US3741791A - Slurry coating superalloys with fecraiy coatings - Google Patents

Slurry coating superalloys with fecraiy coatings Download PDF

Info

Publication number
US3741791A
US3741791A US00169533A US3741791DA US3741791A US 3741791 A US3741791 A US 3741791A US 00169533 A US00169533 A US 00169533A US 3741791D A US3741791D A US 3741791DA US 3741791 A US3741791 A US 3741791A
Authority
US
United States
Prior art keywords
coating
percent
slurry
aluminum
coatings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00169533A
Inventor
D Maxwell
J Gabriel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Technologies Corp
Original Assignee
United Aircraft Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Aircraft Corp filed Critical United Aircraft Corp
Application granted granted Critical
Publication of US3741791A publication Critical patent/US3741791A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/30Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes using a layer of powder or paste on the surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12063Nonparticulate metal component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12937Co- or Ni-base component next to Fe-base component

Definitions

  • the present invention relates in general to high temperature, oxidation resistant coatings and processes for achieving such coatings, particularly those of the iron/ chromium/ aluminum/ yttrium type.
  • the vacuum vapor deposition techniques are essentially line-of-sight processes insofar as coating deposition is concerned and are, accordingly, most readily adapted to the coating of relatively small components, such as turbine blades or vanes.
  • coating deposition is desired on large parts or in internal passages shielded from the molten pool, the vapor deposition method becomes much more unwieldy and, in some instances, completely impractical.
  • the Joseph technique effects the generation of the protective coating by the reaction of aluminum in the slurry to form aluminides of the substrate metal from which the basic oxidation resistance is attained.
  • the coatings of the iron/chromium/aluminum/yttrium type (hereinafter called FeCrAlY) depend, not as in Joseph on a reaction with the substrate, but rather on the formation of the FeCrAlY alloy at the surface-and within a certain compositional range for the reasons set forth in the Talboom, Jr. et al. patent.
  • the slurry of Joseph is also characterized by an active coating ingredient, i.e., aluminum, having a melting point substantially lower than the usual substrate alloy to be coated.
  • an active coating ingredient i.e., aluminum
  • the applied coating becomes liquid during diffusion, and through reaction and diffusion with the base alloy resolidifies as the oxidation resistant aluminide having a melting point above the diffusion temperature.
  • the melting point is typically higher than that of the substrate alloy or is at least so high that melting cannot take place wihout irreparable damage to the substrate.
  • the coating components react with and dissolve a limited part of the base alloy, a combining of the elements in the coating with elements in the substrate, including those which may be harmful to oxidation resistance, providing oxidation resistant species.
  • the alloy microstructure as well as the coating mechanism differ from the aluminized parts and processes.
  • the present invention contemplates the inclusion of about 10-16 weight percent of silicon together with the other ingredients comprising the FeCrAlY-type coating in a suitable dispersant, forming a slurry for application to surfaces to be protected which are thereafter diffusion heat treated to form an oxidation-resistant layer.
  • the active ingredients for the FeCrAlY coating slurry comprise, by Weight, 20-30 percent chromium, 8-12 percent aluminum, 10-16 percent silicon, 0.1-3 percent yttrium, scandium or lanthanum, balance substantially iron.
  • a suitable slurry is formed by mixing about 50 volume percent of suitably milled powders of the above composition with a volatile liquid dispersant, such as nitrocellulose.
  • an oxidation-resistant coating can be generated on the nickel-base superalloys, after the slurry has dried, by diffusion heat treatments at 2100 F. and 2225 F., but in any event below that temperature at which irreparable damage to the substrate occurs.
  • chromium provides hot corrosion resistance; aluminum furnishes oxidation resistance through the generation upon exposure to an oxidizing environment of the protective aluminum oxide; and yttrium, scandium and lanthanum promote adherence of the oxide reducing the spallation of the protective oxide.
  • silicon lowers the melting point of the coating powders and, in addition, reacts to tie up the molybdenum, when present in the substrate metal, as an oxidation resistant nickel/silicon/ molybdenum or nickel/silicon/aluminum/molybdenum compound. Pure molybdenum or a very high molybdenum phase is typically not oxidation-resistant.
  • a nickel-base alloy of the composition comprising 17.5-18.5 percent molybdenum, 7.75-8.25 percent aluminum, 0-0.05 percent carbon, balance nickel was thoroughly cleaned and degreased.
  • the surfaces to be protected were then sprayed with a milled slurry of 50 volume percent 400 mesh powders of the composition comprising, by weight, 24-26 percent chromium, -105 percent aluminum, 14.5-15.5 percent silicon, 0.8-1.2 percent yttrium, balance substantially iron; and 50 volume percent nitrocellulose base lacquer. Drying was accomplished in air in 4 hours, providing a green coating.
  • coated parts were heated to 2100 F. at a rate of 30-40 F. per minute and held at temperature for 10 minutes, then heated to 2225 F. and held for 5 minutes, in the absence of air, typically in a vacuum or hydrogen atmosphere. In general, coating thicknesses of 0.004- 0.007 inch after diffusion have been found satisfactory.
  • prealloyed powder-s consisting essentially of said composition and -16 weight percent silicon
  • a slurry comprising a powder mixture consisting essentially of, by weight, 20-30 percent chromium, 8-12 percent aluminum, 10-16 percent silicon, 0.1-3 percent yttrium, lanthanum or scandium, balance substantially iron, together with suificient volatizable liquid dispersant to provide the desired viscosity for application;
  • a slurry comprising a powder mixture consisting essentially of, by weight, 24-26 percent chromium, -105 percent aluminum, 14.5-15.5 percent silicon, 0.8-1.2 percent yttrium, balance iron, to-

Abstract

A SLURRY COATING PARTICULARLY FOR THENICKLE-BASE AND COBALT-BASE ALLOYS, WHICH COMPRISES, BY WEIGHT, 20-30 PERCENT CHROMIUM, 8-12 PERCENT ALUMINUM, 10-16 PERCENT SILICON, 0.1-3 PERCENT YTTRIUM, SCANDIUM OR LANTHANUM, BALANCE IRON IS APPLIED TO A SUTABLE SUBSTRATE AND DIFFUSION HEAT TREATED TO PROVIDE OXIDATION RESISTANCE THERETO.

Description

United States Patent US. Cl. 117-46 CA 3 Claims ABSTRACT OF THE DISCLOSURE A slurry coating, particularly for the nickel-base and cobalt-base alloys, which comprises, by weight, 20-30 percent chromium, 8-12 percent aluminum, 10-16 percent silicon, 0.1-3 percent yttrium, scandium or lanthanum, balance iron is applied to a suitable substrate and diffusion heat treated to provide oxidation resistance thereto.
The invention herein described was made in the course of or under a contract with the Department of the Air Force. 7
BACKGROUND OF THE INVENTION The present invention relates in general to high temperature, oxidation resistant coatings and processes for achieving such coatings, particularly those of the iron/ chromium/ aluminum/ yttrium type.
In the patent to Talboom, Jr. et a1. 3,542,530 of common assignee with the present invention, there is described an advanced coating for the nickel-base and cobalt-base superalloys. The coating contemplated therein comprises, by weight, about 20-50 percent chromium, 10-20 percent aluminum, 0.03-2 percent yttrium or the like, balance iron. Because of the particular nature of this coating, specifically its high melting point, reference is made to the now conventional method of its application to a suitable substrate by vapor deposition from a molten pool of coating material in a vacuum chamber.
The vacuum vapor deposition techniques are essentially line-of-sight processes insofar as coating deposition is concerned and are, accordingly, most readily adapted to the coating of relatively small components, such as turbine blades or vanes. When the coating is desired on large parts or in internal passages shielded from the molten pool, the vapor deposition method becomes much more unwieldy and, in some instances, completely impractical.
In the patent to Joseph 3,102,044, also of common assignee with the present invention, there is described a slurry process for forming a protective aluminide coating on certain alloy parts. Since according to the Joseph technique a suitable coating slurry is merely painted or sprayed on the surfaces to be protected, with a subsequent heat treatment forming the desired protective aluminide, size of the part is of no importance, as distinguished from the vapor deposition methods.
The Joseph technique effects the generation of the protective coating by the reaction of aluminum in the slurry to form aluminides of the substrate metal from which the basic oxidation resistance is attained. The coatings of the iron/chromium/aluminum/yttrium type (hereinafter called FeCrAlY) depend, not as in Joseph on a reaction with the substrate, but rather on the formation of the FeCrAlY alloy at the surface-and within a certain compositional range for the reasons set forth in the Talboom, Jr. et al. patent.
The slurry of Joseph is also characterized by an active coating ingredient, i.e., aluminum, having a melting point substantially lower than the usual substrate alloy to be coated. In the Joseph process the applied coating becomes liquid during diffusion, and through reaction and diffusion with the base alloy resolidifies as the oxidation resistant aluminide having a melting point above the diffusion temperature.
With coatings of the FeCrAlY type, including CoCrAlY,
the melting point is typically higher than that of the substrate alloy or is at least so high that melting cannot take place wihout irreparable damage to the substrate. Thus, one cannot merely substitute the basic FeCrAlY coating components for the aluminum of Joseph and expect to generate the desired coating. Furthermore, in the slurry coating of the present invention, the coating components react with and dissolve a limited part of the base alloy, a combining of the elements in the coating with elements in the substrate, including those which may be harmful to oxidation resistance, providing oxidation resistant species. Thus the alloy microstructure as well as the coating mechanism differ from the aluminized parts and processes.
The generation of coating layers in the cobalt/chromium/aluminum/yttrium and nickel/chromium/aluminium/yttrium systems face similar problems. And in all of the coatings of the FeCrAlY-type, a substantial interchangeability of the iron group metals is tolerated.
SUMMARY OF THE INVENTION The present invention contemplates the inclusion of about 10-16 weight percent of silicon together with the other ingredients comprising the FeCrAlY-type coating in a suitable dispersant, forming a slurry for application to surfaces to be protected which are thereafter diffusion heat treated to form an oxidation-resistant layer.
The active ingredients for the FeCrAlY coating slurry comprise, by Weight, 20-30 percent chromium, 8-12 percent aluminum, 10-16 percent silicon, 0.1-3 percent yttrium, scandium or lanthanum, balance substantially iron. A suitable slurry is formed by mixing about 50 volume percent of suitably milled powders of the above composition with a volatile liquid dispersant, such as nitrocellulose.
With the above slurry an oxidation-resistant coating can be generated on the nickel-base superalloys, after the slurry has dried, by diffusion heat treatments at 2100 F. and 2225 F., but in any event below that temperature at which irreparable damage to the substrate occurs.
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the coatings of the FeCrAlY-type, chromium provides hot corrosion resistance; aluminum furnishes oxidation resistance through the generation upon exposure to an oxidizing environment of the protective aluminum oxide; and yttrium, scandium and lanthanum promote adherence of the oxide reducing the spallation of the protective oxide. In the present slurry coating, silicon lowers the melting point of the coating powders and, in addition, reacts to tie up the molybdenum, when present in the substrate metal, as an oxidation resistant nickel/silicon/ molybdenum or nickel/silicon/aluminum/molybdenum compound. Pure molybdenum or a very high molybdenum phase is typically not oxidation-resistant.
The process hereinafter described in detail has been utilized to increase the oxidation, sulfidation, erosion and thermal shock resistance of the nickel-base superalloys. A nickel-base alloy of the composition, by weight, comprising 17.5-18.5 percent molybdenum, 7.75-8.25 percent aluminum, 0-0.05 percent carbon, balance nickel was thoroughly cleaned and degreased. The surfaces to be protected were then sprayed with a milled slurry of 50 volume percent 400 mesh powders of the composition comprising, by weight, 24-26 percent chromium, -105 percent aluminum, 14.5-15.5 percent silicon, 0.8-1.2 percent yttrium, balance substantially iron; and 50 volume percent nitrocellulose base lacquer. Drying was accomplished in air in 4 hours, providing a green coating.
The coated parts were heated to 2100 F. at a rate of 30-40 F. per minute and held at temperature for 10 minutes, then heated to 2225 F. and held for 5 minutes, in the absence of air, typically in a vacuum or hydrogen atmosphere. In general, coating thicknesses of 0.004- 0.007 inch after diffusion have been found satisfactory.
It is, of course, inherent in this coating system that softening occurs at a lower temperature than that of the basic FeCrAlY system. Thus, its utility is confined to those applications where exposure is confined to temperatures about 200 F. below the acceptable exposure temperature of the unmodified coating. The utility of the system has been established in a variety of applications, however, such as jet engine afterburner seal flaps.
The invention in its broader aspects is not limited to the specific steps, process and compositions shown and described but departures may be made therefrom within the scope of the appended claims without departure from the principles of the invention and without sacrificing its chief advantages.
What we claim is:
1. In the coating of the nickel-base and cobalt-base alloys with a composition of the FeCrAlY-type for high temperature oxidation-resistance, the improvement which comprises:
forming a mixture of prealloyed powder-s consisting essentially of said composition and -16 weight percent silicon;
dispersing said mixture in a compatible volatizable liquid to form a slurry;
applying the slurry to the alloy surface to be protected;
drying the slurry on the alloy to form a green coatand diffusion heat treating the green coating in the absence of air at a temperature above about 2100 F. to form the desired oxidation-resistant coating.
2. The method of coating a nickel-base or cobaltbase alloy to impart oxidation-resistance thereto which comprises:
forming a slurry comprising a powder mixture consisting essentially of, by weight, 20-30 percent chromium, 8-12 percent aluminum, 10-16 percent silicon, 0.1-3 percent yttrium, lanthanum or scandium, balance substantially iron, together with suificient volatizable liquid dispersant to provide the desired viscosity for application;
applying the slurry to the alloy to be protected;
drying the slurry on the alloy to form a green coating;
and ditfusion heat treating the coated part to form the desired oxidation-resistant coating.
3. The method of coating a nickel-base or cobalt-base alloy to impart oxidation resistance thereto which comprises:
forming a slurry comprising a powder mixture consisting essentially of, by weight, 24-26 percent chromium, -105 percent aluminum, 14.5-15.5 percent silicon, 0.8-1.2 percent yttrium, balance iron, to-
gether with a nitrocellulose dispersant sufiicient in quantity to provide the desired slurry viscosity; applying the slurry to the surface to be protected; drying the slurry on the alloy;
and heating the coated part at about 2100 F. to effect diffusion and form the desired oxidation-resistant coating.
References Cited UNITED STATES PATENTS 3,542,530 11/1970 Talboom, Jr., et al. 29194 X 3,477,831 11/1969 Talboom, Jr., et al.
117131 X 2,878,554 3/1959 Long 117-131 X 3,000,755 9/1961 Hanink et a1 117131 X 3,102,044 8/1963 Joseph 117131 X 3,300,854 1/1967 Jackson et al 117-131 X 3,447,912 6/1969 Ortner et al. 117--131 X 3,540,863 11/1970 Priceman et al. 117-131 X ALFRED L. LEAVITT, Primary Examiner J. R. BATTEN, JR., Assistant Examiner US. Cl. X.R.
US00169533A 1971-08-05 1971-08-05 Slurry coating superalloys with fecraiy coatings Expired - Lifetime US3741791A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US16953371A 1971-08-05 1971-08-05

Publications (1)

Publication Number Publication Date
US3741791A true US3741791A (en) 1973-06-26

Family

ID=22616098

Family Applications (1)

Application Number Title Priority Date Filing Date
US00169533A Expired - Lifetime US3741791A (en) 1971-08-05 1971-08-05 Slurry coating superalloys with fecraiy coatings

Country Status (1)

Country Link
US (1) US3741791A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3869779A (en) * 1972-10-16 1975-03-11 Nasa Duplex aluminized coatings
US4022587A (en) * 1974-04-24 1977-05-10 Cabot Corporation Protective nickel base alloy coatings
US4034142A (en) * 1975-12-31 1977-07-05 United Technologies Corporation Superalloy base having a coating containing silicon for corrosion/oxidation protection
US4054723A (en) * 1972-11-08 1977-10-18 Rolls-Royce Limited Composite articles
US4080486A (en) * 1973-04-02 1978-03-21 General Electric Company Coating system for superalloys
US4117179A (en) * 1976-11-04 1978-09-26 General Electric Company Oxidation corrosion resistant superalloys and coatings
DE2830851A1 (en) * 1977-07-14 1979-01-18 Fiat Spa PROCESS FOR THE FORMATION OF METAL DIFFUSION PROTECTION COATINGS
US4546052A (en) * 1983-07-22 1985-10-08 Bbc Aktiengesellschaft Brown, Boveri & Cie High-temperature protective layer
WO1999042633A1 (en) * 1998-02-23 1999-08-26 MTU MOTOREN- UND TURBINEN-UNION MüNCHEN GMBH Method for producing a slip layer which is resistant to corrosion and oxidation
US6060174A (en) * 1999-05-26 2000-05-09 Siemens Westinghouse Power Corporation Bond coats for turbine components and method of applying the same
EP1079002A1 (en) * 1999-08-23 2001-02-28 General Electric Company A method for applying coatings on substrates
DE19941228A1 (en) * 1999-08-30 2001-03-08 Asea Brown Boveri Iron aluminide coating used as a binder layer comprises aluminum, chromium, molybdenum, tungsten, tantalum and niobium, zirconium, boron, yttrium, platinum or rhenium, and a balance of iron
EP1088907A1 (en) * 1999-09-29 2001-04-04 MTU Aero Engines GmbH Method for producing a plating for a metal component
US20050072268A1 (en) * 2001-05-07 2005-04-07 Sjodin Per Erik Material for coating and product coated with the material
US20060127694A1 (en) * 2004-12-15 2006-06-15 Hazel Brian T Corrosion resistant coating composition, coated turbine component and method for coating same
US20080245445A1 (en) * 2007-04-04 2008-10-09 David Andrew Helmick Process for forming a chromium diffusion portion and articles made therefrom
EP2098606A1 (en) * 2008-03-04 2009-09-09 Siemens Aktiengesellschaft A MCrAlY alloy, methods to produce a MCrAlY layer and a honeycomb seal
US20150361545A1 (en) * 2009-04-09 2015-12-17 Siemens Aktiengesellschaft Superalloy Component and Slurry Composition
US20170252875A1 (en) * 2016-03-02 2017-09-07 General Electric Company Braze composition, brazing process, and brazed article
US9909019B2 (en) 2015-06-24 2018-03-06 General Electric Company Diffusion coatings for metal-based substrate and methods of preparation thereof
US10053779B2 (en) 2016-06-22 2018-08-21 General Electric Company Coating process for applying a bifurcated coating
US10077494B2 (en) 2016-09-13 2018-09-18 General Electric Company Process for forming diffusion coating on substrate
WO2023217326A1 (en) 2022-05-13 2023-11-16 Dechema-Forschungsinstitut Stiftung Bürgerlichen Rechts Method for diffusion coating with a cr-si-containing slip

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3869779A (en) * 1972-10-16 1975-03-11 Nasa Duplex aluminized coatings
US4054723A (en) * 1972-11-08 1977-10-18 Rolls-Royce Limited Composite articles
US4080486A (en) * 1973-04-02 1978-03-21 General Electric Company Coating system for superalloys
US4022587A (en) * 1974-04-24 1977-05-10 Cabot Corporation Protective nickel base alloy coatings
US4034142A (en) * 1975-12-31 1977-07-05 United Technologies Corporation Superalloy base having a coating containing silicon for corrosion/oxidation protection
US4117179A (en) * 1976-11-04 1978-09-26 General Electric Company Oxidation corrosion resistant superalloys and coatings
DE2830851A1 (en) * 1977-07-14 1979-01-18 Fiat Spa PROCESS FOR THE FORMATION OF METAL DIFFUSION PROTECTION COATINGS
FR2397468A1 (en) * 1977-07-14 1979-02-09 Fiat Spa PROCESS FOR PREPARING PROTECTIVE COATINGS FOR METALS AND METALLIC ALLOYS INTENDED TO BE USED AT HIGH TEMPERATURES
US4546052A (en) * 1983-07-22 1985-10-08 Bbc Aktiengesellschaft Brown, Boveri & Cie High-temperature protective layer
WO1999042633A1 (en) * 1998-02-23 1999-08-26 MTU MOTOREN- UND TURBINEN-UNION MüNCHEN GMBH Method for producing a slip layer which is resistant to corrosion and oxidation
US6440499B1 (en) * 1998-02-23 2002-08-27 Mtu Aero Engines Gmbh Method for producing a slip layer which is resistant to corrosion and oxidation
US6060174A (en) * 1999-05-26 2000-05-09 Siemens Westinghouse Power Corporation Bond coats for turbine components and method of applying the same
EP1079002A1 (en) * 1999-08-23 2001-02-28 General Electric Company A method for applying coatings on substrates
US6485780B1 (en) 1999-08-23 2002-11-26 General Electric Company Method for applying coatings on substrates
US6613445B2 (en) 1999-08-23 2003-09-02 General Electric Company Metal slurry coatings on substrates, and related articles
DE19941228A1 (en) * 1999-08-30 2001-03-08 Asea Brown Boveri Iron aluminide coating used as a binder layer comprises aluminum, chromium, molybdenum, tungsten, tantalum and niobium, zirconium, boron, yttrium, platinum or rhenium, and a balance of iron
EP1088907A1 (en) * 1999-09-29 2001-04-04 MTU Aero Engines GmbH Method for producing a plating for a metal component
US20050072268A1 (en) * 2001-05-07 2005-04-07 Sjodin Per Erik Material for coating and product coated with the material
US7285151B2 (en) * 2001-05-07 2007-10-23 Alfa Laval Corpoarate Ab Material for coating and product coated with the material
US20060127694A1 (en) * 2004-12-15 2006-06-15 Hazel Brian T Corrosion resistant coating composition, coated turbine component and method for coating same
US7314674B2 (en) * 2004-12-15 2008-01-01 General Electric Company Corrosion resistant coating composition, coated turbine component and method for coating same
US9222164B2 (en) 2007-04-04 2015-12-29 General Electric Company Process for forming a chromium diffusion portion and articles made therefrom
US20080245445A1 (en) * 2007-04-04 2008-10-09 David Andrew Helmick Process for forming a chromium diffusion portion and articles made therefrom
EP1980643A1 (en) * 2007-04-04 2008-10-15 General Electric Company Process for forming a chromium diffusion portion and articles made therefrom
US8262812B2 (en) 2007-04-04 2012-09-11 General Electric Company Process for forming a chromium diffusion portion and articles made therefrom
EP2098606A1 (en) * 2008-03-04 2009-09-09 Siemens Aktiengesellschaft A MCrAlY alloy, methods to produce a MCrAlY layer and a honeycomb seal
WO2009109414A1 (en) * 2008-03-04 2009-09-11 Siemens Aktiengesellschaft A MCrAlY ALLOY, METHODS TO PRODUCE A MCrAlY LAYER AND A HONEYCOMB SEAL
US20110101619A1 (en) * 2008-03-04 2011-05-05 David Fairbourn A MCrAlY Alloy, Methods to Produce a MCrAlY Layer and a Honeycomb Seal
US8708646B2 (en) 2008-03-04 2014-04-29 Siemens Aktiengesellschaft MCrAlY alloy, methods to produce a MCrAlY layer and a honeycomb seal
US20150361545A1 (en) * 2009-04-09 2015-12-17 Siemens Aktiengesellschaft Superalloy Component and Slurry Composition
US9873936B2 (en) * 2009-04-09 2018-01-23 Siemens Aktiengesellschaft Superalloy component and slurry composition
US9909019B2 (en) 2015-06-24 2018-03-06 General Electric Company Diffusion coatings for metal-based substrate and methods of preparation thereof
US20170252875A1 (en) * 2016-03-02 2017-09-07 General Electric Company Braze composition, brazing process, and brazed article
US10052724B2 (en) * 2016-03-02 2018-08-21 General Electric Company Braze composition, brazing process, and brazed article
US10053779B2 (en) 2016-06-22 2018-08-21 General Electric Company Coating process for applying a bifurcated coating
US10077494B2 (en) 2016-09-13 2018-09-18 General Electric Company Process for forming diffusion coating on substrate
WO2023217326A1 (en) 2022-05-13 2023-11-16 Dechema-Forschungsinstitut Stiftung Bürgerlichen Rechts Method for diffusion coating with a cr-si-containing slip
DE102022112093A1 (en) 2022-05-13 2023-11-16 Dechema-Forschungsinstitut Process for diffusion coating with a slip containing Cr-Si

Similar Documents

Publication Publication Date Title
US3741791A (en) Slurry coating superalloys with fecraiy coatings
US3649225A (en) Composite coating for the superalloys
US4145481A (en) Process for producing elevated temperature corrosion resistant metal articles
US3961098A (en) Coated article and method and material of coating
US3676085A (en) Cobalt base coating for the superalloys
EP0984074B1 (en) Slurry compositions for diffusion coatings
JP3027005B2 (en) Method for re-polishing corroded superalloy or heat-resistant steel member and re-polished member
KR101523099B1 (en) Slurry diffusion aluminide coating composition and process
USRE31339E (en) Process for producing elevated temperature corrosion resistant metal articles
GB2129017A (en) Forming protective diffusion layer on nickel cobalt and iron base alloys
US6440499B1 (en) Method for producing a slip layer which is resistant to corrosion and oxidation
US2763921A (en) Corrosion and impact resistant article and method of making same
US4451431A (en) Molybdenum-containing high temperature coatings for nickel- and cobalt-based superalloys
US3748110A (en) Ductile corrosion resistant coating for nickel base alloy articles
CH648603A5 (en) METHOD FOR PRODUCING A CORROSION-RESISTANT COATING ON A METAL OBJECT.
US3540863A (en) Art of protectively metal coating columbium and columbium - alloy structures
US3957454A (en) Coated article
US3979534A (en) Protective coatings for dispersion strengthened nickel-chromium/alloys
DE2830851C3 (en) Process for the formation of metal diffusion protection coatings on workpieces made of metal or metal alloys
US3720537A (en) Process of coating an alloy substrate with an alloy
US3620693A (en) Ductile, high-temperature oxidation-resistant composites and processes for producing same
US8039116B2 (en) Nb-Si based alloys having an Al-containing coating, articles, and processes
US2788290A (en) Method of forming a protective coating on a molybdenum-base article
US2988807A (en) Method of aluminizing cobalt base alloys and article resulting therefrom
US3953193A (en) Coating powder mixture