EP1029114A1 - Für eine heissgasbeaufschlagung ausgelegtes erzeugnis und verfahren zur herstellung einer beschichtung für dieses erzeugnis - Google Patents

Für eine heissgasbeaufschlagung ausgelegtes erzeugnis und verfahren zur herstellung einer beschichtung für dieses erzeugnis

Info

Publication number
EP1029114A1
EP1029114A1 EP98961039A EP98961039A EP1029114A1 EP 1029114 A1 EP1029114 A1 EP 1029114A1 EP 98961039 A EP98961039 A EP 98961039A EP 98961039 A EP98961039 A EP 98961039A EP 1029114 A1 EP1029114 A1 EP 1029114A1
Authority
EP
European Patent Office
Prior art keywords
product
coating
chromium
oxide
chromium nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98961039A
Other languages
English (en)
French (fr)
Other versions
EP1029114B1 (de
Inventor
Wolfram Beele
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1029114A1 publication Critical patent/EP1029114A1/de
Application granted granted Critical
Publication of EP1029114B1 publication Critical patent/EP1029114B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated

Definitions

  • the invention relates to a product designed for hot gas application with a coating, in particular a gas turbine blade.
  • the invention further relates to a method for producing a coating for a product designed for the application of hot gas.
  • the aim of the research is to develop a diffusion barrier between the base material and the coating, which at the same time guarantees a good connection of the coating to the base material. This is achieved using a chrome-aluminum-oxide-nitride system (Cr-AL-0-N).
  • the object of the invention is to provide a product designed for hot gas application, in which a coating is provided which is improved with regard to its long-term resistance.
  • Another object of the invention is to provide a method for producing a coating for a product designed for the application of hot gas.
  • the object aimed at specifying a product is achieved by a product made of a base material on which a coating is applied and which is designed for hot gas application, comprising:
  • a protective layer made of MCrAlY which contains at least one metal from the group (iron, cobalt,
  • Chromium (Cr) with a content of at least 15 wt%, in particular at least 20 wt%;
  • a product which can be subjected to hot gas is often provided with a protective layer of the type just mentioned.
  • Protective layer serves to protect against oxidation and corrosion.
  • an oxide layer is formed on such a protective layer, which essentially consists of aluminum oxide and / or chromium oxide.
  • the oxide layer can also be formed by oxidation from a thin layer of an oxide former, such as aluminum or chromium, applied to the protective layer.
  • an oxide former such as aluminum or chromium
  • the protective layer of aluminum and chromium becomes poorer because aluminum and / or chromium diffuse into the oxide layer and oxidize there. As a result, the oxide layer grows. This is usually the life-limiting aging process for the coating and affects the mechanical properties of the growing oxide layer.
  • chromium nitride is built into the coating.
  • the invention is based on the surprising finding that chromium nitride is present in sufficient amounts in the protective layer can be formed if the concentration of chromium is above 15 wt%, preferably above 20 wt%.
  • the chromium nitride acts as a particularly efficient diffusion barrier for the diffusion of aluminum and / or chromium to oxygen. This significantly improves the long-term durability of the coating.
  • the protective layer preferably contains rhenium, in particular with a proportion between 1 wt% and 15 wt%.
  • wt% means percent by weight and at% atomic percent.
  • the chromium nitride is preferably contained in the oxide layer.
  • the chromium nitride is more preferably present in a concentration between 10 at% and 60 at%, in particular about 50 at%.
  • the chromium nitride is preferably present between the protective layer and the oxide layer, preferably in a transition region or also anchoring region between the oxide layer and the protective layer.
  • chromium nitride in the form of a lattice.
  • the chromium nitride preferably forms such a lattice, in particular an approximately rectangular lattice with a side length between 0.1 ⁇ m and 10 ⁇ m.
  • the formation of such a lattice represents a particularly efficient diffusion barrier.
  • the lattice structure reduces the susceptibility of the coating to cracking, which additionally improves the long-term durability of the coating.
  • the product is preferably designed as a turbine blade, in particular as a gas turbine blade.
  • a turbine blade Today, gas turbine showings are mostly exposed to particularly high thermal loads and an intensive attack by oxidation or corrosion.
  • the service life of the coating of a gas turbine blade usually determines the inspection interval of the entire blade.
  • the product is preferably designed as a heat shield of a thermal machine, in particular for a combustion chamber.
  • a ceramic thermal barrier coating is preferably applied to the oxide layer, in particular a zircon-based thermal barrier coating.
  • a ceramic thermal barrier coating serves to protect the turbine blade from very high temperatures.
  • the ceramic thermal barrier coating is coupled to the protective layer via the oxide layer. An increase in the oxide layer leads to an increasing brittleness of the oxide layer.
  • the increasing brittleness of the oxide layer has a reducing effect on the long-term durability of the coating due to an increased susceptibility to detachment of the thermal insulation layer. Because the diffusion-inhibiting effect of the chromium nitride slows down the growth of the oxide layer, the long-term stability of the coating is improved at a particularly vulnerable point, namely the boundary layer between the thermal insulation layer and the protective layer.
  • the object aimed at specifying a method is achieved by a method for producing a coating for a product designed for the application of hot gas, whereby
  • At least one metal from the group (iron, cobalt, Nikkei), abbreviated with M, • chromium (Cr) with a content of at least 15 at%, in particular at least 20 at%,
  • Yttrium (Y) and / or hafnium and / or a metal from the group of rare earths, in particular scandium, lanthanum or cerium, is applied to the product
  • an oxide layer, in particular with aluminum oxide and / or chromium oxide, is formed on the protective layer
  • chromium nitride is generated via a nitrogen supply in the coating.
  • the nitrogen is preferably supplied from a nitrogen plasma source via a nitrogen plasma treatment.
  • a nitrogen plasma which additionally contains hydrogen as an oxygen getter, is more preferably supplied to the coating. The provision of hydrogen in a non-molecular form enables oxygen to be extracted from the chromium oxide.
  • a DC voltage (BIAS) is more preferably applied between the product and the nitrogen plasma source. This enables faster production of chromium nitride because the nitrogen penetrates the product more efficiently.
  • Fig. 1 shows a longitudinal section through a coating of a hot gas product
  • Fig. 2 is an enlarged, schematic representation of a chromium nitride lattice in an oxide layer.
  • the gas turbine blade 1 shows a section of a longitudinal section through a gas turbine blade which represents the product 1 which can be subjected to hot gas.
  • the gas turbine blade 1 consists of a
  • Base material 2 e.g. made of a nickel-based superalloy.
  • the gas turbine blade 1 has a surface 1A.
  • AI aluminum between 6 wt and 15 wt%
  • y yttrium and / or hafnium and / or a rare earth metal, in particular scandium, lanthanum or cerium between 0.01 wt% and 2 wt%
  • M nickel and / or cobalt and / or iron as the rest.
  • Rhenium or other additives may also be present.
  • a grid 8 made of chromium nitride 6 is shown schematically, which grid is made up of grid cells 7A.
  • the interior of the grid cells 7A consists of aluminum oxide and / or chromium oxide.
  • the grid 8 is not geometrically perfect, so it has e.g. Interruptions, changing thicknesses and changing area sizes of the grid cells 7A.
  • an approximate average side length A of a grid cell 7A can be specified, which is preferably between 0.1 ⁇ m and 5 ⁇ m. This average side length A depends in particular on the material of the protective layer and / or the oxide layer or also on process parameters in the formation of the chromium nitride.
  • Such a lattice of the chromium nitride 6 particularly efficiently prevents diffusion of aluminum or chromium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Die Erfindung betrifft ein für eine Heissgasbeaufschlagung ausgelegtes Erzeugnis (1) mit einer Beschichtung (3), in die zur Verbesserung der Langzeitbeständigkeit der Beschichtung (3) Chromnitrid (6) als Diffusionsbarriere eingebaut ist. Die Erfindung betrifft auch ein Verfahren zur Herstellung einer Beschichtung (3) für ein für eine Heissgasbeaufschlagung ausgelegtes Erzeugnis (1).

Description

Beschreibung
FÜR EINE HEISSGASBEAUFSCHLAGUNG AUSGELEGTES ERZEUGNIS UND VERFAHREN ZUR HERSTELLUNG EINER BESCHICHTUNG FÜR EIN FÜR DIESES ERZEUGNIS
Die Erfindung betrifft ein für eine Heißgasbeaufschlagung ausgelegtes Erzeugnis mit einer Beschichtung, insbesondere eine Gasturbinenschaufel. Die Erfindung betrifft weiter ein Verfahren zur Herstellung einer Beschichtung für ein für eine Heißgasbeaufschlagung ausgelegtes Erzeugnis.
In dem Artikel „Diffusion barrier coatings with active bonding, designed for gas turbine blades", von 0. Knotek, E. Lugscheider, F. Löffler, W. Beele, in den „Proceedings of the 21sC International Conference on Metallurgical Coatings and Thin Films", San Diego, CA, USA, April 25 - 29, 1994, ist eine Diffusionsbarrierenbeschichtung für eine Gasturbinen- schaufel beschrieben. Eine Gasturbinenschaufel weist häufig eine Oxidations- bzw. Korrosionsschutzbeschichtung auf einem Grundwerkstoff, in der Regel einer Superlegierung, auf. Aufgrund von Diffusionsprozessen kann es zur Bildung spröder Phasen in der Beschichtung kommen, wodurch die Lebensdauer der Gasturbinenschaufel beeinträchtigt wird. Ziel der For- schung ist es, eine Diffusionsbarriere zwischen dem Grundwerkstoff und der Beschichtung zu entwickeln, die gleichzeitig eine gute Anbindung der Beschichtung an den Grundwerkstoff gewährleistet. Dies wird durch ein Chrom-Aluminium- Oxid-Nitrid-System (Cr-AL-0-N) erreicht.
Aufgabe der Erfindung ist die Angabe eines für eine Heißgas- beaufschlagung ausgelegten Erzeugnisses, bei dem eine bezüglich ihrer Langzeitbest ndigkeit verbesserte Beschichtung vorgesehen ist. Weitere Aufgabe der Erfindung ist die Angabe eines Verfahrens zur Herstellung einer Beschichtung für ein für eine Heißgasbeaufschlagung ausgelegtes Erzeugnis . Erfindungsgemäß wird die auf Angabe eines Erzeugnisses gerichtete Aufgabe gelöst durch ein für eine Heißgasbeaufschla- gung ausgelegtes Erzeugnis aus einem Grundwerkstoff auf dem eine Beschichtung aufgebracht ist, umfassend:
a) eine Schutzschicht aus MCrAlY, die mindestens ein Metall aus der Gruppe (Eisen, Kobalt,
Nickel) , abgekürzt mit M;
Chrom (Cr) mit einem Gehalt von mindestens 15 wt%, insbe sondere mindestens 20 wt%;
Aluminium (AI) und
Yttrium (Y) und/oder Hafnium und/oder ein Metall aus der
Gruppe der Seltenen Erden, insbesondere Scandium,
Lanthan oder Cer enthält; b) eine Oxidschicht, insbesondere mit Aluminiumoxid und/oder Chromoxid; c) Chromnitrid.
Ein heißgasbeaufschlagbares Erzeugnis ist häufig mit einer Schutzschicht der eben genannten Art versehen. Eine solche
Schutzschicht dient einem Oxidations- und Korrosionsschutz. Auf einer solchen Schutzschicht bildet sich bei Kontakt mit Sauerstoff eine Oxidschicht, die im wesentlichen aus Aluminiumoxid und/oder Chromoxid besteht. Die Oxidschicht kann auch durch Oxidation von einer dünnen, auf die Schutzschicht aufgebrachten Lage eines Oxidbildners, wie z.B. Aluminium oder Chrom gebildet sein. Im Laufe der Zeit verarmt die Schutzschicht an Aluminium und Chrom dadurch, daß Aluminium und/oder Chrom in die Oxidschicht diffundieren und dort oxi- dieren. Die Oxidschicht wächst dadurch. Dies ist in der Regel der lebensdauerbegrenzende Alterungsprozeß für die Beschichtung und beeinträchtigt die mechanischen Eigenschaften der wachsenden Oxidschicht. Um der Diffusion von Aluminium und/oder Chrom zum Sauerstoff oder umgekehrt entgegenzuwir- ken, wird in die Beschichtung Chromnitrid eingebaut. Die Erfindung beruht dabei auf der überraschenden Erkenntnis, daß in der Schutzschicht in ausreichenden Mengen Chromnitrid bildbar ist, wenn die Konzentration des Chroms über 15 wt%, vorzugsweise über 20 wt% liegt. Das Chromnitrid wirkt als eine besonders effiziente Diffusionsbarriere für die Diffusion von Aluminium und/oder Chrom zum Sauerstoff. Damit wird die Langzeitbestandigkeit der Beschichtung deutlich verbessert.
Vorzugsweise enthält die Schutzschicht Rhenium, insbesondere mit einem Anteil zwischen 1 wt% und 15 wt% . Hier und im folgenden bedeuten wt% Gewichtsprozent und at% Atomprozent.
Bevorzugt ist das Chromnitrid in der Oxidschicht enthalten. Weiter bevorzugt ist das Chromnitrid in einer Konzentration zwischen 10 at% und 60 at%, insbesondere etwa 50 at%, enthalten. Bevorzugtermaßen ist das Chromnitrid zwischen der Schutzschicht und der Oxidschicht vorhanden, vorzugsweise in einem Übergangsbereich oder auch Verankerungsbereich zwischen Oxidschicht und Schutzschicht.
Überraschenderweise ist es möglich, Chromnitrid in Form eines Gitters zu bilden. Bevorzugt bildet das Chromnitrid ein solches Gitter, insbesondere ein etwa rechteckiges Gitter mit einer Seitenlänge zwischen 0,1 μ und 10 μm. Die Bildung eines solchen Gitters stellt eine besonders effiziente Diffusionsbarriere dar. Zudem wird durch die Gitterstruktur die Riß- anfälligkeit der Beschichtung herabgesetzt, was zusätzlich die Langzeitbestandigkeit der Beschichtung verbessert.
Bevorzugt ist das Erzeugnis als Turbinenschaufel, insbesondere als Gasturbinenschaufel ausgeführt. Gasturbinenschaufein sind heute zumeist besonders hohen thermischen Belastungen und einem intensiven Angriff durch Oxidation oder Korrosion ausgesetzt. Die Lebensdauer der Beschichtung einer Gasturbinenschaufel bestimmt dabei in der Regel das Revisionsinter- vall der ganzen Schaufel. Vorzugsweise ist das Erzeugnis als Hitzeschild einer thermischen Maschine, insbesondere für eine Brennkammer, ausgeführt. Bevorzugt ist auf die Oxidschicht eine keramische Wärmedämmschicht aufgebracht, insbesondere eine Wärmedämmschicht auf Zirkonbasis. Eine keramische Wärmedämmschicht dient zum Schutz der Turbinenschaufel vor sehr hohen Temperaturen. Die keramische Wärmedämmschicht ist über die Oxidschicht an die Schutzschicht angekoppelt. Ein Anwachsen der Oxidschicht führt zu einer zunehmenden Sprödheit der Oxidschicht. Die zunehmende Sprödheit der Oxidschicht hat eine die Langzeitbestandigkeit der Beschichtung verringernde Wirkung durch eine vergrößerte Anfälligkeit für ein Ablösen der Wärmedämmschicht. Indem durch die diffusionshemmende Wirkung des Chromnitrids ein Anwachsen der Oxidschicht verlangsamt wird, wird die Beschichtung in ihrer Langzeitbestandigkeit an einer besonders anfälligen Stelle, nämlich der Grenzschicht zwi- sehen Wärmedämmschicht und Schutzschicht verbessert.
Erfindungsgemäß wird die auf Angabe eines Verfahrens gerichtete Aufgabe gelöst durch ein Verfahren zur Herstellung einer Beschichtung für ein für eine Heißgasbeaufschlagung ausgeleg- tes Erzeugnis, wobei
a) eine Schutzschicht aus MCrAlY, die
• mindestens ein Metall aus der Gruppe (Eisen, Kobalt, Nikkei) , abgekürzt mit M, • Chrom (Cr) mit einem Gehalt von mindestens 15 at%, insbesondere mindestens 20 at%,
• Aluminium (AI) und
• Yttrium (Y) und/oder Hafnium und/oder ein Metall aus der Gruppe der Seltenen Erden, insbesondere Scandium, Lanthan oder Cer enthält, auf das Erzeugnis aufgebracht, b) eine Oxidschicht, insbesondere mit Aluminiumoxid und /oder Chromoxid auf der Schutzschicht gebildet und c) Chromnitrid über eine Stickstoffzufuhr in der Beschichtung erzeugt wird. Bevorzugt erfolgt die Stickstoffzufuhr aus einer Stickstoff- plasmaquelle über eine Stickstoffplasmabehandlung. Weiter bevorzugt wird der Beschichtung ein Stickstoffplasma zugeführt, welches als Sauerstoffgetter zusätzlich Wasserstoff enthält. Die Bereitstellung von Wasserstoff, und zwar in nicht molekularer Form ermöglicht es, dem Chromoxid Sauerstoff zu entziehen. Dadurch kann sich Stickstoff an das Chrom anlagern, was zur Bildung von Chromnitrid führt. Weiter bevorzugt wird zwischen dem Erzeugnis und der Stickstoffplasmaquelle eine Gleichspannung (BIAS) angelegt. Dadurch ist eine schnellere Erzeugung von Chromnitrid möglich, da der Stickstoff effizienter in das Erzeugnis eindringt. Vorzugsweise wird eine Gleichspannung von 50 V bis 600 V, insbesondere von 100 V bis 300 V angelegt.
Die Erfindung wird in einem Ausführungsbeispiel anhand der Zeichnung näher erläutert. Es zeigen:
Fig. 1 einen Längsschnitt durch eine Beschichtung eines heißgasbeaufschlagbaren Erzeugnisses und
Fig. 2 eine vergrößerte, schematische Darstellung eines Chromnitridgitters in einer Oxidschicht.
Gleiche Bezugszeichen haben in den Figuren die gleiche Bedeutung.
Fig. 1 ist ein Ausschnitt eines Längsschnittes durch eine das heißgasbeaufschlagbare Erzeugnis 1 darstellende Gasturbinen- schaufel gezeigt. Die Gasturbinenschaufel 1 besteht aus einem
Grundwerkstoff 2, z.B. aus einer Nickel-Basis-Superlegierung. Die Gasturbinenschaufel 1 weist eine Oberfläche 1A auf. Auf die Oberfläche 1A ist eine Schutzschicht aus MCrAlY aufgebracht, vorzugsweise mit den folgenden Konzentrationen: Cr = Chrom zwischen 15 wt% und 30 wt%,
AI = Aluminium zwischen 6 wt und 15 wt% y = Yttrium und/oder Hafnium und/oder ein Metall der Seltenen Erden, insbesondere Scandium, Lanthan oder Cer zwischen 0.01 wt% und 2 wt%, M = Nickel und/oder Kobalt und/oder Eisen als Rest.
Weiterhin kann bzw. können Rhenium oder andere Zusätze enthalten sein.
An die Schutzschicht 4 schließt sich eine Oxidschicht 5 an. Diese ist stark vergrößert dargestellt. An die Oxidschicht 5 schließt sich eine keramische Wärmedämmschicht 7, z.B. aus Yttrium-stabilisiertem Zirkonoxid, an. In der Oxidschicht 5 ist Chromnitrid 6 eingebaut. Das Chromnitrid 6 verringert die Diffusion von Aluminium oder Chrom aus der Schutzschicht 4 in die Oxidschicht 5. Dadurch verlangsamt sich ein Anwachsen der Dicke der Oxidschicht 5. Da eine dicke Oxidschicht 5 zu einer erhöhten Gefahr einer Ablösung der Wärmedämmschicht 7 führt, wird mit dem Verlangsamen des Anwachsens der Oxidschicht 5 die Langzeitbestandigkeit der Beschichtung 3 erhöht.
Fig. 2 zeigt vergrößert einen Längsschnitt durch eine Oxidschicht 5. Es ist schematisch ein Gitter 8 aus Chromnitrid 6 eingezeichnet, welches aus Gitterzellen 7A aufgebaut ist. Das Innere der Gitterzellen 7A besteht aus Aluminiumoxid und/oder Chromoxid. Das Gitter 8 ist nicht geometrisch perfekt ausgebildet, weist also z.B. Unterbrechungen, wechselnde Dicken und wechselnde Flächengrößen der Gitterzellen 7A auf. Im Mittel ist aber eine ungefähre durchschnittliche Seitenlänge A einer Gitterzelle 7A angebbar, welche vorzugsweise zwischen 0.1 um und 5 μm liegt. Diese durchschnittliche Seitenlänge A ist insbesondere vom Material der Schutzschicht und/oder der Oxidschicht oder auch von Prozeßparametern bei der Bildung des Chromnitrids abhängig. Ein solches Gitter des Chromnitrides 6 verhindert besonders effizient eine Diffusion von Aluminium oder Chrom.

Claims

Patentansprüche
1. Für eine Heißgasbeaufschlagung ausgelegtes Erzeugnis (1) aus einem Grundwerkstoff (2) auf dem eine Beschichtung (3) aufgebracht ist, umfassend: a) eine Schutzschicht (4) aus MCrAlY, die
• mindestens ein Metall aus der Gruppe (Eisen, Kobalt, Nikkei) , abgekürzt mit M,
• Chrom (Cr) mit einem Gehalt von mindestens 15 wt%, insbe- sondere mindestens 20 wt%,
• Aluminium (AI) und
• Yttrium (Y) und/oder Hafnium und/oder ein Metall aus der Gruppe der Seltenen Erden, insbesondere Scandium, Lanthan oder Cer enthält; b) eine Oxidschicht (5) , insbesondere mit Aluminiumoxid und/oder Chromoxid; c) Chromnitrid (6) .
2. Erzeugnis (1) nach Anspruch 1, wobei die Schutzschicht (4) Rhenium, insbesondere mit einem Anteil von 1 wt% bis 15 wt%, enthält .
3. Erzeugnis (1) nach Anspruch 1 oder 2, wobei das Chromni- trid (6) in der Oxidschicht (5) enthalten ist.
4. Erzeugnis (1) nach einem der vorhergehenden Ansprüche, bei dem das Chromnitrid (6) zwischen der Schutzschicht (4) und der Oxidschicht (5) vorhanden ist.
5. Erzeugnis (1) nach einem der vorhergehenden Ansprüche, bei dem das Chromnitrid (6) in einer Konzentration zwischen 10 at % und 60 at %, insbesondere etwa 50 at %, enthalten ist.
6. Erzeugnis (1) nach einem der vorhergehenden Ansprüche, bei dem das Chromnitrid (6) ein Gitter (8) bildet, insbesondere ein etwa rechteckiges oder quadratisches Gitter (8) mit einer Seitenlange (A) zwischen 0,1 μm. und 5 μm.
7. Erzeugnis (1) nach einem der vorhergehenden Ansprüche, welches als Turbinenschaufel, insbesondere als Gasturbinen¬ schaufel, ausgeführt ist.
8. Erzeugnis (1) nach einem der vorhergehenden Ansprüche, welches als Hitzeschildelement einer thermischen Maschine, insbesondere für eine Brennkammer, ausgeführt ist.
9. Erzeugnis (1) nach einem der vorhergehenden Ansprüche, bei dem auf die Oxidschicht (5) eine keramische Wärmedämmschicht
(7) aufgebracht ist, insbesondere eine Wärmedämmschicht (7) auf Zirkonoxid-Basis .
10. Verfahren zur Herstellung einer Beschichtung (3) für ein heißgasfestes Erzeugnis (1), wobei a) eine Schutzschicht (4) aus MCrAlY, die • mindestens ein Metall aus der Gruppe (Eisen, Kobalt, Nik¬ kei) , abgekürzt mit M,
• Chrom (Cr) mit einem Gehalt von mindestens 15 wt%, insbe¬ sondere mindestens 20 wt%,
• Aluminium (AI) und • Yttrium (Y) und/oder Hafnium und/oder ein Metall aus der Gruppe der Seltenen Erden, insbesondere Scandium, Lanthan oder Cer enthalt, auf das Erzeugnis aufgebracht, b) eine Oxidschicht (5) , insbesondere mit Aluminiumoxid und/oder Chromoxid auf der Schutzschicht (4) gebildet und c) Chromnitrid (6) über eine Stickstoffzufuhr m der Be¬ schichtung (3) erzeugt wird.
11. Verfahren nach Anspruch 10, bei dem die Stickstoffzufuhr über eine Stickstoffplasmabehandlung erfolgt.
12. Verfahren nach Anspruch 10, bei dem aus einer Stickstoff¬ plasmaquelle ein Stickstoffplasma der Beschichtung (3) zuge¬ führt wird, welches als Sauerstoffgetter zusätzlich Wasser¬ stoff enthält.
13. Verfahren nach Anspruch 10 oder 11, bei dem an das Erzeugnis gegenüber der Stickstoffplasmaquelle eine Gleichspan¬ nung (BIAS) , insbesondere zwischen 50 V und 600 V, angelegt wird.
EP98961039A 1997-11-03 1998-10-21 Für eine heissgasbeaufschlagung ausgelegtes erzeugnis und verfahren zur herstellung einer beschichtung für dieses erzeugnis Expired - Lifetime EP1029114B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19748538 1997-11-03
DE19748538 1997-11-03
PCT/DE1998/003123 WO1999023277A1 (de) 1997-11-03 1998-10-21 Für eine heissgasbeaufschlagung ausgelegtes erzeugnis und verfahren zur herstellung einer beschichtung für ein für dieses erzeugnis

Publications (2)

Publication Number Publication Date
EP1029114A1 true EP1029114A1 (de) 2000-08-23
EP1029114B1 EP1029114B1 (de) 2001-12-19

Family

ID=7847480

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98961039A Expired - Lifetime EP1029114B1 (de) 1997-11-03 1998-10-21 Für eine heissgasbeaufschlagung ausgelegtes erzeugnis und verfahren zur herstellung einer beschichtung für dieses erzeugnis

Country Status (5)

Country Link
US (1) US6517959B1 (de)
EP (1) EP1029114B1 (de)
JP (1) JP2001521992A (de)
DE (1) DE59802578D1 (de)
WO (1) WO1999023277A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9951411B2 (en) 2008-04-21 2018-04-24 Mtu Aero Engines Gmbh Erosion protection coating

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6655369B2 (en) * 2001-08-01 2003-12-02 Diesel Engine Transformations Llc Catalytic combustion surfaces and method for creating catalytic combustion surfaces
US20030092278A1 (en) * 2001-11-13 2003-05-15 Fink Steven T. Plasma baffle assembly
EP1365044A1 (de) * 2002-05-24 2003-11-26 Siemens Aktiengesellschaft MCrAl-Schicht
US7300702B2 (en) * 2003-08-18 2007-11-27 Honeywell International, Inc. Diffusion barrier coating for Si-based components
US8382436B2 (en) * 2009-01-06 2013-02-26 General Electric Company Non-integral turbine blade platforms and systems
US8262345B2 (en) * 2009-02-06 2012-09-11 General Electric Company Ceramic matrix composite turbine engine
US8347636B2 (en) 2010-09-24 2013-01-08 General Electric Company Turbomachine including a ceramic matrix composite (CMC) bridge
EP2986752B1 (de) * 2013-04-16 2021-04-07 Oerlikon Surface Solutions AG, Pfäffikon Oxidationsschutzschicht auf chrombasis
EP3470680A1 (de) * 2017-10-16 2019-04-17 OneSubsea IP UK Limited Erosionsbeständige schaufeln für kompressoren
US11624289B2 (en) * 2021-04-21 2023-04-11 Rolls-Royce Corporation Barrier layer and surface preparation thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174385A (ja) * 1984-09-10 1986-08-06 Hitachi Ltd セラミツク被覆耐熱部材及びその製造方法
US4852542A (en) * 1987-10-23 1989-08-01 Adiabatics, Inc. Thin thermal barrier coating for engines
US5499905A (en) * 1988-02-05 1996-03-19 Siemens Aktiengesellschaft Metallic component of a gas turbine installation having protective coatings
DE19523637C2 (de) * 1994-12-27 1997-08-14 Mtu Friedrichshafen Gmbh Verfahren zur Herstellung einer Korrosionsschutzbeschichtung, Substrat mit einer Korrosionsschutzbeschichtung sowie Verwendung eines solchen Substrats
WO1996034128A1 (en) * 1995-04-25 1996-10-31 Siemens Aktiengesellschaft Metal substrate with an oxide layer and an anchoring layer
EP0780484B1 (de) * 1995-12-22 2001-09-26 General Electric Company Körper mit Hochtemperatur-Schutzschicht und Verfahren zum Beschichten
WO1997047784A1 (en) * 1996-06-13 1997-12-18 Siemens Aktiengesellschaft Article with a protective coating system comprising an improved anchoring layer and its manufacture
DE19741800A1 (de) * 1996-09-23 1998-03-26 Fraunhofer Ges Forschung Schichtsystem, Verfahren zur Herstellung desselben und Metallsubstrat mit einem derartigen Schichtsystem
US6129988A (en) * 1998-08-14 2000-10-10 Siemens Westinghouse Power Corporation Gaseous modification of MCrAlY coatings

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9923277A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9951411B2 (en) 2008-04-21 2018-04-24 Mtu Aero Engines Gmbh Erosion protection coating

Also Published As

Publication number Publication date
DE59802578D1 (de) 2002-01-31
EP1029114B1 (de) 2001-12-19
JP2001521992A (ja) 2001-11-13
US6517959B1 (en) 2003-02-11
WO1999023277A1 (de) 1999-05-14

Similar Documents

Publication Publication Date Title
DE112004003138B4 (de) Aluminiumoxidschutzschicht und Herstellungsverfahren dafür
EP1029114B1 (de) Für eine heissgasbeaufschlagung ausgelegtes erzeugnis und verfahren zur herstellung einer beschichtung für dieses erzeugnis
DE102015115298B4 (de) Herstellungsverfahren für einen Separator einer Brennstoffzelle
DE19523637A1 (de) Korrosionsschutzbeschichtung für Anwendungen in aufkohlender (reduzierender) Atmosphäre bei hohen Temperaturen und Verfahren zur Herstellung einer solchen, sowie mit einer Korrosionsschutzbeschichtung versehenes Anodenblech für eine Schmelzkarbonatbrennstoffzelle
EP3211114A1 (de) Bauteil aus einer molybdän-legierung und verfahren zur ausbildung einer oxidationsschutzschicht dafür
DE102013207457B4 (de) Verfahren zur Herstellung einer Hochtemperaturschutzbeschichtung
EP3645762B1 (de) Stahllegierung mit verbesserter korrosionsbeständigkeit bei hochtemperaturbeanspruchung und verfahren zur herstellung von stahlband aus dieser stahllegierung
EP0318803B1 (de) Hochtemperatur-Schutzschicht
DE60021722T2 (de) Wärmedämmschicht
EP1365044A1 (de) MCrAl-Schicht
EP2326742B1 (de) Verwendung eines targets für das funkenverdampfen und verfahren zum herstellen eines für diese verwendung geeigneten targets
EP0241807A2 (de) Hochtemperatur-Schutzschicht
EP0798402A1 (de) Oxidationsschutzschicht
EP2514052B1 (de) Zündkerzenelektrode, hergestellt aus verbessertem elektrodenmaterial
DE102005030925A1 (de) Chromrückhalteschichten für Bauteile von Brennstoffzellensystemen
WO2022048990A1 (de) Durch warmumformen eines stahlflachprodukts hergestelltes stahlbauteil, stahlflachprodukt und verfahren zur herstellung eines stahlbauteils
EP1463845A1 (de) Herstellung eines keramischen werkstoffes für eine wärmedämmschicht sowie eine den werkstoff enthaltende wärmedämmschicht
EP0886721A1 (de) Schutzschicht für turbinenschaufel
DE2139145A1 (de) In Weichglas einschmelzbare Metall legierung
EP0512632B1 (de) Stromzuführung
DE19801424B4 (de) Wärmedämmstoff für hohe Temperaturen und seine Verwendung
DE19541187C1 (de) Verfahren zur Herstellung einer Separatorplatte für eine Schmelzkarbonat-Brennstoffzelle und nach dem Verfahren hergestellte Separatorplatte
EP1900708A1 (de) Wärmedämmstoff mit hoher zyklischer Temperaturbelastbarkeit
DE102015200076A1 (de) Wärmedämmschichtsystem mit keramischer poröser Grundschicht
DE112004002951T5 (de) Niedrigleitfähige und sinterresistente Wärmebarrierenbeschichtungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000426

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20010521

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REF Corresponds to:

Ref document number: 59802578

Country of ref document: DE

Date of ref document: 20020131

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020321

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021031

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20041029

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20091028

Year of fee payment: 12

Ref country code: GB

Payment date: 20091019

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20091218

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101021

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59802578

Country of ref document: DE

Effective date: 20110502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110502