EP0318803B1 - Hochtemperatur-Schutzschicht - Google Patents

Hochtemperatur-Schutzschicht Download PDF

Info

Publication number
EP0318803B1
EP0318803B1 EP88119394A EP88119394A EP0318803B1 EP 0318803 B1 EP0318803 B1 EP 0318803B1 EP 88119394 A EP88119394 A EP 88119394A EP 88119394 A EP88119394 A EP 88119394A EP 0318803 B1 EP0318803 B1 EP 0318803B1
Authority
EP
European Patent Office
Prior art keywords
weight
protective layer
yttrium
temperature protective
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88119394A
Other languages
English (en)
French (fr)
Other versions
EP0318803A1 (de
Inventor
Lorenz Dr. Singheiser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
ABB AG Germany
Original Assignee
Asea Brown Boveri AG Germany
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asea Brown Boveri AG Germany filed Critical Asea Brown Boveri AG Germany
Publication of EP0318803A1 publication Critical patent/EP0318803A1/de
Application granted granted Critical
Publication of EP0318803B1 publication Critical patent/EP0318803B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12937Co- or Ni-base component next to Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12944Ni-base component

Definitions

  • the invention relates to a high-temperature protective layer.
  • Such high-temperature protective layers are used above all where the base material of components made of heat-resistant steels and / or alloys that are used at temperatures above 600 ° C is to be protected.
  • high-temperature protective layers are intended to slow down or completely prevent the effects of high-temperature corrosion, especially of sulfur, oil ash, oxygen, alkaline earths and vanadium.
  • Such high-temperature protective layers are designed so that they can be applied directly to the base material of the component to be protected.
  • High-temperature protective layers are of particular importance for components of gas turbines. They are mainly applied to rotor blades and guide vanes as well as to heat accumulation segments in gas turbines.
  • An austenitic material based on nickel, cobalt or iron is preferably used to manufacture these components.
  • nickel superalloys in particular are used as the base material.
  • Such high-temperature protective layers have a matrix in which an aluminum-containing phase is embedded.
  • this top layer does not have particularly good adhesion, and is therefore worn away over time by the action of corrosion, so that the protection for the high-temperature protective layer that is automatically created as a result is lost. Over time, the corrosion progresses so far that the matrix of the high-temperature protective layer itself is attacked.
  • An improved high-temperature layer has become known from EP-A-0 134 821.
  • the well-known protective layer is an oxide dispersion hardened nickel-based alloy with a high chromium and aluminum content. Silicon and zirconium or silicon and tantalum are optionally provided as adhesion-increasing additives, which should contribute to the Improve oxidation resistance and adhesion to components. As practice shows, however, not with the desired success.
  • the high-temperature protective layer according to the invention which is also an oxide dispersion-hardened alloy, has not only the known elements such as nickel, chromium and aluminum, as well as silicon and zirconium or tantalum, but also contents of up to 2% of yttrium and / or hafnium.
  • the oxidation resistance is considerably increased in comparison with known high-temperature protective layers, since it also has aluminum-containing phases which enable the formation of an aluminum oxide-containing cover layer.
  • an additional aluminum-nickel-chromium-oxide layer is formed on the aluminum oxide-containing top layer, which significantly increases the protection of the high-temperature protective layer and the component underneath.
  • silicon and tantalum With the addition of silicon and tantalum, the formation of an aluminum oxide cover layer can also be achieved.
  • the high-temperature protective layer according to the invention produced with one or the other additive experiences a considerably better adhesive strength on the components than known layers of this type. This also applies to its cover layers.
  • the firm and permanent adhesion of the protective layer and its cover layer is achieved by the percentage of yttrium and / or hafnium that is specifically determined for the alloy.
  • the high-temperature protective layer according to the invention is formed by an alloy which contains chromium, aluminum, nickel, yttrium, silicon and zirconium. Instead of ytrium, yttrium and hafnium or hafnium alone can also be used.
  • Such an alloy has 25 to 27% by weight of chromium, 4 to 7% by weight of aluminum, 0.2 to 2% by weight of yttrium, 1 to 3% by weight of silicon, and 1 to 2% by weight of zirconium, the remaining part of the alloy is formed by nickel.
  • the 0.2 to 2% by weight ytrrium can also be replaced by 0.2 to 2% by weight yttrium and hafnium or by 0.2 to 2% by weight hafnium.
  • a high temperature protective layer with the same properties is achieved by using an alloy containing chromium, aluminum, yttrium, nickel, silicon and tantalum.
  • the proportion of yttrium can be replaced by yttrium and hafnium or hafnium alone.
  • an alloy which contains 23 to 27% by weight of chromium, 3 to 5% by weight of aluminum, 0.2 to 2% by weight of yttrium, 1 to 2.5% by weight of silicon, 0.1 contains up to 3% by weight of tantalum, the remainder of the alloy consisting of nickel.
  • the 0.2 to 2% by weight of yttrium can also be replaced by 0.2 to 2% by weight of yttrium and hafnium or by 0.2 to 2% by weight of hafnium. All weights refer to the total weight of the respective alloy.
  • All the alloys described here are in the same way for the formation of a high-temperature protective layer suitable. Regardless of which of the alloys described above they are formed, aluminum oxide cover layers are formed in each case under operating conditions on these protective layers, which form equally quickly and equally strongly with each of the alloy compositions according to the invention, and also at temperatures which are greater than 950 ° C are not removed.
  • the invention is explained in more detail using an exemplary embodiment which describes the production of a coated gas turbine component.
  • the gas turbine component to be coated is made of an austenitic material, in particular a nickel superalloy. Before coating, the component is first chemically cleaned and then roughened with a sandblast. The component is coated under vacuum using plasma spraying.
  • An alloy is used for the coating, which contains 25 to 27% by weight of chromium, 4 to 7% by weight of aluminum, 0.2 to 2% by weight of yttrium, 1 to 3% by weight of silicon, 1 to 2% by weight of zirconium having. The rest of the alloy consists of nickel.
  • the 0.2 to 2% by weight of yttrium can also be replaced by 0.2 to 2% by weight of yttrium and hafnium or by 0.2 to 2% by weight of hafnium.
  • this alloy it is also possible to use an alloy which contains 23 to 27% by weight of chromium, 3 to 5% by weight of aluminum, 0.2 to 2% by weight of yttrium, 1 to 2.5% by weight of silicon, 0.1 up to 3% by weight of tantalum, the remainder of the alloy being nickel.
  • the 0.2 to 2% by weight of yttrium can also be replaced by 0.2 to 2% by weight of yttrium and hafnium or by the same amount of hafnium alone.
  • All weight figures refer to the total weight the alloy used.
  • the material forming the alloy is in powder form and preferably has a grain size of 45 ⁇ m.
  • the component is heated to 800 ° C. using the plasma.
  • the alloy is applied directly to the base material of the component.
  • Argon and hydrogen are used as the plasma gas.
  • the component is subjected to a heat treatment. This takes place in a high vacuum annealing furnace. A pressure is maintained in it that is less than 0.66 Pa (5x10 ⁇ 3 Torr). After reaching the vacuum, the furnace is heated to a temperature of 1100 ° C.
  • the above temperature is held for about 1 hour with a tolerance of about +/- 4 ° C.
  • the heating of the furnace is then switched off.
  • the coated and heat-treated component is slowly cooled in the oven. Its production is finished after cooling. All alloy variants are applied in the same way.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

  • Die Erfindung bezieht sich auf eine Hochtemperatur-Schutzschicht.
  • Solche Hochtemperatur-Schutzschichten kommen vor allem dort zur Anwendung, wo das Grundmaterial von Bauelementen aus warmfesten Stählen und/oder Legierungen zu schützen ist, die bei Temperaturen über 600 °C verwendet werden.
  • Durch diese Hochtemperatur-Schutzschichten soll die Wirkung von Hochtemperaturkorrosionen vor allem von Schwefel, Ölaschen, Sauerstoff, Erdalkalien und Vanadium verlangsamt bzw. vollständig unterbunden werden. Solche Hochtemperatur-Schutzschichten sind so ausgebildet, daß sie direkt auf das Grundmaterial des zu schützenden Bauelementes aufgetragen werden können.
  • Bei Bauelementen von Gasturbinen sind Hochtemperatur-Schutzschichten von besonderer Bedeutung. Sie werden vor allem auf Lauf- und Leitschaufeln sowie auf Wärmestausegmente von Gasturbinen aufgetragen.
  • Für die Fertigung dieser Bauelemente wird vorzugsweise ein austenititsches Material auf der Basis von Nickel, Kobalt oder Eisen verwendet. Bei der Herstellung von Gasturbinenbauteilen kommen vor allem Nickel-Superlegierungen als Grundmaterial zur Anwendung.
  • Bis jetzt ist es üblich, Bauelemente, die für Gasturbinen bestimmt sind, mit Schutzschichten zu versehen, die durch Legierungen gebildet werden, deren wesentliche Bestandteile Nickel, Chrom, Aluminium und Yttrium sind (FR-A-2 511 042).
  • Solche Hochtemperaturschutzschichten weisen eine Matrix auf, in die eine aluminiumhaltige Phase eingelagert ist.
  • Wird ein Bauelement, das mit einer solchen Hochtemperaturschutzschicht versehen ist, einer Betriebstemperatur von mehr als 950°C ausgesetzt, so beginnt das in der Phase enthaltene Aluminium an die Oberfläche zu diffundieren, wo es zur Ausbildung einer Alumniniumoxiddeckschicht kommt.
  • Von Nachteil ist hierbei, daß diese Deckschicht keine besonders gute Haftung aufweist, und deshalb durch die Einwirkung von Korrosionen mit der Zeit abgetragen wird, so daß der hierdurch selbsttätig entstandene Schutz für die Hochtemperaturschutzschicht verloren geht. Im Laufe der Zeit schreitet die Korrosion so weit fort, daß die Matrix der Hochtemperaturschutzschicht selbst angegriffen wird.
  • Es hat sich jedoch gezeigt, daß durch solche Hochtemperaturschutzschichten Bauelemente aus austenitischen Werkstoffen am besten geschützt werden, so daß auf diese Schutzschichten nicht verzichtet werden kann.
  • Eine verbesserte Hochtemperaturschicht ist aus der EP-A-0 134 821 bekanntgeworden. Die bekannte Schutzschicht ist eine oxiddispersionsgehärtete Nickelbasislegierung mit hohem Chrom- und Aluminiumgehalt. Als haftungssteigernde Zusätze sind wahlweise Silizium und Zirkonium oder Silizium und Tantal vorgesehen, welche dazu beitragen sollen, die Oxidationsbeständigkeit und die Haftung an den Bauteilen zu verbessern. Wie die Praxis jedoch zeigt, nicht mit dem gewünschten Erfolg.
  • Ausgehend von diesem Stand der Technik ist es daher Aufgabe der Erfindung, eine Hochtemperaturschutzschicht der eingangs genannten Art so zu verbessern, daß ihre Haftfestigkeit und ihr Korrosionswiderstand erhöht sind.
  • Die Lösung der Aufgabe ist in den Ansprüchen 1 - 4 angegeben. Demgemäß weist die erfindungsgemäße Hochtemperaturschutzschicht, die ebenfalls eine oxiddispersionsgehärtete Legierung ist, neben den bekannten Elementen wie Nickel, Chrom und Aluminium sowie Silizium und Zirkonium oder Tantal auch Gehalte bis 2 % an Yttrium und/oder Hafnium auf.
  • Durch die Zugabe von Yttrium und/oder Hafnium wird die Oxidationsbeständigkeit im Vergleich mit bekannten Hochtemperaturschutzschichten beträchtlich erhöht, da sie ebenfalls aluminiumhaltige Phasen aufweist, welche die Ausbildung einer aluminiumoxidhaltigen Deckschicht ermöglichen.
  • Wird dem Basiswerkstoff, der die Hochtemperaturschutzschicht bildet, Zirkonium und Silizium zulegiert, so kommt es auf der aluminiumoxidhaltigen Deckschicht zur Ausbildung einer zusätzlichen Aluminium-Nickel-Chrom-Oxidschicht, welche den Schutz der Hochtemperaturschutzschicht und des darunter befindlichen Bauelementes wesentlich erhöht. Mit einem Zusatz von Silizium und Tantal kann ebenfalls die Ausbildung einer Aluminiumoxiddeckschicht erreicht werden. Die mit dem einen oder anderen Zusatz hergestellte erfindungsgemäße Hochtemperaturschutzschicht erfährt eine wesentlich bessere Haftfestigkeit auf den Bauelementen als bekannte Schichten dieser Art. Dies gilt auch für ihre Deckschichten. Die feste und beständige Haftung der Schutzschicht und ihrer Deckschicht wird duch den speziell für die Legierung festgelegten Anteil an Yttrium und/oder Hafnium erreicht.
  • Durch den Zusatz des Yttrium in Mengen von 0,2 bis 2 Gew.% wird die Oxidationsgeschwindigkeit auf der Oberfläche der Hochtemteraturschutzschicht in einem bisher nicht dagewesenen Maß reduziert. Dieser Effekt wird durch den Zusatz von Hafnium sogar noch etwas verstärkt. Die erfindungsgemäße Hochtemperatur-Schutzschicht wird bei einer ersten Ausführungsform durch eine Legierung gebildet, die Chrom, Aluminium, Nickel, Yttrium, Silizium und Zirkonium enthält. An Stelle von Ytrium können auch Yttrium und Hafnium oder Hafnium alleine verwendet werden. Eine solche Legierung weist 25 bis 27 Gew.% Chrom, 4 bis 7 Gew.% Aluminium, 0,2 bis 2 Gew.% Yttrium, 1 bis 3 Gew.% Silizium, und 1 bis 2 Gew.% Zirkomium auf, wobei der übrige Anteil der Legierung durch Nickel gebildet wird. Die 0,2 bis 2 Gew % Ytrrium können auch durch 0,2 bis 2 Gew % Yttrium und Hafnium bzw. durch 0,2 bis 2 Gew % Hafnium ersetzt werden.
  • Eine Hochtemperatur-Schutzschicht mit den gleichen Eigenschaften wird durch die Verwendung einer Legierung erzielt, die Chrom, Aluminium, Yttrium, Nickel, Silizium und Tantal enthält. Auch hierbei kann der Anteil des Yttriums durch Yttrium und Hafnium bzw. Hafnium alleine ersetzt werden. Nach einer entsprechenden zweiten Ausführungsform wird eine Legierung verwendet, die 23 bis 27 Gew.% Chrom, 3 bis 5 Gew.% Aluminium, 0,2 bis 2 Gew. % Yttrium, 1 bis 2,5 Gew.% Silizium, 0,1 bis 3 Gew.% Tantal enthält, wobei der übrige Anteil der Legierung aus Nickel besteht. Die 0,2 bis 2 Gew.% Yttrium können auch durch 0,2 bis 2 Gew.% Yttrium und Hafnium bzw. durch 0,2 bis 2 Gew.% Hafnium ersetzt werden. Alle Gewichtsangaben beziehen sich auf das Gesamtgewicht der jeweiligen Legierung.
  • Alle hier beschriebenen Legierungen sind in gleicher Weise für die Ausbildung einer Hochtemperatur-Schutzschicht geeignet. Gleichgültig durch welche der oben beschriebenen Legierungen sie gebildet werden, es entstehen in jedem Fall unter Betriebsbedingungen auf diesen Schutzschichten Aluminiumoxid-Deckschichten, die sich bei jeder der erfindungsgemäßen Legierungszusammensetzungen gleich schnell und gleich stark ausbilden, und die auch bei Temperaturen, die größer als 950°C sind, nicht abgetragen werden.
  • Anhand eines Ausführungsbeispiels, das die Herstellung eines beschichteten Gasturbinenenbauteils beschreibt, wird die Erfindung näher erläutert. Das zu beschichtende Gasturbinenbauteil ist aus einem austenitischen Material, insbesondere einer Nickel-Superlegierung gefertigt. Vor der Beschichtung wird das Bauteil zunächst chemisch gereinigt und dann mit einem Sandstrahl aufgerauht. Die Beschichtung des Bauelementes erfolgt unter Vakuum mittels Plasmaspritzen.
    Für die Beschichtung wird eine Legierung verwendet, die 25 bis 27 Gew.% Chrom, 4 bis 7 Gew.% Aluminium, 0,2 bis 2 Gew.% Yttrium, 1 bis 3 Gew.% Silizium, 1 bis 2 Gew.% Zirkonium aufweist. Der übrige Anteil der Legierung besteht aus Nickel.
    Die 0,2 bis 2 Gew.% Yttrium können auch durch 0,2 bis 2 Gew.% Yttrium und Hafnium oder durch 0,2 bis 2 Gew.% Hafnium ersetzt werden.
    Anstelle dieser Legierung kann auch eine Legierung verwendet werden, die 23 bis 27 Gew.% Chrom, 3 bis 5 Gew.% Aluminium, 0,2 bis 2 Gew.% Yttrium, 1 bis 2,5 Gew.% Silizium, 0,1 bis 3 Gew.% Tantal aufweist, wobei der restliche Anteil der Legierung Nickel ist. Die 0,2 bis 2 Gew.% Yttrium können auch durch 0,2 bis 2 Gew.% Yttrium und Hafnium bzw. durch die gleiche Menge Hafnium alleine ersetzt werden.
    Alle Gewichtsanganben beziehen sich auf das Gesamtgewicht der verwendeten Legierung.
    Das die Legierung bildende Material liegt in Pulverform vor, und weist vorzugsweise eine Korngröße von 45 µm auf. Vor dem Aufbringen der Hochtemperatur-Schutzschicht, insbeondere vor dem Aufbringen der die Schutzschicht bildenden Legierung, wird das Bauelement mit Hilfe des Plasmas auf 800 °C erhitzt. Die Legierung, wird direkt auf das Grundmaterial des Bauelementes aufgetragen. Als Plasmagas wird Argon und Wasserstoff verwendet. Nach dem Aufbringen der Legierung wird das Bauelement einer Wärmebehandlung unterzogen. Diese erfolgt in einem Hochvakuumglühofen. In ihm wird ein Druck aufrecht erhalten, der kleiner als 0,66 Pa (5x10⁻³ Torr) ist. Nach dem Erreichen des Vakuums wird der Ofen auf eine Temperatur von 1100 °C aufgeheizt. Die oben angegebene Temperatur wird während etwa 1 Stunde mit einer Toleranz von etwa +/- 4 °C gehalten. Anschließend wird die Heizung des Ofens abgeschaltet. Das beschichtete und wärmebehandelte Bauelement wird im Ofen langsam abgekühlt. Seine Herstellung ist nach dem Abkühlen beendet. Alle Legierungsvarianten werden in der gleichen Weise aufgetragen.

Claims (6)

  1. Hochtemperatur-Schutzschicht, dadurch gekennzeichnet, daß dies 25 bis 27 Gew.-% Chrom, 4 bis 7 Gew.-% Aluminium, 0,2 bis 2 Gew.-% Yttrium und/oder Hafnium, 1 bis 3 Gew.-% Silizium und 1 bis 2 Gew.-% Zirkonium enthält, und der restliche Anteil aus Nickel besteht.
  2. Hochtemperatur-Schutzschicht, dadurch gekennzeichnet, daß diese 25 bis 27 Gew.-% Chrom, 4 bis 7 Gew.-% Aluminium, 0,2 bis 2 Gew.-% Yttrium, 1 bis 3 Gew.-% Silizium und 1 bis 2 Gew.-% Zirkonium enthält, und der restliche Anteil aus Nickel besteht.
  3. Hochtemperatur-Schutzschicht, dadurch gekennzeichnet, daß diese 23 bis 27 Gew.-% Chrom, 3 bis 5 Gew.-% Aluminium, 0,2 bis 2 Gew.-% Yttrium, 1 bis 2,5 Gew.-% Silizium und 0,1 bis 3 Gew.-% Tantal aufweist, und der restliche Anteil aus Nickel besteht.
  4. Hochtemperatur-Schutzschicht, dadurch gekennzeichnet, daß diese 23 bis 27 Gew.-% Chrom, 3 bis 5 Gew.-% Aluminium, 0,2 bis 2 Gew.-% Yttrium und/oder Hafnium, 1 bis 2,5 Gew.-% Silizium und 0,1 bis 3 Gew.-% Tantal aufweist, und der restliche Anteil aus Nickel besteht.
  5. Vormaterial für die Herstellung einer Hochtemperatur-Schutzschicht nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das die Legierung bildende Material in Pulverform mit einer Korngröße von vorzugsweise 45 µm vorliegt.
  6. Verfahren zur Herstellung einer Hochtemperatur-Schutzschicht nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das zu beschichtende Bauelement vor dem Aufbringen der Schutzschicht zunächst chemisch gereinigt, dann mittels Sandstrahl aufgerauht und schließlich mittels Plasma auf 800°C erhitzt wird.
EP88119394A 1987-11-28 1988-11-22 Hochtemperatur-Schutzschicht Expired - Lifetime EP0318803B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3740478A DE3740478C1 (de) 1987-11-28 1987-11-28 Hochtemperatur-Schutzschicht
DE3740478 1987-11-28

Publications (2)

Publication Number Publication Date
EP0318803A1 EP0318803A1 (de) 1989-06-07
EP0318803B1 true EP0318803B1 (de) 1993-06-23

Family

ID=6341537

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88119394A Expired - Lifetime EP0318803B1 (de) 1987-11-28 1988-11-22 Hochtemperatur-Schutzschicht

Country Status (3)

Country Link
US (1) US4973445A (de)
EP (1) EP0318803B1 (de)
DE (2) DE3740478C1 (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2675415B1 (fr) * 1991-04-22 1995-06-30 Creusot Loire Tole plaquee inoxydable et procede de realisation de cette tole plaquee.
EP1260608A1 (de) * 2001-05-25 2002-11-27 ALSTOM (Switzerland) Ltd Verfahren zur MCrAlY-Haftungsbeschichtung
EP1260612A1 (de) 2001-05-25 2002-11-27 ALSTOM (Switzerland) Ltd MCrAlY-Haftschicht bzw. Überzug
EP1295969A1 (de) * 2001-09-22 2003-03-26 ALSTOM (Switzerland) Ltd Verfahren zur Züchtung einer MCrAlY-Beschichtung und damit beschichteter Gegenstand
EP1295970A1 (de) * 2001-09-22 2003-03-26 ALSTOM (Switzerland) Ltd Beschichtung aus der Legierung MCrAlY-Typ
US6942929B2 (en) 2002-01-08 2005-09-13 Nianci Han Process chamber having component with yttrium-aluminum coating
US7371467B2 (en) 2002-01-08 2008-05-13 Applied Materials, Inc. Process chamber component having electroplated yttrium containing coating
EP1327702A1 (de) * 2002-01-10 2003-07-16 ALSTOM (Switzerland) Ltd MCrAlY-Haftschicht und Verfahren zur Herstellung einer MCrAlY-Haftschichtbeschichtung
EP1466037B1 (de) * 2002-01-18 2005-07-13 ALSTOM Technology Ltd Hochtemperatur-schutzschicht
EP1411210A1 (de) * 2002-10-15 2004-04-21 ALSTOM Technology Ltd Verfahren zur Abscheidung einer ermüdungs- und oxydationsbeständigen MCrAlY-Beschichtung
EP1428982B1 (de) * 2002-12-06 2009-02-04 ALSTOM Technology Ltd Verfahren zur selektiven Abscheidung einer MCrAlY-Beschichtung
EP1426760A1 (de) 2002-12-06 2004-06-09 ALSTOM Technology Ltd Zersörungsfreies Verfahren zur Bestimmung der Betriebstemperatur von Metallen einer Komponente
EP1426759B1 (de) 2002-12-06 2011-11-16 Alstom Technology Ltd Zerstörungsfreie Testmethode zur Bestimmung der Verarmung einer Beschichtung
DE60225569T2 (de) * 2002-12-06 2009-09-03 Alstom Technology Ltd. Verfahren zur örtlichen Abscheidung einer MCrAlY - Beschichtung
ATE329067T1 (de) * 2003-06-26 2006-06-15 Alstom Technology Ltd Verfahren für das auftragen eines mehrschichtigen systems
US7875200B2 (en) * 2008-05-20 2011-01-25 United Technologies Corporation Method for a repair process
DE102009010026A1 (de) * 2009-02-21 2010-08-26 Mtu Aero Engines Gmbh Bauteil für eine Strömungsmaschine
CN102808178A (zh) * 2011-05-30 2012-12-05 昆山市瑞捷精密模具有限公司 一种具有耐高温耐磨涂层的锌合金模具

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3837894A (en) * 1972-05-22 1974-09-24 Union Carbide Corp Process for producing a corrosion resistant duplex coating
GB1426438A (en) * 1972-11-08 1976-02-25 Rolls Royce Nickel or cobalt based alloy composition
US4088479A (en) * 1976-01-16 1978-05-09 Westinghouse Electric Corp. Hot corrosion resistant fabricable alloy
US4095003A (en) * 1976-09-09 1978-06-13 Union Carbide Corporation Duplex coating for thermal and corrosion protection
EP0025263B1 (de) * 1979-07-25 1983-09-21 The Secretary of State for Defence in Her Britannic Majesty's Government of the United Kingdom of Great Britain and Nickel- und/oder Kobalt-Legierungen für Komponenten eines Gasturbinenantriebs
US4312682A (en) * 1979-12-21 1982-01-26 Cabot Corporation Method of heat treating nickel-base alloys for use as ceramic kiln hardware and product
US4419416A (en) * 1981-08-05 1983-12-06 United Technologies Corporation Overlay coatings for superalloys
US4439248A (en) * 1982-02-02 1984-03-27 Cabot Corporation Method of heat treating NICRALY alloys for use as ceramic kiln and furnace hardware
US4743514A (en) * 1983-06-29 1988-05-10 Allied-Signal Inc. Oxidation resistant protective coating system for gas turbine components, and process for preparation of coated components
ATE28335T1 (de) * 1983-07-22 1987-08-15 Bbc Brown Boveri & Cie Hochtemperatur-schutzschicht.
DE3683091D1 (de) * 1985-05-09 1992-02-06 United Technologies Corp Schutzschichten fuer superlegierungen, gut angepasst an die substrate.
DE3612568A1 (de) * 1986-04-15 1987-10-29 Bbc Brown Boveri & Cie Hochtemperatur-schutzschicht

Also Published As

Publication number Publication date
US4973445A (en) 1990-11-27
DE3740478C1 (de) 1989-01-19
EP0318803A1 (de) 1989-06-07
DE3882024D1 (de) 1993-07-29

Similar Documents

Publication Publication Date Title
EP0318803B1 (de) Hochtemperatur-Schutzschicht
DE2560523C2 (de) Metallgegenstand mit einem Hafnium und Aluminium enthaltenden metallischen Überzug und Verfahren zu dessen Herstellung
DE60305329T2 (de) Hochoxidationsbeständige komponente
DE68911363T2 (de) Mit Keramik beschichteter hitzebeständiger Legierungsbestandteil.
EP0134821B1 (de) Hochtemperatur-Schutzschicht
DE69706850T2 (de) Artikel mit schutzschicht, enthaltend eine verbesserte verankerungsschicht und seine herstellung
DE19918900A1 (de) Hochtemperatur-Komponente, insbesondere für eine Gasturbine, und Verfahren zu deren Herstellung
DE3103129A1 (de) Thermisch belastbares maschinenteil und verfahren zu dessen herstellung
EP0241807B1 (de) Hochtemperatur-Schutzschicht
DE2829369B2 (de) Verfahren zum Ausbilden von harten, verschleißfestenMetallkarbide enthaltenden Überzügen
DE2632739B2 (de) Verfahren zum thermischen Auf·' spritzen eines selbsthaftenden Nickel-Aluminium- oder Nickel-Titan-Überzugs auf ein Metallsubstrat
DE3426201A1 (de) Verfahren zum aufbringen von schutzschichten
EP2796588A1 (de) Verfahren zur Herstellung einer Hochtemperaturschutzbeschichtung und entsprechend hergestelltes Bauteil
EP1970461A1 (de) Turbinenbauteil mit Wärmedämmschicht
DE3246507C2 (de) Hochtemperaturschutzschicht
DE3148198A1 (de) "hochtemperaturschutzschicht"
EP1466037A1 (de) Hochtemperatur-schutzschicht
EP1029114B1 (de) Für eine heissgasbeaufschlagung ausgelegtes erzeugnis und verfahren zur herstellung einer beschichtung für dieses erzeugnis
DE3842301C2 (de)
DE3246504C2 (de)
EP0389959B1 (de) Verfahren zum Herstellen von verschleiss- und korrosionsbeständigen Schutzschichten
DE3842300C2 (de)
EP1687458A1 (de) Verfahren zum herstellen einer korrosionsbeständigen und oxidationsbeständigen beschichtung sowie bauteil mit einer solchen beschichtung
EP1230429B1 (de) Herstellungsverfahren für eine komponente mit schicht
DE3704473C2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19890804

17Q First examination report despatched

Effective date: 19910416

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

REF Corresponds to:

Ref document number: 3882024

Country of ref document: DE

Date of ref document: 19930729

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930706

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: ALSTOM TECHNOLOGY LTD

Free format text: ASEA BROWN BOVERI AKTIENGESELLSCHAFT#KALLSTADTER STRASSE 1#MANNHEIM-KAEFERTAL (DE) -TRANSFER TO- ALSTOM TECHNOLOGY LTD#BROWN BOVERI STRASSE 7#5400 BADEN (CH)

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

NLS Nl: assignments of ep-patents

Owner name: ALSTOM TECHNOLOGY LTD

Effective date: 20050623

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: ABB AG

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20071123

Year of fee payment: 20

Ref country code: NL

Payment date: 20071119

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20071115

Year of fee payment: 20

Ref country code: IT

Payment date: 20071126

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20071120

Year of fee payment: 20

Ref country code: FR

Payment date: 20071122

Year of fee payment: 20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20081121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20081122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20081121