EP1006213B1 - Verfahren zum Regenerieren einer Prozesslösung - Google Patents

Verfahren zum Regenerieren einer Prozesslösung Download PDF

Info

Publication number
EP1006213B1
EP1006213B1 EP99120998A EP99120998A EP1006213B1 EP 1006213 B1 EP1006213 B1 EP 1006213B1 EP 99120998 A EP99120998 A EP 99120998A EP 99120998 A EP99120998 A EP 99120998A EP 1006213 B1 EP1006213 B1 EP 1006213B1
Authority
EP
European Patent Office
Prior art keywords
chamber
solution
anode
hypophosphite
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99120998A
Other languages
English (en)
French (fr)
Other versions
EP1006213A2 (de
EP1006213A3 (de
Inventor
Reinhard Dr. Rer. Nat. Schwarz
Klaus Prof. Dr. Rer. Nat. Habil. Fischwasser
Annette Dipl.-Ing. Taubert (Fh)
Dieter Dipl.-Ing. Hahnewald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Blasberg Werra Chemie GmbH
Original Assignee
Fischwasser Klaus Prof Dr rer nat habil
Schwarz Reinhard Dr rer nat
Taubert Annette Dipl-Ing (fh)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fischwasser Klaus Prof Dr rer nat habil, Schwarz Reinhard Dr rer nat, Taubert Annette Dipl-Ing (fh) filed Critical Fischwasser Klaus Prof Dr rer nat habil
Publication of EP1006213A2 publication Critical patent/EP1006213A2/de
Publication of EP1006213A3 publication Critical patent/EP1006213A3/de
Application granted granted Critical
Publication of EP1006213B1 publication Critical patent/EP1006213B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1617Purification and regeneration of coating baths
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/16Regeneration of process solutions
    • C25D21/22Regeneration of process solutions by ion-exchange

Definitions

  • the invention relates to a method for regenerating a process solution, the is used in the chemical-reductive deposition of metal layers and Contains hypophosphite and orthophosphite, in which the process solution at least four chambers having an electrodialysis cell, one anode chamber containing dilute acid with an anode therein, a Cathode chamber with a cathode inside and two more, through one Anion exchange membrane separated and between these two Has chambers arranged chambers, of which a first chamber through a Anion exchange membrane is separated from the cathode chamber while a second chamber through a cation exchange membrane from the anode chamber is separated, in which the process solution when performing the method of the first Chamber is abandoned, causing the hypophosphite ions and contained therein Orthophosphite ions electrodialytically into the second chamber and simultaneously Hypophosphite ions are transported from the cathode chamber into the process solution are, and at which regenerated process solution is removed and another
  • Coating processes are increasingly being used in surface finishing those contained in an aqueous solution of non-ferrous metal ions by means of chemical Reduction on substrate surfaces made of metal or pretreated plastic as non-ferrous metals be deposited.
  • Coating metals are, for example, copper, Nickel, silver and gold. Hypophosphite, for example, is used as the reducing agent used.
  • As the chemical-reductive nickel deposition is a common in practice The procedure used is based on the following explanations - representative for all other usable metals - on nickel.
  • the reducing agent hypophosphite H 2 PO 2
  • the oxidized reducing agent orthophosphite HPO 3 2-
  • Side reactions such as the reduction of hypophosphite to elemental phosphorus, which is built into the deposited nickel layer, result in a consumption of about 3 mol hypophosphite per mol of deposited nickel.
  • the concentration of orthophosphite increases.
  • the orthophosphite destabilizes the process solution.
  • the process solution can therefore be used from a certain orthophosphite concentration (Interference limit concentration) no longer for electroless nickel plating be used.
  • the process solution that can no longer be used is partly discarded and replaced by a fresh process solution.
  • Processed solutions are currently being processed disposed of through complex neutralization precipitation or externally at high costs. There are procedures in the literature to extend the useful life of the process solution known in which only the disruptive components at least partially from the Process solution removed and the used components - nickel ions and Reducing agent - be replenished. Nevertheless, the process solutions are based on the Regeneration can only be used to a limited extent.
  • the Regeneration circuit to remove the orthophosphite magnesium or Calcium hydroxide added to the orthophosphite in the form of sparingly soluble salts to be removed from the regeneration circuit.
  • Used chemicals nickel ions and reducing agents
  • phosphinic acid addition to the Catholytes
  • the sulfate by adding barium hydroxide in the catholyte should be removed as barium sulfate.
  • the invention is based on the object, the method described above to further develop that the disruptive orthophosphite from the Process solution can be removed, so that a longer service life of the same is achievable.
  • Electrodialysis will Orthophosphite transferred into a mineral acid solution, from which it is by means of weakly basic anion exchanger can be removed.
  • the hypophosphite containing solution emerging from the ion exchanger is the cathode compartment Electrolysis cell abandoned, from where it is electrodialytic without interfering foreign ions is returned to the process solution through the anion exchanger membrane.
  • the of Process solution depleted of orthophosphite can then be used directly for the process chemical-reductive deposition of nickel can be supplied.
  • the stability and the Functionality of the regenerated process solution are due to equimolar exchange guaranteed by orthophosphite against hypophosphite.
  • the electrodialysis cell EZ shown in Fig. 1 consists of four chambers. These are an anode chamber (1) with the anode (2) therein, the cathode chamber (3) with the cathode (4) therein and two further chambers, a first Chamber (5) and a second chamber (6), which is between the anode chamber (1) and the cathode chamber (3).
  • the anode (2) is insoluble For example made of steel or platinum-coated expanded titanium.
  • the Anode chamber (1) contains a dilute acid, preferably sulfuric acid.
  • the Cathode (4) consists, for example, of copper or steel.
  • the first chamber (5) is from the cathode compartment (3) through an anion exchange membrane (AM 1) and from the second chamber (6) through an anion exchange membrane (AM 2) separated. Between the second chamber (6) and the anode compartment (1) there is a cation exchange membrane (KM 1). To the second chamber (6) a weakly basic anion exchanger (T 1) is connected, which turns into The beginning of the procedure is wholly or partly in the hypophosphite loading. The The outlet of the anion exchanger (T 1) is connected to the cathode chamber (3).
  • the method according to the invention works with an arrangement according to FIG. 1 for example as follows:
  • the process solution (PL) to be regenerated is fed into the first chamber (5) of the electrodialysis cell (EZ).
  • the hypophosphite and orthophosphite ions contained in the process solution (PL) pass through the anion exchange membrane (AM 2) and reach the second chamber (6), which goes from the cation exchange membrane (KM 1) to the anode (2) is limited and contains a dilute acid.
  • hypophosphite and orthophosphite together with the electrodialytically transported anions hypophosphite and orthophosphite, they form the free acids hypophosphoric acid (phosphinic acid, H 3 PO 2 ) and phosphorous acid (phosphonic acid, H 3 PO 3 ). These anions are prevented from passing into the anode chamber (1) containing a dilute acid by the cation exchanger membrane (KM 1). The acid mixture of phosphinic acid and phosphonic acid is passed through the weakly basic anion exchanger (T 1), which is located in the hypophosphite loading.
  • T 1 weakly basic anion exchanger
  • the anion exchanger (T 1) binds the orthophosphite ions and gives them Hypophosphite ions into the solution. Those still in solution Hypophosphite ions are not bound by the anion exchanger (T 1).
  • the regenerate (R) of Anion exchanger (T 1) contains all of the orthophosphite, which during the Procedure was bound. For reuse, the Anion exchanger (T 1) transferred back to the hypophosphite loading.
  • the electrodialysis cell (EZ) can be supplemented by additional chambers to increase the throughput.
  • this can be three additional chambers (7, 8 and 9), which are arranged between the first chamber (5) and the cathode chamber (3).
  • the chamber (7) has a combined function of anode chamber (1) on the one hand (delivery of protons) and cathode compartment (3) on the other hand (transport of hypophosphite into the process solution (PL)). It is separated from the first chamber (5) by an anion exchanger membrane (AM 3) and from the chamber (8) by a cation exchanger membrane (KM 2), which corresponds functionally to the second chamber (6).
  • the chamber (9) corresponds functionally to the first chamber (5). It is separated from the chamber (8) by an anion exchange membrane (AM 4) and from the cathode chamber (3) by the anion exchange membrane (AM 1).
  • the process solution (PL) becomes both the first chamber (5) and the chamber (9) given up.
  • the acid mixture of the second chamber (6) and the chamber (8) enters the anion exchanger (T 1).
  • the solution containing hypophosphite is added to the Cathode chamber (3) and passed into the chamber (7).
  • Regeneration circuit must be set up (arrow P 1) and nickel can be replenished (Arrows P 2).
  • a weakly acidic cation exchanger (T 2) which is connected at its inlet to the outlet of the anion exchanger (T 1) and opens at the outlet into the first chamber (5).
  • the process solution (PL) to be regenerated is depleted of nickel, since nickel ions are consumed by the chemical-reductive deposition process.
  • the cation exchanger (T 2) which is loaded with nickel, it is possible to introduce nickel into the process solution (PL) without disturbing foreign ions.
  • the procedure of the arrangement according to FIG. 3 is basically the same as that of FIG. 1.
  • the anode process can be used to remove electroless nickel replenish used nickel ions.
  • the electrodialysis cell (EZ) according to FIG. 4 is supplemented compared to that according to FIG. 1 by a further chamber (10) which is arranged between the anode chamber (1) and the second chamber (6). It is separated from the second chamber (6) by a cation exchange membrane (KM 3) which is only permeable to monovalent cations.
  • a nickel anode is used here as the anode (2).
  • nickel is dissolved anodically. It reaches the process solution (PL) electrodialytically.
  • the process solution (PL) is introduced into the chamber (1) delimited by the cation exchange membrane (KM 1) and the cation exchange membrane (KM 3).
  • the cation exchange membrane (KM 3) which is only permeable to monovalent cations, is necessary so that no nickel ions are transported into the regeneration circuit to remove the orthophophite.
  • Nickel ions migrate from the anode chamber (1) into the process solution (PL). she compensate for the deficit in nickel ions caused by electroless nickel deposition arose. At the same time, an equivalent amount of protons migrate through the Cation exchanger membrane (KM 3) from the chamber (10) into the second chamber 86). As a result, the one formed during the chemical-reductive nickel deposition Amount of acid removed from the process solution (PL). The one with nickel ions Enriched process solution (PL) is then in accordance with the arrow (P3) in the first chamber (5) passed by the anion exchange membrane (AM 2) and Anion exchange membrane (AM 1) is limited.
  • the anions migrate from the first chamber (5) into the second chamber (6) and form there together with the protons that were previously from the anode chamber (1) and the further chamber (10) into the electrodialytic second chamber (6) were transported, the corresponding free acids.
  • the other The procedure corresponds to the procedure described for FIG. 1.
  • the Nickel anode must be replaced here after the nickel has been used up.
  • the anodic nickel dissolution can also take place externally.
  • the nickel ions are then fed into the anode chamber (1). This is indicated by the arrow (P4).
  • An anode (2) made, for example, of steel or of platinized titanium expanded metal can then be used, so that no anode change is required.
  • the structure of the electrodialysis cell (EZ) according to FIG. 5 is otherwise identical to that of the electrodialysis cell (EZ) according to FIG. 4. This also applies to the procedure.
  • the same can be applied to the chamber (10) according to FIG. 6 only in a partial stream (TL).
  • the nickel-enriched partial flow of the process solution (PL) emerging from the chamber (10) is combined with the process solution (PL) emerging from the first chamber (5) and to be used for further use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Chemically Coating (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

Die Erfindung bezieht sich auf ein Verfahren zum Regenerieren einer Prozeßlösung, die bei der chemisch-reduktiven Abscheidung von Metallschichten verwendet wird und Hypophosphit sowie Orthophosphit enthält, bei welchem die Prozeßlösung einer mindestens vier Kammern aufweisenden Elektrodialysezelle aufgegeben wird, die eine verdünnte Säure enthaltende Anodenkammer mit einer darin befindlichen Anode, eine Kathodenkammer mit einer darin befindlichen Kathode sowie zwei weitere, durch eine Anionenaustauscher-Membran voneinander getrennte und zwischen diesen beiden Kammern angeordnete Kammern aufweist, von denen eine erste Kammer durch eine Anionenaustauscher-Membran von der Kathodenkammer getrennt ist, während eine zweite Kammer durch eine Kationenaustauschermembran von der Anodenkammer getrennt ist, bei welchem die Prozeßlösung bei Durchführung des Verfahrens der ersten Kammer aufgegeben wird, wodurch die in ihr enthaltenen Hypophosphit-Ionen und Orthophosphit-Ionen elektrodialytisch in die zweite Kammer und gleichzeitig Hypophosphit-Ionen aus der Kathodenkammer in die Prozeßlösung transportiert werden, und bei welchem regenerierte Prozeßlösung entnommen und einer weiteren Verwendung zugeführt wird (DE-A-4 310 366 und US-A-5 419 821).
Bei der Oberflächenveredlung werden verstärkt Beschichtungsverfahren eingesetzt, bei denen in einer wäßrigen Lösung enthaltene NE-Metallionen mittels chemischer Reduktion auf Substratoberflächen aus Metall oder vorbehandeltem Kunststoff als NE-Metalle abgeschieden werden. Beschichtungsmetalle sind beispielsweise Kupfer, Nickel, Silber und Gold. Als Reduktionsmittel wird beispielsweise Hypophosphit verwendet. Da die chemisch-reduktive Nickelabscheidung ein in der Praxis häufig verwendetes Verfahren ist, beziehen sich die folgenden Ausführungen - stellvertretend für alle anderen verwendbaren Metalle - auf Nickel.
Bei der chemisch-reduktiven Abscheidung von Nickel wird das Reduktionsmittel Hypophosphit (H2PO2) verbraucht. Hingegen reichert sich das als Reaktionsprodukt gebildete oxidierte Reduktionsmittel Orthophosphit (HPO3 2-) in der Prozeßlösung an. Durch Nebenreaktionen, wie die Reduktion von Hypophosphit zu elementarem Phosphor, der in die abgeschiedene Nickelschicht eingebaut wird, ergibt sich ein Verbrauch von etwa 3 mol Hypophosphit pro mol abgeschiedenem Nickel. Das hat zur Folge, dass die Hypophosphit-Konzentration in der Prozeßlösung abnimmt und durch Zugabe von Ergänzungschemikalien wieder angehoben werden muß. Die Konzentration an Orthophosphit dagegen steigt an.
Mit steigender Konzentration destabilisiert das Orthophosphit die Prozeßlösung. Das führt zu einer rauhen, ungleichmäßigen Nickelabscheidung und zu Ausfällungen in der Prozeßlösung. Daher kann die Prozeßlösung ab einer bestimmten Orthophosphit-Konzentration (Störgrenzkonzentration) nicht mehr zur stromlosen Vernickelung eingesetzt werden. Die nicht mehr nutzbare Prozeßlösung wird zum Teil verworfen und durch eine frische Prozeßlösung ersetzt. Abgearbeitete Prozeßlösungen werden derzeit durch eine aufwendige Neutralisationsfällung oder extern mit hohen Kosten entsorgt. Zur Verlängerung der Nutzungsdauer der Prozeßlösung sind aus der Literatur Verfahren bekannt, bei denen nur die störenden Komponenten zumindest teilweise aus der Prozeßlösung entfernt und die verbrauchten Komponenten - Nickelionen und Reduktionsmittel - nachdosiert werden. Trotzdem sind die Prozeßlösungen nach der Regeneration nur noch beschränkt einsatzfähig.
Bei dem bekannten Verfahren nach der eingangs erwähnten DE-A-4 310 366 wird zum Regenerieren der Prozeßlösung eine Elektrodialysezelle eingesetzt. Die Reduktion des bei der stromlosen Metallabscheidung gebildeten Orthophosphits soll im Kathodenraum der Elektrodialysezelle erfolgen. Wie die Praxis gezeigt hat, kann das Orthophosphit mit diesem Verfahren jedoch nicht kathodisch zu Hypophosphit reduziert werden, da sich im Regenerierkreislauf kontinuierlich Orthophosphit anreichert, bis die Störgrenzkonzentration der Prozeßlösung erreicht wird. Damit kann kein Orthophosphit mehr aus der abgearbeiteten Prozeßlösung entfernt werden. Erst nach einem Verwurf der Regenerierlösung und dem Einsatz einer frischen, orthophosphitfreien Regenerierlösung, wäre dieses Verfahren kurzzeitig - bis zur erneuten Einstellung des Gleichgewichts - wieder einsatzfähig.
Gemäß der ebenfalls eingangs erwähnten US-A-5 419 821 werden daher dem Regenerierkreislauf zur Entfernung des Orthophosphits Magnesium- oder Calciumhydroxid zugesetzt, um das Orthophosphit in Form von schwerlöslichen Salzen aus dem Regenerierkreislauf zu entfernen. Die durch den Abscheidevorgang verbrauchten Chemikalien (Nickelionen und Reduktionsmittel) sollen in Form von Nickelsulfat (Zugabe in die Prozeßlösung) und Phosphinsäure (Zugabe in den Katholyten) zugeführt werden, wobei das Sulfat durch Zusatz von Bariumhydroxid in den Katholyten als Bariumsulfat wieder ausgekreist werden soll. Durch den erforderlichen Verwurf der Regenerierlösung oder die Ausfällung des Orthophosphits in Form von schwerlöslichen Erdalkalisalzen werden durch die beiden beschriebenen Verfahren ein hoher Chemikalienbedarf und ein hohes Abfallaufkommen verursacht.
Der Erfindung liegt die Aufgabe zugrunde, das eingangs beschriebene Verfahren so weiterzubilden, daß das störende Orthophosphit auf einfache Weise aus der Prozeßlösung enfernt werden kann, so daß eine längere Nutzungsdauer derselben erreichbar ist.
Diese Aufgabe wird gemäß der Erfindung dadurch gelöst, daß das in der zweiten Kammer durch Zutritt von Protonen aus der Anodenkammer gebildete Säuregemisch einem in der Hypophosphit-Beladung befindlichen, schwachbasischen Anionenaustauscher zugeführt wird, der mit seinem Auslaß an die Kathodenkammer angeschlossen ist.
Bei diesem Verfahren werden Elektrodialyse und Ionenaustausch in einfacher Arbeitsweise kombiniert, und zwar derart vorteilhaft, daß das Hypophosphit stöchiometrisch wieder in die Prozeßlösung eingeschleust werden kann, wodurch dieselbe voll funktionsfähig erhalten bleibt. Durch die Elektrodialyse wird das Orthophosphit in eine mineralsaure Lösung überführt, aus der es mittels des schwachbasischen Anionenaustauschers entfernt werden kann. Die Hypophosphit enthaltende, aus dem Ionenaustauscher austretende Lösung wird dem Kathodenraum der Elektrolysezelle aufgegeben, von wo es ohne störende Fremdionen elektrodialytisch durch die Anionentauscher-Membran in die Prozeßlösung zurückgeführt wird. Die von Orthophosphit abgereicherte Prozeßlösung kann dann direkt dem Verfahren zur chemisch-reduktiven Abscheidung von Nickel zugeführt werden. Die Stabilität und die Funktionsfähigkeit der regenerierten Prozeßlösung sind durch äquimolaren Austausch von Orthophosphit gegen Hypophosphit gewährleistet.
Vorteilhafte Ausgestaltungen der Erfindung gehen aus den Unteransprüchen hervor.
Das Verfahren nach der Erfindung wird im folgenden anhand der Zeichnungen in Ausführungsbeispielen erläutert.
Es zeigen:
  • Fig. 1 eine für das Verfahren nach der Erfindung verwendbare Anordnung in schematischer Darstellung.
  • Fig. 2 und 3 zwei unterschiedliche, gegenüber Fig. 1 ergänzte Ausführungsformen der Anordnung.
  • Fig. 4 bis 6 gegenüber Fig. 1 abgewandelte Ausführungsformen der Anordnung.
  • Die in Fig. 1 dargestellte Elektrodialysezelle EZ besteht aus vier Kammern. Das sind eine Anodenkammer (1) mit der darin befindlichen Anode (2), die Kathodenkammer (3) mit der darin befindlichen Kathode (4) sowie zwei weitere Kammern, eine erste Kammer (5) und eine zweite Kammer (6), die sich zwischen der Anodenkammer (1) und der Kathodenkammer (3) befinden. Die Anode (2) besteht in unlöslicher Ausführung beispielsweise aus Stahl oder aus platiniertem Titan-Streckmetall. Die Anodenkammer (1) enthält eine verdünnte Säure, vorzugsweise Schwefelsäure. Die Kathode (4) besteht beispielsweise aus Kupfer oder Stahl.
    Die erste Kammer (5) ist vom Kathodenraum (3) durch eine Anionenaustauscher-Membran (AM 1) und von der zweiten Kammer (6) durch eine Anionenaustauscher-Membran (AM 2) getrennt. Zwischen der zweiten Kammer (6) und dem Anodenraum (1) befindet sich eine Kationenaustauscher-Membran (KM 1). An die zweite Kammer (6) ist ein schwachbasischer Anionenaustauscher (T 1) angeschlossen, der sich zu Beginn des Verfahrens ganz oder teilweise in der Hypophosphit-Beladung befindet. Der Auslaß des Anionenaustauschers (T 1) ist mit der Kathodenkammer (3) verbunden.
    Das Verfahren nach der Erfindung arbeitet mit einer Anordnung nach Fig. 1 beispielsweise wie folgt:
    Die zu regenerierende Prozeßlösung (PL) wird in die erste Kammer (5) der Elektrodialysezelle (EZ) geleitet. Die in der Prozeßlösung (PL) enthaltenen Hypophosphit- und Orthophosphit-Ionen treten durch die Anionenaustauscher-Membran (AM 2) hindurch und gelangen in die zweite Kammer (6), die von der Kationenaustauscher-Membran (KM 1) zur Anode (2) begrenzt ist und in der sich eine verdünnte Säure befindet. Aus der Anodenkammer (1) gelangen Protonen, die durch Wasserzersetzung an der Anode (2) gebildet werden, in die zweite Kammer (6). Sie bilden zusammen mit dem elektrodialytisch transportierten Anionen Hypophosphit und Orthophosphit die freien Säuren Hypophosphorsäure (Phosphinsäure, H3PO2) und Phosphorige Säure (Phosphonsäure, H3PO3). Durch die Kationenaustauscher-Membran (KM 1) werden diese Anionen am Übertritt in die eine verdünnte Säure enthaltende Anodenkammer (1) gehindert. Die Säuremischung von Phosphinsäure und Phosphonsäure wird über den schwachbasischen Anionenaustauscher (T 1) geleitet, der sich in der Hypophosphit-Beladung befindet.
    Der Anionenaustauscher (T 1) bindet die Orthophosphit-Ionen und gibt die Hypophosphit-Ionen in die Lösung ab. Die noch in der Lösung befindlichen Hypophosphit-Ionen werden vom Anionenaustauscher (T 1) nicht gebunden. Der Ablauf des Anionenaustauschers (T 1) wird in die Kathodenkammer (3) der Elektrodialysezelle (EZ) geleitet. Von dort werden die Hypophosphit-Ionen elektrodialytisch durch die Anionenaustauscher-Membran (AM 1) in die Prozeßlösung (PL) transportiert. Sobald die Kapazität des Anionenaustauschers (T 1) erschöpft ist, wird er beispielsweise mit Natronlauge regeneriert. Das Regenerat (R) des Anionenaustauschers (T 1) enthält das gesamte Orthophosphit, das während des Verfahrensablaufs gebunden wurde. Für den erneuten Einsatz wird der Anionenaustauscher (T 1) wieder in die Hypophosphit-Beladung überführt.
    Durch eine durch den Pfeil (P 1) angedeutete Verbindung der Kathodenkammer (3) mit der zweiten Kammer (6), die durch die Anionenaustauscher-Membran (AM 2) und die Kationenaustauscher-Membran (KM 1) begrenzt ist, kann ein Regenerierkreislauf eingerichtet werden. Während des Verfahrensablaufs kann zur Nachdosierung von verbrauchtem Nickel beispielsweise Nickelhypophosphit verwendet werden, das gemäß dem Pfeil (P 2) in die erste Kammer (5), also in die Prozeßlösung (PL) gegeben wird.
    Zur Erhöhung des Durchsatzes kann die Elektrodialysezelle (EZ) durch weitere Kammern ergänzt werden. Das können gemäß Fig. 2 drei zusätzliche Kammern (7, 8 und 9) sein, die zwischen der ersten Kammer (5) und der Kathodenkammer (3) angeordnet werden. Die Kammer (7) hat darin eine kombinierte Funktion von Anodenkammer (1) einerseits (Abgabe von Protonen) und Kathodenraum (3) andererseits (Transport von Hypophosphit in die Prozeßlösung (PL)). Sie ist von der ersten Kammer (5) durch eine Anionenaustauscher-Membran (AM 3) und von der Kammer (8) durch eine Kationenaustauscher-Membran (KM 2) getrennt, die funktionsmäßig der zweiten Kammer (6) entspricht. Analog dazu entspricht die Kammer (9) funktionsmäßig der ersten Kammer (5). Sie ist von der Kammer (8) durch eine Anionenaustauscher-Membran (AM 4) und von der Kathodenkammer (3) durch die Anionenaustauscher-Membran (AM 1) getrennt.
    Die Prozeßlösung (PL) wird sowohl der ersten Kammer (5) als auch der Kammer (9) aufgegeben. Das Säuregemisch der zweiten Kammer (6) und der Kammer (8) gelangt in den Anionenaustauscher (T 1). Die Hypophosphit enthaltende Lösung wird in die Kathodenkammer (3) und in die Kammer (7) geleitet. Auch hier kann ein Regenerierkreislauf eingerichtet sein (Pfeil P 1) und es kann Nickel nachdosiert werden (Pfeile P 2).
    Bei der Ausführungsform der Anordnung nach Fig. 3 ist zusätzlich ein schwachsaurer Kationenaustauscher (T 2) vorhanden, der mit seinem Einlaß mit dem Auslaß des Anionenaustauschers (T 1) verbunden ist und mit seinem Auslaß in die erste Kammer (5) mündet. Bei dieser Ausführungsform ist berücksichtigt, daß die zu regenerierende Prozeßlösung (PL) an Nickel verarmt ist, da durch den chemisch-reduktiven Abscheideprozeß Nickelionen verbraucht werden. Durch den Einsatz des Kationenaustauschers (T 2), der mit Nickel beladen ist, ist es möglich, Nickel ohne störende Fremdionen in die Prozeßlösung (PL) einzuführen. Das Verfahren läuft bei der Anordnung nach Fig. 3 grundsätzlich genauso ab, wie bei der nach Fig. 1. Es wird hier nur ein Teilstrom der aus dem Anionenaustauscher (T 1) austretenden Lösung abgezweigt und über den Kationenaustauscher (T 2) geführt. Dieser Teilstrom der Lösung entlädt den in der Nickelform befindlichen Kationenaustauscher (T 2). Er wird direkt in die Prozeßlösung (PL) geleitet. Auf diese Weise werden der Prozeßlösung (PL) Nickelionen ohne störendes Anion wieder zugeführt. Nachdem das Nickel vollständig vom Kationenaustauscher (T 2) entfernt wurde, wird derselbe mit Natronlauge in die Natrium-Form überführt und wieder mit Nickelionen beladen.
    Bei den Ausführungsformen der Anordnung nach den Fig. 4 bis 6 ist berücksichtigt, daß der Anodenprozeß genutzt werden kann, um die bei der stromlosen Nickelabscheidung verbrauchten Nickelionen nachzudosieren.
    Die Elektrodialysezelle (EZ) nach Fig. 4 ist gegenüber der nach Fig. 1 um eine weitere Kammer (10) ergänzt, die zwischen der Anodenkammer (1) und der zweiten Kammer (6) angeordnet ist. Sie ist von der zweiten Kammer (6) durch eine Kationenaustauscher-Membran (KM 3) getrennt, die nur für einwertige Kationen durchlässig ist. Als Anode (2) wird hier eine Nickelanode verwendet. Während des Verfahrens wird Nickel anodisch aufgelöst. Es gelangt elektrodialytisch in die Prozeßlösung (PL). Die Prozeßlösung (PL) wird in die von der Kationenaustauscher-Membran (KM 1) und der Kationenaustauscher-Membran (KM 3) begrenzten Kammer (1) eingeleitet. Die nur für einwertige Kationen durchlässige Kationenaustauscher-Membran (KM 3) ist erforderlich, damit keine Nickelionen in den Regenerierkreislauf zur Entfernung des Orthophophits transportiert werden.
    Aus der Anodenkammer (1) wandern Nickelionen in die Prozeßlösung (PL). Sie gleichen das Defizit an Nickelionen aus, das durch die stromlose Nickelabscheidung entstanden ist. Gleichzeitig wandert eine äquivalente Menge an Protonen durch die Kationenaustauscher-Membran (KM 3) aus der Kammer (10) in die zweite Kammer 86). Dadurch wird die bei der chemisch-reduktiven Nickelabscheidung gebildete Säuremenge wieder aus der Prozeßlösung (PL) entfernt. Die mit Nickelionen angereicherte Prozeßlösung (PL) wird anschließend entsprechend dem Pfeil (P3) in die erste Kammer (5) geleitet, die von der Anionenaustauscher-Membran (AM 2) und der Anionenaustauscher-Membran (AM 1) begrenzt ist. Angetrieben durch das elektrische Feld, wandern die Anionen (Hypophosphit und Orthophosphit) aus der ersten Kammer (5) in die zweite Kammer (6) und bilden dort zusammen mit den Protonen, die zuvor aus der Anodenkammer (1) und der weiteren Kammer (10) elektrodialytisch in die zweite Kammer (6) transportiert wurden, die entsprechenden freien Säuren. Der weitere Verfahrensablauf entspricht dem für Fig. 1 beschriebenen Vefahrensablauf. Die Nickelanode muß hier nach Verbrauch des Nickels ausgewechselt werden.
    Gemäß Fig. 5 kann die anodische Nickelauflösung auch extern erfolgen. Die Nickelionen werden dann der Anodenkammer (1) aufgegeben. Das ist durch den Pfeil (P4) angedeutet. Es kann dann weiter eine beispielsweise aus Stahl oder aus platiniertem Titan-Streckmetall bestehende Anode (2) verwendet werden, so daß kein Anodenwechsel erforderlich ist. Der Aufbau der Elektrodialysezelle (EZ) nach Fig. 5 ist sonst identisch mit dem der Elektrodialysezelle (EZ) nach Fig. 4. Das gilt auch für den Verfahrensablauf.
    Zur verbesserten Regelung der Nickelionenkonzentration und des pH-Wertes der Prozeßlösung (PL) kann dieselbe gemäß Fig. 6 der Kammer (10) auch nur in einem Teilstrom (TL) aufgegeben werden. Der aus der Kammer (10) austretende, mit Nickel angereicherte Teilstrom der Prozeßlösung (PL) wird mit der aus der ersten Kammer (5) austretenden, der weiteren Verwendung zuzuführenden Prozeßlösung (PL) vereinigt.

    Claims (11)

    1. Verfahren zum Regenerieren einer Prozeßlösung, die bei der chemisch-reduktiven Abscheidung von Metallschichten verwendet wird und Hypophosphit sowie Orthophosphit enthält, bei welchem die Prozeßlösung einer mindestens vier Kammern aufweisenden Elektrodialysezelle aufgegeben wird, die eine verdünnte Säure enthaltende Anodenkammer mit einer darin befindlichen Anode, eine Kathodenkammer mit einer darin befindlichen Kathode sowie zwei weitere, durch eine Anionenaustauscher-Membran voneinander getrennte und zwischen diesen beiden Kammern angeordnete Kammern aufweist, von denen eine erste Kammer durch eine Anionenaustauscher-Membran von der Kathodenkammer getrennt ist, während eine zweite Kammer durch eine Kationenaustauschermembran von der Anodenkammer getrennt ist, bei welchem die Prozeßlösung bei Durchführung des Verfahrens der ersten Kammer aufgegeben wird, wodurch die in ihr enthaltenen Hypophosphit-Ionen und Orthophosphit-Ionen elektrodialytisch in die zweite Kammer und gleichzeitig Hypophosphit-Ionen aus der Kathodenkammer in die Prozeßlösung transportiert werden, und bei welchem regenerierte Prozeßlösung entnommen und einer weiteren Verwendung zugeführt wird, dadurch gekennzeichnet, dass das in der zweiten Kammer (6) durch Zutritt von Protonen aus der Anodenkammer (1) gebildete Säuregemisch einem in der Hypophosphit-Beladung befindlichen, schwachbasischen Anionenaustauscher (T 1) zugeführt wird, der mit seinem Auslaß an die Kathodenkammer (3) angeschlossen ist.
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß ein Teil der aus dem schwachbasischen Anionenaustauscher (T 1) austretenden Lösung über einen schwachsauren Kationenaustauscher (T 2) in die erste Kammer (5) der Elektrodialysezelle (EZ) geleitet wird, der mit Ionen des Beschichtungsmetalls vorbeladen ist.
    3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß durch eine Verbindung (P 1) der Kathodenkammer (3) mit der zweiten Kammer (6) ein Regenerierkreislauf gebildet wird.
    4. Verfahren nach einem der Anspprüche 1 bis 3, dadurch gekennzeichnet, daß Beschichtungsmetall zu dessen Nachdosierung der ersten Kammer (5) aufgegeben wird.
    5. Verfahren nach einem der Ansprüch 1 bis 4, dadurch gekennzeichnet, daß zwischen Anodenkammer (1) und zweiter Kammer (6) eine weitere, von der zweiten Kammer (6) durch eine Kationenaustauscher-Membran (KM 3) getrennte Kammer (10) angeordnet wird, in welche aus der Anodenkammer (1) austretende Ionen des Beschichtungsmetalls eingeleitet werden.
    6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Prozeßlösung (PL) der weiteren Kammer (10) aufgegeben und von dort der ersten Kammer (5) zugeleitet wird.
    7. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß ein Teilstrom (TL) der Prozeßlösung (PL) durch die weitere Kammer (10) geleitet wird.
    8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß eine unlösliche Anode (2) eingesetzt wird, die vorzugsweise aus Stahl oder platiniertem Titan-Streckmetall besteht.
    9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß der Anodenkammer (2) Ionen des Beschichtungsmetalls zugeführt werden.
    10. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß eine lösliche, aus dem Beschichtungsmetall bestehende Anode (2) verwendet wird.
    11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß eine Elektrodialysezelle (EZ) mit einer Mehrfachanordnung der Kammern eingesetzt wird.
    EP99120998A 1998-11-06 1999-11-04 Verfahren zum Regenerieren einer Prozesslösung Expired - Lifetime EP1006213B1 (de)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19851180A DE19851180C1 (de) 1998-11-06 1998-11-06 Verfahren zum Regenerieren einer Prozeßlösung
    DE19851180 1998-11-06

    Publications (3)

    Publication Number Publication Date
    EP1006213A2 EP1006213A2 (de) 2000-06-07
    EP1006213A3 EP1006213A3 (de) 2000-08-09
    EP1006213B1 true EP1006213B1 (de) 2004-12-15

    Family

    ID=7886899

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP99120998A Expired - Lifetime EP1006213B1 (de) 1998-11-06 1999-11-04 Verfahren zum Regenerieren einer Prozesslösung

    Country Status (3)

    Country Link
    EP (1) EP1006213B1 (de)
    AT (1) ATE284980T1 (de)
    DE (2) DE19851180C1 (de)

    Families Citing this family (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE10240350B4 (de) * 2002-08-28 2005-05-12 Atotech Deutschland Gmbh Vorrichtung und Verfahren zum Regenerieren eines stromlosen Metallabscheidebades
    DE10322120A1 (de) * 2003-05-12 2004-12-09 Blasberg Werra Chemie Gmbh Verfahren und Vorrichtungen zur Verlängerung der Nutzungsdauer einer Prozesslösung für die chemisch-reduktive Metallbeschichtung
    DE102004038693B4 (de) 2004-08-10 2010-02-25 Blasberg Werra Chemie Gmbh Vorrichtung und Verfahren zur Entfernung von Fremdstoffen aus Prozesslösungen und Verfahren zur Regenerierung eines Kationenaustauschers
    DE502005003655D1 (de) 2005-05-25 2008-05-21 Enthone Verfahren und Vorrichtung zur Einstellung der Ionenkonzentration in Elektrolyten
    DE102010015361A1 (de) 2010-04-16 2011-10-20 Atotech Deutschland Gmbh Membranelektrolysestapel, diesen enthaltende Elektrodialyseeinrichtung sowie Verfahren zum Regenerieren eines außenstromlos arbeitenden Bades zur Metallabscheidung

    Family Cites Families (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US2726969A (en) * 1953-12-03 1955-12-13 Gen Motors Corp Chemical reduction plating process
    DE4310366C1 (de) * 1993-03-30 1994-10-13 Fraunhofer Ges Forschung Verfahren zum Regenerieren von wässrigen, außenstromlos arbeitenden Beschichtungsbädern
    US5419821A (en) * 1993-06-04 1995-05-30 Vaughan; Daniel J. Process and equipment for reforming and maintaining electroless metal baths

    Also Published As

    Publication number Publication date
    EP1006213A2 (de) 2000-06-07
    EP1006213A3 (de) 2000-08-09
    DE19851180C1 (de) 2000-04-20
    ATE284980T1 (de) 2005-01-15
    DE59911270D1 (de) 2005-01-20

    Similar Documents

    Publication Publication Date Title
    DE2256286A1 (de) Elektrodialyse-verfahren und -geraet
    EP1344850A1 (de) Alkalisches Zink-Nickelbad
    DE3929137C1 (de)
    EP0878561A2 (de) Verfahren und Vorrichtung zum Regenerieren von Verzinnungslösungen
    DE2730322C3 (de) Verfahren zum Regenerieren stromlos arbeitender Abscheidungsbäder
    DE19849278C1 (de) Verfahren und Vorrichtung zum elektrodialytischen Regenerieren eines stromlosen Metallabscheidebades
    DE10056629C1 (de) Verfahren zur Aufbereitung von nickelhaltigem Abwasser bei der Phosphatierung
    EP1006213B1 (de) Verfahren zum Regenerieren einer Prozesslösung
    DE60303393T2 (de) Vorrichtung und verfahren zur regeneration eines bads zur stromlosen metallabscheidung
    EP1567689A1 (de) Verfahren zur phosphatierung von metalloberflächen mit verbesserter phosphat-rückgewinnung
    WO2000064817A1 (de) Abwasseraufbereitung bei der phosphatierung
    DE60104361T2 (de) Verfahren zur Metalloberflächenbehandlung
    CH642033A5 (en) Process and equipment for the treatment of waste waters containing heavy metals
    EP0264151B1 (de) Verfahren zur Erzeugung von Phosphatüberzügen
    EP0801692A2 (de) Galvanikanlage
    DE4310365C1 (de) Verfahren und Vorrichtung zur Aufarbeitung von Ätzbädern
    DE10132349B4 (de) Verfahren und Anlage zur kataphoretischen Tauchlackierung von Gegenständen
    DE10254952A1 (de) Mehrstufiges Verfahren zur Aufarbeitung von Phosphatierabwasser unter Einsatz eines schwach sauren Ionenaustauschers
    DE10322120A1 (de) Verfahren und Vorrichtungen zur Verlängerung der Nutzungsdauer einer Prozesslösung für die chemisch-reduktive Metallbeschichtung
    DE102004002778C5 (de) Verfahren zur Regenerierung von Metallisierungsbädern
    DE3206538C2 (de) Verfahren zur elektrolytischen Regenerierung von verbrauchter Schwefelsäure-Beizflüssigkeit
    EP1685274B1 (de) Abwasserreduziertes phosphatierverfahren durch aufarbeitung von entfettungslösung und/oder spülwasser
    EP0079032B1 (de) Vorrichtung zum galvanischen Beschichten eines metallischen Werkstücks
    DE4218843C2 (de) Verfahren zur Regeneration eines ammoniakalischen Ätzmittels sowie Vorrichtung zur Durchführung dieses Verfahrens
    EP1533399A2 (de) Verfahren zum abwasserarmen Betrieb eines alkalischen Zink-Nickel-Bades

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 20010205

    AKX Designation fees paid

    Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: FISCHWASSER, KLAUS, PROF. DR. RER. NAT. HABIL.

    Owner name: TAUBERT, ANNETTE, DIPL.-ING. (FH)

    Owner name: SCHWARZ, REINHARD, DR. RER. NAT.

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20041215

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20041215

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20041215

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REF Corresponds to:

    Ref document number: 59911270

    Country of ref document: DE

    Date of ref document: 20050120

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050315

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050315

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050315

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050326

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PUE

    Owner name: BLASBERG WERRA CHEMIE GMBH

    Free format text: SCHWARZ, REINHARD, DR. RER. NAT.#KOENIGSTRASSE 16#14163 BERLIN (DE) $ TAUBERT, ANNETTE, DIPL.-ING. (FH)#ZIETHENER STRASSE 60#15831 MAHLOW (DE) $ FISCHWASSER, KLAUS, PROF. DR. RER. NAT. HABIL.#HERRENBERGSTRASSE 1A#01326 DRESDEN (DE) -TRANSFER TO- BLASBERG WERRA CHEMIE GMBH#MEININGER STRASSE 41#98544 ZELLA MEHLIS (DE)

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20050406

    RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

    Owner name: BLASBERG WERRA CHEMIE GMBH

    NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

    Owner name: BLASBERG WERRA CHEMIE GMBH

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: RIEDERER HASLER & PARTNER PATENTANWAELTE AG

    NLS Nl: assignments of ep-patents

    Owner name: BLASBERG WERRA CHEMIE GMBH

    Effective date: 20050725

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051104

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20051130

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20051130

    26N No opposition filed

    Effective date: 20050916

    ET Fr: translation filed
    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: 732E

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: TP

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050515

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20091008

    Year of fee payment: 11

    Ref country code: AT

    Payment date: 20091120

    Year of fee payment: 11

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20101123

    Year of fee payment: 12

    Ref country code: FR

    Payment date: 20101130

    Year of fee payment: 12

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20101124

    Year of fee payment: 12

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20101129

    Year of fee payment: 12

    Ref country code: GB

    Payment date: 20101123

    Year of fee payment: 12

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 59911270

    Country of ref document: DE

    Effective date: 20110601

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 59911270

    Country of ref document: DE

    Effective date: 20110531

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20101104

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110531

    BERE Be: lapsed

    Owner name: *BLASBERG WERRA CHEMIE G.M.B.H.

    Effective date: 20111130

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: V1

    Effective date: 20120601

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20111104

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20111130

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20111130

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120601

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20120731

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20111130

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20111104

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20111130