine hohe Koerzitivfeldstärke Hc von etwa 5 kA/cm auf und kann zu leistungsfähigen Permanentmagneten verarbeitet werden.
Beispiel 2
Eine SmCo5 Ausgangslegierung wird bis auf Partikelgrößen < 500 um zerkleinert und anschließend in einer Wasserstoffatmosphäre von 2 MPa bis zu einer Temperatur von 600°C aufgeheizt und eine halbe Stunde bei dieser Temperatur gehalten. Anschließend wird das Pulver unter ständigem Abpumpen bis 750°C aufgeheizt und bei dieser Temperatur erneut eine halbe Stunde gehalten.
Das auf diese Weise hergestellte Pulver weist eine hohe Koerzitivfeldstärke Hc von etwa 10 kA/cm auf und ist für die Herstellung leistungsfähiger Permanentmagnete verwendbar.
Beispiel 3
Eine erschmolzene Sm2(Co,Fe,Cu,Zr)17 Ausgangslegierung, wie sie üblicherweise für die Herstellung von Sm-Co-Sintermagneten verwendet wird und deren Koerzitivfeldstärken durch den Pinning-Mechanismus bestimmt werden, wird bis auf Partikelgrößen kleiner 160 µm zerkleinert und anschließend mit Hilfe einer Vibrationsmühle in einer Wasserstoffatmosphäre von 1 MPa bei einer Temperatur des Mahlbechers von 350°C während einer Dauer von 20 h intensiv gemahlen. Hierbei findet neben einer Feinmahlung gleichzeitig infolge des anwesenden Wasserstoffs eine Disproportionierung der Legierung statt. Anschließend wird das Pulver zur Durchführung einer Wasserstoffdesorption unter ständigem Abpumpen von Wasserstoff bis auf 750°C aufgeheizt und bei dieser Temperatur eine halbe Stunde gehalten.
Das auf diese Weise hergestellte Pulver weist eine hohe Koerzitivfeldstärke Hc von etwa 10 kA/cm auf und kann zu leistungsfähigen Permanentmagneten verarbeitet werden.
Beispiel 4
Eine SmCo5 Ausgangslegierung wird bis auf Partikelgrößen kleiner 500 µm zerkleinert und anschließend mit Hilfe einer Vibrationsmühle in einer Wasserstoffatmosphäre von 1 MPa bei einer Temperatur des Mahlbechers von 350°C während einer Dauer von 20 h intensiv gemahlen. Hierbei findet neben einer Feinmahlung gleichzeitig infolge des anwesenden Wasserstoffs eine Disproportionierung der Legierung statt. Anschließend wird das Pulver zur Durchführung einer Wasserstoffdesorption unter ständigem Abpumpen von Wasserstoff bis auf 900°C aufgeheizt und bei dieser Temperatur eine halbe Stunde gehalten.
Das auf diese Weise hergestellte Pulver weist eine hohe Koerzitivfeldstärke Hc von etwa 30 kA/cm auf und ist für die Herstellung leistungsfähiger Permanentmagnete verwendbar.

Claims (8)

  1. Verfahren zur Herstellung eines Magnetlegierungspulvers für hartmagnetische Anwendungen, indem ein Ausgangspulver einer HDDR-Behandlung unterworfen wird, bei der in einer ersten Verfahrensstufe in einer Wasserstoffatmosphäre eine Hydrierung mit Disproportionierung der Legierung und in einer anschließenden zweiten Verfahrensstufe unter Vakuumbedingungen eine Wasserstoffdesorption mit Rekombination der Legierung ausgeführt wird, dadurch gekennzeichnet, dass ein Samarium und Kobalt enthaltendes Ausgangspulver in der ersten Verfahrensstufe entweder bei einer hohen Temperatur im Bereich von 500 °C bis 900 °C und mit einem hohen Wasserstoffdruck von > 0,5 MPa oder aber unter Anwendung einer intensiven Feinmahlung bei einer niedrigen Temperatur im Bereich von 50 °C bis 500 °C und mit einem Wasserstoffdruck von > 0,15 MPa behandelt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass im Falle der Anwendung der hohen Temperatur im Bereich von 500 °C bis 900 °C ein Wasserstoffdruck im Bereich von 1,0 MPa bis 5,0 MPa angewandt wird.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die intensive Feinmahlung während einer Dauer von 1 h bis 100 h durchgeführt wird.
  4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass im Falle der Anwendung einer intensiven Feinmahlung als Ausgangspulver ein Pulver einer Sm-Co-Basis-Legierung oder eine Pulvermischung, bestehend aus den einzelnen Elementen einer Sm-Co-Basis-Legierung und/oder bestehend aus einer oder mehreren, zur Herstellung einer Sm-Co-Basis-Legierung geeigneten Vorlegierungen, eingesetzt wird.
  5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass im Falle der Anwendung einer intensiven Feinmahlung das Ausgangspulver bei einem Wasserstoffdruck im Bereich von 0,5 MPa bis 2,5 MPa feingemahlen wird.
  6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Wasserstoffdesorptionsbehandlung mittels einer Wärmebehandlung im Bereich von 500 °C bis 1000 °C durchgeführt wird.
  7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass ein Magnetlegierungspulver in der Legierungszusammensetzung SmxCo100-x mit 10 < x < 30 hergestellt wird.
  8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass ein Magnetlegierungspulver in der Legierungszusammensetzung SmxCo100-x-a-b-cFeaCubZrc mit 10 < x < 30, a < 45, b < 15 und c < 15 hergestellt wird.
EP98956933A 1997-11-20 1998-11-19 Verfahren zur herstellung eines magnetlegierungspulvers Expired - Lifetime EP1032940B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19751366 1997-11-20
DE1997151366 DE19751366C2 (de) 1997-11-20 1997-11-20 Verfahren zur Herstellung eines hartmagnetischen Samarium-Kobalt-Basis-Materials
DE19751367 1997-11-20
DE19751367A DE19751367C2 (de) 1997-11-20 1997-11-20 Verfahren zur Herstellung eines hartmagnetischen, aus einer Samarium-Kobalt-Basis-Legierung bestehenden Pulvers
PCT/EP1998/007418 WO1999027544A1 (de) 1997-11-20 1998-11-19 Verfahren zur herstellung eines magnetlegierungspulvers

Publications (2)

Publication Number Publication Date
EP1032940A1 EP1032940A1 (de) 2000-09-06
EP1032940B1 true EP1032940B1 (de) 2001-09-12

Family

ID=26041753

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98956933A Expired - Lifetime EP1032940B1 (de) 1997-11-20 1998-11-19 Verfahren zur herstellung eines magnetlegierungspulvers

Country Status (5)

Country Link
US (1) US6352597B1 (de)
EP (1) EP1032940B1 (de)
JP (1) JP2001524604A (de)
DE (1) DE59801474D1 (de)
WO (1) WO1999027544A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012200850A1 (de) * 2012-01-20 2013-07-25 Robert Bosch Gmbh Verfahren zur Herstellung eines magnetischen Materials und Permanentmagnet

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2518809A1 (de) * 2009-12-24 2012-10-31 Konica Minolta Holdings, Inc. Reaktionsbehälter und damit ausgestattetes brennstoffzellensystem
CN103050267B (zh) * 2012-12-31 2016-01-20 厦门钨业股份有限公司 一种基于细粉热处理的烧结Nd-Fe-B系磁铁制作方法
CN103050268B (zh) * 2012-12-31 2016-01-20 厦门钨业股份有限公司 基于细粉蒸着热处理的烧结Nd-Fe-B系磁铁制作方法
CZ2014766A3 (cs) * 2014-11-07 2016-02-10 Vysoká škola chemicko- technologická v Praze Výroba nanostrukturovaných prášků slitin kobaltu dvoustupňovým mechanickým legováním
CN111180157B (zh) * 2019-12-24 2021-04-06 中国计量大学 一种2:17型SmCoCuFeZrB烧结永磁体及其制备方法
CN115938718B (zh) * 2023-03-09 2023-05-30 天通控股股份有限公司 一种直插式一体成型共烧电感及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1554384A (en) * 1977-04-15 1979-10-17 Magnetic Polymers Ltd Rare earth metal alloy magnets
US5143560A (en) * 1990-04-20 1992-09-01 Hitachi Metals, Inc., Ltd. Method for forming Fe-B-R-T alloy powder by hydrogen decrepitation of die-upset billets
US5474623A (en) * 1993-05-28 1995-12-12 Rhone-Poulenc Inc. Magnetically anisotropic spherical powder and method of making same
US5851312A (en) * 1996-02-26 1998-12-22 Aichi Steel Works, Ltd. Production method, production apparatus and heat treatment apparatus for anisotropic magnet powder
JP2881409B2 (ja) * 1996-10-28 1999-04-12 愛知製鋼株式会社 異方性磁石粉末の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012200850A1 (de) * 2012-01-20 2013-07-25 Robert Bosch Gmbh Verfahren zur Herstellung eines magnetischen Materials und Permanentmagnet

Also Published As

Publication number Publication date
US6352597B1 (en) 2002-03-05
EP1032940A1 (de) 2000-09-06
DE59801474D1 (de) 2001-10-18
JP2001524604A (ja) 2001-12-04
WO1999027544A1 (de) 1999-06-03

Similar Documents

Publication Publication Date Title
DE69318147T2 (de) R-Fe-B Dauermagnetmaterialien und ihre Herstellungsverfahren
DE69511202T2 (de) Verfahren zur Herstellung von R-Fe-B-Dauermagneten
DE19626049C2 (de) Magnetwerkstoff und Verbundmagnet
DE69622798T2 (de) Seltenerd Dauermagnet und dessen Herstellungsverfahren
DE3789951T2 (de) Anisotropes Magnetpulver, Magnet daraus und Herstellungsverfahren.
DE1944432C3 (de) Dauermagnet
DE60206031T2 (de) Verfahren zur herstellung von seltenerdlegierungs sinterformteilen
DE68917213T2 (de) Gesinterter Nd-Fe-B-Magnet und sein Herstellungsverfahren.
DE60319800T2 (de) Seltenerdelement-permanentmagnet auf r-t-b-basis und magnetzusammensetzung
DE69819854T2 (de) Seltenerd-Eisen-Bor-Dauermagnet und Herstellungsverfahren
DE60311421T2 (de) Seltenerdelement-permanentmagnet auf r-t-b-basis
DE69915025T2 (de) Einsatzpulver für r-fe-b magnet und verfahren zur herstellung eines solchen magneten
DE69219753T2 (de) Seltenerd-Eisen-Bor Legierungspulver für Dauermagneten
DE10291720T5 (de) Verfahren zur Herstellung eines gesinterten Presslings für einen Seltenerdmetall-Magneten
DE102015115217A1 (de) Hochtemperatur-Hybridpermanentmagnet
DE10255604B4 (de) Verfahren zum Herstellen eines anisotropen Magnetpulvers und eines gebundenen anisotropen Magneten daraus
DE102015105905B4 (de) R-T-B-basierter Permanentmagnet und rotierende Maschine
DE102015104408A1 (de) R-t-b-basierter permanentmagnet
EP1032940B1 (de) Verfahren zur herstellung eines magnetlegierungspulvers
DE60311960T2 (de) Verfahren zur herstellung eines seltenerdelement-permanentmagneten auf r-t-b-basis
DE3884817T2 (de) Magnetisch anisotrope sintermagnete.
DE102016121420A1 (de) Legierung für rtb-seltenerd-sintermagnet und herstellungsverfahren einer solchen, sowie herstellungsverfahren eines rtb-seltenerd-sintermagnets
DE68914078T2 (de) Dauermagnet und Herstellungsverfahren.
DE69017309T3 (de) Permanentmagnetlegierung mit verbesserter Widerstandsfähigkeit gegen Oxidation sowie Verfahren zur Herstellung.
DE3626406A1 (de) Verfahren zur herstellung von dauermagneten auf der basis von seltenerdmetallen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000602

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE DK FI FR GB LI SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20001114

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE DK FI FR GB LI SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010912

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010912

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59801474

Country of ref document: DE

Date of ref document: 20011018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011212

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20011214

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20041110

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20041118

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20041123

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20051119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121123

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59801474

Country of ref document: DE

Effective date: 20140603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140603