EP1017990A2 - Analyseverfahren unter verwendung von porösem silicium zur erfassung einer substanz oder der konzentration einer substanz in lösungen sowie eine analyseeinrichtung für ein solches verfahren - Google Patents

Analyseverfahren unter verwendung von porösem silicium zur erfassung einer substanz oder der konzentration einer substanz in lösungen sowie eine analyseeinrichtung für ein solches verfahren

Info

Publication number
EP1017990A2
EP1017990A2 EP97922810A EP97922810A EP1017990A2 EP 1017990 A2 EP1017990 A2 EP 1017990A2 EP 97922810 A EP97922810 A EP 97922810A EP 97922810 A EP97922810 A EP 97922810A EP 1017990 A2 EP1017990 A2 EP 1017990A2
Authority
EP
European Patent Office
Prior art keywords
porous silicon
substance
analysis device
analysis
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97922810A
Other languages
German (de)
English (en)
French (fr)
Inventor
Michael Krüger
Michael Berger
Markus THÖNISSEN
Rüdiger ARENS-FISCHER
Hans LÜTH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Publication of EP1017990A2 publication Critical patent/EP1017990A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length

Definitions

  • the present invention relates to an analysis method using porous silicon according to the preamble of claim 1 and an analysis device for such a method according to the preamble of claim 8.
  • Porous silicon is a promising material for sensor technology applications (gas sensor, moisture sensor, biosensor) due to its compatibility with the highly developed Si microelectronics and its simple, inexpensive manufacture.
  • the large inner surface of the material up to a few 100m cm 3 ) and the microstructure can be used.
  • layer systems made of PS are excellently suited for the inexpensive manufacture of optical filters and mirrors as well as waveguides, air being in the pores of the PS and the refractive index of the PS due to substrate doping. Etching current density and composition of the etching solution is determined during manufacture.
  • Porous silicon consists of a spongy framework made of silicon crystallites. which is pervaded by pores. The size of the crystallites and the pores varies between a few nanometers and a few micrometers depending on the doping of the silicon and the production conditions. If the wavelength of light is much larger than the size of the structures in PS. the PS appears to light as a homogeneous material ("effective medium") and its properties can therefore be described by specifying an effective refractive index which depends on the refractive indices of the silicon crystallites and the material in the pores.
  • Another way to vary the refractive index of the PS is to fill the pores of the PS with another material instead of air to detect substances or to determine their concentration in solutions. This property of PS has not previously been used in the prior art. Selectivity for selected substances can be achieved by using membranes with selective permeability on the surface of the PS.
  • the object of the present invention is therefore to provide an analysis method and an analysis device with which the detection of a substance or the determination of its concentration can be carried out using porous silicon.
  • the object is achieved according to claim 1 in that a substance or its concentration in a fluid is detected due to the change in the optical property of porous silicon as a function of the refractive index of the substance present in the pore space of the porous silicon or of the fluid containing the substance or is determined.
  • a component is at least partially made of porous silicon. whose optical property is dependent on the refractive index of the substance or the fluid containing the substance. a change in the optical property of the porous silicon as evidence of the substance or. can be determined as a determination of the concentration thereof in the pore space of the porous silicon
  • Procedure for the analysis according to the invention or. the analysis device according to the invention is proposed. to use the dependence of the refractive index of the PS on the refractive index of the material in the pores. Detect substances or determine their concentration in solutions. For this purpose, the substance advantageously not only has to be deposited irreversibly in the pores (claim 4). but them can also be exchanged during the measuring process in a time-resolved measurement (claim 3) (claim 2).
  • Fig. 1 is a schematic representation of a color-selective reflector made of porous silicon. reflecting the spectral dependence of the reflectivity on the refraction of the material in the pores;
  • FIG. 3 shows a schematic representation of a photodiode with an interference filter made of porous silicon as a color-selective layer, a liquid to be examined penetrating into the pore space of the porous silicon and changing the refractive index of the porous silicon and thus changing the optical properties of the interference filter:
  • FIG. 4 shows a schematic illustration of a waveguide made of porous silicon in cross section, the quality of the adaptation between the core and the cladding of the waveguide varying as a function of the refractive index of the material:
  • FIG. 5 shows a schematic illustration of a waveguide interferometer in plan view, the waveguide core and cladding not being shown separately for reasons of simplification;
  • Atisration ⁇ ingsfo ⁇ n 1 Color selective mirror
  • an interference filter made of PS is illuminated and the reflected portion of the light is measured with a detector.
  • the interference filter serves as a reflection filter, the spectral properties of which can be varied by using different PS layers. If the filter is in a liquid and this penetrates into the pores of the PS, the spectral reflectivity of the filter changes.
  • FIG. 2 A measurement with such a measurement setup is shown in Fig. 2.
  • the lamp and detector are integrated in a white light interferometer.
  • the reflection filter used consists of a layer system of the type [HL] 5 [LH] 5 , ie a Fabry-Perot filter with 10 periods of the layer package HL.
  • H denotes a layer with a high refractive index
  • L denotes a layer with a low refractive index.
  • a highly p-doped Si substrate (l * 10 19 c ⁇ r 3 ) and an etching solution with H : 0: HF: C 2 H are used ; OH in the ratio 1: 1: 2.
  • an etching current density of 100 mA / cm 2 is used for 0.675 s and 280 mA / cm for the H layer analogously : for 0.478 s.
  • the filter frequency of the Fabry-Perot filter is shifted towards longer wavelengths with increasing refractive index of the material in the pores (air 570 nm.
  • the reflection spectrum of the interference filter is measured over a wide spectral range, which requires the use of a spectrometer.
  • An inexpensive alternative to this is the use of a laser diode as a light source and a photodiode as a receiver.
  • the filter frequency of the interference filter must be matched to the wavelength of the laser. Since the laser diode emits monochromatic light, only the change in filter reflectivity for this wavelength is measured, which is sufficient to characterize the material in the pores.
  • Embodiment 2 Color selective photodiode
  • Interference filters made of PS can, instead of being used as reflection filters as in FIG. 1, also be used as transmission filters as in FIG.
  • the interference filter is already integrated in an S, photodiode.
  • the photocurrent I Ph is a measure of the transmittance of the filter at this wavelength.
  • Embodiment 3 Mismatched waveguide made of PS
  • PS is also suitable for the production of waveguides, the properties of which are also influenced by the refractive index of the material in the pores (Fig. 4).
  • the loss in light intensity, ie the ratio of the coupled light power I t to the coupled power I 0 depends, among other things, on the adjustment of the refractive indices of the core and cladding of the waveguide.
  • the core of the waveguide is made of PS with a larger volume ratio V si-v Lnst & i k JV Po TM than the jacket of the waveguide.
  • the refractive index changes less in the core of the waveguide than in the cladding of the waveguide if the refractive index of the material in the pores of the PS is varied.
  • the adaptation of the refractive indices of the core and the cladding and thus the losses in the light intensity also change, that is to say when the input power I 0 is fixed, the output power 1 is a measure of the refractive index of the material in the pores of the waveguide.
  • Embodiment 4 Asymmetric waveguide interferometer made of PS
  • FIG. 5 shows an interferometer made of waveguides, in which the light beam coupled into a waveguide section 1 is split into two partial beams which, after passing through the waveguide sections 2 and 3, are brought together again in a waveguide section 4. This causes the partial beams to interfere, their phase difference being determined by the optical path lengths, that is to say the product of the geometric path length and refractive index.
  • Such a structure can be used in two ways:
  • Sections 2 and 3 are both made of PS, but have different geometric lengths. If the refractive index of the material in the pores is now varied, the optical path length in sections 2 and 3 changes by the same factor, since the refractive index of the PS changes by same factor changes. The phase difference of the partial beams is not determined by the quotient, but by the difference in the optical path lengths in sections 2 and 3. By varying the refractive index of the material in the pores, the phase difference of the partial beams changes, and in this way the intensity l, of the light, which arises from the interference of the two partial beams.
  • Either section 2 or section 3 is made of PS
  • the other section is made of a different material (for example SiGe / Si or Si / insulator).
  • the length of the sections need not be different. If the refractive index of the material in the pores is now changed, only the optical path length of the PS waveguide section changes, whereas the optical path length of the other section remains constant. In this way, the sensitivity of the component to case a) is increased.
  • the change in the refractive index of the PS by 0.001 results in a change in the optical path length of 1 ⁇ m. which corresponds to a full period in the interference signal when using light with a wavelength of 1 ⁇ m.
  • Embodiment 5 waveguide interferometer with gate for setting the operating point
  • a problem with the operation of the devices of embodiment 4 is that the intensity of the interference signal for a given one
  • Pore material is determined by the geometry of the component. In many of the
  • the outcoupled light intensity should be maximum for a certain pore material. i.e. the constructive interference of the partial beams should be present. This is possible by placing the component 4b) above the
  • Waveguide section without PS a gate is attached. This geometry is in
  • Fig.6 shown.
  • the refractive index of the underlying waveguide can be varied by the voltage at the gate and the phase difference of the partial beams can thus be set.
  • Such a component, but without a variable PS waveguide section, is referred to as a Mach-Zender interferometer. Expansion of embodiments 1 to 5:
  • a membrane with selective permeability is applied to the surface of the PS, only those substances for which the membrane is permeable can get into the pores of the PS. Thus, only these substances can lead to a change in the refractive index of the PS. In this way, by selecting a suitable membrane, the components from embodiments 1 to 5 can be selected for individual substances.
  • Component according to subsection 2). which are the components light source. Interference filter and light detector included.
  • the component can consist of separate components, or several or all of the components can be integrated on one chip.
  • Component which contains PS waveguides and in which the transmission of light through the waveguide is varied by the refractive index of the material which is located in the pores of the PS.
  • the waveguides do not have to consist entirely of PS.
  • Substances can get into the pores, making the component selective for the desired substance.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
EP97922810A 1996-03-05 1997-02-28 Analyseverfahren unter verwendung von porösem silicium zur erfassung einer substanz oder der konzentration einer substanz in lösungen sowie eine analyseeinrichtung für ein solches verfahren Withdrawn EP1017990A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19608428 1996-03-05
DE19608428A DE19608428C2 (de) 1996-03-05 1996-03-05 Chemischer Sensor
PCT/DE1997/000361 WO1997033147A2 (de) 1996-03-05 1997-02-28 Analyseverfahren unter verwendung von porösem silicium zur erfassung einer substanz oder der konzentration einer substanz in lösungen sowie eine analyseeinrichtung für ein solches verfahren

Publications (1)

Publication Number Publication Date
EP1017990A2 true EP1017990A2 (de) 2000-07-12

Family

ID=7787252

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97922810A Withdrawn EP1017990A2 (de) 1996-03-05 1997-02-28 Analyseverfahren unter verwendung von porösem silicium zur erfassung einer substanz oder der konzentration einer substanz in lösungen sowie eine analyseeinrichtung für ein solches verfahren

Country Status (6)

Country Link
US (1) US6130748A (ja)
EP (1) EP1017990A2 (ja)
JP (1) JP2000506267A (ja)
CA (1) CA2248723A1 (ja)
DE (1) DE19608428C2 (ja)
WO (1) WO1997033147A2 (ja)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19900879A1 (de) * 1999-01-12 2000-08-17 Forschungszentrum Juelich Gmbh Optischer Detektor mit einer Filterschicht aus porösem Silizium und Herstellungsverfahren dazu
US6954613B1 (en) * 1999-09-10 2005-10-11 Virtual Geosatellite Holdings, Inc. Fixed satellite constellation system employing non-geostationary satellites in sub-geosynchronous elliptical orbits with common ground tracks
FR2813121A1 (fr) * 2000-08-21 2002-02-22 Claude Weisbuch Dispositif perfectionne de support d'elements chromophores
FR2818263B1 (fr) * 2000-12-14 2004-02-20 Commissariat Energie Atomique Substrat pour materiau a insoler
GB0120202D0 (en) * 2001-08-18 2001-10-10 Psimedica Body fluid collection and analysis
US7042570B2 (en) * 2002-01-25 2006-05-09 The Regents Of The University Of California Porous thin film time-varying reflectivity analysis of samples
US8765484B2 (en) * 2002-02-07 2014-07-01 The Regents Of The University Of California Optically encoded particles
US7130060B2 (en) * 2002-09-05 2006-10-31 Texas Tech University System Refractive index determination by micro interferometric reflection detection
US7449146B2 (en) * 2002-09-30 2008-11-11 3M Innovative Properties Company Colorimetric sensor
WO2004057314A2 (en) * 2002-12-20 2004-07-08 Fiso Technologies Inc. Polarisation interferometric method and sensor for detecting a chemical substance
JP4438049B2 (ja) * 2003-08-11 2010-03-24 キヤノン株式会社 電界効果トランジスタ及びそれを用いたセンサ並びにその製造方法
US7318903B2 (en) * 2003-08-14 2008-01-15 The Regents Of The University Of California Photonic sensor particles and fabrication methods
CN1918582A (zh) * 2003-12-22 2007-02-21 加利福尼亚大学董事会 具有灰度光谱的光学编码粒子
AU2004308380A1 (en) * 2003-12-22 2005-07-14 The Regents Of The University Of California Optically encoded particles, system and high-throughput screening
US7560018B2 (en) 2004-01-21 2009-07-14 Lake Shore Cryotronics, Inc. Semiconductor electrochemical etching processes employing closed loop control
US20060027459A1 (en) * 2004-05-28 2006-02-09 Lake Shore Cryotronics, Inc. Mesoporous silicon infrared filters and methods of making same
WO2007008211A2 (en) * 2004-07-19 2007-01-18 The Regents Of The University Of California Magnetic porous photonic crystal particles and method of making
JP4764969B2 (ja) * 2005-07-25 2011-09-07 ローム株式会社 マイクロチップ測定装置
KR100787468B1 (ko) 2006-08-21 2007-12-26 손홍래 다층 다공성 실리콘을 이용한 화학신경제 탐지용 센서 및그 제조방법
US8067110B2 (en) * 2006-09-11 2011-11-29 3M Innovative Properties Company Organic vapor sorbent protective device with thin-film indicator
US7906223B2 (en) 2006-09-11 2011-03-15 3M Innovative Properties Company Permeable nanoparticle reflector
KR101018825B1 (ko) 2008-05-06 2011-03-04 조선대학교산학협력단 다공성 실리콘을 이용한 면역단백질 탐지용 바이오센서 및그의 제조방법
CN102056649B (zh) * 2008-06-30 2012-11-28 3M创新有限公司 暴露指示装置
US8537358B2 (en) 2009-05-22 2013-09-17 3M Innovative Properties Company Multilayer colorimetric sensor arrays
AU2010249632B2 (en) 2009-05-22 2013-10-03 3M Innovative Properties Company Multilayer colorimetric sensors
US9007593B2 (en) 2010-07-20 2015-04-14 The Regents Of The University Of California Temperature response sensing and classification of analytes with porous optical films
CN104034693B (zh) * 2014-05-08 2017-03-01 新疆大学 一种基于反射光强的多孔硅微腔生物传感器检测生物分子的方法
WO2019175670A1 (en) * 2018-03-13 2019-09-19 Rockley Photonics Limited Porous silicon sensor
GB201816687D0 (en) * 2018-10-12 2018-11-28 Clinspec Diagnostics Ltd Sample container

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03502726A (ja) * 1988-02-14 1991-06-20 ルーコズ ヴァルタ 集積光学干渉法
DE3832185A1 (de) * 1988-09-22 1990-03-29 Fedor Dipl Phys Dr Mitschke Feuchtesensor und messanordnung zur messung der feuchte
US5082629A (en) * 1989-12-29 1992-01-21 The Board Of The University Of Washington Thin-film spectroscopic sensor
US5377008A (en) * 1990-09-20 1994-12-27 Battelle Memorial Institute Integrated optical compensating refractometer apparatus
DE4033357A1 (de) * 1990-10-19 1992-04-23 Iot Entwicklungsgesellschaft F Sensor zum stoffnachweis
DE4200088C2 (de) * 1992-01-04 1997-06-19 Nahm Werner Verfahren und Vorrichtung zum optischen Nachweis einer An- oder Einlagerung mindestens einer stofflichen Spezies in oder an mindestens einer dünnen Schicht
US5338415A (en) * 1992-06-22 1994-08-16 The Regents Of The University Of California Method for detection of chemicals by reversible quenching of silicon photoluminescence
DE4427921C2 (de) * 1994-08-06 2002-09-26 Forschungszentrum Juelich Gmbh Chemische Sensoren, insbesondere Biosensoren, auf Siliciumbasis

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9733147A3 *

Also Published As

Publication number Publication date
DE19608428A1 (de) 1997-09-11
US6130748A (en) 2000-10-10
WO1997033147A2 (de) 1997-09-12
DE19608428C2 (de) 2000-10-19
WO1997033147A3 (de) 1997-10-30
JP2000506267A (ja) 2000-05-23
CA2248723A1 (en) 1997-09-12

Similar Documents

Publication Publication Date Title
WO1997033147A2 (de) Analyseverfahren unter verwendung von porösem silicium zur erfassung einer substanz oder der konzentration einer substanz in lösungen sowie eine analyseeinrichtung für ein solches verfahren
EP0011708B1 (de) Verfahren und Vorrichtung zur Messung der Ebenheit, der Rauhigkeit oder des Krümmungsradius einer Messfläche
EP0494883B1 (de) Verfahren und anordnung zur fabry-perot-spektroskopie
DE69933193T2 (de) Integrierter optischer Sensor und Verfahren zum integrierten optischen Nachweis einer Substanz
DE2905630C2 (de) Optische Meßeinrichtung
DE19830808C2 (de) Wellenlängenüberwachungsvorrichtung für optische Signale
EP0403468A1 (de) Integriert-optisches interferenzverfahren
DE2054084B2 (de) Zweistrahl-infrarotmessung im reflexions- oder durchstrahlungsverfahren
EP0163847A2 (de) Interferenz-Refraktometer
DE3723159C2 (ja)
EP1995576B1 (de) Anordnung für die Detektion von Stoffen und/oder Stoffkonzentrationen mit durchstimmbarem Fabry-Perot-Interferometer
DE3812334A1 (de) Interferometrische einrichtung
EP0443702A2 (de) Messverfahren zur Bestimmung kleiner Lichtabsorptionen
DE3528294C2 (ja)
CH670521A5 (en) Optical sensor detecting specific substances in material
WO2000021224A2 (de) Anordnung und verfahren zur überwachung der performance von dwdm mehrwellenlängensystemen
EP4048978A1 (de) Vorrichtung und verfahren zur profilmessung von flachen objekten mit unbekannten materialien
WO2021048321A1 (de) Verfahren und vorrichtung zur nichtlinearen spektroskopie an einer probe
EP3770546A1 (de) Vorrichtung und verfahren zur messung von höhenprofilen an einem objekt
DE10049951A1 (de) Faseroptischer Sensor zur Bestimmung eines Analyten mit hoch doppelbrechendem Lichtwellenleiter sowie Verwendung des faseroptischen Sensors
DE102017201139A1 (de) Bauelement zum Begrenzen eines Einfallswinkels von Licht, Verfahren zum Herstellen desselben und Mikrospektrometer
EP3779408A1 (de) Messvorrichtung und verfahren zur bestimmung einer stoffkonzentration
EP3355037A1 (de) Bauelement zum begrenzen eines einfallswinkels von licht, mikrospektrometer und verfahren zum herstellen des bauelements
WO2021058260A1 (de) Spektrometervorrichtung und verfahren zur kalibrierung einer spektrometervorrichtung
EP3770585A1 (de) Vorrichtung und verfahren zur bestimmung einer stoffkonzentration in einem fluid

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980901

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB IT LI NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FORSCHUNGSZENTRUM JUELICH GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20030902