EP0972059A1 - Molecules d'acide nucleique codant la phosphorylase d'amidon provenant du ma s - Google Patents

Molecules d'acide nucleique codant la phosphorylase d'amidon provenant du ma s

Info

Publication number
EP0972059A1
EP0972059A1 EP98912432A EP98912432A EP0972059A1 EP 0972059 A1 EP0972059 A1 EP 0972059A1 EP 98912432 A EP98912432 A EP 98912432A EP 98912432 A EP98912432 A EP 98912432A EP 0972059 A1 EP0972059 A1 EP 0972059A1
Authority
EP
European Patent Office
Prior art keywords
starch
plant
nucleic acid
leu
glu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98912432A
Other languages
German (de)
English (en)
Inventor
Jens Kossmann
Claus Frohberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer Bioscience GmbH
Original Assignee
Planttec Biotechnologie GmbH Forschung and Entwicklung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Planttec Biotechnologie GmbH Forschung and Entwicklung filed Critical Planttec Biotechnologie GmbH Forschung and Entwicklung
Publication of EP0972059A1 publication Critical patent/EP0972059A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8245Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis

Definitions

  • the present invention relates to nucleic acid molecules encoding a starch phosphorylase from maize.
  • the present invention relates to vectors, bacteria as well as to plant cells transformed with the described nucleic acid molecules and to the plants containing the same. Moreover, methods for the production of transgenic plants are described which, due to the introduction of DNA molecules encoding a starch phosphorylase from maize, synthesize a starch which is modified in its properties.
  • the polysaccharide starch is a polymer made up of chemically homogeneous basic components, namely the glucose molecules. However, it constitutes a highly complex mixture from various types of molecules which differ from each other in their degree of polymerization and in the degree of branching of the glucose chains. Therefore, starch is not a homogeneous raw material.
  • amylose-starch a basically non-branched polymer made up of ⁇ -1, 4-glycosidically branched glucose molecules, and . amylopectin-starch which in turn is a complex mixture of various branched glucose chains. The branching results from additional ⁇ -1, 6-glycosidic interlinkings .
  • the synthesized starch consists of approximately 25% amylose-starch and of about 75% amylopectin-starch .
  • the biochemical pathways which lead to the production of starch are basically known.
  • the starch synthesis in plant cells takes place in the plastids.
  • starch synthases as well as branching enzymes.
  • branching enzymes In the case of other enzymes and also, for example, in the case of starch phosphorylases, their precise role during starch biosynthesis is unknown.
  • the enzyme may have a degrading or, as the case may be, synthesizing effect on the glucans (Waldmann et al., Carbohydrate Research 157 (1986), C4-C7).
  • the plant starch phosphorylases are classified as follows: Type 1: situated within the cytosol of plant cells; very high affinity to longer-chained branched glucans; unregulated; monomeric size of approximately 90 kD; Type 2: situated within the plastids of plant cells; affinity to maltodextrines; low affinity to polyglucans; unregulated; monomeric size of approximately 105 kD.
  • DNA sequences encoding the corresponding starch phosphorylases have sofar been isolated only from a small number of plant species such as potato (Buchner et al., loc. cit.; Sonnewald et al . , loc. cit.; Bhatt and Knowler, loc. cit.; Camirand et al., loc. cit.), sweet potato (Lin et al . , loc. cit., Lin et al . , Plant Physiol. 95 (1991), 1250-1253) and rice (database accession number DDBJ No. D23280). Up to now, such sequences are not known from maize.
  • nucleic acid molecules encoding enzymes involved in starch biosynthesis and by means of which genetically modified plants may be produced that show an elevated or reduced activity of those enzymes, thereby prompting a modification in the chemical and/or physical properties of the starch synthesized in these plants.
  • the present invention relates to nucleic acid molecules encoding proteins with the biological activity of a starch phosphorylase from maize, wherein such molecules preferably encode proteins which comprise the amino acid sequence depicted under Seq ID No. 2.
  • the invention particularly relates to nucleic acid molecules which comprise all or part of the nucleotide sequence mentioned under Seq ID No. 1, preferably molecules, which comprise the coding region indicated in Seq ID No. 1 or, as the case may be, corresponding ribonucleotide sequences.
  • the present invention further relates to nucleic acid molecules which encode a starch phosphorylase from maize and one ' strand of which hybridizes to one of the above-mentioned molecules.
  • Nucleic acid molecules that encode a starch phosphorylase from maize and the sequence of which differs from the nucleotide sequences of the above-mentioned molecules due to the degeneracy of the genetic code are also the subject-matter of the invention.
  • hybridization signifies hybridization under conventional hybridizing conditions, preferably under stringent conditions as described for example in Sambrook et al . , Molecular Cloning, A Laboratory Manual, 2nd Edition (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY) .
  • Hybridization preferably means chat a hybridization takes place under the following conditions: Hybridization buffer: 2 x SSC; 10 x Denhardt ' s solution (Fikoll
  • Nucleic acid molecules hybridizing to the molecules of the invention may principally encode starch phosphorylases from any desired maize plant expressing such proteins.
  • Nucleic acid molecules hybridizing to the molecules according to the invention may be isolated e.g. from genomic or from cDNA libraries produced, from maize plants or maize tissue. Alternatively, they may have been produced by means of recombinant DNA techniques or by means of chemical synthesis. The identification and isolation of such nucleic acid molecules may take place by using the molecules according to the invention or parts of these molecules or, as the case may be, the reverse complement strands of these molecules, e.g. by hybridization according to standard methods (see e.g. Sambrook et al . , 1989, Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY) .
  • nucleic acid molecules may be used which exactly or basically contain the nucleotide sequences indicated under Seq ID No. 1 or parts thereof.
  • the fragments used as hybridization probe may also be synthetic fragments which were produced by means of the conventional synthesizing methods and the sequence of which is basically identical with that of a nucleic acid molecule according to the invention.
  • the molecules hybridizing to the nucleic acid molecules of the invention also comprise fragments, derivatives and allelic variants of the above-described nucleic acid molecules which encode a starch phosphorylase from maize as described in the invention.
  • fragments are defined as parts of the nucleic acid molecules, which are long enough in order to encode one of the described proteins.
  • the term derivatives means that the sequences of these molecules differ from the sequences of the above-mentioned nucleic acid molecules at one or more positions and that they exhibit a high degree of homology to these sequences.
  • Homology means a sequence identity of at least 40%, in particular an identity of at least 60%, preferably of more than 80% and still more preferably a sequence identity of more than 90%. The deviations occurring when comparing with the above-described nucleic acid molecules might have been caused by deletion, substitution, insertion or recombination.
  • homology means that functional and/or structural equivalence exists between the respective nucleic acid molecules or the proteins they encode.
  • the nucleic acid molecules which are homologous to the above-described molecules and represent derivatives of these molecules, are generally variations of these molecules, that constitute modifications which exert the same biological function. ' These variations may be naturally occurring variations, for example sequences derived from other maize varieties, or mutations, whereby these mutations may have occurred naturally or they may have been introduced by means of a specific mutagenesis. Moreover the variations may be synthetically produced sequences.
  • the allelic variants may be naturally occurring as well as synthetically produced variants or variants produced by recombinant DNA techniques.
  • the proteins encoded by the various variants of the nucleic acid molecules according to the invention exhibit certain common characteristics. Enzyme activity, molecular weight, lmmunologic reactivity, conformation etc. may belong to these characteristics as well as physical properties such as the mobility m gel electrophoresis, chromatographic characteristics, sedimentation coefficients, solubility, spectroscopic properties, stability, pH-optimum, temperature- optimum etc.
  • the enzymatic properties of starch phosphorylases were described above.
  • the localization and the acitivity of the phosphorylase may be assessed as described, for example, m Steup and Latzko (Planta 145 (1979), 69-75).
  • the monomeric size may be determined by methods known to the skilled person.
  • the nucleic acid molecules of the invention may be DNA molecules, particularly cDNA or genomic molecules.
  • the nucleic acid molecules of the invention may furthermore be RNA molecules.
  • the nucleic acid molecules of the invention may, e.g. be derived from natural sources or produced by recombinant DNA techniques or synthetically.
  • Oligonucleotides hybridizing specifically to one of the nucleic acid molecules of the invention are also subject-matter of the invention.
  • Such oligonucleotides preferably have a length of at least 10, particularly of at least 15 and still more preferably have a length of at least 50 nucleotides. They are characterized in that they hybridize specifically to the nucleic acid molecules of the invention, i.e. they do not or only to a small extent hybridize to nucleic acid sequences encoding other proteins, particularly other starch phosphorylases.
  • the oligonucleotides of the invention may be used for example as primers for a PCR or as a hybridization probe for isolating related genes. They may also be components of antisense-cor.structs or DNA molecules encoding suitable ribozymes .
  • the invention relates to vectors, especially plasmids, cosmids, viruses, bacteriophages and other vectors common in genetic engineering, which contain the above- mentioned nucleic acid molecules of the invention.
  • vectors are preferably vectors which can be used used for the transformation of plant cells. More preferably, they allow for the integration of the nucleic acid molecules of the invention into the genome of the plant cell, if necessary in combination with flanking regulatory regions. Examples are binary vectors which may be used in the Agrobacterium-mediated gene transfer.
  • nucleic acid molecules contained in the vectors are linked to regulatory elements that ensure the transcription and synthesis of a translatable RNA in procaryotic or eucaryotic cells.
  • nucleic acid molecules of the invention in procaryotic cells, e.g. in Escherichia coli, is interesting insofar as this enables a more precise characterization of the enzymatic activities of the enzymes encoded by these molecules.
  • nucleic acid molecules of the invention it is possible to introduce various mutations into the nucleic acid molecules of the invention by means of conventional molecular-biological techniques (see e.g. Sambrook et al . , 1989, Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY) , which leads to the synthesis of proteins with possibly modified biological properties.
  • deletion mutants in which nucleic acid molecules are produced by continuing deletions at the 5'- or the 3 '-end of the encoding DNA-sequence . These nucleic acid molecules may lead to the synthesis of correspondingly shortened proteins.
  • deletions at the 5'- end of the nucleotide sequence make it possible, for example, to identify amino acid sequences which are responsible for the translocation of the enzyme in the plastids (transit peptides) . This allows for the specific production of enzymes which due to the removal of the respective sequences are no longer located in the plastids but within the cytosol, or which due to the addition of other signal sequences are located in other compartments .
  • point mutations may also be introduced at positions where a modification of the amino acid sequence influences, for example, the enzyme activity or the regulation of the enzyme.
  • mutants with a modified K m - value may be produced, or mutants which are no longer subject to the regulation mechanisms by allosteric regulation or covalent modification usually occurring in cells.
  • mutants may be produced exhibiting a modified substrate or product specificity.
  • mutants with a modified activity-temperature-profile may be produced.
  • the nucleic acid molecules of the invention or parts of these molecules may be integrated into plasmids which allow for a mutagenesis or a sequence modification by recombination of DNA sequences.
  • base exchanges may be carried out or natural or synthetic sequences may be added.
  • adapters or linkers may be attached to the fragments.
  • use can be made of manipulations which offer suitable restriction sites or which ' remove superfluous DNA or restriction sites.
  • "primer repair" restriction or ligation may be used.
  • For analyzing use is usually made of a sequence analysis, a restriction analysis or further biochemico-molecularbiological methods .
  • the invention relates to host cells, in particular procaryotic or eucaryotic cells, which have been transformed by an above-mentioned nucleic acid molecule of the invention or by a vector of the invention, as well as cells derived from cells transformed in such a way and containing a nucleic acid molecule of the invention or a vector of the invention.
  • This is preferably a bacterial cell or a plant cell.
  • the proteins encoded by the nucleic acid molecules of the invention are the subject-matter of the invention as well as methods for their production in which a host cell of the invention is cultivated under conditions that allow for the synthesis of the protein and in which the protein is subsequently isolated from the cultivated cells and/or the culture medium.
  • the starch metabolism may be modified in such a way that a modified starch is synthesized which e.g. is modified, compared to the starch synthesized in wildtype plants, with respect to its physico-chemical properties, especially the amylose/amylopectin ratio, the degree of branching, the average chain length, the phosphate content, the pastification behavior, the size and/or the shape of the starch granule, the viscuous properties and/or the side chain distribution.
  • a modified starch is synthesized which e.g. is modified, compared to the starch synthesized in wildtype plants, with respect to its physico-chemical properties, especially the amylose/amylopectin ratio, the degree of branching, the average chain length, the phosphate content, the pastification behavior, the size and/or the shape of the starch granule, the viscuous properties and/or the side chain distribution.
  • nucleic acid molecules of the invention may be modified by means of methods known to the skilled person, in order to produce starch phosphorylases according to the invention which are no longer subject to the cell-specific regulation mechanisms or show modified temperature-dependencies or substrate or product specificities.
  • the synthesized proteins may in principle be located in any desired compartment within the plant cell.
  • the sequence ensuring the localization in the plastids must be deleted and the remaining coding region optionally has to be linked to DNA sequences which ensure localization in the respective compartment.
  • Such sequences are known (see e.g. Braun et al., EMBO J. 11 (1992), 3219-3227; Wolter et al., Proc. Natl. Acad. Sci. USA 85 (1988), 846-850; Sonnewald et al . , Plant J. 1 (1991) , 95-106) .
  • the present invention also relates to transgenic plant cells transformed with a nucleic acid molecule or a vector of the invention, as well as it relates to transgenic plant cells which are derived from cells transformed in such a way.
  • Such cells contain a nucleic acid molecule of the invention which is preferably linked to regulatory DNA elements ensuring the transcription in plant cells, especially with a promoter.
  • Such cells differ from naturally occurring plant cells, e.g. in that they contain a nucleic acid molecule of the invention which does not naturally occur in such cells or in that such a molecule is integrated at some position in the genome of the cell at which it does not naturally occur, i.e. in a different genomic environment.
  • transgenic plant cells of the invention differ from naturally occurring plants among other things in that at least one copy of the nucleic acid molecule of the invention is stably integrated in their genome, possibly in addition to the naturally occurring copies. If the nucleic acid molecule (s) integrated into the cell(s) is/are (an) additional copy (copies) of molecules already occurring naturally in the cells, the plant cells of the invention differ from the naturally occurring plant cells particularly in that this/these additional copy/copies is/are integrated at a location in the genome at which they do not occur naturally. This may be proved, for example, by means of a Southern Blot analysis .
  • the plant cells of the invention differ from naturally occurring plant cells preferably in at least one of the following features: if the introduced nucleic acid molecule of the invention is heterologous with regard to the plant cell, the transgenic plant cells comprise transcripts of the introduced nucleic acid molecules of the invention. This may be determined, for example, by means of a Northern Blot analysis.
  • the plant cells of the invention preferably contain a protein encoded by an introduced nucleic acid molecule of the invention. This may be determined, for example, by means of immunological methods, in particular by means of a Western Blot analysis .
  • the cells of the invention may be distinguished from naturally occurring cells, for example, by the additional expression of nucleic acid molecules of the invention.
  • the transgenic plant cells of the invention preferably contain more transcripts of the nucleic acid molecules of the invention. This may be shown, for example, by Northern Blot analysis. Thereby, "more” preferably means at least 10% more, more preferably at least 20% more and particularly preferred at least 50% more transcripts than the corresponding non- transformed cells. Furthermore, the cells preferably comprise a corresponding increase in the amount of the protein of the invention (at least 10%, 20% or, as the case may be, 50%) .
  • the transgenic plant cells may be regenerated to whole plants according to methods known to the skilled person. The plants obtained by regenerating the transgenic plant cells of the invention are also the subject-matter of the present invention. A further subject-matter of the invention are plants which contain the above-described transgenic plant cells.
  • the transgenic plants may in principle be plants of any desired species, i.e. they may be monocotyledonous as well as dicotyledonous plants. These are preferably useful plants, i.e. plants cultivated by man as foodstuffs or for technical, in particular for industrial purposes.
  • starch-synthesizing or starch-storing plants such as cereals (rye, barley, oats, wheat, millet, sago etc.), amaranth (Amaranthus) , rice, lentil, peas, chick-pea, mung bean, broad bean, scarlet runner bean, cassava, potato, sweet potato, tomato, rape seed, soy bean, hemp, flax, sunflower, cow pea or arrowroot.
  • Maize is particularly preferred.
  • the invention also relates to propagation material of the plants of the invention, e.g. fruits, seeds, tubers, root- stocks, seedlings, cuttings, calli, protoplasts, cell cultures etc.
  • the present invention further relates to a method for producing a modified starch comprising the step of extracting the starch from an above-described plant of the invention and/or from starch-storing parts of such a plant.
  • a method for producing a modified starch comprising the step of extracting the starch from an above-described plant of the invention and/or from starch-storing parts of such a plant.
  • such a method also comprises the step of harvesting the cultivated plants and/or starch-storing parts of such plants before extracting the starch.
  • it further comprises the step of cultivating the plants of the invention before harvesting.
  • Methods for the extraction of starch from plants or from starch-storing parts of plants are known to the skilled person. Methods for the extraction of starch from maize seeds have been described e.g. in Eckhoff et al . (Cereal Chem. 73 (1996) 54- 57) .
  • the transgenic plant cells and plants described in the invention synthesize a starch which compared to starch synthesized in wildtype plants is modified for example in its physico-chemical properties, in particular in the amylose/amylopectin ratio, the degree of branching, the average chain-length, the phosphate- content, the pastification behavior, the size and/or the shape of the starch granule.
  • a starch which compared to starch synthesized in wildtype plants is modified for example in its physico-chemical properties, in particular in the amylose/amylopectin ratio, the degree of branching, the average chain-length, the phosphate- content, the pastification behavior, the size and/or the shape of the starch granule.
  • such starch may be modified in particular with respect to its viscosity and/or the gel formation properties of the glues of this starch.
  • starch obtainable from transgenic plant cells, plants as well as from the propagation material according to the invention is the subject-matter of the present invention.
  • nucleic acid molecules of the invention it is furthermore possible to produce maize plant cells and maize plants in which the activity of a protein of the invention is reduced. This also leads to the synthesis of a starch with modified chemical and/or physical properties when compared to the starch from wildtype plant cells.
  • transgenic maize plant cells in which the activity of a protein according to the invention is reduced when compared to non-transformed cells, are a further subject-matter of the invention.
  • the production of maize plant cells with a reduced activity of a protein of the invention may for example be achieved by the expression of a corresponding antisense-RNA, of a sense-RNA for achieving a cosupression effect or the expression of a correspondingly constructed ribozyme, which specifically cleaves transcripts encoding one of the proteins of the invention, using the nucleic acid molecules of the invention.
  • antisense-RNA is expressed in plant cells.
  • DNA molecules can be used which comprise the complete sequence encoding a protein of the invention, including possibly existing flanking sequences as well as DNA molecules, which only comprise parts of the coding sequence whereby these parts have to be long enough in order to prompt an antisense-effect within the cells.
  • sequences with a minimum length of 15 bp, preferably with a length of 100-500 bp, and for an efficient antisense-inhibition, in particular sequences with a length of more than 500 bp may be used.
  • DNA-molecules are used which are shorter than 5000 bp, preferably sequences with a length of less than 2500 bp .
  • Use may also be made of DNA sequences which are highly homologous, but not completely identical to the sequences of the DNA molecules of the invention.
  • the minimal homology should be more than about 65%.
  • use should be made of sequences with homologies between 95 and 100%.
  • the reduction of the enzyme activity of the starch phosphorylase in plant cells may also be achieved by means of a cosuppression effect, as indicated above.
  • the method is known to the skilled person and has been described, for example, in Jorgensen (Trends Biotechnol . 8 (1990), 340-344), Niebel et al. (Curr. Top. Microbiol. Immunol. 197 (1995), 91- 103), Flavell et al . (Curr. Top. Microbiol. Immunol. 197 (1995), 43-46), Palaqui and Vaucheret (Plant. Mol. Biol. 29 (1995), 149-159), Vaucheret et al . (Mol. Gen. Genet. 248
  • transgenic maize plant cells are in particular transgenic maize plant cells
  • (c) comprising a DNA molecule which may lead to the synthesis of a ribozyme which specifically cleaves transcripts of nucleic acid molecules of the invention.
  • the cells of the invention preferably show a reduction in the amount of transcripts encoding a protein of the invention when compared to corresponding non-transformed cells, whereby the reduction is preferably at least 30%, more preferably at least 50%, even more preferably at least 70% and most preferably at least 90%.
  • the amount of transcripts in the cells may, for example, be determined by means of a Northern Blot analysis.
  • the cells preferably show a corresponding, i.e. at least 30%, 50%, 70% or 90% reduction in the amount of the protein of the invention when compared to non-transformed cells.
  • the amount of proteins may be determined, for example, by means of immunological methods, such as Western Blot analysis.
  • Maize plants containing the transgenic maize plant cells of the invention are also the subject matter of the invention.
  • the invention also relates to the propagation material of the plants of the invention, in particular to seeds, calli, protoplasts, cell cultures etc.
  • the present invention further relates to a method for producing a modified starch comprising the step of extracting the starch from an above-described plant of the invention and/or from starch-storing parts of such a plant.
  • a method also comprises the step of harvesting the cultivated plants and/or starch-storing parts of such plants before extracting the starch.
  • it further comprises the step of cultivating the plants of the invention before harvesting.
  • Starch obtainable from the aforementioned transgenic maize plant cells, maize plants as well as propagation material is a further subject matter of the invention as well as starch obtainable from the above-described method of the invention. Due to the reduction of the activity of a protein of the invention, the transgenic maize plant cells and maize plants synthesize a starch which compared to starch synthesized in wildtype plants is modified, for example, in its physico- chemical properties, in particular in the amylose/amylopectin ratio, the degree of branching, the average chain-length, the phosphate-content, the pastification behavior, the side-chain distribution, the size and/or the shape of the starch granule. Compared with wildtype-starch, such starch may be modified in particular with respect to its viscosity and/or the gel formation properties of the glues of this starch.
  • starches of the invention may be modified according to techniques known to the skilled person; in unmodified as well as in modified form they are suitable for the use in foodstuffs and for the use in non-foodstuffs.
  • the possibilities of uses of the starch can be subdivided into two major fields.
  • One field comprises the hydrolysis products of starch, essentially glucose and glucans components obtained by enzymatic or chemical processes. They can be used as starting material for further chemical modifications and processes, such as fermentation. In this context, it might be of importance that the hydrolysis process can be carried out simply and inexpensively. Currently, it is carried out substantially enzymatically using amyloglucosidase . It is thinkable that costs might be reduced by using lower amounts of enzymes for hydrolysis due to changes in the starch structure, e.g. increasing the surface of the grain, improved digestibility due to less branching or a steric structure, which limits the accessibility for the used enzymes.
  • the other field in which the starch is used because of its polymer structure as so-called native starch can be subdivided into two further areas:
  • Starch is a classic additive for various foodstuffs, in which it essentially serves the purpose of binding aqueous additives and/or causes an increased viscosity or an increased gel formation.
  • Important characteristic properties are flowing and sorption behavior, swelling and pastification temperature, viscosity and thickening performance, solubility of the starch, transparency and paste structure, heat, shear and acid resistance, tendency to retrogradation, capability of film formation, resistance to freezing/thawing, digestibility as well as the capability of complex formation with e.g. inorganic or organic ions .
  • a preferred area of application of native starch is the field of bakery-goods and pasta.
  • starch as an adjuvant in various production processes or as an additive in technical products.
  • the major fields of application for the use of starch as an adjuvant are, first of all, the paper and cardboard industry.
  • the starch is mainly used for retention (holding back solids) , for sizing filler and fine particles, as solidifying substance and for dehydration.
  • the advantageous properties of starch with regard to stiffness, hardness, sound, grip, gloss, smoothness, tear strength as well as the surfaces are utilized.
  • the requirements on starch with regard to surface treatment are essentially a high degree of brightness, corresponding viscosity, high viscosity stability, good film formation as well as low formation of dust.
  • a corresponding viscosity, a high capability to bind as well as a high pigment affinity play an important role.
  • As an additive to the mass rapid, uniform, loss-free dispersion, high mechanical stability and complete retention in the paper pulp are of importance.
  • corresponding content of solids, high viscosity as well as high capability to bind are also significant.
  • a major field of application is, for instance, in the adhesive industry, where the fields of application are subdivided into four areas: the use as pure starch glue, the use in starch glues prepared with special chemicals, the use of starch as an additive to synthetic resins and polymer dispersions as well as the use of starches as extenders for synthetic adhesives.
  • 90% of all starch-based adhesives are used in the production of corrugated board, paper sacks and bags, composite materials for paper and aluminum, boxes and wetting glue for envelopes, stamps, etc.
  • starch as a sizing agent, i.e. as an adjuvant for smoothing and strengthening the burring behavior for the protection against tensile forces active in weaving as well as for the increase of wear resistance during weaving, as an agent for textile improvement mainly after quality-deteriorating pretreatments, such as bleaching, dying, etc., as thickener in the production of dye pastes for the prevention of dye diffusion and as an additive for warping agents for sewing yarns.
  • the fourth area of application of starch is its use as an additive in building materials.
  • One example is the production of gypsum plaster boards, in which the starch mixed in the thin plaster pastifies with the water, diffuses * at the surface of the gypsum board and thus binds the cardboard to the board.
  • Other fields of application are admixing it to plaster and mineral fibers.
  • starch may be used for the deceleration of the sizing process.
  • starch is advantageous for the production of means for ground stabilization used for the temporary protection of ground particles against water in artificial earth shifting.
  • combination products consisting of starch and polymer emulsions can be considered to have the same erosion- and incrustation-reducing effect as the products used so far; however, they are considerably less expensive.
  • starch is used for improving the wetting of plant protectives and fertilizers, for the dosed release of the active ingredients, for the conversion of liquid, volatile and/or odorous active ingredients into microcristalline, stable, deformable substances, for mixing incompatible compositions and for the prolongation of the duration of the effect due to a reduced disintegration.
  • Starch may also be used in the fields of drugs, medicine and in the cosmetics industry.
  • the starch may be used as a binder for tablets or for the dilution of the binder in capsules.
  • starch is suitable as disintegrant for tablets since, upon swallowing, it absorbs fluid and after a short time it swells so much that the active ingredient is released.
  • medicinal flowance and dusting powders are further fields of application.
  • the starch may for example be used as a carrier of powder additives, such as scents and salicylic acid.
  • a relatively extensive field of application for the starch is toothpaste.
  • starch as an additive in coal and briquettes is also thinkable. By adding starch, coal can be quantitatively agglomerated and/or briquetted in high quality, thus preventing premature disintegration ' of the briquettes.
  • Barbecue coal contains between 4 and 6% added starch, calorated coal between 0.1 and 0.5%. Furthermore, the starch is suitable as a binding agent since adding it to coal and briquette can considerably reduce the emission of toxic substances.
  • starch may be used as a flocculant in the processing of ore and coal slurry. 2.10 Starch as an additive in casting
  • Another field of application is the use as an additive to process materials in casting.
  • cores produced from sands mixed with binding agents are needed.
  • binding agent is bentonite mixed with modified starches, mostly swelling starches.
  • starch The purpose of adding starch is increased flow resistance as well as improved binding strength. Moreover, swelling starches may fulfill more prerequisites for the production process, such as dispersability in cold water, rehydratisability, good mixability in sand and high capability of binding water.
  • starch may be used for improving the technical and optical quality. Reasons for this are improved surface gloss, grip and appearance.
  • the starch is dispersed on the sticky rubberized surfaces of rubber substances before the cold vulcanization. It may also be used for improving the printability of rubber.
  • Another field of application for the modified starch is the production of leather substitutes.
  • starch In the plastics market the following fields of application are emerging: the integration of products derived from starch into the processing process (starch is only a filler, there is no direct bond between synthetic polymer and starch) or, alternatively, the integration of products derived from starch into the production of polymers (starch and polymer form a stable bond) .
  • the use of the starch as a pure filler cannot compete with other substances such as talcum. This situation is different when the specific starch properties become effective and the property profile of the end products is thus clearly changed.
  • thermoplastic materials such as polyethylene.
  • starch and the synthetic polymer are combined in a ratio of 1 : 1 by means of coexpression to form a 'master batch', from which various products are produced by means of common techniques using granulated polyethylene.
  • the integration of starch in polyethylene films may cause an increased substance permeability in hollow bodies, improved water vapor permeability, improved antistatic behavior, improved anti-block behavior as well as improved printability with aqueous dyes.
  • Another possibility is the use of the starch in polyurethane foams. Due to the adaptation of starch derivatives as well as due to the optimization of processing techniques, it is possible to specifically control the reaction between synthetic polymers and the starch's hydroxy groups.
  • polyurethane films having the following property profiles due to the use of starch: a reduced coefficient of thermal expansion, decreased shrinking behavior, improved pressure/tension behavior, increased water vapor permeability without a change in water acceptance, reduced flammability and cracking density, no drop off of combustible parts, no halides and reduced aging. Disadvantages that presently still exist are reduced pressure and impact strength.
  • starch graft polymers have gained utmost importance. These are products having a backbone of starch and a side lattice of a synthetic monomer grafted on according to the principle of radical chain mechanism.
  • the starch graft polymers available nowadays are characterized by an improved binding and retaining capability of up to 1000 g water per g starch at a high viscosity.
  • These super absorbers are used mainly in the hygiene field, e.g. in products such as diapers and sheets, as well as in the agricultural sector, e.g. in seed pellets.
  • modified starch by genetically operating with a transgenic plant may modify the properties of the starch obtained from the plant in such a way as to render further modifications by means of chemical or physical methods superfluous.
  • starches modified by means of recombinant DNA techniques might be subjected to further chemical modification, which will result in further improvement of the quality for certain of the above-described fields of application.
  • starch ethers starch alkyl ether, O-allyl ether, hydroxylalkyl ether, 0- carboxylmethyl ether, N-containing starch ethers, P- containing starch ethers and S-containing starch ethers.
  • nucleic acid molecules of the invention in sense- or antisense-orientation in plant cells, these are normally linked to regulatory DNA elements which ensure the transcription in plant cells.
  • regulatory DNA elements are particularly promoters. Basically any promoter which is active in plant cells may be used for the expression.
  • the promoter may be selected in such a way that the expression takes place constitutively or in a certain tissue, at a certain point of time of the plant development or at a point of time determined by external circumstances. With respect to the plant the promoter may be homologous or heterologous .
  • Suitable promoters for a constitutive expression are, e.g. the 35S RNA promoter of the Cauliflower Mosaic Virus and the ubiquitin promoter from maize.
  • the patatin gene promoter B33 (Rocha-Sosa et al., EMBO J. 8 (1989), 23-29) can be used.
  • a promoter which ensures expression only in photosynthetically active tissues is, e.g.
  • the ST-LS1 promoter (Stockhaus et al . , Proc. Natl. Acad. Sci. USA 84 (1987), 7943-7947; Stockhaus et al . , EMBO J. 8 (1989), 2445-2451) .
  • the HMG promoter from wheat the USP promoter
  • the phaseolin promoter or promoters from zein genes from maize are suitable.
  • a termination sequence may exist which serves to correctly end the transcription and to add a poly-A-tail to the transcript which is believed to stabilize the transcripts. Such elements are described in the literature (cf. Gielen et al . , EMBO J.
  • the present invention provides nucleic acid molecules encoding a new type of starch phosphorylase identified in maize. This allows for the identification of the function of this starch phosphorylase in the starch biosynthesis as well as for the production of genetically modified plants in which the activity of this enzyme is modified. This enables the synthesis of starch with a modified structure and therefore with modified physico-chemical properties in the plants manipulated in such a way.
  • the nucleic acid molecules of the invention may also be used in order to produce plants in which the activity of the starch phosphorylase of the invention is elevated or reduced and in which at the same time the activities of other enzymes involved in the starch biosynthesis are modified. Thereby, all kinds of combinations and permutations are thinkable.
  • a synthesis of a starch modified in its structure is brought about.
  • nucleic acid molecules encoding a protein of the invention, or corresponding antisense-constructs may be introduced into the plant cells, in which the synthesis of endogenous GBSS I-, SSS- or GBSS II- proteins is already inhibited due to an antisense-effeet or a mutation, or in which the synthesis of the branching enzyme is inhibited (as described e.g. in W092/14827 or in the ae-mutant (Shannon and Garwood, 1984, in Whistler, BeMiller and Paschall, Starch: Chemistry and Technology, Academic Press, London, 2 nd Edition: 25-86) ) .
  • DNA molecules can be used for transformation, which at the same time contain several regions in antisense- orientation controlled by a suitable promoter and encoding the corresponding enzymes.
  • each sequence may be controlled by its own promoter or else the sequences may be transcribed as a fusion from a common promoter.
  • the last alternative will generally be preferred as in this case the synthesis of the respective proteins should be inhibited to approximately the same extent.
  • the amount of the antisense fragments transcribed by a promoter in such a DNA molecule There is no upper limit for the amount of the antisense fragments transcribed by a promoter in such a DNA molecule.
  • the produced transcript should usually not be longer than 10 kb or, preferably, 5 kb.
  • Coding regions which are localized in such DNA molecules in combination with other coding regions in antisense orientation behind a suitable promoter may be derived from DNA sequences coding for the following proteins: starch granule-bound (GBSS I and II) and soluble starch synthases (SSS I and II), branching enzymes, debranching enzymes and disproportioning enzymes. This enumeration only serves as an example. The use of other DNA sequences is also thinkable within the framework of such a combination.
  • the constructs may be inserted into classical mutants which are deficient for at least one gene of the starch biosynthesis (Shannon and Garwood, 1984, in Whistler, BeMiller and Paschall, Starch: Chemistry and Technology, Academic Press, London, 2 nd edition: 25-86) .
  • These deficiencies may relate to the following proteins: starch granule-bound (GBSS I and II) and soluble starch synthases (SSS I and II), branching enzymes (BE I and II), debranching enzymes (R enzymes), disproportioning enzymes and starch phosphorylases. This enumeration only serves as an example.
  • plasmid is preferably used for the transformation of E.coli cells.
  • Transformed E.coli cells are cultivated in a suitable medium and subsequently harvested and lysed.
  • the plasmid is recovered.
  • As an analyzing method for the characterization of the obtained plasmid DNA use is generally made of restriction analyses, gel electrophoreses and other biochemico-molecularbiological methods. After each manipulation the plasmid DNA may be cleaved and the obtained DNA fragments may be linked to other DNA sequences. Each plasmid DNA sequence may be cloned into the same or in other plasmids .
  • Ti- or Ri-plasmid is used e.g. for the transformation of the plant cell, in general at least the right border, more frequently, however, the right and left border of the Ti- and Ri-plasmid T- DNA should be connected to the foreign gene to be introduced as a flanking region.
  • the DNA which is to be introduced should advantageously be cloned into special plasmids, namely either into an intermediate vector or into a binary vector. Due to sequences homologous to the sequences within the T-DNA, the intermediate vectors may be integrated into the Ti- or Ri-plasmid of the Agrobacterium due to homologous recombination. This also contains the vir-region necessary for the transfer of the T-DNA. Intermediate ⁇ vectors cannot replicate in Agrobacteria. By means of a helper plasmid the intermediate vector may be transferred to Agrobacterium tumefaciens (conjugation) . Binary vectors may replicate in E.coli as well as in Agrobacteria.
  • the Agrobacterium acting as host cell should contain a plasmid carrying a vir-region. The vir-region is necessary for the transfer of the T-DNA into the plant cell. Additional T-DNA may be present.
  • the Agrobacterium transformed in such a way is used for the transformation of plant cells.
  • T-DNA for the transformation of plant cells was investigated intensely and described sufficiently in EP 120 516; Hoek ⁇ ma, In: The Binary Plant Vector System Offsetdrukkerij Kanters B.V., Alblasserdam (1985), Chapter V; Fraley et al . , Crit. Rev. Plant. Sci., 4, 1-46 and An et al . EMBO J. 4 (1985), 277-287.
  • plant explants may suitably be co-cultivated with Agrobacterium tumefaciens or Agrobacterium rhizogenes.
  • Agrobacterium tumefaciens or Agrobacterium rhizogenes From the infected plant material (e.g. pieces of leaves, stem segments, roots, but also protoplasts or suspension-cultivated plant cells) whole plants may then be regenerated in a suitable medium which may contain antibiotics or biozides for the selection of transformed cells.
  • the plants obtained in such a way may then be examined as to whether the integrated DNA is present or not.
  • Other possibilities in order to integrate foreign DNA by using the biolistic method or by transforming protoplasts are known to the skilled person (cf. e.g. Willmitzer, L., 1993 Transgenic plants.
  • Prioli and S ⁇ ndahl have described how to regenerate and to obtain fertile plants from maize protoplasts of the Cateto maize inbreed Cat 100-1.
  • the authors assume that the regeneration of protoplast to fertile plants depends on a number of various factors such as the genotype, the physiological state of the donor-cell and the cultivation conditions.
  • Once the introduced DNA has been integrated in the genome of the plant cell, it usually continues to be stable there and also remains within the descendants of the originally transformed cell. It usually contains a selectable marker which confers resistance against biozides or against an antibiotic such as kanamycin, G 418, bleomycin, hygromycin or phosphinotricine etc. to the transformed plant cells.
  • the individually selected marker should therefore allow for a selection of transformed cells against cells lacking the introduced DNA.
  • the transformed cells grow in the usual way within the plant (see also McCormick et al., Plant Cell Reports 5 (1986), 81- 84) .
  • the resulting plants can be cultivated in the usual way and cross-bred with plants having the same transformed genetic heritage or another genetic heritage.
  • the resulting hybrid individuals have the corresponding phenotypic properties. Two or more generations should be grown in order to ensure whether the phenotypic feature is kept stably and whether it is transferred. Furthermore, seeds should be harvested in order to ensure that the corresponding phenotype or other properties will remain.
  • the figure shows:
  • Figure 1 shows a construct for antisense inhibition of a plastidic isoform of starch phosphorylase in maize.
  • Protoplast washing solution 1 like protoplast isolating solution, but without cellulase, pectolyase and BSA
  • PEG 6000 is added to the buffer described m b) immediately prior to the use of the solution (40 % w/v PEG) .
  • the solution is filtered with a 0.45 ⁇ m sterile filter. W5 solution
  • Protoplast culture medium (indicated in mg/1)
  • the suspension is sifted through a stainless steel or nylon sieve with a mesh size of 200 or 45 ⁇ m.
  • the combination of a 100 ⁇ m and a 60 ⁇ m sieve allows for separating the cell aggregates just as well.
  • the protoplast-containing filtrate is examined microscopically. It usually contains 98 - 99% protoplasts. The rest are undigested single cells. Protoplast preparations with such a degree of purity are used for transformation experiments without additional gradient centrifugation.
  • the protoplasts are sedimented by means of centrifugation (100 UpM in the swing-out rotor (100 x g, 3 minutes)).
  • the supernatant is abandoned and the protoplasts are resuspended in washing solution 1.
  • the centrifugation is repeated and the protoplasts are subsequently resuspended in the transformation buffer.
  • the protoplasts resuspended in the transformation buffer are filled in 10 ml portions into 50 ml polyallomer tubes at a titer of 0.5 - 1 x 10 s protoplasts/ml.
  • the DNA used for transformation is dissolved in Tris-EDTA (TE) buffer solution. 20 ⁇ g plasmid DNA is added to each ml protoplast suspension. A plasmid which provides for resistance to phosphinotricine is used as vector (cf. e.g. EP 0 513 849) . After the addition of DNA the protoplast suspension is carefully shaken in order to homogenously distribute the DNA in the solution. Immediately afterwards 5 ml PEG solution is added in drops .
  • the titer is adjusted to 6 - 8 x 10 5 protoplasts and the protoplasts are cultivated in 3 ml portions in Petri dishes (0 60 mm, height 15 mm) .
  • the Petri dishes are sealed with parafilm and stored in darkness at 25 ⁇ 2° C.
  • the protoplasts are cultivated without adding fresh medium. As soon as the cells regenerated from the protoplasts have developed into cell aggregates with more than 20 to 50 cells, 1 ml of fresh protoplast culture medium, containing sucrose as an osmotic (90 g/1) , is added.
  • the cell aggregates developed from the protoplasts may be plated on Agar media with 100 mg/1 L- phosphinothricine .
  • N6-medium with the vitamins _ of the protoplast culture medium, 90 g/1 sucrose and 1.0 mg/1 2,4D is as suitable as an analogous medium such as a medium with the macro- and micro-nutritive salts of the MS medium (Murashige and Skoog (1962), see above) .
  • the calli developed from stably transformed protoplasts may grow further on the selective medium. After 3 to 5 weeks, preferably 4 weeks the transgenic calli may be transferred to fresh selection medium which also contains 100 mg/1 L-phosphinothricine which, however, does no longer contain auxine. Within 3 to 5 weeks approximately 50% of the transgenic maize calli which had integrated the L- phosphinothricine-acetyl-transferase gene into their genome, start to differentiate into plants on this medium in the presence of L-phosphinothricine .
  • the embryogenical transformed maize tissue is cultivated on hormone-free N6-medium (Chu C.C. et al., Sci. Sin. 16 (1975), 659) in the presence of 5xl0 ⁇ 4 M L-phosphinothricine.
  • On this medium maize embryos, which express the phosphinothricine-acetyl- transferase gene (PAT gene) in a sufficiently strong manner, develop into plants.
  • PAT gene phosphinothricine-acetyl- transferase gene
  • Non-transformed embryos or such with only a very weak PAT activity die down. As soon as the leaves of the in-vitro plants have reached a length of 4 to 6 mm, they may be transferred into soil.
  • the plants After washing off the Agar residues at the roots the plants are planted into a mixture of clay, sand, vermiculite and potting soil with the ratio 3:1:1:1 and adapted to the soil culture at 90 - 100% of relative atmospheric humidity during the first 3 days after planting.
  • the growing is carried out in a climate chamber with a 14 hour light period of approximately 25000 lux at the height of the plant at a day/night temperature of 23 ⁇ 1/17
  • the adapted plants are cultivated at an 65 ⁇ 5% atmospheric humidity.
  • a cDNA library was constructed within the vector Lambda ZAPII (Stratagene) starting from polyA 1" RNA from endosperm and packed into phage heads. E.coli cells of the XL1 Blue strain were subsequently infected with the phages containing the cDNA fragments (1 x 10 6 pfu) and plated on a medium in Petri dishes with a densitiy of approximately 30,000 per 75 cm 2 . After an 8-hour incubation, nitro cellulose membranes were put on the lysated bacterial culture and removed after one minute.
  • Lambda ZAPII Stratagene
  • the filters were first incubated in 0.2 M NaOH; 1.5 M NaCl for 2 minutes and then in 0.4 M Tris/HCl pH 7.5 for 2 minutes and finally in 2 x SSC for 2 minutes. After drying and fixing the DNA by means of UV crosslinking, the filters were incubated in hybridization buffer for 3 hours at 42°C before a radioactively marked probe was added.
  • a probe use was made of a cDNA from rice encoding a starch phosphorylase from rice (DDBJ accession no. D23280) .
  • the hybridization was carried out in 2 x SSC, 10 x Dehnhardt ' s solution; 50 mM Na 2 HP0 4 , pH 7.2; 0.2 % SDS; 5 mM EDTA and 250 ⁇ g/ml denaturated herring sperm DNA at 48°C.
  • Hybridizing phage clones were singled out and further purified by means of standard methods.
  • E.coli clones were derived from positive phage clones.
  • the E.coli clones contained a double-stranded pBluescript plasmid with the respective cDNA insertions. After examining the size and the restriction pattern of the insertion, plasmid DNA was isolated from suitable clones and subsequently sequenced, as described in Example 2.
  • the plasmid pSTP55 was isolated from the E.coli clone which was obtained as described in Example 1, and the sequence of the cDNA insert was determined in a standard routine by means of the didesoxynucleotide-method (Sanger et al . , Proc. Natl. Acad. Sci. USA 74 (1977), 5463-5467).
  • the insert has a length of 3320 bp and constitutes a partial cDNA.
  • the nucleotide sequence is indicated under Seq ID No. 1.
  • the corresponding amino acid sequence is indicated under Seq ID No. 2.
  • a leaf-specific cDNA expression library from Zea mays, line B73 (Stratagene GmbH, Heidelberg) is screened for full-length clones according to standard methods by means of hybridization with a 5 '-fragment of the cDNA insert of the pSTP55 plasmid (200 bp) .
  • the clones obtained in such are way are subsequently sequenced.
  • the missing terminal 5 '-sequences may be obtained by using a 5 ' -Race-method (e.g. of Stratagene or other manufacturers) .
  • the vector pUBIbar (see PCT patent application W097/44472) was linearized with the restriction enzyme Hpal and dephosphorylated. The linearized vector was then ligated with a blunted 1.7 kb EcoRI/XhoI fragment coding for the starch phosphorylase from maize, obtained from the pBluescript plasmid in Example 1. In order to check the antisense orientation of the ligated cDNA, a restriction analysis was performed which results in the expected 600 bp BamHI fragment.
  • the plant transformation vector (pUBIbar- ⁇ pSTP) is shown in Figure 1.
  • the vector was then introduced into maize protoplasts by the above-described method. (100 ⁇ g plasmid DNA per 5 x 10 7 protoplasts) . 350 phosphinotricin-resistant clones were obtained. 70 of these were analyzed. It was found that 20 separate clones contained the DNA encoding the starch phosphorylase in antisense orientation. All of these clones were regenerated to transgenic maize plants.
  • MOLECULE TYPE cDNA to mRNA
  • HYPOTHETICAL NO
  • ANTI-SENSE NO
  • ATC AGC CCT GCC ATC CTT CCC TAGACCAGGT GGATATCAGG TTCTTTCGCC 2979

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

L'invention concerne des molécules d'acide nucléique codant des enzymes impliquées dans la synthèse d'amidon chez les plantes. Ces enzymes sont des phosphorylases d'amidon provenant du maïs. L'invention porte aussi sur des vecteurs contenant de telles molécules d'acide nucléique et sur des cellules hôtes transformées avec les molécules d'acide nucléique décrites, en particulier sur des cellules végétales transformées et sur des plantes susceptibles d'être régénérées à partir de celles-ci et dans lesquelles les protéines décrites font preuve d'une activité accrue ou réduite.
EP98912432A 1997-03-10 1998-03-03 Molecules d'acide nucleique codant la phosphorylase d'amidon provenant du ma s Withdrawn EP0972059A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19709775 1997-03-10
DE19709775A DE19709775A1 (de) 1997-03-10 1997-03-10 Nucleinsäuremoleküle codierend Stärkephosphorylase aus Mais
PCT/EP1998/001183 WO1998040503A1 (fr) 1997-03-10 1998-03-03 Molecules d'acide nucleique codant la phosphorylase d'amidon provenant du maïs

Publications (1)

Publication Number Publication Date
EP0972059A1 true EP0972059A1 (fr) 2000-01-19

Family

ID=7822828

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98912432A Withdrawn EP0972059A1 (fr) 1997-03-10 1998-03-03 Molecules d'acide nucleique codant la phosphorylase d'amidon provenant du ma s

Country Status (7)

Country Link
US (2) US6353154B1 (fr)
EP (1) EP0972059A1 (fr)
JP (1) JP2001514514A (fr)
AU (1) AU730569B2 (fr)
CA (1) CA2283632A1 (fr)
DE (1) DE19709775A1 (fr)
WO (1) WO1998040503A1 (fr)

Families Citing this family (186)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7279616B2 (en) * 2002-09-05 2007-10-09 Biogemma Method for improving corn starch extractability
ATE427358T1 (de) * 2002-09-10 2009-04-15 Sungene Gmbh & Co Kgaa Expressionskassetten zur expression von nukleinsauren in kohlenhydrat-speichernden sink- geweben von pflanzen
FR2868080B1 (fr) * 2004-03-29 2007-11-16 Genoplante Valor Soc Par Actio Procede d'amelioration des plantes
CL2007003744A1 (es) 2006-12-22 2008-07-11 Bayer Cropscience Ag Composicion que comprende un derivado 2-piridilmetilbenzamida y un compuesto insecticida; y metodo para controlar de forma curativa o preventiva hongos fitopatogenos de cultivos e insectos.
CL2007003743A1 (es) 2006-12-22 2008-07-11 Bayer Cropscience Ag Composicion que comprende fenamidona y un compuesto insecticida; y metodo para controlar de forma curativa o preventiva hongos fitopatogenos de cultivos e insectos.
EP1969934A1 (fr) 2007-03-12 2008-09-17 Bayer CropScience AG Phénoxyphénylamidine substituée par 4 cycloalkyl ou 4 aryl et son utilisation en tant que fongicide
EP1969929A1 (fr) 2007-03-12 2008-09-17 Bayer CropScience AG Phénylamidine substituée et son utilisation en tant que fongicide
EP1969931A1 (fr) * 2007-03-12 2008-09-17 Bayer CropScience Aktiengesellschaft Fluoalkylphénylamidine et son utilisation en tant que fongicide
WO2008110281A2 (fr) 2007-03-12 2008-09-18 Bayer Cropscience Ag Phénoxyphénylamidines 3,4-disubstituées et leur utilisation comme fongicides
BRPI0808846A2 (pt) 2007-03-12 2019-09-24 Bayer Cropscience Ag fenoxifenilamidinas 3-substituídas e seu uso como fungicidas
JP2010520899A (ja) 2007-03-12 2010-06-17 バイエル・クロツプサイエンス・アクチエンゲゼルシヤフト ジハロフェノキシフェニルアミジン及び殺真菌剤としてのその使用
CA2684340A1 (fr) * 2007-04-19 2008-10-30 Bayer Cropscience Ag Thiadiazolyloxyphenylamidines et leur utilisation comme fongicides
DE102007045953B4 (de) 2007-09-26 2018-07-05 Bayer Intellectual Property Gmbh Wirkstoffkombinationen mit insektiziden und akariziden Eigenschaften
DE102007045919B4 (de) 2007-09-26 2018-07-05 Bayer Intellectual Property Gmbh Wirkstoffkombinationen mit insektiziden und akariziden Eigenschaften
DE102007045922A1 (de) 2007-09-26 2009-04-02 Bayer Cropscience Ag Wirkstoffkombinationen mit insektiziden und akariziden Eigenschaften
DE102007045920B4 (de) 2007-09-26 2018-07-05 Bayer Intellectual Property Gmbh Synergistische Wirkstoffkombinationen
DE102007045956A1 (de) 2007-09-26 2009-04-09 Bayer Cropscience Ag Wirkstoffkombination mit insektiziden und akariziden Eigenschaften
EP2090168A1 (fr) 2008-02-12 2009-08-19 Bayer CropScience AG Méthode destinée à l'amélioration de la croissance des plantes
CA2706805A1 (fr) * 2007-11-27 2009-06-04 Commonwealth Scientific And Industrial Research Organisation Plantes ayant un metabolisme de l'amidon modifie
EP2072506A1 (fr) 2007-12-21 2009-06-24 Bayer CropScience AG Thiazolyloxyphenylamidine ou thiadiazolyloxyphenylamidine et son utilisation en tant que fongicide
EP2168434A1 (fr) 2008-08-02 2010-03-31 Bayer CropScience AG Utilisation d'azoles destinés à l'augmentation de la résistance de plantes ou de parties de plantes contre le stress abiotique
WO2010017902A1 (fr) 2008-08-14 2010-02-18 Bayer Cropscience Aktiengesellschaft Insecticides 4-phényl-1h-pyrazoles
DE102008041695A1 (de) 2008-08-29 2010-03-04 Bayer Cropscience Ag Methoden zur Verbesserung des Pflanzenwachstums
EP2201838A1 (fr) 2008-12-05 2010-06-30 Bayer CropScience AG Combinaisons utiles de matière active ayant des propriétés insecticides et acaricides
EP2198709A1 (fr) 2008-12-19 2010-06-23 Bayer CropScience AG Procédé destiné à lutter contre des parasites animaux résistants
EP2204094A1 (fr) 2008-12-29 2010-07-07 Bayer CropScience AG Procédé pour l'utilisation améliorée d'un potentiel de production d'introduction de plantes transgéniques
EP2223602A1 (fr) 2009-02-23 2010-09-01 Bayer CropScience AG Procédé destiné à l'utilisation améliorée du potentiel de production de plantes génétiquement modifiées
EP2381781B1 (fr) 2008-12-29 2016-06-08 Bayer Intellectual Property GmbH Procédé pour l'utilisation améliorée d'un potentiel de production d'introduction de plantes transgéniques
EP2039770A2 (fr) 2009-01-06 2009-03-25 Bayer CropScience AG Procédé pour améliorer l'utilisation du potentiel de production de plantes transgéniques
EP2039772A2 (fr) 2009-01-06 2009-03-25 Bayer CropScience AG Procédé pour améliorer l'utilisation du potentiel de production de plantes transgéniques
EP2039771A2 (fr) 2009-01-06 2009-03-25 Bayer CropScience AG Procédé pour améliorer l'utilisation du potentiel de production de plantes transgéniques
US8487118B2 (en) 2009-01-19 2013-07-16 Bayer Cropscience Ag Cyclic diones and their use as insecticides, acaricides and/or fungicides
EP2227951A1 (fr) 2009-01-23 2010-09-15 Bayer CropScience AG Utilisation des composés d'énaminocarbonyle de combattre des virus transmis par les insectes
ES2406131T3 (es) 2009-01-28 2013-06-05 Bayer Intellectual Property Gmbh Derivados fungicidas de N-cicloalquil-N-biciclometileno-carboxamina
AR075126A1 (es) 2009-01-29 2011-03-09 Bayer Cropscience Ag Metodo para el mejor uso del potencial de produccion de plantas transgenicas
BRPI1006006B1 (pt) 2009-02-17 2018-05-22 Bayer Intellectual Property Gmbh Compostos, composição fungicida e método para o controle de fungos fitopatogênicos de culturas
EP2218717A1 (fr) 2009-02-17 2010-08-18 Bayer CropScience AG Dérivés de N-((HET)aryléthyl)thiocarboxamide fongicides
TW201031331A (en) 2009-02-19 2010-09-01 Bayer Cropscience Ag Pesticide composition comprising a tetrazolyloxime derivative and a fungicide or an insecticide active substance
DE102009001469A1 (de) 2009-03-11 2009-09-24 Bayer Cropscience Ag Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
DE102009001681A1 (de) 2009-03-20 2010-09-23 Bayer Cropscience Ag Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
DE102009001730A1 (de) 2009-03-23 2010-09-30 Bayer Cropscience Ag Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
DE102009001728A1 (de) 2009-03-23 2010-09-30 Bayer Cropscience Ag Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
DE102009001732A1 (de) 2009-03-23 2010-09-30 Bayer Cropscience Ag Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
CN102361555B (zh) 2009-03-25 2014-05-28 拜尔农作物科学股份公司 具有杀昆虫和杀螨特性的活性化合物结合物
EP2232995A1 (fr) 2009-03-25 2010-09-29 Bayer CropScience AG Procédé destiné à l'utilisation améliorée du potentiel de production de plantes transgéniques
JP2012521371A (ja) 2009-03-25 2012-09-13 バイエル・クロップサイエンス・アーゲー 殺虫特性および殺ダニ特性を有する活性化合物の組合せ
WO2010108504A1 (fr) 2009-03-25 2010-09-30 Bayer Cropscience Ag Combinaisons d'agents actifs ayant des propriétés insecticides et acaricides
MX2011009916A (es) 2009-03-25 2011-10-06 Bayer Cropscience Ag Combinaciones de principios activos con propiedades insecticidas y acaricidas.
UA104887C2 (uk) 2009-03-25 2014-03-25 Баєр Кропсаєнс Аг Синергічні комбінації активних речовин
EP2239331A1 (fr) 2009-04-07 2010-10-13 Bayer CropScience AG Procédé pour améliorer l'utilisation du potentiel de production dans des plantes transgéniques
US8835657B2 (en) 2009-05-06 2014-09-16 Bayer Cropscience Ag Cyclopentanedione compounds and their use as insecticides, acaricides and/or fungicides
EP2251331A1 (fr) 2009-05-15 2010-11-17 Bayer CropScience AG Dérivés de carboxamides de pyrazole fongicides
AR076839A1 (es) 2009-05-15 2011-07-13 Bayer Cropscience Ag Derivados fungicidas de pirazol carboxamidas
EP2255626A1 (fr) 2009-05-27 2010-12-01 Bayer CropScience AG Utilisation d'inhibiteurs de succinate déhydrogénase destinés à l'augmentation de la résistance de plantes ou de parties de plantes contre le stress abiotique
BRPI1011983A2 (pt) 2009-06-02 2015-09-22 Bayer Cropscience Ag utilização de inibidores de succinato desidrogenase para o controle sclerotinia ssp.
CN102510721B (zh) 2009-07-16 2014-11-19 拜尔农作物科学股份公司 含苯基三唑的协同活性物质结合物
WO2011015524A2 (fr) 2009-08-03 2011-02-10 Bayer Cropscience Ag Dérivés d’hétérocycles fongicides
EP2292094A1 (fr) 2009-09-02 2011-03-09 Bayer CropScience AG Combinaisons de composés actifs
EP2343280A1 (fr) 2009-12-10 2011-07-13 Bayer CropScience AG Dérivés de quinoléine fongicides
BR112012012107B1 (pt) 2009-12-28 2019-08-20 Bayer Cropscience Ag Composto, composição fungicida e método para controlar fungos fitopatogênico de culturas
WO2011080254A2 (fr) 2009-12-28 2011-07-07 Bayer Cropscience Ag Dérivés hydroximoyl-hétérocycles fongicides
CN102725282B (zh) 2009-12-28 2015-12-16 拜尔农科股份公司 杀真菌剂肟基-四唑衍生物
MA33933B1 (fr) 2010-01-22 2013-01-02 Bayer Ip Gmbh Combinaisons de principes actifs acaricides et/ou insecticides
ES2523503T3 (es) 2010-03-04 2014-11-26 Bayer Intellectual Property Gmbh 2-Amidobencimidazoles sustituidos con fluoroalquilo y su uso para el aumento de la tolerancia al estrés en plantas
CN102933078A (zh) 2010-04-06 2013-02-13 拜耳知识产权有限责任公司 4-苯基丁酸和/或其盐用于提高植物应激耐受性的用途
CN102933083B (zh) 2010-04-09 2015-08-12 拜耳知识产权有限责任公司 (1-氰基环丙基)苯基次膦酸或其酯的衍生物和/或其盐提高植物对非生物胁迫耐受性的用途
BR112012027558A2 (pt) 2010-04-28 2015-09-15 Bayer Cropscience Ag ''composto da fórmula (i), composição fungicida e método para o controle de fungos fitogênicos de colheitas''
WO2011134911A2 (fr) 2010-04-28 2011-11-03 Bayer Cropscience Ag Dérivés hydroximoyle-tétrazole fongicides
EP2563784A1 (fr) 2010-04-28 2013-03-06 Bayer CropScience AG Dérivés d'hydroximoyl-hétérocycles fongicides
CN102918028B (zh) 2010-06-03 2016-04-27 拜尔农科股份公司 N-[(杂)芳基烷基]吡唑(硫代)羧酰胺及其杂取代的类似物
UA110703C2 (uk) 2010-06-03 2016-02-10 Байєр Кропсайнс Аг Фунгіцидні похідні n-[(тризаміщений силіл)метил]-карбоксаміду
ES2533026T3 (es) 2010-06-03 2015-04-07 Bayer Intellectual Property Gmbh N-[(het)arilalquil)]pirazol (tio)carboxamidas y sus análogos heterosustituidos
CN103119169B (zh) 2010-06-09 2018-11-20 拜尔作物科学公司 植物基因组改造中常用的在核苷酸序列上修饰植物基因组的方法和工具
EP2580336B1 (fr) 2010-06-09 2017-05-10 Bayer CropScience NV Procédés et moyens pour modifier un génome végétal au niveau d'une séquence nucléotidique habituellement utilisée dans l'ingénierie des génomes végétaux
PL2595961T3 (pl) 2010-07-20 2017-10-31 Bayer Ip Gmbh Benzocykloalkeny jako środki przeciwgrzybicze
EP2611300B1 (fr) 2010-09-03 2016-04-06 Bayer Intellectual Property GmbH Dérivés de dihydropyrimdinone annelés et substitués
EP2460406A1 (fr) 2010-12-01 2012-06-06 Bayer CropScience AG Utilisation de fluopyram pour contrôler les nématodes dans les cultures résistant aux nématodes
WO2012038480A2 (fr) 2010-09-22 2012-03-29 Bayer Cropscience Ag Utilisation d'agents de lutte biologique ou chimique pour la lutte contre les insectes et les nématodes dans des cultures résistantes
WO2012045798A1 (fr) 2010-10-07 2012-04-12 Bayer Cropscience Ag Composition fongicide comprenant un dérivé de tétrazolyloxime et un dérivé de thiazolylpipéridine
EP2630125B1 (fr) 2010-10-21 2016-08-24 Bayer Intellectual Property GmbH N-benzylcarboxamides hétérocycliques
AR083501A1 (es) 2010-10-21 2013-02-27 Bayer Cropscience Ag 1-(heterociclo carbonil)piperidinas
UA109460C2 (uk) 2010-11-02 2015-08-25 Байєр Інтелекчуал Проперті Гмбх N-гетарилметилпіразолілкарбоксаміди
JP5860471B2 (ja) 2010-11-15 2016-02-16 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングBayer Intellectual Property GmbH N−アリールピラゾール(チオ)カルボキサミド類
MX2013005410A (es) 2010-11-15 2013-07-03 Bayer Ip Gmbh 5-halopirazol (tio)carboxamidas).
JP5833663B2 (ja) 2010-11-15 2015-12-16 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングBayer Intellectual Property GmbH 5−ハロゲノピラゾールカルボキサミド類
EP2460407A1 (fr) 2010-12-01 2012-06-06 Bayer CropScience AG Combinaisons de substance actives comprenant du pyridyléthylbenzamide et d'autres substances actives
AU2011334989A1 (en) 2010-12-01 2013-06-13 Bayer Intellectual Property Gmbh Use of fluopyram for controlling nematodes in crops and for increasing yield
EP2474542A1 (fr) 2010-12-29 2012-07-11 Bayer CropScience AG Dérivés fongicides d'hydroximoyl-tétrazole
EP2658853A1 (fr) 2010-12-29 2013-11-06 Bayer Intellectual Property GmbH Dérivés d'hydroxymoyl-tétrazole fongicides
EP2471363A1 (fr) 2010-12-30 2012-07-04 Bayer CropScience AG Utilisation d'acides aryl-, hétéroaryl- et benzylsulfonaminés, d'esters d'acide aminé, d'amides d'acide aminé et carbonitrile ou leurs sels pour l'augmentation de la tolérance au stress dans des plantes
EP2494867A1 (fr) 2011-03-01 2012-09-05 Bayer CropScience AG Composés substitués par un halogène en combinaison avec des fongicides
CA2823999C (fr) 2011-03-10 2020-03-24 Bayer Intellectual Property Gmbh Utilisation de composes de lipochito-oligosaccharide pour la protection des graines traitees
CN103502238A (zh) 2011-03-14 2014-01-08 拜耳知识产权有限责任公司 杀真菌剂肟基-四唑衍生物
CN103517900A (zh) 2011-04-08 2014-01-15 拜耳知识产权有限责任公司 杀真菌剂肟基-四唑衍生物
AR090010A1 (es) 2011-04-15 2014-10-15 Bayer Cropscience Ag 5-(ciclohex-2-en-1-il)-penta-2,4-dienos y 5-(ciclohex-2-en-1-il)-pent-2-en-4-inos sustituidos como principios activos contra el estres abiotico de las plantas, usos y metodos de tratamiento
AR085585A1 (es) 2011-04-15 2013-10-09 Bayer Cropscience Ag Vinil- y alquinilciclohexanoles sustituidos como principios activos contra estres abiotico de plantas
EP2511255A1 (fr) 2011-04-15 2012-10-17 Bayer CropScience AG Dérivés de prop-2-yn-1-ol et prop-2-en-1-ol substitués
AR085568A1 (es) 2011-04-15 2013-10-09 Bayer Cropscience Ag 5-(biciclo[4.1.0]hept-3-en-2-il)-penta-2,4-dienos y 5-(biciclo[4.1.0]hept-3-en-2-il)-pent-2-en-4-inos sustituidos como principios activos contra el estres abiotico de las plantas
MX346208B (es) 2011-04-22 2017-03-09 Bayer Ip Gmbh Combinaciones de compuestos activos que comprenden un derivado de (tio)carboxamida y un compuesto fungicida.
MX348785B (es) 2011-06-06 2017-06-28 Bayer Cropscience Nv Metodos y medios para modificar un genoma vegetal en un sitio preseleccionado.
CN103957711A (zh) 2011-07-04 2014-07-30 拜耳知识产权有限责任公司 取代的异喹啉酮、异喹啉二酮、异喹啉三酮和二氢异喹啉酮或其各自的盐作为活性剂对抗植物非生物胁迫的用途
CN103717076B (zh) 2011-08-10 2016-04-13 拜耳知识产权股份有限公司 含有特定特特拉姆酸衍生物的活性化合物组合物
CN103890181A (zh) 2011-08-22 2014-06-25 拜尔作物科学公司 修饰植物基因组的方法和手段
CN103748092A (zh) 2011-08-22 2014-04-23 拜耳知识产权有限责任公司 杀真菌剂肟基-四唑衍生物
EP2561759A1 (fr) 2011-08-26 2013-02-27 Bayer Cropscience AG 2-amidobenzimidazoles fluoroalkyl substitués et leur effet sur la croissance des plantes
CN103781353B (zh) 2011-09-09 2016-10-19 拜耳知识产权有限责任公司 用于改良植物产量的酰基高丝氨酸内酯衍生物
US9090600B2 (en) 2011-09-12 2015-07-28 Bayer Intellectual Property Gmbh Fungicidal 4-substituted-3-{phenyl[(heterocyclylmethoxy)imino]methyl}-1,2,4-oxadizol-5(4H)-one derivatives
JP6138797B2 (ja) 2011-09-16 2017-05-31 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングBayer Intellectual Property GmbH 植物収量を向上させるためのアシルスルホンアミド類の使用
AR087873A1 (es) 2011-09-16 2014-04-23 Bayer Ip Gmbh Uso de fenilpirazolin-3-carboxilatos para mejorar el rendimiento de las plantas
EP2755484A1 (fr) 2011-09-16 2014-07-23 Bayer Intellectual Property GmbH Utilisation de 5-phényl- ou de 5-benzyl-2 isoxazoline-3 carboxylates pour améliorer le rendement de végétaux
CN103929964A (zh) 2011-09-23 2014-07-16 拜耳知识产权有限责任公司 4-取代的1-苯基吡唑-3-甲酸衍生物作为对抗非生物植物胁迫的活性物质的用途
US20150082495A1 (en) 2011-10-04 2015-03-19 Bayer Intellectual Property Gmbh RNAi FOR THE CONTROL OF FUNGI AND OOMYCETES BY INHIBITING SACCHAROPINE DEHYDROGENASE GENE
WO2013050324A1 (fr) 2011-10-06 2013-04-11 Bayer Intellectual Property Gmbh Combinaison, destinée à réduire le stress abiotique de plantes, contenant de l'acide 4-phénylbutyrique (4-pba) ou un de ses sels (composant (a)) et un ou plusieurs autres composés agronomiquement actifs sélectionnés (composant(s) (b)
KR20140102238A (ko) 2011-11-21 2014-08-21 바이엘 인텔렉쳐 프로퍼티 게엠베하 살진균제 n-[(트리치환실릴)메틸]-카르복사미드 유도체
KR20140096391A (ko) 2011-11-30 2014-08-05 바이엘 인텔렉쳐 프로퍼티 게엠베하 살진균성 n-바이시클로알킬 및 n-트리시클로알킬 피라졸-4-(티오)카르복사미드 유도체
WO2013092519A1 (fr) 2011-12-19 2013-06-27 Bayer Cropscience Ag Utilisation de dérivés de diamide d'acide anthranilique pour lutter contre les organismes nuisibles dans des cultures transgéniques
CN104470896B (zh) 2011-12-29 2016-11-09 拜耳知识产权有限责任公司 杀真菌的3-[(吡啶-2-基甲氧基亚氨基)(苯基)甲基]-2-取代的-1,2,4-噁二唑-5(2h)-酮衍生物
JP5976837B2 (ja) 2011-12-29 2016-08-24 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングBayer Intellectual Property GmbH 殺菌性3−[(1,3−チアゾール−4−イルメトキシイミノ)(フェニル)メチル]−2−置換−1,2,4−オキサジアゾール−5(2h)−オン誘導体
NZ722692A (en) 2012-02-22 2018-02-23 Bayer Ip Gmbh Use of succinate dehydrogenase inhibitors (sdhis) for controlling wood diseases in grape
PE20190346A1 (es) 2012-02-27 2019-03-07 Bayer Ip Gmbh Combinaciones de compuestos activos
WO2013139949A1 (fr) 2012-03-23 2013-09-26 Bayer Intellectual Property Gmbh Compositions comprenant un composé de strigolactame pour la croissance et le rendement accrus de plantes
EP2836489B1 (fr) 2012-04-12 2016-06-29 Bayer Cropscience AG N-acyl-2-(cyclo) alkylpyrrolidines et piperidines utilisés comme fongicides
US10125126B2 (en) 2012-04-20 2018-11-13 Bayer Cropscience Ag N-cycloalkyl-N-[(heterocyclylphenyl)methylene]-(thio)carboxamide derivatives
JP2015516396A (ja) 2012-04-20 2015-06-11 バイエル・クロップサイエンス・アーゲーBayer Cropscience Ag N−シクロアルキル−n−[(三置換シリルフェニル)メチレン]−(チオ)カルボキサミド誘導体
BR112014026203A2 (pt) 2012-04-23 2017-07-18 Bayer Cropscience Nv engenharia do genoma direcionado nas plantas
JP6262208B2 (ja) 2012-05-09 2018-01-17 バイエル・クロップサイエンス・アクチェンゲゼルシャフト ピラゾールインダニルカルボキサミド類
EP2662361A1 (fr) 2012-05-09 2013-11-13 Bayer CropScience AG Carboxamides indanyles de pyrazole
EP2662360A1 (fr) 2012-05-09 2013-11-13 Bayer CropScience AG Carboxamides indanyles 5-halogenopyrazoles
BR112014027644A2 (pt) 2012-05-09 2017-06-27 Bayer Cropscience Ag 5-halogenopirazol-indanil-carboxamidas
EP2662370A1 (fr) 2012-05-09 2013-11-13 Bayer CropScience AG Carboxamides de benzofuranyle 5-halogenopyrazole
EP2662362A1 (fr) 2012-05-09 2013-11-13 Bayer CropScience AG Carboxamides indanyles de pyrazole
EP2662364A1 (fr) 2012-05-09 2013-11-13 Bayer CropScience AG Carboxamides tétrahydronaphtyles de pyrazole
EP2662363A1 (fr) 2012-05-09 2013-11-13 Bayer CropScience AG Biphénylcarboxamides 5-halogenopyrazoles
AR091104A1 (es) 2012-05-22 2015-01-14 Bayer Cropscience Ag Combinaciones de compuestos activos que comprenden un derivado lipo-quitooligosacarido y un compuesto nematicida, insecticida o fungicida
AU2013289301A1 (en) 2012-07-11 2015-01-22 Bayer Cropscience Ag Use of fungicidal combinations for increasing the tolerance of a plant towards abiotic stress
WO2014037340A1 (fr) 2012-09-05 2014-03-13 Bayer Cropscience Ag Utilisation de 2-amidobenzimidazoles, de 2-amidobenzoxazoles et de 2-amidobenzothiazoles substitués ou de leurs sels comme principes actifs contre le stress abiotique des plantes
UA114648C2 (uk) 2012-10-19 2017-07-10 Байєр Кропсайнс Аг Спосіб обробки рослин проти грибів, стійких до фунгіцидів, із застосуванням карбоксамідних або тіокарбоксамідних похідних
EA025862B1 (ru) 2012-10-19 2017-02-28 Байер Кропсайенс Аг Способ повышения устойчивости к абиотическому стрессу в растениях с использованием производных карбоксамида или тиокарбоксамида
CN105357968A (zh) 2012-10-19 2016-02-24 拜尔农科股份公司 包含羧酰胺衍生物的活性化合物复配物
EA025669B1 (ru) 2012-10-19 2017-01-30 Байер Кропсайенс Аг Способ стимулирования роста растений с применением производных карбоксамида
WO2014079957A1 (fr) 2012-11-23 2014-05-30 Bayer Cropscience Ag Inhibition sélective de la transduction du signal éthylène
EP2735231A1 (fr) 2012-11-23 2014-05-28 Bayer CropScience AG Combinaisons de composés actifs
WO2014083033A1 (fr) 2012-11-30 2014-06-05 Bayer Cropsience Ag Mélange fongicide ou pesticide binaire
EA201890495A3 (ru) 2012-11-30 2019-01-31 Байер Кропсайенс Акциенгезельшафт Тройные фунгицидные и пестицидные смеси
BR112015012473A2 (pt) 2012-11-30 2017-07-11 Bayer Cropscience Ag misturas binárias pesticidas e fungicidas
JP6367215B2 (ja) 2012-11-30 2018-08-01 バイエル・クロップサイエンス・アクチェンゲゼルシャフト 二成分殺菌剤混合物
BR112015012055B1 (pt) 2012-11-30 2021-01-12 Bayer Cropscience Ag composição fungicida ternária, seu processo de preparação, método para controlar um ou mais microrganismos nocivos, semente resistente a microrganismos nocivos e seu método de tratamento
EP2740356A1 (fr) 2012-12-05 2014-06-11 Bayer CropScience AG Dérivés d'acides (2Z)-5(1-hydroxycyclohexyl)pent-2-en-4-ines substitués
WO2014086751A1 (fr) 2012-12-05 2014-06-12 Bayer Cropscience Ag Utilisation de 1-(aryléthinyl)-cyclohexanols, 1-(hétéroaryléthinyl)-cyclohexanols, 1-(hétérocyclyléthinyl)-cyclohexanols et 1-(cyloalcényléthinyl)-cyclohexanols substitués comme principes actifs contre le stress abiotique des plantes
EP2740720A1 (fr) 2012-12-05 2014-06-11 Bayer CropScience AG Dérivés d'acides pent-2-en-4-ines bicycliques et tricycliques substitués et leur utilisation pour augmenter la tolérance au stress chez les plantes
WO2014090765A1 (fr) 2012-12-12 2014-06-19 Bayer Cropscience Ag Utilisation de 1-[2-fluoro-4-méthyle-5-(2,2,2- trifluoroéthylsulfinyl)phényl]-5-amino-3-trifluorométhyl)-1 h-1,2,4 tfia zole à des fins de régulation des nématodes dans les cultures résistantes aux nématodes
AR093996A1 (es) 2012-12-18 2015-07-01 Bayer Cropscience Ag Combinaciones bactericidas y fungicidas binarias
BR112015014307A2 (pt) 2012-12-19 2017-07-11 Bayer Cropscience Ag difluorometil-nicotínico- tetrahidronaftil carboxamidas
US20160016944A1 (en) 2013-03-07 2016-01-21 Bayer Cropscience Aktiengesellschaft Fungicidal 3--heterocycle derivatives
CN105121650A (zh) 2013-04-02 2015-12-02 拜尔作物科学公司 真核生物中的靶向基因组工程
EP2984080B1 (fr) 2013-04-12 2017-08-30 Bayer CropScience Aktiengesellschaft Nouveaux dérivés de triazole
EA028812B1 (ru) 2013-04-12 2018-01-31 Байер Кропсайенс Акциенгезельшафт Триазольные производные
US20160058001A1 (en) 2013-04-19 2016-03-03 Bayer Cropscience Aktiengesellschaft Method for improved utilization of the production potential of transgenic plants
JP2016519687A (ja) 2013-04-19 2016-07-07 バイエル・クロップサイエンス・アクチェンゲゼルシャフト バイナリー殺虫または農薬混合物
WO2014177514A1 (fr) 2013-04-30 2014-11-06 Bayer Cropscience Ag Phénéthylcarboxamides n-substitués nématicides
TW201507722A (zh) 2013-04-30 2015-03-01 Bayer Cropscience Ag 做為殺線蟲劑及殺體內寄生蟲劑的n-(2-鹵素-2-苯乙基)-羧醯胺類
CN105636939B (zh) 2013-06-26 2018-08-31 拜耳作物科学股份公司 N-环烷基-n-[(二环基苯基)亚甲基]-(硫代)甲酰胺衍生物
US20160150782A1 (en) 2013-07-09 2016-06-02 Bayer Cropscience Aktiengesellschaft Use of selected pyridone carboxamides or salts thereof as active substances against abiotic plant stress
TW201609661A (zh) 2013-12-05 2016-03-16 拜耳作物科學公司 N-環烷基-n-{[2-(1-經取代環烷基)苯基]亞甲基}-(硫代)甲醯胺衍生物
CN105873907B (zh) 2013-12-05 2019-03-12 拜耳作物科学股份公司 N-环烷基-n-{[2-(1-取代的环烷基)苯基]亚甲基}-(硫代)甲酰胺衍生物
AR101214A1 (es) 2014-07-22 2016-11-30 Bayer Cropscience Ag Ciano-cicloalquilpenta-2,4-dienos, ciano-cicloalquilpent-2-en-4-inas, ciano-heterociclilpenta-2,4-dienos y ciano-heterociclilpent-2-en-4-inas sustituidos como principios activos contra el estrés abiótico de plantas
AR103024A1 (es) 2014-12-18 2017-04-12 Bayer Cropscience Ag Piridoncarboxamidas seleccionadas o sus sales como sustancias activas contra estrés abiótico de las plantas
WO2016106013A1 (fr) 2014-12-23 2016-06-30 E. I. Du Pont De Nemours And Company Cellulose produite par voie enzymatique
EP3283476B1 (fr) 2015-04-13 2019-08-14 Bayer Cropscience AG Fungicides de n-cycloalkyl-n- (bihétérocyclyéthylène) - (thio) carboxamide
EP3436575A1 (fr) 2015-06-18 2019-02-06 The Broad Institute Inc. Nouvelles enzymes crispr et systèmes associés
WO2018019676A1 (fr) 2016-07-29 2018-02-01 Bayer Cropscience Aktiengesellschaft Combinaisons de composés actifs et procédés pour protéger le matériau de propagation des plantes
CN109715621A (zh) 2016-09-22 2019-05-03 拜耳作物科学股份公司 新的三唑衍生物
CN109715622A (zh) 2016-09-22 2019-05-03 拜耳作物科学股份公司 新的三唑衍生物及其作为杀真菌剂的用途
US20190225974A1 (en) 2016-09-23 2019-07-25 BASF Agricultural Solutions Seed US LLC Targeted genome optimization in plants
EP3531833A2 (fr) 2016-10-26 2019-09-04 Bayer CropScience Aktiengesellschaft Utilisation de pyraziflumid pour le controle de sclerotinia spp dans les applications de traitement de semences
RU2755433C2 (ru) 2016-12-08 2021-09-16 Байер Кропсайенс Акциенгезельшафт Применение инсектицидов для борьбы с проволочниками
EP3332645A1 (fr) 2016-12-12 2018-06-13 Bayer Cropscience AG Utilisation de pyrimidinedione ou ses sels respectifs en tant qu'agent contre l'agression abiotique des plantes
WO2018108627A1 (fr) 2016-12-12 2018-06-21 Bayer Cropscience Aktiengesellschaft Utilisation d'indolinylméthylsulfonamides substitués ou de leurs sels pour accroître la tolérance au stress chez les plantes
US11591601B2 (en) 2017-05-05 2023-02-28 The Broad Institute, Inc. Methods for identification and modification of lncRNA associated with target genotypes and phenotypes
WO2019025153A1 (fr) 2017-07-31 2019-02-07 Bayer Cropscience Aktiengesellschaft Utilisation de n-sulfonyl-n'-aryldiaminoalcanes et de n-sulfonyl-n'-hétéroaryldiaminoalcanes substitués ou de leurs sels pour accroître la tolérance au stress chez les plantes
US11618896B2 (en) 2017-09-21 2023-04-04 The Broad Institute, Inc. Systems, methods, and compositions for targeted nucleic acid editing
US10968257B2 (en) 2018-04-03 2021-04-06 The Broad Institute, Inc. Target recognition motifs and uses thereof
CN112004939A (zh) 2018-04-23 2020-11-27 丹尼斯科美国公司 用磷酸化酶合成包含β-1,3糖苷键的葡聚糖
EP3802521A1 (fr) 2018-06-04 2021-04-14 Bayer Aktiengesellschaft Benzoylpyrazoles bicycliques utilisés comme herbicide
AU2019406778A1 (en) 2018-12-17 2021-07-22 Massachusetts Institute Of Technology Crispr-associated transposase systems and methods of use thereof
LU502613B1 (en) * 2022-08-01 2024-02-01 Plant Bioscience Ltd Methods of altering the starch granule profile in plants

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL180247B1 (pl) * 1993-05-28 2001-01-31 Monsanto Co Rekombinantowa, dwuniciowa czasteczka DNA PL PL
WO1995007355A1 (fr) * 1993-09-09 1995-03-16 Institut Für Genbiologische Forschung Berlin Gmbh Combinaison de sequences d'adn permettant la formation d'amidon modifie dans des cellules vegetales et des vegetaux, procedes de production de ces plantes et de l'amidon modifie obtenu a partir de ladite combinaison
GB9412018D0 (en) * 1994-06-16 1994-08-03 Cambridge Advanced Tech Modification of starch content in plants
US5824790A (en) * 1994-06-21 1998-10-20 Zeneca Limited Modification of starch synthesis in plants
GB9421287D0 (en) * 1994-10-21 1994-12-07 Danisco A method of reducing the level of sugar in an organism
DE19619917A1 (de) * 1996-05-17 1997-11-20 Max Planck Gesellschaft Kartoffelpflanzen mit einer verringerten Aktivität der cytosolischen Stärkephosphorylase und einem veränderten Keimungsverhalten
US5998701A (en) * 1997-06-04 1999-12-07 Her Majesty The Queen In Right Of Canada As Represented By The Department Of Agriculture Potatoes having improved quality characteristics and methods for their production

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9840503A1 *

Also Published As

Publication number Publication date
US6686514B2 (en) 2004-02-03
CA2283632A1 (fr) 1998-09-17
WO1998040503A1 (fr) 1998-09-17
DE19709775A1 (de) 1998-09-17
JP2001514514A (ja) 2001-09-11
AU730569B2 (en) 2001-03-08
US6353154B1 (en) 2002-03-05
US20020133849A1 (en) 2002-09-19
AU6727298A (en) 1998-09-29

Similar Documents

Publication Publication Date Title
US6686514B2 (en) Nucleic acid molecules encoding starch phosphorylase from maize
US6307124B1 (en) Nucleic acid molecules encoding soluble starch synthases from maize
CA2242398C (fr) Molecules d'acide nucleique issues de vegetaux codant pour des enzymes participant a la synthese de l'amidon
AU724164B2 (en) Nucleic acid molecules coding for debranching enzymes from potato
AU718730B2 (en) Nucleic acid molecules coding for debranching enzymes from maize
AU780737B2 (en) Nucleic acid molecules from plants encoding enzymes which participate in starch synthesis
AU740492C (en) Novel nucleic acid molecules from maize and their use for the production of modified starch
US6483010B1 (en) DNA molecules encoding enzymes involved in starch synthesis, vectors, bacteria, transgenic plant cells and plants containing these molecules
AU737403B2 (en) Nucleic acid molecules encoding enzymes from wheat which are involved in starch synthesis
AU2002314061B2 (en) DNA molecules that code for enzymes involved in starch synthesis, vectors, bacteria, transgenic plant cells and plants containing said molecules

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990917

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI NL PT SE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FROHBERG, CLAUS

Inventor name: KOSSMANN, JENS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PLANTTEC BIOTECHNOLOGIE GMBH

17Q First examination report despatched

Effective date: 20040217

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER BIOSCIENCE GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20040615