EP1032940B1 - Procede pour produire une poudre d'alliage magnetique - Google Patents

Procede pour produire une poudre d'alliage magnetique Download PDF

Info

Publication number
EP1032940B1
EP1032940B1 EP98956933A EP98956933A EP1032940B1 EP 1032940 B1 EP1032940 B1 EP 1032940B1 EP 98956933 A EP98956933 A EP 98956933A EP 98956933 A EP98956933 A EP 98956933A EP 1032940 B1 EP1032940 B1 EP 1032940B1
Authority
EP
European Patent Office
Prior art keywords
powder
alloy
mpa
hydrogen
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98956933A
Other languages
German (de)
English (en)
Other versions
EP1032940A1 (fr
Inventor
Oliver Gutfleisch
Michael Kubis
Axel Handstein
Bernhard Gebel
Karl-Hartmut MÜLLER
Ivor Rex Harris
Ludwig Schultz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institut fuer Festkoerper und Werkstofforschung Dresden eV
Original Assignee
Institut fuer Festkoerper und Werkstofforschung Dresden eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19751367A external-priority patent/DE19751367C2/de
Priority claimed from DE1997151366 external-priority patent/DE19751366C2/de
Application filed by Institut fuer Festkoerper und Werkstofforschung Dresden eV filed Critical Institut fuer Festkoerper und Werkstofforschung Dresden eV
Publication of EP1032940A1 publication Critical patent/EP1032940A1/fr
Application granted granted Critical
Publication of EP1032940B1 publication Critical patent/EP1032940B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0553Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 obtained by reduction or by hydrogen decrepitation or embrittlement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/023Hydrogen absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the invention relates to the field of metallurgical Process engineering and relates to a method of manufacture a magnetic alloy powder for hard magnetic Applications.
  • the powder consists of a samarium-cobalt-based alloy.
  • the powder can be highly coercive Permanent magnets by hot compaction or Plastic binding can be made. With the powder you can such permanent magnets, however, also powder metallurgy by sintering.
  • Sm-Co-based permanent magnets have hitherto been produced primarily by powder metallurgy by sintering (K. Strnat and RMW Strnat, J. Magn. Magn. Mater. 100 (1991) 38).
  • To produce the Sm-Co powder required for this it is already known to first melt a corresponding alloy, to comminute it after solidification and to heat-treat it in a passivation gas below the phase transformation temperature of the alloy (US Pat. No. 5,122,203).
  • Such a production method has the disadvantage that an energy-consuming and time-consuming multi-stage heat treatment is necessary in order to set high coercive field strengths.
  • Such a production method has the disadvantage that additives such as Cu and Zr are necessary for magnets of the Sm 2 Co 17 type in order to set a microstructure which enables a high coercive field strength through the pinning mechanism.
  • additives such as Cu and Zr are necessary for magnets of the Sm 2 Co 17 type in order to set a microstructure which enables a high coercive field strength through the pinning mechanism.
  • these additives reduce the saturation magnetization.
  • the expansion or Stresses caused by the lattice strain lead to inter- and intergranular cracking and eventually to one regular bursting or atomization (Decrepit) the hydrogenated material.
  • This The pulverization process can also be affected of vibrations (DE 28 16 538) or by using a Vibratory mill (CH 560 955) are supported.
  • the hydrogen is then often removed / desorbed during the further processing of the powder produced into the end product in the course of the subsequent process steps, for example during sintering, in which the reaction A x B y H z ⁇ A x B y + z / 2 H 2 expires.
  • This chemical reaction can be represented schematically (using the model substance A x B y mentioned above) as follows: A x B y + z / 2 H 2 ⁇ A x H z + yB
  • the hydrogenated alloy elements are then dehydrated again in a second process stage by means of heat treatment under vacuum conditions, with simultaneous recombination of the alloy composition decomposed in stage 1 in accordance with the following reaction equation: A x H z + yB ⁇ A x B y + z / 2 H 2
  • the HDDR treatment achieves a crystallite size that is in the range of the single-domain particle size, which is approximately 300 nm for Nd 2 Fe 14 B and Sm 2 Fe 17 N 3, for example.
  • This grain refinement which leads to an improvement in the magnetic properties of the magnetic powder, is the main goal of the HDDR treatment and not - as in the HD process - the powder production.
  • the HD process is not identical to the first stage of HDDR treatment, as the first two letters of the abbreviation "HDDR" might suggest.
  • SE-Fe compounds The increasing stabilization of SE-Fe compounds is also known in the case of substitution of Fe by Co (A. Fujita and I.R. Harris, IEEE Trans. Magn. 30 (1994) 860).
  • the invention is based on the object of a method create a technologically manageable and inexpensive manufacture of a hard magnetic, from a Samarium-cobalt-based alloy for existing powder enables high-coercivity permanent magnets.
  • the procedure is based on HDDR treatment, in which a Starting powder in a first stage under Hydrogen hydrogenation with disproportionation of Alloy and in a subsequent second process stage under vacuum conditions with hydrogen desorption Recombination of the alloy is subjected.
  • a Starting powder in a first stage under Hydrogen hydrogenation with disproportionation of Alloy and in a subsequent second process stage under vacuum conditions with hydrogen desorption Recombination of the alloy is subjected.
  • According to the invention becomes a samarium and cobalt containing Starting powder in the first process stage either at a high temperature in the range of 500 ° C to 900 ° C and with a high hydrogen pressure of> 0.5 MPa or else using an intensive fine grinding at a low temperature in the range of 50 ° C to 500 ° C and with treated with a hydrogen pressure of> 0.15 MPa.
  • the intensive fine grinding for a period of 1 h to 100 h performed.
  • a intensive fine grinding according to the invention a powder of an Sm-Co-based alloy or a powder mixture consisting from the individual elements of an Sm-Co-based alloy and / or consisting of one or more, for the production a Sm-Co-based alloy suitable master alloys, be used.
  • the starting powder should be used in the case of a intensive fine grinding preferably with one Hydrogen pressure in the range of 0.5 MPa to 2.5 MPa be finely ground.
  • the hydrogen desorption treatment is expedient on the magnetic powder obtained by means of a heat treatment performed in the range of 500 ° C to 1000 ° C.
  • those starting powders are preferably used which form magnetic alloy powders with the alloy composition Sm x Co 100-x with 10 ⁇ x ⁇ 30 or the alloy composition Sm x Co 100-xabc Fe a Cu b Zr c with 10 ⁇ x ⁇ 30, a ⁇ 45, b ⁇ 15 and c ⁇ 15.
  • a melted Sm 2 (Co, Fe, Cu, Zr) 17 starting alloy as is usually used for the production of Sm-Co sintered magnets and whose coercive field strengths are determined by the pinning mechanism, is crushed down to particle sizes ⁇ 160 ⁇ m and then heated in a hydrogen atmosphere of 2 MPa to a temperature of 600 ° C and held at this temperature for half an hour.
  • the powder is hydrogenated by the hydrogen, whereby the alloy is disproportionated.
  • the powder is then heated up to 750 ° C with constant pumping and held again at this temperature for half an hour.
  • the powder produced in this way has a high coercive field strength H c of approximately 5 kA / cm and can be processed into powerful permanent magnets.
  • An SmCo 5 starting alloy is comminuted to particle sizes of ⁇ 500 ⁇ m and then heated in a hydrogen atmosphere of 2 MPa to a temperature of 600 ° C. and held at this temperature for half an hour. The powder is then heated up to 750 ° C with constant pumping and held again at this temperature for half an hour.
  • the powder produced in this way has a high coercive field strength H c of approximately 10 kA / cm and can be used for the production of powerful permanent magnets.
  • a melted Sm 2 (Co, Fe, Cu, Zr) 17 starting alloy as is usually used for the production of Sm-Co sintered magnets and whose coercive field strengths are determined by the pinning mechanism, is reduced to particle sizes smaller than 160 ⁇ m and then intensively ground with the help of a vibration mill in a hydrogen atmosphere of 1 MPa at a grinding bowl temperature of 350 ° C. for a period of 20 h. In addition to fine grinding, the alloy is disproportionated due to the presence of hydrogen. The powder is then heated to 750.degree. C. to carry out hydrogen desorption while continuously pumping out hydrogen and held at this temperature for half an hour.
  • the powder produced in this way has a high coercive field strength H c of approximately 10 kA / cm and can be processed into powerful permanent magnets.
  • An SmCo 5 starting alloy is ground down to particle sizes smaller than 500 ⁇ m and then ground with the aid of a vibration mill in a hydrogen atmosphere of 1 MPa at a temperature of the grinding bowl of 350 ° C. for a period of 20 h. In addition to fine grinding, the alloy is disproportionated due to the presence of hydrogen. The powder is then heated to 900 ° C. with the continuous pumping out of hydrogen and kept at this temperature for half an hour in order to carry out a hydrogen desorption.
  • the powder produced in this way has a high coercive field strength H c of approximately 30 kA / cm and can be used for the production of powerful permanent magnets.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Claims (8)

  1. Procédé de fabrication d'une poudre d'alliage magnétique pour des applications magnétiques dures, consistant à soumettre une poudre de départ à un traitement HDDR, lors duquel l'on effectue, dans une première étape de procédé, dans une atmosphère d'hydrogène, une hydrogénation avec dismutation de l'alliage et, dans une deuxième étape de procédé consécutive, dans des conditions de mise sous vide, une désorption de l'hydrogène avec recombinaison de l'alliage, caractérisé en ce que l'on traite une poudre de départ contenant du samarium et du cobalt dans la première étape de procédé, soit à une température élevée dans le domaine de 500°C à 900°C et à une pression élevée d'hydrogène > 0,5 MPa, soit, par contre, par utilisation d'une mouture fine intensive à une température basse dans le domaine de 50°C à 500°C et à une pression d'hydrogène > 0,15 MPa.
  2. Procédé selon la revendication 1, caractérisé en ce que, dans le cas de l'utilisation de la température élevée dans le domaine de 500°C à 900°C, l'on fait usage d'une pression d'hydrogène dans le domaine de 1,0 MPa à 5,0 MPa.
  3. Procédé selon la revendication 1, caractérisé en ce que la mouture fine intensive est effectuée pendant une durée de 1 à 100 heures.
  4. Procédé selon la revendication 1, caractérisé en ce que, dans le cas de l'utilisation d'une mouture fine intensive, l'on utilise, en tant que poudre de départ, une poudre d'un alliage à base Sm-Co ou un mélange de poudres, se composant des éléments individuels d'un alliage à base Sm-Co et/ou se composant d'un ou de plusieurs alliages préalables, appropriés à la fabrication d'un alliage à base Sm-Co.
  5. Procédé selon la revendication 1, caractérisé en ce que, dans le cas de l'utilisation d'une mouture fine intensive, la poudre de départ est moulue d'une manière fine à une pression d'hydrogène se situant dans le domaine de 0,5 MPa à 2,5 MPa.
  6. Procédé selon la revendication 1, caractérisé en ce que le traitement de désorption de l'hydrogène est effectué à l'aide d'un traitement thermique dans le domaine de 500°C à 1000°C.
  7. Procédé selon la revendication 1, caractérisé en ce que l'on fabrique une poudre d'alliage magnétique dans la composition d'alliage SmxCo100-x, avec 10 < x < 30.
  8. Procédé selon la revendication 1, caractérisé en ce que l'on fabrique une poudre d'alliage magnétique dans la composition d'alliage SmxCo100-x- a-b-cFeaCubZrc, avec 10 < x < 30, a < 45, b < 15 et c < 15.
EP98956933A 1997-11-20 1998-11-19 Procede pour produire une poudre d'alliage magnetique Expired - Lifetime EP1032940B1 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19751367 1997-11-20
DE19751367A DE19751367C2 (de) 1997-11-20 1997-11-20 Verfahren zur Herstellung eines hartmagnetischen, aus einer Samarium-Kobalt-Basis-Legierung bestehenden Pulvers
DE1997151366 DE19751366C2 (de) 1997-11-20 1997-11-20 Verfahren zur Herstellung eines hartmagnetischen Samarium-Kobalt-Basis-Materials
DE19751366 1997-11-20
PCT/EP1998/007418 WO1999027544A1 (fr) 1997-11-20 1998-11-19 Procede pour produire une poudre d'alliage magnetique

Publications (2)

Publication Number Publication Date
EP1032940A1 EP1032940A1 (fr) 2000-09-06
EP1032940B1 true EP1032940B1 (fr) 2001-09-12

Family

ID=26041753

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98956933A Expired - Lifetime EP1032940B1 (fr) 1997-11-20 1998-11-19 Procede pour produire une poudre d'alliage magnetique

Country Status (5)

Country Link
US (1) US6352597B1 (fr)
EP (1) EP1032940B1 (fr)
JP (1) JP2001524604A (fr)
DE (1) DE59801474D1 (fr)
WO (1) WO1999027544A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012200850A1 (de) * 2012-01-20 2013-07-25 Robert Bosch Gmbh Verfahren zur Herstellung eines magnetischen Materials und Permanentmagnet

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011077969A1 (fr) * 2009-12-24 2011-06-30 コニカミノルタホールディングス株式会社 Conteneur de réaction et système de pile à combustible comprenant ce conteneur
CN103050267B (zh) * 2012-12-31 2016-01-20 厦门钨业股份有限公司 一种基于细粉热处理的烧结Nd-Fe-B系磁铁制作方法
CN103050268B (zh) * 2012-12-31 2016-01-20 厦门钨业股份有限公司 基于细粉蒸着热处理的烧结Nd-Fe-B系磁铁制作方法
CZ305703B6 (cs) * 2014-11-07 2016-02-10 Vysoká škola chemicko- technologická v Praze Výroba nanostrukturovaných prášků slitin kobaltu dvoustupňovým mechanickým legováním
CN111180157B (zh) * 2019-12-24 2021-04-06 中国计量大学 一种2:17型SmCoCuFeZrB烧结永磁体及其制备方法
CN115938718B (zh) * 2023-03-09 2023-05-30 天通控股股份有限公司 一种直插式一体成型共烧电感及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1554384A (en) * 1977-04-15 1979-10-17 Magnetic Polymers Ltd Rare earth metal alloy magnets
US5143560A (en) * 1990-04-20 1992-09-01 Hitachi Metals, Inc., Ltd. Method for forming Fe-B-R-T alloy powder by hydrogen decrepitation of die-upset billets
US5474623A (en) * 1993-05-28 1995-12-12 Rhone-Poulenc Inc. Magnetically anisotropic spherical powder and method of making same
US5851312A (en) * 1996-02-26 1998-12-22 Aichi Steel Works, Ltd. Production method, production apparatus and heat treatment apparatus for anisotropic magnet powder
JP2881409B2 (ja) * 1996-10-28 1999-04-12 愛知製鋼株式会社 異方性磁石粉末の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012200850A1 (de) * 2012-01-20 2013-07-25 Robert Bosch Gmbh Verfahren zur Herstellung eines magnetischen Materials und Permanentmagnet

Also Published As

Publication number Publication date
EP1032940A1 (fr) 2000-09-06
JP2001524604A (ja) 2001-12-04
WO1999027544A1 (fr) 1999-06-03
US6352597B1 (en) 2002-03-05
DE59801474D1 (de) 2001-10-18

Similar Documents

Publication Publication Date Title
DE19626049C2 (de) Magnetwerkstoff und Verbundmagnet
DE3789951T2 (de) Anisotropes Magnetpulver, Magnet daraus und Herstellungsverfahren.
DE1944432C3 (de) Dauermagnet
DE60118982T2 (de) Seltenerdelement-permanentmagnetmaterial
DE60206031T2 (de) Verfahren zur herstellung von seltenerdlegierungs sinterformteilen
DE68917213T2 (de) Gesinterter Nd-Fe-B-Magnet und sein Herstellungsverfahren.
DE60319800T2 (de) Seltenerdelement-permanentmagnet auf r-t-b-basis und magnetzusammensetzung
DE69815146T2 (de) Legierung zur verwendung bei der herstellung von gesinterten magneten auf r-t-b-basis und verfahren zur herstellung von gesinterten magneten auf r-t-b-basis
DE102016101890A1 (de) R-T-B-basierter gesinterter Magnet
DE69819854T2 (de) Seltenerd-Eisen-Bor-Dauermagnet und Herstellungsverfahren
DE60311421T2 (de) Seltenerdelement-permanentmagnet auf r-t-b-basis
DE69915025T2 (de) Einsatzpulver für r-fe-b magnet und verfahren zur herstellung eines solchen magneten
DE3786426T2 (de) Dauermagnet und Dauermagnetlegierung.
DE10291720T5 (de) Verfahren zur Herstellung eines gesinterten Presslings für einen Seltenerdmetall-Magneten
DE69200130T2 (de) Magnetisches Material.
DE102015115217A1 (de) Hochtemperatur-Hybridpermanentmagnet
DE10255604B4 (de) Verfahren zum Herstellen eines anisotropen Magnetpulvers und eines gebundenen anisotropen Magneten daraus
DE102015105905B4 (de) R-T-B-basierter Permanentmagnet und rotierende Maschine
EP0470475B1 (fr) Procédé de fabrication d&#39;un corps à partir d&#39;un matériau magnétique anisotrope à base du système de substances Sm-Fe-N
EP1032940B1 (fr) Procede pour produire une poudre d&#39;alliage magnetique
DE60311960T2 (de) Verfahren zur herstellung eines seltenerdelement-permanentmagneten auf r-t-b-basis
DE3884817T2 (de) Magnetisch anisotrope sintermagnete.
DE102016121420A1 (de) Legierung für rtb-seltenerd-sintermagnet und herstellungsverfahren einer solchen, sowie herstellungsverfahren eines rtb-seltenerd-sintermagnets
DE68914078T2 (de) Dauermagnet und Herstellungsverfahren.
DE3626406A1 (de) Verfahren zur herstellung von dauermagneten auf der basis von seltenerdmetallen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000602

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE DK FI FR GB LI SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20001114

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE DK FI FR GB LI SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010912

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010912

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59801474

Country of ref document: DE

Date of ref document: 20011018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011212

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20011214

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20041110

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20041118

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20041123

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20051119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121123

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59801474

Country of ref document: DE

Effective date: 20140603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140603