EP0970299B1 - Internal combustion engine - Google Patents

Internal combustion engine Download PDF

Info

Publication number
EP0970299B1
EP0970299B1 EP98920484A EP98920484A EP0970299B1 EP 0970299 B1 EP0970299 B1 EP 0970299B1 EP 98920484 A EP98920484 A EP 98920484A EP 98920484 A EP98920484 A EP 98920484A EP 0970299 B1 EP0970299 B1 EP 0970299B1
Authority
EP
European Patent Office
Prior art keywords
combustion engine
internal combustion
engine according
ignition
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98920484A
Other languages
German (de)
French (fr)
Other versions
EP0970299A1 (en
Inventor
Heinz Karl Leiber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LSP Innovative Automotive Systems GmbH
Original Assignee
LSP Innovative Automotive Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19712054A external-priority patent/DE19712054A1/en
Priority claimed from DE19741569A external-priority patent/DE19741569A1/en
Application filed by LSP Innovative Automotive Systems GmbH filed Critical LSP Innovative Automotive Systems GmbH
Publication of EP0970299A1 publication Critical patent/EP0970299A1/en
Application granted granted Critical
Publication of EP0970299B1 publication Critical patent/EP0970299B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means

Definitions

  • the invention relates to an internal combustion engine with the features of the preamble of claim 1. It is known, for example from EP 0357938 B1, to use a drive designed according to the preamble of claim 1 for actuating a valve of an internal combustion engine. It is assumed that it is known that an engine with such valve actuation uses a stationary high-voltage distribution combined with a multi-spark ignition coil or single spark coils, for example with the spark plug, as is known, for example, from the Bosch paperback page 439 ff. The invention is based on the object of providing an internal combustion engine in which the costs and weight for the ignition systems are reduced.
  • the invention also makes it possible to use a plurality of spark plugs, in particular in the case of direct injection, with higher demands on the ignition system.
  • the main idea of the invention provides the double use of the iron circuit and the excitation coil both for the magnetic valve drive and for the ignition system.
  • the weight per ignition coil is approx. 250 g, ie 1000 g weight can be saved with 4 cylinders by the invention. Since the invention uses at least two double magnet systems per cylinder, double ignition can be implemented with little effort and with the known advantages for combustion (Motortechnische Symposium pages 393 / 394-58 / 1997). This is not very common for reasons of weight and cost. No separate attachment of the ignition coil is necessary here. Only a short cable is required. Some of the electrical connections can be shared.
  • the subclaims contain further developments and refinements of the invention.
  • FIG. 1 shows an electromagnetic drive for a valve 1 of an internal combustion engine, which has two two-pole electromagnets 2 and 3 with laminated iron cores 4 and 5 and excitation coils 6 and 7.
  • An armature 8 is arranged between the poles of the electromagnets and is spring-supported by means of a rod 10 rotatable about the axis 9.
  • An actuating rod 11 is articulated to the armature 8 and opens the valve 1 against the force of a spring 12 when the electromagnet 2 is excited.
  • the spring force of the spring 12 and the presetting of the spring force of the torsion bar 10 are coordinated with one another in such a way that the armature 8 is placed in the drawn position when the electromagnet is not energized.
  • a mechanical latching system with a latching roller 13 is provided, which engages in the end positions of the armature 8 below or above a part 14 of the armature 8, and then holds the armature in the end position without energizing an electromagnet.
  • the position (8 ') of the armature 8 after excitation of the electromagnet 3 and engagement of the locking roller 13' under the part 14 'of the armature is shown in broken lines.
  • the detent is released in time by a separate not shown electromagnet when reversing the valve.
  • the primary 15 and secondary windings 16 of a single spark ignition coil are also applied to the laminated core 4 of the electromagnet 3; the iron core 5 is therefore used twice.
  • the secondary winding 16 is connected to a spark plug 17.
  • the low voltage connection for the ignition coil is designated 18.
  • Fig. 2 of the drawing differs from Fig. 1 only in that the excitation coil 7 has been omitted for the electromagnet 3 and now the primary winding 15 of the ignition coil is also used as an excitation coil for the electromagnet 3.
  • the control for the two applications takes place with different currents, namely the current for the ignition coil is lower. There is no fear of mutual interference between the units, because in the locked position there is no valve actuation without actuating the locking magnet.
  • the solenoid system of the exhaust valve is preferably proposed for the combination described. Proven methods can be used as the control method, for example a time control or a current control, in order to obtain the criteria of ignition voltage, ignition timing and ignition energy.
  • the usable multi-spark ignition coil mentioned in claim 1 can be used for two or more cylinders. If, according to FIG. 2, only one winding is used for both applications, a pulse of greater amplitude being used for the valve actuation than for the ignition, ignition by this pulse can be avoided by reducing the pulse in stages, i.e. the trailing edge of the impulse drop more slowly on average. This has no negative impact on valve actuation. However, the size of the Secondary voltage of the ignition coil determining field change (d ⁇ / dt) of the trailing edge is reduced, so that the secondary voltage is not sufficient for ignition. As an alternative to FIGS. 1 and 2, the latching device described could also be omitted and the holding in the end positions could be brought about by holding currents.
  • a separate holding winding is provided for at least one end position, which can be dimensioned in a special way for this purpose.
  • a cylinder 20 is shown schematically seen from the piston. It has two inlet valves 21 and 22 and an outlet valve 23.
  • two spark plugs 24 and 25 are provided.
  • the use of two spark plugs has the advantage of better exhaust gas quality.
  • the two spark plugs are driven via a primary winding according to FIG. 1 or 2, two high-voltage secondary windings being provided.
  • Fig. 4 shows an arrangement again with three valves 31, 32 and 33 but now with three spark plugs 34, 35 and 36, which entails a further increase in the exhaust gas quality.
  • Four spark plugs can also be used.
  • FIG. 5 shows a 4-valve version with three spark plugs.
  • An outlet valve (A valve) is considerably smaller. This is necessary to reduce the magnetic and valve forces, since the A valve must open against the residual pressure (approx. 8 bar) in the cylinder. This design is necessary if there is a design with small accelerating masses and accordingly the return springs are weaker, which also results in smaller magnets.
  • the four-valve version with three spark plugs is particularly suitable for direct injection.
  • the injection valve is preferably mounted in the lateral space between the intake valves E1 and E2.
  • one or two spark plugs can be used instead of three spark plugs.
  • the small exhaust valve is energized first, so that the large pressure is released when the large exhaust valve is actuated somewhat later. In the case of direct injection, the injection valve can be positioned in the center.
  • the control winding of the magnet which brings the valve into the closed position is preferably used as the excitation winding (primary winding) of the ignition coil.
  • the excitation winding primary winding
  • a large pressure is exerted on the valve. It is therefore possible to switch off the holding current during the coupling of the ignition pulse via the primary winding. This will preferably be done about 90 ° crankshaft angle before the ignition pulse. It is sufficient to switch on the holding excitation only shortly before bottom dead center for the inlet valve and outlet valve.
  • 6a shows the stroke profile of a cylinder with the extreme points UT and OT. Ignition occurs at t 1 .
  • FIG. 6b and 6c show the state of the inlet valve E and the outlet valve A, these valves being open in the dashed areas.
  • the pressure curve in the cylinder is plotted in FIG. 6d. 6e and 6f, the drive currents for the closing magnet and the opening magnet (i 7 and i 6 in Fig. 6e) of the inlet valve and the outlet valve (i 7a and i 6a in Fig. 6f) are plotted.
  • the low holding current of the closing magnet coil with the current profile i7 is switched off at t 0 and shortly thereafter the magnet coil of the opening magnet with the current profile i 6 is switched on and, after reaching the end position, it is reduced to a smaller holding current.
  • this holding current is switched off and the valve moves in the direction of the closed position.
  • the closing solenoid is first energized to catch the armature and then lowered to a holding value until it is switched off again to open the inlet valve.
  • the relatively flat current drop results from the free-wheeling diode, the effect of which will be explained with reference to FIGS. 8 and 9.
  • the adequate current flow basically applies to the exhaust valve.
  • the outlet valve is closed via the low holding current of the closing magnet coil with current profile i 7a .
  • the current is increased to a value which results in sufficient coil energy so that sufficient ignition voltage and ignition energy are transmitted to the secondary coil after the rapid switch-off.
  • the time of the current increase is determined by the speed and the coil time constant. After switching off, the holding current is then switched on in the closing magnet coil.
  • the exhaust valve is opened later, the same procedure applies to the closing and opening magnet as for the intake valve.
  • the inlet valve E there is sufficient time for the so-called charging of the excitation coil.
  • the intake valve closes, the compression phase comes immediately with the ignition point, which can be up to 20 ° before TDC at high speeds. For the sake of simplification, the ideal current curve was drawn.
  • the current of the closing solenoids can also be reduced or even switched off at higher pressures in order to save drive power.
  • Fig. 7 shows the possible different courses of the pulses for the valve actuation (extended course) and for the ignition (dashed trailing edge course).
  • 8 shows a control circuit for a valve.
  • Two excitation coils 40 and 41 or 42 and 43 with separate, controllable output stages 44 to 47 are provided for each magnet, as described in the earlier patent application 197 31 381.7.
  • the windings 40 and 41 or 42 and 43 each represent a winding.
  • a freewheeling diode 40a to 43a is connected in parallel with each excitation coil 40 to 43.
  • a storage capacitor 48 is provided to relieve the on-board electrical system 9 at high pulse loads.
  • the arrangement of Fig. 8 is designed for the integration of the ignition.
  • the winding 42 is additionally used as the primary coil of the ignition coil.
  • the ignition stage 46 must therefore have an extremely short switch-off time so that the high induction voltage can cause the correspondingly high ignition voltage. It is not possible to use a simple freewheeling diode in the part of the electromagnet in which the magnetic circuit and the winding 42 are also used for the ignition. A controlled freewheeling diode must be used here, which blocks the freewheel in the event of ignition and releases the freewheel when the valve is actuated in the magnet for energy recovery. This is made possible by an appropriately controlled, high-voltage-resistant output stage 42a.

Description

Die Erfindung betrifft einen Verbrennungsmotor mit den Merkmalen des Oberbegriffs des Anspruchs 1.
Es ist z.B. aus der EP 0357938 B1 bekannt, einen entsprechend dem Oberbegriff des Anspruchs 1 ausgebildeten Antrieb für die Betätigung eines Ventils eines Verbrennungsmotors zu nutzen. Es wird als bekannt unterstellt, daß man bei einem Motor mit derartiger Ventilbetätigung eine ruhende Hochspannungsverteilung mit Mehrfachfunkenzündspule oder Einzelfunkenspulen z.B. mit der Zündkerze kombiniert einsetzt, wie sie z.B. aus dem Bosch Taschenbuch Seite 439 ff bekannt ist.
Der Erfindung liegt die Aufgabe zu Grunde, einen Verbrennungsmotor zu schaffen, bei dem Kosten und Gewicht für die Zündsysteme verringert werden.
The invention relates to an internal combustion engine with the features of the preamble of claim 1.
It is known, for example from EP 0357938 B1, to use a drive designed according to the preamble of claim 1 for actuating a valve of an internal combustion engine. It is assumed that it is known that an engine with such valve actuation uses a stationary high-voltage distribution combined with a multi-spark ignition coil or single spark coils, for example with the spark plug, as is known, for example, from the Bosch paperback page 439 ff.
The invention is based on the object of providing an internal combustion engine in which the costs and weight for the ignition systems are reduced.

Diese Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst.
Aus dem Gebrauchsmuster 700 31 43 ist es bekannt, für den Anker einer Hochspannungs-Kondensator-Zündanlage einen dreischenkligen Eisenkern vorzusehen und auf diesen Schenkeln verschiedene, für die Zündung benötigte, Wicklungen aufzubringen. Hier sind Eisenkern und Wicklungen ausschließlich für das Zündsystem vorgesehen.
This object is solved by the features of claim 1.
From utility model 700 31 43 it is known to provide a three-leg iron core for the armature of a high-voltage capacitor ignition system and to apply various windings required for the ignition to these legs. Here iron core and windings are only intended for the ignition system.

Durch die Erfindung ergibt sich auch die Möglichkeit, insbesondere bei Direkteinspritzung mit höheren Anforderungen an das Zündsystem mehrere Zündkerzen einzusetzen.
Der Hauptgedanke der Erfindung sieht die Doppelnutzung des Eisenkreises und der Erregerspule sowohl für den magnetischen Ventilantrieb als auch für die Zündanlage vor.
Das Gewicht pro Zündspule beträgt ca. 250 g, d.h. bei 4 Zylindern können durch die Erfindung 1000 g Gewicht eingespart werden. Da bei der Erfindung mindestens zwei Doppel-Magnetsysteme pro Zylinder verwendet werden, kann mit geringem Aufwand eine Doppelzündung realisiert werden mit den bekannten Vorteilen für die Verbrennung (Motortechnische Zeitung Seiten 393/394-58/1997). Diese ist aus Gewichts- und Kostengründen wenig verbreitet. Es ist hier keine getrennte Befestigung der Zündspule notwendig. Es wird nur ein kurzes Kabel benötigt. Ein Teil der elektrischen Anschlüsse kann mitbenutzt werden.
Die Unteransprüche beinhalten Weiterbildungen und Ausgestaltungen der Erfindung.
The invention also makes it possible to use a plurality of spark plugs, in particular in the case of direct injection, with higher demands on the ignition system.
The main idea of the invention provides the double use of the iron circuit and the excitation coil both for the magnetic valve drive and for the ignition system.
The weight per ignition coil is approx. 250 g, ie 1000 g weight can be saved with 4 cylinders by the invention. Since the invention uses at least two double magnet systems per cylinder, double ignition can be implemented with little effort and with the known advantages for combustion (Motortechnische Zeitung pages 393 / 394-58 / 1997). This is not very common for reasons of weight and cost. No separate attachment of the ignition coil is necessary here. Only a short cable is required. Some of the electrical connections can be shared.
The subclaims contain further developments and refinements of the invention.

FigurenbeschreibungFigure description

Anhand der Zeichnung werden Ausführungsbeispiele der Erfindung erläutert.Exemplary embodiments of the invention are explained with the aid of the drawing.

Es zeigen:

Fig. 1
ein Ausführungsbeispiel der Erfindung mit getrennten Erregerspulen
Fig. 2
ein Ausführungsbeispiel der Erfindung mit Doppelnutzung der Erregerspule
Fig. 3 und 5
je ein Blick auf die Ventil- und Zündkerzenanordnung eines Zylinders
Fig. 6 und 7
Diagramme zur Erläuterung der Ansteuerung der Ventile und der Zündung
Fig. 8
ein Ausführungsbeispiel mit Freilaufdioden
Fig. 9
ein zugehöriges Diagramm
Show it:
Fig. 1
an embodiment of the invention with separate excitation coils
Fig. 2
an embodiment of the invention with double use of the excitation coil
3 and 5
A look at the valve and spark plug arrangement of a cylinder
6 and 7
Diagrams to explain the control of the valves and the ignition
Fig. 8
an embodiment with freewheeling diodes
Fig. 9
an associated diagram

In Fig. 1 ist ein elektromagnetischer Antrieb für ein Ventil 1 eines Verbrennungsmotors gezeigt, der zwei zweipolige Elektromagnete 2 und 3 mit lamellierten Eisenkernen 4 und 5 und Erregerspulen 6 und 7 aufweist. Zwischen den Polen der Elektromagnete ist ein Anker 8 angeordnet, der mittels eines um die Achse 9 drehbaren Stabs 10 federgelagert ist. An den Anker 8 ist eine Betätigungsstange 11 angelenkt, die bei Erregung des Elektromagneten 2 das Ventil 1 gegen die Kraft einer Feder 12 öffnet. Die Federkraft der Feder 12 und die Voreinstellung der Federkraft des Drehstabs 10 sind so aufeinander abgestimmt, daß der Anker 8 bei nicht erregten Elektromagneten in die ausgezogen gezeichnete Stellung gestellt wird. Es ist ein mechanisches Rastsystem mit einer Rastrolle 13 vorgesehen, die in den Endstellungen des Ankers 8 unter- bzw. oberhalb eines Teils 14 des Ankers 8 einrastet, und dann den Anker in der Endstellung ohne Erregung eines Elektromagneten festhält.
In Fig. 1 ist strichpunktiert die Stellung (8') des Ankers 8 nach Erregung des Elektromagneten 3 und Einrasten der Rastrolle 13' unter das Teil 14' des Ankers gezeigt.
Die Rastung wird durch einen gesonderten nicht gezeigten Rastelektromagneten bei Umsteuerung des Ventils rechtzeitig entrastet.
Auf den lamellierten Kem 4 des Elektromagneten 3 sind auch die Primär- 15 und Sekundärwicklungen 16 einer Einzelfunkenzündspule aufgebracht; der Eisenkern 5 wird also doppelt genutzt. Die Sekundärwicklung 16 ist mit einer Zündkerze 17 verbunden. Der Niederspannungsanschluß für die Zündspule ist mit 18 bezeichnet.
1 shows an electromagnetic drive for a valve 1 of an internal combustion engine, which has two two-pole electromagnets 2 and 3 with laminated iron cores 4 and 5 and excitation coils 6 and 7. An armature 8 is arranged between the poles of the electromagnets and is spring-supported by means of a rod 10 rotatable about the axis 9. An actuating rod 11 is articulated to the armature 8 and opens the valve 1 against the force of a spring 12 when the electromagnet 2 is excited. The spring force of the spring 12 and the presetting of the spring force of the torsion bar 10 are coordinated with one another in such a way that the armature 8 is placed in the drawn position when the electromagnet is not energized. A mechanical latching system with a latching roller 13 is provided, which engages in the end positions of the armature 8 below or above a part 14 of the armature 8, and then holds the armature in the end position without energizing an electromagnet.
1, the position (8 ') of the armature 8 after excitation of the electromagnet 3 and engagement of the locking roller 13' under the part 14 'of the armature is shown in broken lines.
The detent is released in time by a separate not shown electromagnet when reversing the valve.
The primary 15 and secondary windings 16 of a single spark ignition coil are also applied to the laminated core 4 of the electromagnet 3; the iron core 5 is therefore used twice. The secondary winding 16 is connected to a spark plug 17. The low voltage connection for the ignition coil is designated 18.

Die Fig. 2 der Zeichnung unterscheidet sich von Fig. 1 nur dadurch, daß die Erregerspule 7 für den Elektromagneten 3 weggelassen wurde und nunmehr die Primärwicklung 15 der Zündspule auch als Erregerspule für den Elektromagneten 3 genutzt wird. Die Ansteuerung für die beiden Anwendungen erfolgt mit unterschiedlichen Stromstärken, und zwar ist die Stromstärke für die Zündspule niedriger. Eine gegenseitige Störung der Aggregate ist nicht zu befürchten, weil in der Raststellung ohne Betätigung des Rastmagneten keine Ventilbetätigung erfolgt. Für die beschriebene Kombination wird vorzugsweise das Magnetsystem des Auslaßventiles vorgeschlagen.
Als Ansteuerverfahren können bewährte Verfahren eingesetzt werden, z.B. eine Zeitsteuerung oder auch eine Stromregelung, um die Kriterien Zündspannung, Zündzeitpunkt und Zündenergie zu erhalten.
Fig. 2 of the drawing differs from Fig. 1 only in that the excitation coil 7 has been omitted for the electromagnet 3 and now the primary winding 15 of the ignition coil is also used as an excitation coil for the electromagnet 3. The control for the two applications takes place with different currents, namely the current for the ignition coil is lower. There is no fear of mutual interference between the units, because in the locked position there is no valve actuation without actuating the locking magnet. The solenoid system of the exhaust valve is preferably proposed for the combination described.
Proven methods can be used as the control method, for example a time control or a current control, in order to obtain the criteria of ignition voltage, ignition timing and ignition energy.

Die im Anspruch 1 erwähnte einsetzbare Mehrfachfunkenzündspule kann für zwei oder mehrere Zylinder zum Einsatz kommen.
Wird entsprechend Fig. 2 nur eine Wicklung für beide Anwendungen benutzt, wobei für die Ventilbetätigung ein Impuls größerer Amplitude als für die Zündung verwendet wird, so kann man eine Zündung durch diesen Impuls dadurch vermeiden, daß man den Impuls in Stufen abbaut, also die Rückflanke des Impulses langsamer im Mittel abfallen läßt. Dies hat keinerlei negative Auswirkung auf die Ventilbetätigung. Jedoch wird die die Größe der
Sekundärspannung der Zündspule bestimmende Feldänderung (d/dt) der Rückflanke verkleinert, so daß die Sekundärspannung nicht zur Zündung ausreicht.
Alternativ zu den Fig. 1 und 2 könnte die beschriebene Rasteinrichtung auch wegfallen und das Festhalten in den Endstellungen durch Halteströme bewirkt werden. Vorzugsweise wird dabei für wenigstens eine Endstellung eine gesonderte Haltewicklung vorgesehen, die für diesen Zweck spezieller Weise dimensioniert werden kann.
In Fig. 3 ist schematisch ein Zylinder 20 vom Kolben her gesehen gezeigt. Er weist zwei Einlaßventile 21 und 22 und ein Auslaßventil 23 auf. Außerdem sind zwei Zündkerzen 24 und 25 vorgesehen. Die Verwendung von zwei Zündkerzen hat den Vorteil einer besseren Abgasqualität. Die beiden Zündkerzen werden über eine Primärwicklung entsprechend Fig. 1 oder 2 angesteuert, wobei zwei Hochspannungs Sekundärwicklungen vorgesehen werden.
Fig. 4 zeigt eine Anordnung wieder mit drei Ventilen 31,32 und 33 jetzt aber mit drei Zündkerzen 34, 35 und 36, was eine weitere Steigerung der Abgasqualität mit sich bringt.
Auch vier Zündkerzen können eingesetzt werden. Auch ist die Verwendung von zwei oder vier Ventilen möglich.
In Fig. 5 ist eine 4-Ventilversion mit drei Zündkerzen gezeigt. Dabei ist ein Auslaßventil (A-Ventil) beträchtlich kleiner. Dies ist notwendig zur Reduzierung der Magnet- und Ventilkräfte, da das A-Ventil gegen den Restdruck (ca. 8 bar) im Zylinder öffnen muß. Diese Auslegung ist notwendig, wenn eine Konstruktion mit kleinen beschleunigenden Massen vorliegt und dementsprechend die Rückstellfedern schwächer sind, was auch kleinere Magnete zur Folge hat. Die Vierventilversion mit drei Zündkerzen eignet sich besonders gut für die Direkteinspritzung. Vorzugsweise wird das Einspritzventil im seitlichen Zwischenraum zwischen den Einlaßventilen E1 und E2 angebracht. Bei dieser 4-Ventilversion mit einem relativ kleinen Auslaßventil können anstelle von drei Zündkerzen auch eine oder zwei Zündkerzen verwendet werden.
Das kleine Auslaßventil wird zuerst erregt, so daß der große Druck bei der etwas späteren Ansteuerung des großen Auslaßventils abgebaut ist.
Bei Direkteinspritzung kann das Einspritzventil im Zentrum positioniert sein.
The usable multi-spark ignition coil mentioned in claim 1 can be used for two or more cylinders.
If, according to FIG. 2, only one winding is used for both applications, a pulse of greater amplitude being used for the valve actuation than for the ignition, ignition by this pulse can be avoided by reducing the pulse in stages, i.e. the trailing edge of the impulse drop more slowly on average. This has no negative impact on valve actuation. However, the size of the
Secondary voltage of the ignition coil determining field change (d / dt) of the trailing edge is reduced, so that the secondary voltage is not sufficient for ignition.
As an alternative to FIGS. 1 and 2, the latching device described could also be omitted and the holding in the end positions could be brought about by holding currents. Preferably, a separate holding winding is provided for at least one end position, which can be dimensioned in a special way for this purpose.
In Fig. 3, a cylinder 20 is shown schematically seen from the piston. It has two inlet valves 21 and 22 and an outlet valve 23. In addition, two spark plugs 24 and 25 are provided. The use of two spark plugs has the advantage of better exhaust gas quality. The two spark plugs are driven via a primary winding according to FIG. 1 or 2, two high-voltage secondary windings being provided.
Fig. 4 shows an arrangement again with three valves 31, 32 and 33 but now with three spark plugs 34, 35 and 36, which entails a further increase in the exhaust gas quality.
Four spark plugs can also be used. The use of two or four valves is also possible.
5 shows a 4-valve version with three spark plugs. An outlet valve (A valve) is considerably smaller. This is necessary to reduce the magnetic and valve forces, since the A valve must open against the residual pressure (approx. 8 bar) in the cylinder. This design is necessary if there is a design with small accelerating masses and accordingly the return springs are weaker, which also results in smaller magnets. The four-valve version with three spark plugs is particularly suitable for direct injection. The injection valve is preferably mounted in the lateral space between the intake valves E1 and E2. In this 4-valve version with a relatively small exhaust valve, one or two spark plugs can be used instead of three spark plugs.
The small exhaust valve is energized first, so that the large pressure is released when the large exhaust valve is actuated somewhat later.
In the case of direct injection, the injection valve can be positioned in the center.

Vorzugsweise wird als Erregerwicklung (Primärwicklung) der Zündspule die Ansteuerwicklung des Magneten verwendet, der das Ventil in die Schließstellung bringt. In der Schließstellung eines Einlaßventils und während der Verdichtung im Zylinder lastet ein großer Druck auf dem Ventil. Deshalb ist es möglich während der Einkopplung des Zündimpulses über die Primärwicklung den Haltestrom abzuschalten. Dies wird man vorzugsweise ca. 90° Kurbelwellenwinkel vor dem Zündimpuls tun. Es genügt beim Einlaßventil und Auslaßventil die Halteerregung erst wieder kurz vor dem unteren Totpunkt einzuschalten.
In Fig. 6a ist der Hubverlauf eines Zylinders mit den Extrempunkten UT und OT gezeigt. Bei t1 erfolgt die Zündung. Die Fig. 6b und 6c zeigen den Zustand des Einlaßventils E und des Auslaßventils A, wobei diese Ventile in den gestrichelten Bereichen geöffnet sind. In der Fig. 6d ist der Druckverlauf im Zylinder aufgetragen. In den Fig. 6e und 6f sind die Ansteuerströme für den Schließmagneten und den Öffnungsmagneten (i7 und i6 in Fig. 6e) des Einlaßventils und des Auslaßventils (i7a und i6a in Fig. 6f) aufgetragen.
Zur Öffnung des Einlaßventils wird bei t0 der niedrige Haltestrom der Schließmagnetspule mit dem Stromverlauf i7 abgeschaltet und kurz darauf die Magnetspule des Öffnungsmagneten mit dem Stromverlauf i6 eingeschaltet und nach Erreichen der Endstellung auf einen kleineren Haltestrom abgesenkt. Abhängig von der Drehzahl wird dieser Haltestrom abgeschaltet und das Ventil bewegt sich in Richtung Schließstellung. Hierzu wird die Schließmagnetspule zunächst zum Fangen des Ankers stärker bestromt und anschließend auf einen Haltewert abgesenkt, bis er wieder zum Öffnen des Einlaßventils abgeschaltet wird. Der relativ flache Stromabfall resultiert aus der Freilaufdiode, deren Wirkung anhand der Fig. 8 und 9 noch erläutert wird.
Der adäquate Stromverlauf gilt grundsätzlich für das Auslaßventil. In der Phase des geschlossenen Zustandes wird das Auslaßventil über den niedrigen Haltestrom der Schließmagnetspule mit Stromverlauf i7a geschlossen. Vor dem Zündzeitpunkt T2 wird der Strom erhöht auf einen Wert, der genügend Spulenenergie zur Folge hat, damit nach dem schnellen Abschalten in die Sekundärspule genügend Zündspannung und Zündenergie übertragen wird. Der Zeitpunkt der Stromerhöhung wird von der Drehzahl und der Spulenzeitkonstanten bestimmt. Nach dem Abschalten wird anschließend in der Schließmagnetspule der Haltestrom eingeschaltet. Beim späteren Öffnen des Auslaßventils gilt derselbe Ablauf für den Schließ- und Öffnungsmagneten wie beim Einlaßventil. Im Gegensatz zum Einlaßventil E ist zum sogenannten Laden der Erregerspule genügend Zeit vorhanden. Beim Einlaßventil kommt nach dem Schließen unmittelbar die Verdichtungsphase mit dem Zündzeitpunkt, der bei hohen Drehzahlen bis zu 20° vor OT sein kann. Aus Gründen der Vereinfachung wurde der ideale Stromverlauf gezeichnet. Auch kann der Strom der Schließmagnetspulen bei höherem Drücken reduziert oder sogar ganz abgeschaltet werden, um Ansteuerleistung einzusparen.
The control winding of the magnet which brings the valve into the closed position is preferably used as the excitation winding (primary winding) of the ignition coil. In the closed position of an intake valve and during compression in the cylinder, a large pressure is exerted on the valve. It is therefore possible to switch off the holding current during the coupling of the ignition pulse via the primary winding. This will preferably be done about 90 ° crankshaft angle before the ignition pulse. It is sufficient to switch on the holding excitation only shortly before bottom dead center for the inlet valve and outlet valve.
6a shows the stroke profile of a cylinder with the extreme points UT and OT. Ignition occurs at t 1 . 6b and 6c show the state of the inlet valve E and the outlet valve A, these valves being open in the dashed areas. The pressure curve in the cylinder is plotted in FIG. 6d. 6e and 6f, the drive currents for the closing magnet and the opening magnet (i 7 and i 6 in Fig. 6e) of the inlet valve and the outlet valve (i 7a and i 6a in Fig. 6f) are plotted.
To open the inlet valve, the low holding current of the closing magnet coil with the current profile i7 is switched off at t 0 and shortly thereafter the magnet coil of the opening magnet with the current profile i 6 is switched on and, after reaching the end position, it is reduced to a smaller holding current. Depending on the speed, this holding current is switched off and the valve moves in the direction of the closed position. For this purpose, the closing solenoid is first energized to catch the armature and then lowered to a holding value until it is switched off again to open the inlet valve. The relatively flat current drop results from the free-wheeling diode, the effect of which will be explained with reference to FIGS. 8 and 9.
The adequate current flow basically applies to the exhaust valve. In the phase of the closed state, the outlet valve is closed via the low holding current of the closing magnet coil with current profile i 7a . Before the ignition point T 2 , the current is increased to a value which results in sufficient coil energy so that sufficient ignition voltage and ignition energy are transmitted to the secondary coil after the rapid switch-off. The time of the current increase is determined by the speed and the coil time constant. After switching off, the holding current is then switched on in the closing magnet coil. When the exhaust valve is opened later, the same procedure applies to the closing and opening magnet as for the intake valve. In contrast to the inlet valve E, there is sufficient time for the so-called charging of the excitation coil. When the intake valve closes, the compression phase comes immediately with the ignition point, which can be up to 20 ° before TDC at high speeds. For the sake of simplification, the ideal current curve was drawn. The current of the closing solenoids can also be reduced or even switched off at higher pressures in order to save drive power.

Fig. 7 zeigt die möglichen unterschiedlichen Verläufe der Impulse für die Ventilbetätigung (ausgezogener Verlauf) und für das Zünden (gestrichelter Rückflankenverlauf).
Fig. 8 zeigt eine Ansteuerschaltung für ein Ventil. Pro Magnet sind hier zwei Erregerspulen 40 und 41 bzw. 42 und 43 mit getrennten, steuerbaren Endstufen 44 bis 47 vorgesehen, wie dies in der älteren Patentanmeldung 197 31 381.7 beschrieben ist. Die Wicklungen 40 und 41 bzw. 42 und 43 stellen je eine Wicklung dar. Parallel zu jeder Erregerspule 40 bis 43 ist eine Freilaufdiode 40a bis 43a geschaltet. Zur Entlastung des Bordnetzes 9 bei der hohen Impulsbelastung ist ein Speicherkondensator 48 vorgesehen.
Die Anordnung, der Fig. 8 ist für die Integration der Zündung ausgelegt. Hier wird z.B. die Wicklung 42 zusätzlich als Primärspule der Zündspule benutzt. Die Zündstufe 46 muß deshalb eine extrem kurze Abschaltzeit aufweisen, damit die hohe Induktionsspannung die entsprechend hohe Zündspannung bewirken kann. In dem Teil des Elektromagneten, in dem der Magnetkreis und die Wicklung 42 für die Zündung mitgenutzt wird, ist es nicht möglich, eine einfache Freilaufdiode einzusetzen. Hier muß eine gesteuerte Freilaufdiode eingesetzt werden, die im Zündfall den Freilauf sperrt und bei Ventilbetätigung im Magneten zur Energierückgewinnung den Freilauf freigibt. Dies wird durch eine entsprechend gesteuerte, hochspannungsfeste Endstufe 42a ermöglicht.
Fig. 9 zeigt für die Anordnung der Fig. 8 voll ausgezogen den Stromverlauf i=f(t) im Falle der Zündung und gestrichelt den Verlauf i=f(t) bei Ventilbetrieb.
Fig. 7 shows the possible different courses of the pulses for the valve actuation (extended course) and for the ignition (dashed trailing edge course).
8 shows a control circuit for a valve. Two excitation coils 40 and 41 or 42 and 43 with separate, controllable output stages 44 to 47 are provided for each magnet, as described in the earlier patent application 197 31 381.7. The windings 40 and 41 or 42 and 43 each represent a winding. A freewheeling diode 40a to 43a is connected in parallel with each excitation coil 40 to 43. A storage capacitor 48 is provided to relieve the on-board electrical system 9 at high pulse loads.
The arrangement of Fig. 8 is designed for the integration of the ignition. Here, for example, the winding 42 is additionally used as the primary coil of the ignition coil. The ignition stage 46 must therefore have an extremely short switch-off time so that the high induction voltage can cause the correspondingly high ignition voltage. It is not possible to use a simple freewheeling diode in the part of the electromagnet in which the magnetic circuit and the winding 42 are also used for the ignition. A controlled freewheeling diode must be used here, which blocks the freewheel in the event of ignition and releases the freewheel when the valve is actuated in the magnet for energy recovery. This is made possible by an appropriately controlled, high-voltage-resistant output stage 42a.
FIG. 9 shows the current curve i = f (t) in the case of ignition for the arrangement of FIG. 8 when fully extended and the curve i = f (t) in valve operation in dashed lines.

Claims (23)

  1. An internal combustion engine with an electromagnetic drive for the valve actuation, wherein for each valve (1) two solenoids (2, 3) are provided, in particular, solenoids whose pole surfaces are at least partially facing one another, and with an armature (8) movable back and forth between these pole surfaces which, when the solenoids are switched off, is brought by spring forces into an intermediate position and is held there and, upon switching on one of the solenoids (2, 3), is brought into the vicinity of the pole surfaces of the corresponding solenoid (2, 3), wherein the armature (8) is in interactive connection with the valve (1) to be driven, wherein the internal combustion engine has a static high-voltage distribution with single spark ignition coils or multi-spark ignition coils whose primary and secondary windings are applied to a laminated core, characterized in that the iron core (5) of one solenoid (3) of the drive is also used as the core of the ignition coil (18).
  2. The internal combustion engine according to claim 1, characterized in that the winding of the solenoid serves as an exciting winding (primary winding) of the ignition coil (Fig. 2).
  3. The internal combustion engine according to claim 2, characterized in that the winding of the solenoid is triggered with different intensities of current for the two types of use (Fig. 6e).
  4. The internal combustion engine according to claim 3, characterized in that the back flank of the pulse that is input for the valve drive drops at a slowed rate (Fig. 7).
  5. The internal combustion engine according to claim 4, characterized in that the back flank drops in steps (Fig. 7).
  6. The internal combustion engine according to one of the claims 1 to 5, characterized in that for each cylinder two spark plugs (24, 25) are provided.
  7. The internal combustion engine according to claim 6, characterized in that for each cylinder three valves (21 to 23) are provided.
  8. The internal combustion engine according to one of the claims 1 to 5, characterized in that for each cylinder three spark plugs (34 to 36) are provided.
  9. The internal combustion engine according to claim 8, characterized in that for each cylinder three valves (31 to 33) are provided.
  10. The internal combustion engine according to one of the claims 1 to 5, characterized in that for each cylinder four spark plugs are provided.
  11. The internal combustion engine according to one of the claims 1 to 5, characterized in that for each cylinder four valves (A1, A2, E1, E2) and three spark plugs are provided.
  12. The internal combustion engine according to claim 11, characterized in that for each cylinder at least one and at most four spark plugs are provided (Fig. 5).
  13. The internal combustion engine according to one of the claims 7 to 10, characterized in that, when using at least two exhaust valves (A1, A2), one of them (A1) is of a smaller size relative to the other (A2).
  14. The internal combustion engine according to one of the claims 11 to 13, characterized by its use for direct injection.
  15. The internal combustion engine according to claim 14, characterized in that the injection valve is arranged in the lateral intermediate space between the intake valves.
  16. The internal combustion engine according to one of the claims 6 to 10, characterized in that the drive coil of the solenoid for closing the valve serves as an exciting winding (primary winding) of the ignition coil.
  17. The internal combustion engine according to one of the claims 1 - 16, wherein a holding current is provided for holding the closing position of the valve, characterized in that the holding current is switched off when the ignition trigger signal is generated.
  18. The internal combustion engine according to claim 17, characterized in that a separate restraining coil is provided for holding the closing position (Fig. 8).
  19. The internal combustion engine according to claim 17 or 18, characterized in that the holding current is switched off during a time period before and after generating the ignition trigger signal.
  20. The internal combustion engine according to one of the claims 1 to 19, characterized in that, for energy recovery on the coils (40 to 43) of the solenoids by freewheeling diodes (40a to 43a) connected parallel to the coil, a special connected switching device (42a) is correlated with the coil (42), serving also as a primary winding of the ignition coil, which switching device acts as a freewheeling diode during operation for energy recovery with slow current drop and blocks the recovery/freewheeling process during ignition operation.
  21. The internal combustion engine according to one of the claims 1 to 20, characterized in that the solenoid drive comprises two exciting windings (e.g., 40, 41) each which are connected in parallel at times.
  22. The internal combustion engine according to one of the claims 1 to 21, characterized in that for optimizing the ignition sequence the exciting winding or the magnet core of a neighboring cylinder is used for ignition.
  23. The internal combustion engine according to one of the claims 1 to 22, characterized in that a winding of a solenoid of the exhaust valve of the respective cylinder is used for ignition.
EP98920484A 1997-03-24 1998-03-24 Internal combustion engine Expired - Lifetime EP0970299B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19712054A DE19712054A1 (en) 1997-03-24 1997-03-24 Internal combustion (IC) engine
DE19712054 1997-03-24
DE19741569A DE19741569A1 (en) 1997-09-20 1997-09-20 Internal combustion (IC) engine
DE19741569 1997-09-20
PCT/EP1998/001706 WO1998042956A1 (en) 1997-03-24 1998-03-24 Internal combustion engine

Publications (2)

Publication Number Publication Date
EP0970299A1 EP0970299A1 (en) 2000-01-12
EP0970299B1 true EP0970299B1 (en) 2001-06-20

Family

ID=26035132

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98920484A Expired - Lifetime EP0970299B1 (en) 1997-03-24 1998-03-24 Internal combustion engine

Country Status (3)

Country Link
EP (1) EP0970299B1 (en)
DE (1) DE59800893D1 (en)
WO (1) WO1998042956A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19923902A1 (en) * 1999-05-25 2000-11-30 Heinz Leiber Internal combustion engine
US6997433B2 (en) 2004-01-21 2006-02-14 Ford Global Technologies, Llc Electronic valve actuator having vibration cancellation
US7314026B2 (en) 2004-01-21 2008-01-01 Ford Global Technologies, Llc Electronic valve actuator having hydraulic displacement amplifier
DE102006005943A1 (en) * 2006-02-09 2007-08-23 Bayerische Motoren Werke Ag Internal combustion engine with an electric valve train

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7003143U (en) 1970-01-30 1971-07-08 Bosch Gmbh Robert IGNITION ANCHORS FOR IGNITION SYSTEMS IN COMBUSTION MACHINERY.
DE2343905C2 (en) * 1973-08-31 1982-10-07 Daimler-Benz Ag, 7000 Stuttgart Device for digital-electronic control of the inlet, outlet and injection valves as well as the ignition in internal combustion engines
GB1471537A (en) * 1974-12-06 1977-04-27 Venard R Engine valve control
FR2307958A1 (en) * 1975-04-18 1976-11-12 Robert Edmond IC engine with electromagnetic valves - having solenoids energised in sequence by engine driven distributor
DE3524024A1 (en) * 1985-07-05 1987-01-15 Fleck Andreas METHOD FOR OPERATING AN INTERNAL COMBUSTION ENGINE
DE3826977A1 (en) 1988-08-09 1990-02-15 Meyer Hans Wilhelm CONTROL DEVICE FOR A GAS EXCHANGE VALVE OF AN INTERNAL COMBUSTION ENGINE

Also Published As

Publication number Publication date
WO1998042956A1 (en) 1998-10-01
DE59800893D1 (en) 2001-07-26
EP0970299A1 (en) 2000-01-12

Similar Documents

Publication Publication Date Title
DE19526848B4 (en) Method for throttle-free load control of a reciprocating internal combustion engine with variable controllable gas exchange valves
DE3024109C2 (en)
DE3307070C2 (en) Setting device for a switching element that can be adjusted between two end positions
DE3708373C1 (en) Method for operating an intake valve of an internal combustion engine
DE19610468B4 (en) Method for load-dependent control of gas exchange valves on a reciprocating internal combustion engine
DE19736137C1 (en) Starting procedure for IC engine equipped with solenoid- controlled inlet and outlet valves
DE19951537B4 (en) Valve drive device for an internal combustion engine
DE19921938A1 (en) Armature release rate increase method for electromagnetic actuator, e.g. for i.c. engine gas valve
EP0229792B1 (en) Method for operating an internal combustion engine
DE10003928A1 (en) Electromagnetic actuator to operate gas change valve of internal combustion engine; has electromagnets and spring mechanism to adjust valve connected to armature between two end positions
EP0970299B1 (en) Internal combustion engine
DE3729954C2 (en)
DE19741569A1 (en) Internal combustion (IC) engine
DE3923477A1 (en) METHOD FOR CONTROLLING THE ANCHOR MOTION OF SHIFTING MAGNETS
EP0945610A2 (en) Method and apparatus for switching an inductor
DE19712062A1 (en) Electromagnetic control device
DE19521676A1 (en) Armature pick=up control e.g. for operating magnet or solenoid of IC engine gas exchange valves
DE19805171C2 (en) Electromagnet and use of the same
DE10057778A1 (en) Method and circuit arrangement for operating a solenoid valve
DE19529151A1 (en) Method of switching an electromagnetic actuator
DE19712054A1 (en) Internal combustion (IC) engine
DE19905492C1 (en) Electromagnetic control of gas exchange valves in combustion engine, producing braking pulse against movement of armature in at least one phase of operating cycle
DE3614528A1 (en) METHOD FOR OPERATING A MULTIPLE ELECTROMAGNET ARRANGEMENT
DE19529152A1 (en) Electromagnetic actuator for actuating control member e.g. to actuate valves in IC engine - has return spring with non-linear characteristic curve progressively increasing relative to rest position of armature
DE19714410A1 (en) Electromagnetic control device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990831

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20000530

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010620

REF Corresponds to:

Ref document number: 59800893

Country of ref document: DE

Date of ref document: 20010726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010920

ET Fr: translation filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20010620

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030417

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050324

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070402

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081001