EP0970299B1 - Moteur a combustion interne - Google Patents

Moteur a combustion interne Download PDF

Info

Publication number
EP0970299B1
EP0970299B1 EP98920484A EP98920484A EP0970299B1 EP 0970299 B1 EP0970299 B1 EP 0970299B1 EP 98920484 A EP98920484 A EP 98920484A EP 98920484 A EP98920484 A EP 98920484A EP 0970299 B1 EP0970299 B1 EP 0970299B1
Authority
EP
European Patent Office
Prior art keywords
combustion engine
internal combustion
engine according
ignition
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98920484A
Other languages
German (de)
English (en)
Other versions
EP0970299A1 (fr
Inventor
Heinz Karl Leiber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LSP Innovative Automotive Systems GmbH
Original Assignee
LSP Innovative Automotive Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19712054A external-priority patent/DE19712054A1/de
Priority claimed from DE19741569A external-priority patent/DE19741569A1/de
Application filed by LSP Innovative Automotive Systems GmbH filed Critical LSP Innovative Automotive Systems GmbH
Publication of EP0970299A1 publication Critical patent/EP0970299A1/fr
Application granted granted Critical
Publication of EP0970299B1 publication Critical patent/EP0970299B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means

Definitions

  • the invention relates to an internal combustion engine with the features of the preamble of claim 1. It is known, for example from EP 0357938 B1, to use a drive designed according to the preamble of claim 1 for actuating a valve of an internal combustion engine. It is assumed that it is known that an engine with such valve actuation uses a stationary high-voltage distribution combined with a multi-spark ignition coil or single spark coils, for example with the spark plug, as is known, for example, from the Bosch paperback page 439 ff. The invention is based on the object of providing an internal combustion engine in which the costs and weight for the ignition systems are reduced.
  • the invention also makes it possible to use a plurality of spark plugs, in particular in the case of direct injection, with higher demands on the ignition system.
  • the main idea of the invention provides the double use of the iron circuit and the excitation coil both for the magnetic valve drive and for the ignition system.
  • the weight per ignition coil is approx. 250 g, ie 1000 g weight can be saved with 4 cylinders by the invention. Since the invention uses at least two double magnet systems per cylinder, double ignition can be implemented with little effort and with the known advantages for combustion (Motortechnische Symposium pages 393 / 394-58 / 1997). This is not very common for reasons of weight and cost. No separate attachment of the ignition coil is necessary here. Only a short cable is required. Some of the electrical connections can be shared.
  • the subclaims contain further developments and refinements of the invention.
  • FIG. 1 shows an electromagnetic drive for a valve 1 of an internal combustion engine, which has two two-pole electromagnets 2 and 3 with laminated iron cores 4 and 5 and excitation coils 6 and 7.
  • An armature 8 is arranged between the poles of the electromagnets and is spring-supported by means of a rod 10 rotatable about the axis 9.
  • An actuating rod 11 is articulated to the armature 8 and opens the valve 1 against the force of a spring 12 when the electromagnet 2 is excited.
  • the spring force of the spring 12 and the presetting of the spring force of the torsion bar 10 are coordinated with one another in such a way that the armature 8 is placed in the drawn position when the electromagnet is not energized.
  • a mechanical latching system with a latching roller 13 is provided, which engages in the end positions of the armature 8 below or above a part 14 of the armature 8, and then holds the armature in the end position without energizing an electromagnet.
  • the position (8 ') of the armature 8 after excitation of the electromagnet 3 and engagement of the locking roller 13' under the part 14 'of the armature is shown in broken lines.
  • the detent is released in time by a separate not shown electromagnet when reversing the valve.
  • the primary 15 and secondary windings 16 of a single spark ignition coil are also applied to the laminated core 4 of the electromagnet 3; the iron core 5 is therefore used twice.
  • the secondary winding 16 is connected to a spark plug 17.
  • the low voltage connection for the ignition coil is designated 18.
  • Fig. 2 of the drawing differs from Fig. 1 only in that the excitation coil 7 has been omitted for the electromagnet 3 and now the primary winding 15 of the ignition coil is also used as an excitation coil for the electromagnet 3.
  • the control for the two applications takes place with different currents, namely the current for the ignition coil is lower. There is no fear of mutual interference between the units, because in the locked position there is no valve actuation without actuating the locking magnet.
  • the solenoid system of the exhaust valve is preferably proposed for the combination described. Proven methods can be used as the control method, for example a time control or a current control, in order to obtain the criteria of ignition voltage, ignition timing and ignition energy.
  • the usable multi-spark ignition coil mentioned in claim 1 can be used for two or more cylinders. If, according to FIG. 2, only one winding is used for both applications, a pulse of greater amplitude being used for the valve actuation than for the ignition, ignition by this pulse can be avoided by reducing the pulse in stages, i.e. the trailing edge of the impulse drop more slowly on average. This has no negative impact on valve actuation. However, the size of the Secondary voltage of the ignition coil determining field change (d ⁇ / dt) of the trailing edge is reduced, so that the secondary voltage is not sufficient for ignition. As an alternative to FIGS. 1 and 2, the latching device described could also be omitted and the holding in the end positions could be brought about by holding currents.
  • a separate holding winding is provided for at least one end position, which can be dimensioned in a special way for this purpose.
  • a cylinder 20 is shown schematically seen from the piston. It has two inlet valves 21 and 22 and an outlet valve 23.
  • two spark plugs 24 and 25 are provided.
  • the use of two spark plugs has the advantage of better exhaust gas quality.
  • the two spark plugs are driven via a primary winding according to FIG. 1 or 2, two high-voltage secondary windings being provided.
  • Fig. 4 shows an arrangement again with three valves 31, 32 and 33 but now with three spark plugs 34, 35 and 36, which entails a further increase in the exhaust gas quality.
  • Four spark plugs can also be used.
  • FIG. 5 shows a 4-valve version with three spark plugs.
  • An outlet valve (A valve) is considerably smaller. This is necessary to reduce the magnetic and valve forces, since the A valve must open against the residual pressure (approx. 8 bar) in the cylinder. This design is necessary if there is a design with small accelerating masses and accordingly the return springs are weaker, which also results in smaller magnets.
  • the four-valve version with three spark plugs is particularly suitable for direct injection.
  • the injection valve is preferably mounted in the lateral space between the intake valves E1 and E2.
  • one or two spark plugs can be used instead of three spark plugs.
  • the small exhaust valve is energized first, so that the large pressure is released when the large exhaust valve is actuated somewhat later. In the case of direct injection, the injection valve can be positioned in the center.
  • the control winding of the magnet which brings the valve into the closed position is preferably used as the excitation winding (primary winding) of the ignition coil.
  • the excitation winding primary winding
  • a large pressure is exerted on the valve. It is therefore possible to switch off the holding current during the coupling of the ignition pulse via the primary winding. This will preferably be done about 90 ° crankshaft angle before the ignition pulse. It is sufficient to switch on the holding excitation only shortly before bottom dead center for the inlet valve and outlet valve.
  • 6a shows the stroke profile of a cylinder with the extreme points UT and OT. Ignition occurs at t 1 .
  • FIG. 6b and 6c show the state of the inlet valve E and the outlet valve A, these valves being open in the dashed areas.
  • the pressure curve in the cylinder is plotted in FIG. 6d. 6e and 6f, the drive currents for the closing magnet and the opening magnet (i 7 and i 6 in Fig. 6e) of the inlet valve and the outlet valve (i 7a and i 6a in Fig. 6f) are plotted.
  • the low holding current of the closing magnet coil with the current profile i7 is switched off at t 0 and shortly thereafter the magnet coil of the opening magnet with the current profile i 6 is switched on and, after reaching the end position, it is reduced to a smaller holding current.
  • this holding current is switched off and the valve moves in the direction of the closed position.
  • the closing solenoid is first energized to catch the armature and then lowered to a holding value until it is switched off again to open the inlet valve.
  • the relatively flat current drop results from the free-wheeling diode, the effect of which will be explained with reference to FIGS. 8 and 9.
  • the adequate current flow basically applies to the exhaust valve.
  • the outlet valve is closed via the low holding current of the closing magnet coil with current profile i 7a .
  • the current is increased to a value which results in sufficient coil energy so that sufficient ignition voltage and ignition energy are transmitted to the secondary coil after the rapid switch-off.
  • the time of the current increase is determined by the speed and the coil time constant. After switching off, the holding current is then switched on in the closing magnet coil.
  • the exhaust valve is opened later, the same procedure applies to the closing and opening magnet as for the intake valve.
  • the inlet valve E there is sufficient time for the so-called charging of the excitation coil.
  • the intake valve closes, the compression phase comes immediately with the ignition point, which can be up to 20 ° before TDC at high speeds. For the sake of simplification, the ideal current curve was drawn.
  • the current of the closing solenoids can also be reduced or even switched off at higher pressures in order to save drive power.
  • Fig. 7 shows the possible different courses of the pulses for the valve actuation (extended course) and for the ignition (dashed trailing edge course).
  • 8 shows a control circuit for a valve.
  • Two excitation coils 40 and 41 or 42 and 43 with separate, controllable output stages 44 to 47 are provided for each magnet, as described in the earlier patent application 197 31 381.7.
  • the windings 40 and 41 or 42 and 43 each represent a winding.
  • a freewheeling diode 40a to 43a is connected in parallel with each excitation coil 40 to 43.
  • a storage capacitor 48 is provided to relieve the on-board electrical system 9 at high pulse loads.
  • the arrangement of Fig. 8 is designed for the integration of the ignition.
  • the winding 42 is additionally used as the primary coil of the ignition coil.
  • the ignition stage 46 must therefore have an extremely short switch-off time so that the high induction voltage can cause the correspondingly high ignition voltage. It is not possible to use a simple freewheeling diode in the part of the electromagnet in which the magnetic circuit and the winding 42 are also used for the ignition. A controlled freewheeling diode must be used here, which blocks the freewheel in the event of ignition and releases the freewheel when the valve is actuated in the magnet for energy recovery. This is made possible by an appropriately controlled, high-voltage-resistant output stage 42a.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Valve Device For Special Equipments (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Claims (23)

  1. Moteur à combustion interne comportant un dispositif d'entraínement électromagnétique pour l'actionnement d'une soupape, dans lequel il est prévu pour chaque soupape (1) deux électroaimants (2,3), dont notamment les surfaces polaires sont tournées au moins en partie l'une vers l'autre, et comportant une armature (8) déplaçable en va-et-vient entre ces surfaces polaires et qui, lorsque les aimants sont débranchés, est placée dans une position intermédiaire et y est retenue par des forces de ressorts, et, lors de l'activation de l'un des électroaimants (2, 3), est amenée à proximité des surfaces polaires de l'électroaimant correspondant (2,3), l'armature (8) étant reliée selon une liaison active à la soupape (1) devant être activée, et dans lequel il existe, dans le moteur à combustion interne, une répartition uniforme de la haute tension avec des bobines d'allumage à étincelle individuelle ou des bobines d'allumage à étincelles multiples, dont l'enroulement primaire et l'enroulement secondaire sont disposés sur un noyau feuilleté, caractérisé en ce que le noyau de fer (5) d'un électroaimant (3) du dispositif d'entraínement est également utilisé en tant que noyau de la bobine d'allumage (18).
  2. Moteur à combustion interne selon la revendication 1, caractérisé en ce que l'enroulement de l'électroaimant est utilisé en tant qu'enroulement d'excitation (enroulement primaire) de la bobine d'allumage (figure 2).
  3. Moteur à combustion interne selon la revendication 2, caractérisé en ce que l'enroulement de l'électroaimant est commandé pour les deux types d'utilisation, avec des intensités de courant différentes (figure 6e).
  4. Moteur à combustion interne selon la revendication 3, caractérisé en ce que le flanc arrière de l'impulsion injectée pour le dispositif d'entraínement des soupapes retombe d'une manière ralentie (figure 7).
  5. Moteur à combustion interne selon la revendication 4, caractérisé en ce que le flanc arrière retombe en suivant des échelons (figure 7).
  6. Moteur à combustion interne selon l'une des revendications 1 à 5, caractérisé en ce que deux bougies d'allumage (24,25) sont prévues pour chaque cylindre.
  7. Moteur à combustion interne selon la revendication 6, caractérisé en ce que trois soupapes (21 à 23) sont prévues pour chaque cylindre.
  8. Moteur à combustion interne selon l'une des revendications 1 à 5, caractérisé en ce que trois bougies d'allumage (34 à 36) sont prévues pour chaque cylindre.
  9. Moteur à combustion interne selon la revendication 8, caractérisé en ce que trois soupapes (31 à 33) sont prévues pour chaque cylindre.
  10. Moteur à combustion interne selon l'une des revendications 1 à 5, caractérisé en ce que quatre bougies d'allumage sont prévues pour chaque cylindre.
  11. Moteur à combustion interne selon l'une des revendications 1 à 5, caractérisé en ce que quatre soupapes (A1, A2, E1, E2) et trois bougies d'allumage sont prévues pour chaque cylindre.
  12. Moteur à combustion interne selon la revendication 11, caractérisé en ce qu'au moins une et au maximum quatre bougies d'allumage sont prévues pour chaque cylindre (figure 5).
  13. Moteur à combustion interne selon l'une des revendications 7 à 10, caractérisé en ce que dans le cas de l'utilisation d'au moins deux soupapes d'échappement (A1,A2), l'une (A1) est dimensionnée plus petite que l'autre (A2).
  14. Moteur à combustion interne selon l'une des revendications 11 à 13, caractérisé par son utilisation pour une injection directe.
  15. Moteur à combustion interne selon la revendication 14, caractérisé en ce que la soupape d'injection est logée dans l'espace intercalaire latéral entre des soupapes d'admission.
  16. Moteur à combustion interne selon l'une des revendications 6 à 10, caractérisé en ce que la bobine de commande de l'électroaimant est utilisée pour la fermeture de la soupape en tant qu'enroulement d'excitation (enroulement primaire) de la bobine d'allumage.
  17. Moteur à combustion interne selon l'une des revendications 1-16, dans lequel on utilise un courant de maintien pour maintenir la soupape dans sa position fermée, caractérisé en ce que le courant de maintien est interrompu lors de la production des impulsions d'allumage.
  18. Moteur à combustion interne selon la revendication 17, caractérisé en ce qu'un enroulement particulier de maintien est prévu pour le maintien de la position fermée (figure 8).
  19. Moteur à combustion interne selon la revendication 17 ou 18, caractérisé en ce que le courant de maintien est interrompu pendant un intervalle de temps avant et après la production des impulsions d'allumage.
  20. Moteur à combustion interne selon l'une des revendications 1 à 19, caractérisé en ce que dans le cas d'une récupération d'énergie au niveau des enroulements (40 à 43) des électroaimants par des diodes à effet unidirectionnel (40a à 43a) (branchées en parallèle avec l'enroulement), à l'enroulement (42) utilisé également comme enroulement primaire de la bobine d'allumage est associé un dispositif de commutation (42a) commuté spécial, qui agit en tant que diode à effet unidirectionnel pour le fonctionnement de récupération d'énergie avec une réduction lente du courant, et bloque l'effet unidirectionnel, dans le fonctionnement d'allumage.
  21. Moteur à combustion interne selon l'une des revendications 1 à 20, caractérisé en ce que le dispositif d'entraínement électromagnétique comporte respectivement deux enroulements d'excitation (par exemple 40, 41), qui fonctionnent dans le temps selon un branchement en parallèle.
  22. Moteur à combustion interne selon l'une des revendications 1 à 21, caractérisé en ce que pour l'optimisation de la séquence d'allumage, l'enroulement d'excitation ou le noyau magnétique d'un cylindre voisin est utilisé pour l'allumage.
  23. Moteur à combustion interne selon l'une des revendications 1 à 22, caractérisé en ce qu'on utilise, pour l'allumage, un enroulement d'un électroaimant de la soupape d'échappement du cylindre respectif.
EP98920484A 1997-03-24 1998-03-24 Moteur a combustion interne Expired - Lifetime EP0970299B1 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19712054A DE19712054A1 (de) 1997-03-24 1997-03-24 Verbrennungsmotor E9
DE19712054 1997-03-24
DE19741569 1997-09-20
DE19741569A DE19741569A1 (de) 1997-09-20 1997-09-20 Verbrennungsmotor
PCT/EP1998/001706 WO1998042956A1 (fr) 1997-03-24 1998-03-24 Moteur a combustion interne

Publications (2)

Publication Number Publication Date
EP0970299A1 EP0970299A1 (fr) 2000-01-12
EP0970299B1 true EP0970299B1 (fr) 2001-06-20

Family

ID=26035132

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98920484A Expired - Lifetime EP0970299B1 (fr) 1997-03-24 1998-03-24 Moteur a combustion interne

Country Status (3)

Country Link
EP (1) EP0970299B1 (fr)
DE (1) DE59800893D1 (fr)
WO (1) WO1998042956A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19923902A1 (de) * 1999-05-25 2000-11-30 Heinz Leiber Verbrennungsmotor
US6997433B2 (en) 2004-01-21 2006-02-14 Ford Global Technologies, Llc Electronic valve actuator having vibration cancellation
US7314026B2 (en) 2004-01-21 2008-01-01 Ford Global Technologies, Llc Electronic valve actuator having hydraulic displacement amplifier
DE102006005943A1 (de) * 2006-02-09 2007-08-23 Bayerische Motoren Werke Ag Verbrennungsmotor mit einem elektrischen Ventiltrieb

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7003143U (de) 1970-01-30 1971-07-08 Bosch Gmbh Robert Zuendanker fuer zuendanlagen von brennkraftmaschinen.
DE2343905C2 (de) * 1973-08-31 1982-10-07 Daimler-Benz Ag, 7000 Stuttgart Vorrichtung zur digital-elektronischen Steuerung der Einlaß-, Auslaß- und Einspritzventile sowie der Zündung bei Brennkraftmaschinen
GB1471537A (en) * 1974-12-06 1977-04-27 Venard R Engine valve control
FR2307958A1 (fr) * 1975-04-18 1976-11-12 Robert Edmond Moteur a explosions a distribution electromecanique
DE3524024A1 (de) * 1985-07-05 1987-01-15 Fleck Andreas Verfahren zum betreiben einer brennkraftmaschine
DE3826977A1 (de) 1988-08-09 1990-02-15 Meyer Hans Wilhelm Stelleinrichtung fuer ein gaswechselventil einer brennkraftmaschine

Also Published As

Publication number Publication date
EP0970299A1 (fr) 2000-01-12
DE59800893D1 (de) 2001-07-26
WO1998042956A1 (fr) 1998-10-01

Similar Documents

Publication Publication Date Title
DE19526848B4 (de) Verfahren zur drosselfreien Laststeuerung einer Kolbenbrennkraftmaschine mit variablen ansteuerbaren Gaswechselventilen
DE3024109C2 (fr)
DE3307070C2 (de) Stelleinrichtung für ein zwischen zwei Endstellungen verstellbares Schaltelement
DE3708373C1 (de) Verfahren zum Betreiben eines Einlassventiles einer Brennkraftmaschine
DE19610468B4 (de) Verfahren zur lastabhängigen Steuerung der Gaswechselventile an einer Kolbenbrennkraftmaschine
DE19736137C1 (de) Verfahren zum Starten eines Verbrennungsmotors
DE19951537B4 (de) Ventil-Antriebsvorrichtung für eine Brennkraftmaschine
DE19921938A1 (de) Verfahren zur Erhöhung der Abwurfgeschwindigkeit des Ankers an einer elektromagnetisch betätigbaren Stelleinrichtung
EP0229792B1 (fr) Procede d'actionnement d'un moteur a combustion interne
DE10003928A1 (de) Elektromagnetischer Aktuator
EP0970299B1 (fr) Moteur a combustion interne
DE3729954C2 (fr)
DE19741569A1 (de) Verbrennungsmotor
DE3923477A1 (de) Verfahren zur steuerung der ankerbewegung von schaltmagneten
EP0945610A2 (fr) Méthode et dispositif pour commuter une inductance
DE19712062A1 (de) Elektromagnetische Stelleinrichtung
DE19521676A1 (de) Regelung des Anzuges eines Ankers eines Schaltmagneten und Schaltanordnung zur Durchführung des Verfahrens
DE19805171C2 (de) Elektromagnet und Verwendung desselben
DE10057778A1 (de) Verfahren und Schaltungsanordnung zum Betrieb eines Magnetventils
DE19529151A1 (de) Verfahren zum Schalten eines elektromagnetischen Aktuators
DE19712054A1 (de) Verbrennungsmotor E9
DE19905492C1 (de) Verfahren zur elektromagnetischen Steuerung der Gaswechselventile von Brennkraftmaschinen
DE3614528A1 (de) Verfahren zum betreiben einer mehrfach-elektromagnetanordnung
DE19529152A1 (de) Aus der Ruhelage selbstanziehender elektromagnetischer Aktuator
DE19714410A1 (de) Elektromagnetischer Antrieb

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990831

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20000530

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010620

REF Corresponds to:

Ref document number: 59800893

Country of ref document: DE

Date of ref document: 20010726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010920

ET Fr: translation filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20010620

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030417

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050324

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070402

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081001