EP0134821B1 - Hochtemperatur-Schutzschicht - Google Patents

Hochtemperatur-Schutzschicht Download PDF

Info

Publication number
EP0134821B1
EP0134821B1 EP83107217A EP83107217A EP0134821B1 EP 0134821 B1 EP0134821 B1 EP 0134821B1 EP 83107217 A EP83107217 A EP 83107217A EP 83107217 A EP83107217 A EP 83107217A EP 0134821 B1 EP0134821 B1 EP 0134821B1
Authority
EP
European Patent Office
Prior art keywords
weight
alloy
temperature protective
nickel
protective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83107217A
Other languages
English (en)
French (fr)
Other versions
EP0134821A1 (de
Inventor
Andrew R. Nicoll
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Switzerland
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Priority to DE8383107217T priority Critical patent/DE3372501D1/de
Priority to EP83107217A priority patent/EP0134821B1/de
Priority to AT83107217T priority patent/ATE28335T1/de
Priority to US06/631,578 priority patent/US4546052A/en
Priority to JP59149774A priority patent/JPH0676669B2/ja
Publication of EP0134821A1 publication Critical patent/EP0134821A1/de
Application granted granted Critical
Publication of EP0134821B1 publication Critical patent/EP0134821B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/073Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12937Co- or Ni-base component next to Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12944Ni-base component

Definitions

  • the invention relates to a high-temperature protective layer according to the preamble of claim 1.
  • Such high-temperature protective layers are mainly used where the base material of components made of heat-resistant steels and / or alloys that are used at temperatures above 600 ° C is to be protected. These high-temperature protective layers are intended to slow down the effects of high-temperature corrosion, especially of sulfur, oil ash, oxygen, alkaline earths and vanadium.
  • the high-temperature protective layers are applied directly to the base material of the component.
  • High-temperature protective layers are of particular importance for components of gas turbines. They are mainly applied to rotor blades and guide vanes as well as to heat accumulation segments in gas turbines.
  • An austenitic material based on nickel, cobalt or iron is preferably used to manufacture these components. In the manufacture of gas turbine components, nickel superalloys in particular are used as the base material.
  • a high-temperature protective layer which is formed by an alloy which has M-Cr-AI-Y as the base material.
  • M stands for Ni, NiCo, Co, Fe.
  • the applied high-temperature protective layer has a matrix in which an aluminum-containing phase is embedded. If a component that is provided with such a high-temperature protective layer is exposed to an operating temperature of more than 950 ° C., the aluminum contained in the phase begins to diffuse to the surface, where an AL 2 0 3 top layer is formed .
  • This top layer does not have particularly good adhesion and is therefore removed by the action of corrosion. Over time, the corrosion spreads so far that the matrix itself is ultimately attacked.
  • high-temperature protective layers on which such cover layers are formed, are best suited to protecting components made of austenitic materials from high-temperature corrosion.
  • An alloy is known from EP-A-25263, the base material of which contains chromium, titanium, aluminum and nickel.
  • the alloy can contain rare earth metals, hafnium and silicon as further additives.
  • the independent formation of a cover layer containing aluminum oxide at a temperature of more than 950 ° C is not used with this alloy.
  • EP-A-81170 describes a high-temperature protective layer whose base material consists essentially of chromium, silicon, boron, iron and nickel.
  • the alloy is added with aluminum.
  • the silicon content is limited to a defined value. Measures to increase the adhesive strength of the self-forming cover layer containing aluminum oxide are not described here.
  • the invention is therefore based on the object of providing a high-temperature protective layer which has an optimally adhering, durable top layer.
  • the alloy according to the invention is an oxide dispersion hardened alloy. It shows a significant improvement in oxidation resistance compared to already known high-temperature protective layers. In the case of the applied high-temperature protective layer, it should be noted that it likewise has aluminum-containing phases which enable the formation of an aluminum oxide-containing cover layer. If zirconium and silicon are alloyed to the base material that forms the high-temperature protective layer alloy (claim 1), an additional aluminum-nickel-chromium-oxide layer is formed on the aluminum oxide-containing cover layer, which layer protects the high-temperature protective layer and the one underneath Component significantly increased.
  • the high-temperature protective layer according to the invention also has the property that it has a substantially better adhesive strength on the components. This also applies to their top layer.
  • a high-temperature protective layer with the same properties is achieved by using an alloy which contains chromium, aluminum, nickel, silicon and tantalum (claim 2).
  • All of the alloys described here are suitable for the formation of a high-temperature protective layer. Regardless of which of the alloys described above, they are formed in any case under operating conditions on these protective layers aluminum oxide cover layers, which are not removed even at temperatures that are higher than 900 ° C.
  • the invention is explained in more detail using an exemplary embodiment which describes the production of a coated gas turbine component.
  • the gas turbine component to be coated is made of an austenitic material, in particular a nickel superalloy. Before coating, the component is first chemically cleaned and then roughened with a sandblast. The component is coated under vacuum using the plasma spraying process.
  • An alloy is used for the coating, which has 27% by weight of chromium, 7% by weight of aluminum, 3% by weight of silicon, 1% by weight of zirconium, the remaining part of the alloy being formed by nickel.
  • the weight specifications relate to the total weight of the Alloy.
  • the powdery alloy preferably has a grain size of 45 microns.
  • the component Before the high-temperature protective layer is applied, the component is heated to approximately 800 ° C. using the plasma stream.
  • the alloy that forms the high-temperature protective layer is applied directly to the base material of the component. Argon and hydrogen are used as the plasma gas.
  • the plasma current is approximately 580 amperes and the applied voltage is 80 volts.
  • the furnace heating is then switched off.
  • the coated and heat-treated component is slowly cooled in the oven. This concludes its manufacture.
  • An analysis of the applied high-temperature protective layer shows that it has a matrix composition which contains 28% by weight of chromium, 3% by weight of silicon, 3.6% by weight of aluminum, the rest being nickel.
  • two separated phases can be determined, in which one contains 14.4% by weight aluminum, 2.4% by weight silicon, 8.9% by weight chromium and nickel.
  • the second phase has 11% by weight silicon, 26% by weight zirconium, 4% by weight chromium and nickel.
  • the same process can also be used to apply a high-temperature protective layer which has a nickel-chromium-aluminum base material to which silicon and tantalum have been alloyed.
  • a high-temperature protective layer an alloy is preferably used which has 27% by weight of chromium, 5% by weight of aluminum, 2.5% by weight of silicon and 1 to 3% by weight of tantalum.
  • the high-temperature protective layer has a matrix composition which contains 27% by weight of chromium, 3% by weight of aluminum, 2.4% by weight of silicon, Contains 7% by weight of tantalum, the remainder being nickel. Furthermore, when the high-temperature protective layer is formed, a phase is precipitated which contains 8.5% by weight aluminum, 1.8% by weight silicon, 5.8% by weight tantalum, 5.8% by weight chromium, wherein the remaining part consists of nickel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Organic Insulating Materials (AREA)
  • Magnetic Heads (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

  • Die Erfindung bezieht sich auf eine Hochtemperatur-Schutzschicht gemäss dem Oberbegriff des Patentanspruches 1.
  • Solche Hochtemperatur-Schutzschichten kommen vor allem dort zur Anwendung, wo das Grundmaterial von Bauelementen aus warmfesten Stählen und/oder Legierungen, die bei Temperaturen über 600°C verwendet werden, zu schützen ist. Durch diese Hochtemperatur-Schutzschichten soll die Wirkung von Hochtemperatur-korrosionen vor allem von Schwefel, Ölaschen, Sauerstoff, Erdalkalien und Vanadium verlangsamt werden. Die Hochtemperatur-Schutzschichten werden direkt auf das Grundmaterial des Bauelementes aufgetragen. Bei Bauelementen von Gasturbinen sind Hochtemperatur-Schutzschichten von besonderer Bedeutung. Sie werden vor allem auf Lauf- und Leitschaufeln sowie auf Wärmestausegmente von Gasturbinen aufgetragen. Für die Fertigung dieser Bauelemente wird vorzugsweise ein austenitisches Material auf der Basis von Nickel, Kobalt oder Eisen verwendet. Bei der Herstellung von Gasturbinenbauteilen kommen vor allem Nickel-Superlegierungen als Grundmaterial zur Anwendung.
  • Bis jetzt ist es üblich, Bauelemente, die für Gasturbinen vorgesehen sind, durch eine Hochtemperatur-Schutzschicht zu schützen, die durch eine Legierung gebildet wird, welche M-Cr-AI-Y als Basiswerkstoff aufweist. M steht hierbei stellvertretend für Ni, NiCo, Co, Fe. Die aufgetragene Hochtemperatur-Schutzschicht weist eine Matrix auf, in die eine aluminiumhaltige Phase eingelagert ist. Wird ein Bauelement, das mit einer solchen Hochtemperatur-Schutzschicht versehen ist, einer Betriebstemperatur von mehr als 950°C ausgesetzt, so beginnt das in der Phase enthaltene Aluminium an die Oberfläche zu difundieren, wo es zur Ausbildung einer AL203-Deckschicht kommt. Von Nachteil ist hierbei, dass diese Deckschicht keine besonders gute Haftung aufweist und deshalb durch die Einwirkung von Korrosionen abgetragen wird. Im Laufe der Zeit greift die Korrosion so weit fort, so dass schliesslich die Matrix selbst angegriffen wird.
  • Es hat sich jedoch gezeigt, dass gerade Hochtemperatur-Schutzschichten, auf denen sich solche Deckschichten ausbilden, am besten geeignet sind, Bauelemente aus austenitischen Werkstoffen vor Hochtemperatur-Korrosionen zu schützen.
  • Aus EP-A-25263 ist eine Legierung bekannt, deren Basiswerkstoff Chrom, Titan, Aluminium und Nickel enthält. Als weitere Zusätze kann die Legierung seltene Erdmetalle, Hafnium und Silizium aufweisen. Die selbständige Ausbildung einer aluminiumoxidhaltigen Deckschicht bei einer Temperatur von mehr als 950°C wird bei dieser Legierung nicht genutzt.
  • In EP-A-81170 ist eine Hochtemperatur-Schutzschicht beschrieben, deren Basiswerkstoff im wesentlichen aus Chrom, Silizium, Bor, Eisen und Nickel besteht. Zur Ausbildung einer aluminiumoxidhaltigen Deckschicht erhält die Legierung einen Zusatz an Aluminium. Gleichzeitig wird der Siliziumgehalt auf einen definierten Wert begrenzt. Massnahmen zur Erhöhung der Haftfestigkeit der sich selbständig bildenden aluminiumoxidhaltigen Deckschicht sind hierhin nicht beschrieben.
  • Der Erfindung liegt deshalb die Aufgabe zugrunde, eine Hochtemperatur-Schutzschicht zu schaffen, die eine optimal haftende langlebige Deckschicht aufweist.
  • Diese Aufgabe wird erfindungsgemäss durch die kennzeichnenden Merkmale des Patentanspruches 1 oder 2 gelöst.
  • Bei der erfindungsgemässen Legierung handelt es sich um eine oxiddispersionsgehärtete Legierung. Sie weist eine deutliche Verbesserung bezüglich der Oxidationsbeständigkeit gegenüber bereits bekannten Hochtemperatur-Schutzschichten auf. Bei der aufgetragenen Hochtemperatur-Schutzschicht ist festzustellen, dass sie ebenfalls aluminiumhaltige Phasen aufweist, welche die Ausbildung einer aluminiumoxidhaltigen Deckschicht ermöglichen. Wird dem Basiswerkstoff, der die Hochtemperatur-Schutzschichtlegierung bildet, Zirkonium und Silizium zulegiert (Anspruch 1), so kommt es auf der aluminiumoxidhaltigen Deckschicht zur Ausbildung einer zusätzlichen Aluminium-Nickel-Chrom-Oxidschicht, welche den Schutz der Hochtemperatur-Schutzschicht und des darunter befindlichen Bauelementes wesentlich erhöht. Die erfindungsgemässe Hochtemperatur-Schutzschicht weist ferner die Eigenschaft auf, dass sie eine wesentlich bessere Haftfestigkeit auf den Bauelementen aufweist. Dies gilt auch für ihre Deckschicht.
  • Eine Hochtemperatur-Schutzschicht mit den gleichen Eigenschaften wird durch die Verwendung einer Legierung erzielt, die Chrom, Aluminium, Nickel, Silizium und Tantal enthält (Anspruch 2).
  • Alle hier beschriebenen Legierungen sind für die Ausbildung einer Hochtemperatur-Schutzschicht geeignet. Gleichgültig durch welche der oben beschriebenen Legierungen sie gebildet werden, es entstehen in jedem Fall unter Betriebsbedingungen auf diesen Schutzschichten Aluminiumoxid-Deckschichten, die auch bei Temperaturen, die grösser als 900°C sind, nicht abgetragen werden.
  • Anhand eines Ausführungsbeispiels, das die Herstellung eines beschichteten Gasturbinenbauteils beschreibt, wird die Erfindung näher erläutert. Das zu beschichtende Gasturbinenbauteil ist aus einem austenitischen Material, insbesondere einer Nickel-Superlegierung gefertigt. Vor der Beschichtung wird das Bauteil zunächst chemisch gereinigt und dann mit einem Sandstrahl aufgerauht. Die Beschichtung des Bauelements erfolgt unter Vakuum mit Hilfe des Plasmaspritzverfahrens. Für die Beschichtung wird eine Legierung verwendet, die 27 Gew.% Chrom, 7 Gew.% Aluminium, 3 Gew.% Silizium, 1 Gew.% Zirkonium aufweist, wobei der übrige Bestandteil der Legierung durch Nickel gebildet wird. Die Gewichtsangaben beziehen sich dabei auf das Gesamtgewicht der Legierung. Die pulverförmige Legierung weist vorzugsweise eine Korngrösse von 45µnn auf. Vor dem Aufbringen der Hochtemperatur-Schutzschicht wird das Bauelement mit Hilfe des Plasmastroms auf etwa 800°C erhitzt. Die Legierung, welche die Hochtemperatur-Schutzschicht bildet, wird direkt auf das Grundmaterial des Bauelementes aufgebracht. Als Plasmagas wird Argon und Wasserstoff verwendet. Der Plasmastrom beträgt etwa 580 Ampere und die angelegte Spannung 80 Volt. Nach dem Aufbringen der Legierung auf das Bauelement wird dieses einer Wärmebehandlung unterzogen. Diese erfolgt in einem Hochvakuum-Glühofen. In ihm wird ein Druck aufrecht erhalten, der kleiner als 5 x 10-3 Torr ist (1 Torr = 1,332 mbar). Nach dem Erreichen des Vakuums wird der Ofen auf eine Temperatur von 1100°C aufgeheizt. Die oben angegebene Temperatur wird während etwa 1 Stunde mit einer Toleranz von etwa +/- 4°C gehalten. Anschliessend wird die Heizung des Ofens abgeschaltet. Das beschichtete und wärmebehandelte Bauelement wird im Ofen langsam abgekühlt. Seine Herstellung ist damit beendet. Eine Analyse der aufgetragenen Hochtemperatur-Schutzschicht ergibt, dass sie eine Matrixzusammensetzung aufweist, die 28 Gew.% Chrom, 3 Gew.% Silizium, 3,6 Gew.% Aluminium, Rest Nickel enthält. Ferner können zwei ausgeschiedene Phasen festgestellt werden, bei denen eine 14,4 Gew.% Aluminium, 2,4 Gew.% Silizium, 8,9 Gew.% Chrom sowie Nickel enthält. Die zweite Phase weist 11 Gew.% Silizium, 26 Gew.% Zirkonium, 4 Gew.% Chrom sowie Nickel auf.
  • Mit dem gleichen Verfahren kann auch eine Hochtemperatur-Schutzschicht aufgetragen werden, die einen Nickel-Chrom-Aluminium-Basiswerkstoff aufweist, dem Silizium und Tantal zulegiert sind. Zur Bildung einer solchen Hochtemperatur-Schutzschicht wird vorzugsweise eine Legierung verwendet, die 27 Gew.% Chrom, 5 Gew.% Aluminium, 2,5 Gew.% Silizium und 1 bis 3 Gew.% Tantal aufweist.
  • Die Untersuchungen einer solchen mit dem oben beschriebenen Verfahren auf ein Bauelement aufgetragenen Hochtemperatur-Schutzschicht ergeben, dass die Hochtemperatur-Schutzschicht eine Matrixzusammensetzung aufweist, die 27 Gew.% Chrom, 3 Gew.% Aluminium, 2,4 Gew.% Silizium, 0,7 Gew.% Tantal enthält, wobei der restliche Anteil aus Nickel besteht. Ferner kommt es bei der Ausbildung der Hochtemperatur-Schutzschicht zur Ausscheidung einer Phase, die 8,5 Gew.% Aluminium, 1,8 Gew.% Silizium, 5,8 Gew.% Tantal, 5,8 Gew.% Chrom enthält, wobei der restliche Anteil aus Nickel besteht.

Claims (3)

1. Hochtemperatur-Schutzschicht, die eine metalloxidhaltige Deckschicht aufweist und aus einer Legierung mit Nickel-Basis und Gehalten an Chrom und Aluminium besteht, insbesondere für Bauelemente aus einem austenitischen Werkstoff, dadurch gekennzeichnet, dass die Legierung 25 bis 27 Gew.% Chrom, 4 bis 7 Gew.% Aluminium, 1 bis 3 Gew.% Silizium und 1 bis 2 Gew.% Zirkonium, Rest Nickel, bezogen auf das Gesamtgewicht der Legierung enthält.
2. Hochtemperatur-Schutzschicht, die eine metalloxidhaltige Deckschicht aufweist und aus einer Legierung mit Nickel-Basis und Gehalten an Chrom und Aluminium besteht, insbesondere für Bauelemente aus einem austenitischen Werkstoff, dadurch gekennzeichnet, dass die Legierung 23 bis 27 Gew.% Chrom, 3 bis 5 Gew.% Aluminium, 1 bis 2,5 Gew.% Silizium und 1 bis 3 Gew.% Tantal, Rest Nickel, bezogen auf das Gesamtgewicht der Legierung enthält.
3. Hochtemperatur-Schutzschicht nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Legierung eine oxiddispersionsgehärtete Legierung ist.
EP83107217A 1983-07-22 1983-07-22 Hochtemperatur-Schutzschicht Expired EP0134821B1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE8383107217T DE3372501D1 (en) 1983-07-22 1983-07-22 High-temperature protective coating
EP83107217A EP0134821B1 (de) 1983-07-22 1983-07-22 Hochtemperatur-Schutzschicht
AT83107217T ATE28335T1 (de) 1983-07-22 1983-07-22 Hochtemperatur-schutzschicht.
US06/631,578 US4546052A (en) 1983-07-22 1984-07-17 High-temperature protective layer
JP59149774A JPH0676669B2 (ja) 1983-07-22 1984-07-20 高温保護層材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP83107217A EP0134821B1 (de) 1983-07-22 1983-07-22 Hochtemperatur-Schutzschicht

Publications (2)

Publication Number Publication Date
EP0134821A1 EP0134821A1 (de) 1985-03-27
EP0134821B1 true EP0134821B1 (de) 1987-07-15

Family

ID=8190587

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83107217A Expired EP0134821B1 (de) 1983-07-22 1983-07-22 Hochtemperatur-Schutzschicht

Country Status (5)

Country Link
US (1) US4546052A (de)
EP (1) EP0134821B1 (de)
JP (1) JPH0676669B2 (de)
AT (1) ATE28335T1 (de)
DE (1) DE3372501D1 (de)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3225499C2 (de) * 1982-07-08 1984-05-24 Doduco KG Dr. Eugen Dürrwächter, 7530 Pforzheim Magnetischer Näherungssensor
DE3225500A1 (de) * 1982-07-08 1984-01-12 Doduco KG Dr. Eugen Dürrwächter, 7530 Pforzheim Magnetischer fuehler
DE3539029A1 (de) * 1985-11-02 1987-05-07 Bbc Brown Boveri & Cie Hochtemperatur-schutzschicht und verfahren zu ihrer herstellung
DE3612568A1 (de) * 1986-04-15 1987-10-29 Bbc Brown Boveri & Cie Hochtemperatur-schutzschicht
DE3740478C1 (de) * 1987-11-28 1989-01-19 Asea Brown Boveri Hochtemperatur-Schutzschicht
US4758480A (en) * 1987-12-22 1988-07-19 United Technologies Corporation Substrate tailored coatings
US5037070A (en) * 1990-09-20 1991-08-06 General Motors Corporation Melt containment apparatus with protective oxide melt contact surface
FR2717874B1 (fr) * 1994-03-25 1996-04-26 Gec Alsthom Transport Sa Disque multimatériaux pour freinage à haute énergie.
WO2001094664A2 (en) * 2000-06-08 2001-12-13 Surface Engineered Products Corporation Coating system for high temperature stainless steel
US7789995B2 (en) 2002-10-07 2010-09-07 Georgia-Pacific Consumer Products, LP Fabric crepe/draw process for producing absorbent sheet
US7494563B2 (en) * 2002-10-07 2009-02-24 Georgia-Pacific Consumer Products Lp Fabric creped absorbent sheet with variable local basis weight
US8398820B2 (en) 2002-10-07 2013-03-19 Georgia-Pacific Consumer Products Lp Method of making a belt-creped absorbent cellulosic sheet
US7442278B2 (en) * 2002-10-07 2008-10-28 Georgia-Pacific Consumer Products Lp Fabric crepe and in fabric drying process for producing absorbent sheet
EP1411210A1 (de) * 2002-10-15 2004-04-21 ALSTOM Technology Ltd Verfahren zur Abscheidung einer ermüdungs- und oxydationsbeständigen MCrAlY-Beschichtung
EP1428982B1 (de) * 2002-12-06 2009-02-04 ALSTOM Technology Ltd Verfahren zur selektiven Abscheidung einer MCrAlY-Beschichtung
EP1426458B1 (de) * 2002-12-06 2008-03-12 ALSTOM Technology Ltd Verfahren zur örtlichen Abscheidung einer MCrAlY - Beschichtung
EP1541713A1 (de) * 2003-12-11 2005-06-15 Siemens Aktiengesellschaft Metallische Schutzschicht
US8293072B2 (en) 2009-01-28 2012-10-23 Georgia-Pacific Consumer Products Lp Belt-creped, variable local basis weight absorbent sheet prepared with perforated polymeric belt
US8540846B2 (en) 2009-01-28 2013-09-24 Georgia-Pacific Consumer Products Lp Belt-creped, variable local basis weight multi-ply sheet with cellulose microfiber prepared with perforated polymeric belt
DE102019006457A1 (de) 2019-06-07 2020-12-10 SAUKE.SEMRAU GmbH Verbundwerkstoff aus Metall und Keramik und Verfahren zu dessen Herstellung

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3547673A (en) * 1969-02-19 1970-12-15 Wall Colmonoy Corp Method of forming cermet-type protective coatings on heat resistant alloys
US3761301A (en) * 1969-04-22 1973-09-25 L Sama Processes for producing ductile high temperature oxidation resistant composites
US3741791A (en) * 1971-08-05 1973-06-26 United Aircraft Corp Slurry coating superalloys with fecraiy coatings
US4054723A (en) * 1972-11-08 1977-10-18 Rolls-Royce Limited Composite articles
US4034142A (en) * 1975-12-31 1977-07-05 United Technologies Corporation Superalloy base having a coating containing silicon for corrosion/oxidation protection
CH616960A5 (en) * 1976-02-25 1980-04-30 Sulzer Ag Components resistant to high-temperature corrosion.
US4124737A (en) * 1976-12-30 1978-11-07 Union Carbide Corporation High temperature wear resistant coating composition
US4198442A (en) * 1977-10-31 1980-04-15 Howmet Turbine Components Corporation Method for producing elevated temperature corrosion resistant articles
US4169726A (en) * 1977-12-21 1979-10-02 General Electric Company Casting alloy and directionally solidified article
DE2816520C2 (de) * 1978-04-17 1984-04-12 Brown, Boveri & Cie Ag, 6800 Mannheim Verwendung eines Hartmetalls
US4339509A (en) * 1979-05-29 1982-07-13 Howmet Turbine Components Corporation Superalloy coating composition with oxidation and/or sulfidation resistance
DE3064929D1 (en) * 1979-07-25 1983-10-27 Secr Defence Brit Nickel and/or cobalt base alloys for gas turbine engine components
US4447503A (en) * 1980-05-01 1984-05-08 Howmet Turbine Components Corporation Superalloy coating composition with high temperature oxidation resistance
JPS57155338A (en) * 1981-03-23 1982-09-25 Hitachi Ltd Metallic body with alloy coating resistant to corrosion and thermal shock
US4419416A (en) * 1981-08-05 1983-12-06 United Technologies Corporation Overlay coatings for superalloys
DE3148198A1 (de) * 1981-12-05 1983-06-09 Brown, Boveri & Cie Ag, 6800 Mannheim "hochtemperaturschutzschicht"

Also Published As

Publication number Publication date
US4546052A (en) 1985-10-08
JPS6039173A (ja) 1985-02-28
ATE28335T1 (de) 1987-08-15
DE3372501D1 (en) 1987-08-20
EP0134821A1 (de) 1985-03-27
JPH0676669B2 (ja) 1994-09-28

Similar Documents

Publication Publication Date Title
EP0134821B1 (de) Hochtemperatur-Schutzschicht
DE68911363T2 (de) Mit Keramik beschichteter hitzebeständiger Legierungsbestandteil.
DE60305329T2 (de) Hochoxidationsbeständige komponente
EP1306454B1 (de) Rhenium enthaltende Schutzschicht zum Schutz eines Bauteils gegen Korrosion und Oxidation bei hohen Temperaturen
DE3211583A1 (de) Superlegierungs-ueberzugszusammensetzung mit hoch-temperatur-oxidationsbestaendigkeit
EP0318803B1 (de) Hochtemperatur-Schutzschicht
DE3030961A1 (de) Bauteile aus superlegierungen mit einem oxidations- und/oder sulfidationsbestaendigigen ueberzug sowie zusammensetzung eines solchen ueberzuges.
EP0241807B1 (de) Hochtemperatur-Schutzschicht
DE3010608A1 (de) Ueberzugszusammensetzung fuer nickel, kobalt und eisen enthaltende superlegierung und superlegierungskomponente
DE3426201A1 (de) Verfahren zum aufbringen von schutzschichten
EP0840809B1 (de) Erzeugnis mit einem metallischen grundkörper mit kühlkanälen und dessen herstellung
DE102013207457B4 (de) Verfahren zur Herstellung einer Hochtemperaturschutzbeschichtung
DE60311686T2 (de) Ein Schutzüberzug
DE102009010026A1 (de) Bauteil für eine Strömungsmaschine
EP0081170A2 (de) Hochtemperaturschutzschicht
CH616960A5 (en) Components resistant to high-temperature corrosion.
DE3036206A1 (de) Verschleissfester, vor oxidation und korrosion schuetzender ueberzug, korrosions- und verschleissfeste ueberzugslegierung, mit einem solchen ueberzug versehener gegenstand und verfahren zum herstellen eines solchen ueberzugs
DE3246507C2 (de) Hochtemperaturschutzschicht
EP1466037A1 (de) Hochtemperatur-schutzschicht
DE3246504C2 (de)
DE3842301C2 (de)
EP0389959B1 (de) Verfahren zum Herstellen von verschleiss- und korrosionsbeständigen Schutzschichten
DE4028173C2 (de) Verwendung von Yttriumoxid dotiertem Cerdioxid
DE3842300C2 (de)
DE69304028T2 (de) Silizidschicht beständig gegen geschmolzene Metalle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

16A New documents despatched to applicant after publication of the search report
17P Request for examination filed

Effective date: 19850907

17Q First examination report despatched

Effective date: 19860314

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19870715

Ref country code: BE

Effective date: 19870715

REF Corresponds to:

Ref document number: 28335

Country of ref document: AT

Date of ref document: 19870815

Kind code of ref document: T

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19870722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19870731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19870731

REF Corresponds to:

Ref document number: 3372501

Country of ref document: DE

Date of ref document: 19870820

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950626

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950627

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19950628

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19950703

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950818

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19960731

Ref country code: CH

Effective date: 19960731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960722

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970328

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970402

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST