EP0954567A2 - Genes de glycosyle hydrolases et leur utilisation pour la production d'enzymes de biodegradation des carraghenanes - Google Patents

Genes de glycosyle hydrolases et leur utilisation pour la production d'enzymes de biodegradation des carraghenanes

Info

Publication number
EP0954567A2
EP0954567A2 EP97943947A EP97943947A EP0954567A2 EP 0954567 A2 EP0954567 A2 EP 0954567A2 EP 97943947 A EP97943947 A EP 97943947A EP 97943947 A EP97943947 A EP 97943947A EP 0954567 A2 EP0954567 A2 EP 0954567A2
Authority
EP
European Patent Office
Prior art keywords
lys
asn
ser
val
gly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97943947A
Other languages
German (de)
English (en)
Inventor
Tristan Barbeyron
Philippe Potin
Christophe Richard
Bernard Henrissat
Jean-Claude Yvin
Bernard Kloareg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Laboratoires Goemar SA
Original Assignee
Laboratoires Goemar SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laboratoires Goemar SA filed Critical Laboratoires Goemar SA
Priority to EP04291327A priority Critical patent/EP1466981A1/fr
Publication of EP0954567A2 publication Critical patent/EP0954567A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01083Kappa-carrageenase (3.2.1.83)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01157Iota-carrageenase (3.2.1.157)

Definitions

  • the present invention relates to glycosyl hydrolase genes for the biotechnological production of oligosaccharides, in particular of sulfated oligo-carrageenans, more particularly of oligo-iota-carrageenans and of oligo-kappa-carrageenans by biodegradation of carrageenans.
  • Rhodophyceae such as agars and carrageenans
  • agars and carrageenans represent the major polysaccharides of Rhodophyceae and are very widely used as gelling agents or thickeners in various branches of activity, in particular the food industry.
  • About 6,000 tonnes of agars and 22,000 tonnes of carrageenans are extracted annually from marine red algae for this purpose.
  • Agars are commercially produced by red algae of the genera Gelidium and Gracilaria.
  • Carrageenans are largely extracted from the genera Chondrus, Gigartina and Eucheuma.
  • the carrageenans consist of the repetition of D-galactose units alternately linked by ⁇ l-> 4 and ⁇ l-> 3 bonds.
  • ester-sulphate groups on the molecule repeat dissacharide, several types of carrageenans are distinguished, namely: kappa-carrageenans which have an ester-sulphate group, iota-carrageenans which have two groups ester-sulfate and lambda-carrageenans which have three ester-sulfate groups.
  • carrageenans are structural analogues of the sulfated polysaccharides of the animal extracellular matrix (heparin, chondroitin, keratan, dermatan) and they exhibit biological activities which are related to certain functions of these glycosaminoglycans.
  • carrageenans are known:
  • HSV1 and hepatitis A as antagonists of the binding of human cell growth factors and also,
  • oligocarraghénanes act on the adhesion, the division and the protein synthesis of cultures of human cells, undoubtedly as structural analogues of the glycosylated part of the proteins of the extracellular matrix. In plants, oligocarraghenans very significantly elicit enzymatic activities that mark growth (amylase) or defense phenolic metabolism (laminarinase, phenylalanine-ammonium lyase).
  • the carrageenans are extracted from red seaweed by conventional methods, such as hot aqueous extraction and the oligocarraghenans are obtained from carrageenans by chemical hydrolysis or preferably by enzymatic hydrolysis.
  • the production of oligo-carrageenans by enzymatic hydrolysis generally includes the steps of:
  • Microorganisms producing enzymes capable of hydrolyzing iota- and kappa-carrageenans have been isolated by Bellion et al. in 1982 [Can. J. Microbiol. 28: 874-80, (1982)]. Some are specific for K- OR i-carrageenan and others are capable of hydrolyzing the two substrates. Another group of bacteria capable of degrading carrageenans has been characterized by
  • oligo-carrageenans could be improved considerably if we had specific enzymes and tools to obtain them by genetic engineering.
  • the Applicant has now found new glycosyl hydrolase genes, which make it possible to specifically obtain either oligo-iota-carrageenans or oligo-kappa-carrageenans.
  • the present invention relates to new genes which code for glycosyl hydrolases having an HCA score with the iota-carrageenase of Alteromonas fortis which is greater than or equal to 65%, preferably greater than or equal to 70% and advantageously greater than or equal at 75%, over the domain extending between amino acids 164 and 311 of the sequence [SEQ ID No. 2] of the iota-carrageenase of Alteromonas fortis.
  • the present invention relates more particularly to the nucleic acid sequence [SED ID No. 1] which codes for an iota-carrageenase as defined above, the amino acid sequence of which is the sequence [SEQ ID No. 2].
  • a subject of the present invention is also the genes which code for glycosyl hydrolases having an HCA score with the kappa-carrageenase of Alteromonas carrageenovora which is greater than or equal to 75%, preferably greater than 80%, advantageously greater than 85%, on the domain extending between amino acids 117 and 262 of the sequence [SEQ ID No. 6] of Alteromonas carrageenovora kappa-carrageenase.
  • the invention relates to the nucleic acid sequence [SEQ ID No. 7] which codes for a kappa-carrageenase having a score as defined above, the amino acid sequence of which is the sequence [SEQ ID No. 8].
  • glycosyl hydrolase genes of the invention are obtained by the process which consists in selecting proteins which have an HCA score with the iota-carrageenase of Alteromonas fortis which is greater than or equal to 65%, preferably greater than or equal to 70 % and advantageously greater than or equal to 75%, over the domain extending between amino acids 164 and 311 of the sequence [SEQ ID NO: 1]
  • glycosyl hydrolase genes of the invention can also be obtained by the method which consists in selecting proteins which have an HCA score with Alteromonas carrageenovora kappa-carrageenase which is greater than or equal to 75%, preferably greater than 80% , advantageously greater than 85%, over the domain extending between amino acids 117 and 262 of the sequence [SEQ ID No. 6] of the kappa-carrageenase of Alteromonas carrageenovora and in sequencing the genes thus obtained according to conventional techniques well known to those skilled in the art.
  • the present invention relates to the use of the above glycosyl hydrolase genes for obtaining glycosyl hydrolases by genetic engineering, which are useful for the biotechnological production of oligo-carrageenans.
  • the glysosyle hydrolases according to the invention are therefore characterized by the HCA score which they have with a particular domain of the amino acid sequence of the iota-carrageenase of Alteromonas fortis or of the kappa-carrageenase of Alteromonas carrageenovora.
  • the HCA method from the English "Hydrophobic Cluster Analysis” is a method for analyzing the sequences of proteins represented in two-dimensional structure, which has been described by Gaboriaud et al. [FEBS Letters 224 149-155 (1987)].
  • the two-dimensional representation used in the HCA method is an ⁇ helix where, by computer processing, the amino acids are arranged at the rate of 3.6 residues per revolution.
  • the propeller is cut in the longitudinal direction.
  • the diagram is duplicated.
  • the method uses a code which recognizes only two states: the hydrophobic state and the hydrophilic state.
  • Amino acids recognized as being hydrophobic are identified and grouped into characteristic geometric figures. The use of these two states makes it possible to get rid of the tolerance that the two- and three-dimensional structures show vis-à-vis the variability of the primary sequences. In addition, this representation makes it possible to quickly observe interactions over a short or medium distance since the first amino acid and the second amino acid neighboring a given residue are located on a segment of 17 amino acids. Finally, no "window" of predefined length is used, unlike analysis methods based on the primary or secondary structures of proteins.
  • the fundamental characteristic of the ⁇ helix representation is that, for a given globular protein or only one domain of this protein, the distribution of the hydrophobic residues on the diagram is not random.
  • Hydrophobic residues form clusters of varied geometry and size.
  • the hydrophilic and hydrophobic faces of the amphiphilic propellers are very recognizable.
  • a horizontal diamond cluster corresponds to the hydrophobic face of an ⁇ helix
  • the internal helices appear as large horizontal hydrophobic clusters
  • the ⁇ strands as fairly short and vertical hydrophobic clusters.
  • the method makes it possible to identify the hydrophobic residues forming the heart of the globular proteins and to locate the elements of secondary structure that are the ⁇ helices and the ⁇ strands, independently of any knowledge of the secondary structure of the protein studied.
  • HCA score 2CR / (RC ⁇ + RC 2 ) x 100% where - RCi and RC2 represent respectively the number of hydrophobic residues in the cluster of protein 1 (cluster 1) and the cluster of protein 2 (cluster 2).
  • the amino acids are represented by their standard code with a single letter with the exception of proline (P), glycine (G), serine (S), threonine (T).
  • Proline introduces strong constraints into the polypeptide chain and is systematically considered as an interruption in the clusters.
  • proline residues stop or deform the propellers and the sheets.
  • Glycine has a very high conformational flexibility due to the absence of side chain in this amino acid.
  • Serine and threonine are normally hydrophilic, but they can also be encountered in hydrophobic environments, such as ⁇ -helices, in which their hydroxyl group loses their hydrophilic nature due to the hydrogen bond formed with the carbonyl group of the main chain. . Within hydrophobic ⁇ sheets, threonine is sometimes capable of replacing hydrophobic residues, thanks to the methyl group of its side chain.
  • proteins which have an HCA score with the iota-carrageenase of Alteromonas fortis greater than or equal to 65% on the domain extending between amino acids 164- 311 of said iota- carrageenan are glycosyl hydrolase type enzymes and more particularly iota-carrageenases suitable for the production of oligo-iota-carrageenans from carrageenans.
  • Proteins which have an HCA score greater than or equal to 70%, preferably greater than or equal to 75%, with the domain 164-311 above, are particularly preferred for the purposes of the invention.
  • a particular example of a glycosyl hydrolase obtained with a gene according to the invention is the protein having the amino acid sequence [SEQ ID No. 2] extracted from Alteromonas fortis.
  • glycosyl hydrolase obtained with a gene according to the invention is the protein having the amino acid sequence [SEQ ID No. 4] extracted from Cytophaga drobachiensis.
  • the proteins which have an HCA score with the kappa-carrageenase of Alteromonas carrageenovora greater than or equal to 75% on the domain extending between amino acids 117 and 262 of said kappa-carrageenan are glycosyl hydrolase type enzymes, and more particularly kappa-carrageenases suitable for the production of oligo-kappa-carrageenans from carrageenans.
  • Proteins which have an HCA score greater than or equal to 80, preferably greater than or equal to 85%, with the domain 117-262 above, are particularly preferred for the purposes of the invention.
  • the above proteins are advantageously extracted from marine bacteria.
  • glycosyl hydrolase obtained with a gene according to the invention is the protein having the amino acid sequence [SEQ ID No. 6] extracted from Alteromonas carrageenovora.
  • Another particular example of a glycosyl hydrolase obtained with a gene according to the invention is the protein having the amino acid sequence [SEQ ID No. 8] extracted from Cytophaga drobachiensis.
  • the genes coding for the glycosyl hydrolases according to the invention can be obtained by sequencing the genetic heritage of the bacteria which produce the glycosyl hydrolases, as defined above, according to the conventional methods well known to those skilled in the art. .
  • the invention also relates to the expression vectors which carry, with the means for their expression, the nucleic sequences according to the invention.
  • These expression vectors can be used to transform prokaryotic microorganisms, in particular Escherichia coli or eukaryotic cells, such as yeasts or fungi.
  • prokaryotic microorganisms in particular Escherichia coli or eukaryotic cells, such as yeasts or fungi.
  • FIGS. 1 to 4 respectively represent:
  • Fig. 1 Alignment according to maximum similarity according to the method of Needleman and Wunsch, [J. Mol. Biol. 48, 443-453 (1970)] of the amino acid sequence of the iota-carrageenan Alteromonas fortis (upper part) and the iota-carrageenan of G drobachiensis (lower part).
  • Fig. 2 The HCA profiles of the amino acid sequences of the iota-carrageenases of Cytophaga drobachiensis and Alteromonas fortis.
  • Fig. 3 Alignment according to maximum similarity according to the method of Needleman and Wunsch 1970, J. Mol. Biol. 48, 443-453 of the amino acid sequence of the kappa-carrageenase of Alteromonas carrageenovora (upper part) and Cytophaga drobachiensis (lower part).
  • Fig. 4 The HCA profiles of the amino acid sequences of the kappa-carrageenases of Cytophaga drobachiensis and Alteromonas fortis.
  • the special abbreviations or symbols used in the examples below for amino acids are as follows:
  • Threonine I - I Serine:
  • Genomic DNA libraries of C. drobachiensis and A. fortis are generated by C. drobachiensis and A. fortis.
  • Luria-Bertani medium LB medium
  • Culture media agar or not were added with ampicillin (50 / g / ml) or tetracycline (15 ⁇ g / ml), from stock solutions prepared in 50% ethanol (to avoid solidification at the storage temperature, -20 ° C.) except for the non-recombinant DH5 ⁇ strain.
  • the expression vector used is the plasmid pAT153 described in
  • This plasmid contains two antibiotic resistance genes: a tetracycline resistance gene and a gene which codes for a ⁇ -lactamase, enzyme of the cytoplasmic membrane which degrades ampicillin.
  • the total DNA of C. drobachiensis and the total DNA of A. fortis were prepared according to the method described by Barbeyron et al. [J. Bacteriol. 160, 586-590 (1984)].
  • the genomic DNAs of C. drobachiensis and A. fortis were cut with the restriction endonucleases, respectively Nd ⁇ ll and Sau3Al. Indeed, in the case of C. drobachiensis, the restriction endonuclease Ndell was used preferentially because the DNA of this bacterium is methylated on the residue C of the sequence GATC.
  • Plasmid DNA was isolated from the above five clones by the alkaline lysis method [Nucleic Acid. Res 1: 1513 (1979)]. The sizes and the mapping of the inserts showing i-carrageenase activity were determined by agarose gel electrophoresis after simple and double digestion of their plasmids using various restriction enzymes.
  • the DNA fragments were extracted from the agarose by the glass wool method. All the plasmids obtained contain an identical 3.3 kb PVMII fragment.
  • the DNA of the clones pIP1 and pIP2 showed inserts of 10.45 kb and 4.125 kb, respectively having a common fragment of 3kb. These clones showed positive i-carrageenase activity. Different fragments were subcloned and spread as described above. However, none of the subclones obtained was found to be i-carrageenase positive.
  • SECTION 2 Determination of the nucleotide sequences of the genes coding for the i-carrageenases of Cytophaga drobachiensis and Alteromonas fortis
  • This nucleotide sequence is composed of 1,837 bp.
  • the translation of the six reading frames revealed only one open phase called cgiA.
  • the potential initiation codon is located 333 bp beyond the 5'P end of the sequence.
  • the deduced protein sequence [SEQ ID No. 4] from the cgiA sequence is composed of 391 amino acids, which corresponds to a theoretical molecular mass of 53.4 kDa.
  • the hydropathic profile of this protein shows a hydrophobic region covering the first 24 amino acids.
  • the presence of a positively charged amino acid (Lys) followed by a hydrophobic body, then a polar segment of six amino acids suggests that this domain could be a signal peptide.
  • the analyzes carried out according to the method of Von Heijne J. Mol. Biol. 184: 99-105 (1985)]
  • the signal-peptidase would cut between valine (Val 24 ) and threonine (Thr ⁇ 5).
  • the mature protein devoid of its signal peptide would have a theoretical molecular mass of 50.7 kDa.
  • the identity of the cgL gene was confirmed by the determination of amino acids on the NH 2 side of the partially purified protein.
  • the sequence obtained conforms to that deduced from the nucleotide sequence.
  • the first amino acid is located 14 residues from the NH 2 end generated by the signal-peptidase.
  • the presence of the two prolines which follow the amino acids determined by microsequencing having slightly disturbed the order of appearance of the N-terminal residues, the sequence of an internal oligopeptide, purified by HPLC after cleavage with trypsin, has been established.
  • the NH2ATYKCOOH sequence obtained is located towards the C-terminal end of the iotase (residues 396 to 399).
  • the plasmids pIHP15 and pIHPX17 subcloned from pIP1 and pIP2 were used to determine the nucleotide sequence of the gene responsible for the i-carrageenan activity of Alteromonas fortis SEQ ID No 1.
  • the 2085 bp fragment contains a single phase open reading of 1,473 bp called cgiA.
  • the sequence located upstream of the initiator codon (ATG ⁇ H) is not coding.
  • the protein sequence deduced from the sequence of the A. i-carrageenase gene. fortis [SEQ ID No. 2] consists of 491 amino acids, which corresponds to a theoretical molecular mass of 54.802 kDa.
  • the N-terminal portion of this protein a large hydrophobicity suggesting that this field could be a signal peptide
  • the hypothetical cleavage site would be between glycine (Gly26) e t alanine (Ala27) .
  • the mature protein devoid of its signal peptide would have a theoretical molecular mass of 51.95 kDa, which corresponds to a value similar to the molecular mass obtained with the protein purified by SDS-PAGE of 57 kDa.
  • HCA between the two proteins is 82% over a domain of 293 amino acids and reaches 90.5% in the case of said domain 164-311 (Fig. 2).
  • Alteromonas carrageenovora ATCC 43555 was obtained from the American Type Culture Collection. The A. carrageenovora and C. drobachiensis strains were cultivated under conditions identical to those mentioned in section 1 of Example I. Similarly, genomic libraries were produced using the Escherichia coli DH5 strain and the plasmid vector. pAT153. 1. Cloning from Alteromonas carrageenovora
  • the plasmids pKA1 to pKA4 were purified from the four independent clones and mapped using the restriction endonucleases BamHI, Oral, EcoRl, Hindlli, MM, Pstl, Pvull, Sali, Sspl, Xbal and Xhol. In each plasmid, the presence of a Dral- fragment was noted
  • This common fragment which is the entire insert of the plasmid pKA3, was entirely sequenced from the plasmid pKA3.
  • E. coli called pKCl to pKC5 were able to dig a hole in the substrate.
  • the plasmids isolated and purified from said clones were mapped with restriction endonucleases.
  • the plasmids pKCl, pKCEll and pKCN ⁇ were used to determine the nucleotic sequence of the kappa-carrageenase gene.
  • SECTION 2 Determination of the sequences of the genes coding for the kappa-carrageenases of Alteromonas carrageenovora and
  • the translation product of the cg 4 gene corresponds to a protein of 397 amino acids for a theoretical molecular mass of 44,212 Da (SEQ ID NO:
  • the 4,425 bp pKCl insert contains a single 1,635 bp open reading frame called cgkA (SEQ ID NO: 7).
  • the protein translated from the kappa-carrageenase gene is a protein comprising 545 amino acids with a molecular mass of 61.466 kDa [SEQ ID N ° 8]
  • the hydropathic profile of this protein shows a highly hydrophobic domain at the N-terminus, suggesting that it is a signal peptide.
  • the site of cleavage of the signal peptidase must be between threonine and serine at the respective positions 35 and 36, with codon ATG 75 as the initiating codon.
  • the K-carrageenan of C. drobachiensis is similar to 36.1% over the entire alignment in linear sequences with the K-carrageenan of Alteromonas carrageenovora.
  • HCA analysis shows an HCA score between the two proteins of 75.4% on said domain of 145 amino acids (Fig. 4).
  • the HCA analysis also shows that these two proteins belong to the family 16 of glycosyl hydrolases which includes endoxyglucan transferases (XET), laminarinases, lichenases and agarases.
  • XET endoxyglucan transferases
  • the HCA score of the two kappa-carrageenases with XETs is 67.5%, 67.6% with laminarinases, 73.7% with lichenases and 71.5% with agarases.
  • NAME LABORATOIRES GOEMAR S.A.
  • AAGCTTTCCG ATTCTATCAT CGAAGTCATA GGAGTGGGTA AACAAAAAAG CATGAAACTA 60 GCTTTTTAAA ATACAGACTT TCAATATAGG TCGCACACAA TATTAACGAA TAAATAAGCA 120 AATCATATAC ATAATCATTG CTTTAAATAT GTTTTAATAC AGATATAAAC ATAGTATGTT 180 TGTGTTTTTG GTATCTATCG GAGTGAAAAC ATG CGC TTA TAT TTT AGA AAG TTG 234
  • GGC AAA AAC CAC CGA CTA TTT GAA GTT GGC GTA AAC AAT ATT GTA AGA 618 Gly Lys Asn His Arg Leu Phe Glu Val Gly Val Asn Asn Ile Val Arg 125 130 135
  • GCT AAA AAA GGG GGG GTA AGG GAT ATT TTT GCC ACA AAG ATC AAG AAT 1169 Ala Lys Lys Gly Gly Val Arg Asp Ile Phe Ala Thr Lys Ile Lys Asn 265 270 275
  • GGT AAA GTG ACC ATA GAT GAT GTA ACC GCC ATC GGT TGT GCA TAT GCC 1265 Gly Lys Val Thr Ile Asp Asp Val Thr Ala Ile Gly Cys Ala Tyr Ala 300 305 310
  • GCA AGT GCC GAC GCT TTC AAG AAC TAT ATT GAA GGT ATT CTA GGA GCT 1361 Ala Ser Ala Asp Ala Phe Lys Asn Tyr Ile Glu Gly Ile Leu Gly Ala 330 335 340
  • GCA AAT TAC CCA CTT TAT TAT ACA TCG
  • GGT GTC GCT AAA TCC
  • AGA GCT 1097 Ala Asn Tyr Pro Leu Tyr Tyr Thr Ser Gly Val Ala Lys Ser Arg Ala 270 275 280 285
  • CTTCCTTCCC TTTGGGAACC TATGGTACAG ACTTGCCTTT TTTAAACCGG TTACTTCAGC 360
  • GTA GCC AAT GGG GAA ACG
  • GTA TAC AGT GAA ATA
  • GAT GTA GTT GAA CTA 1372
  • Val Ala Asn Gly Glu Thr Val Tyr Ser Glu Ile Asp Val Val Glu Leu 155 160 165

Abstract

La présente invention a pour objet des gènes qui codent pour des glycosyle hydrolases ayant un score HCA avec la iota-carraghénase d' Alteromonas fortis qui est supérieur ou égal à 65 %, sur le domaine s'étendant entre les acides aminés 164 et 311 de la séquence protéique SEQ ID NO 2 de ladite iota-carraghénase, ainsi que des gènes qui codent pour des glycosyle hydrolases ayant un score HCA avec la kappa-carraghénase d'Alteromonas carrageenovora qui est supérieur ou égal à 75 %, sur le domaine s'étendant entre les acides aminés 117 et 262 de la séquence protéique SEQ ID NO 6 de ladite kappa-carraghénase.

Description

Gènes de glycosyle hydrolases et leur utilisation pour la production d'enzymes de biodégradation des carraghénanes
La présente invention concerne des gènes de glycosyle hydrolases pour la production biotechnologique d'oligosaccharides, notamment d'oligo- carraghénanes sulfatés, plus particulièrement d'oligo-iota-carraghénanes et d'oligo-kappa-carraghénanes par biodégradation des carraghénanes.
Les galactanes sulfatés des Rhodophycées, tels que les agars et les carraghénanes, représentent les polysaccharides majeurs des Rhodophycées et sont très largement utilisés en tant qu'agents gélifiants ou épaississants dans diverses branches d'activité, notamment l'agro-alimentaire. Environ 6 000 tonnes d'agars et 22 000 tonnes de carraghénanes sont extraits annuellement des algues rouges marines à cet effet. Les agars sont commercialement produits par des algues rouges des genres Gelidium et Gracilaria. Les carraghénanes sont quant à eux largement extraits des genres Chondrus, Gigartina et Eucheuma.
Les carraghénanes sont constitués par la répétition d'unités de D- galactose alternativement liées par des liaisons β l->4 et α l->3. Selon le nombre et la position de groupements ester-sulfate sur le dissacharide de répétition de la molécule, on distingue ainsi plusieurs types de carraghénanes à savoir : les kappa- carraghénanes qui possèdent un groupement ester-sulfate, les iota-carraghénanes qui possèdent deux groupements ester-sulfate et les lambda-carraghénanes qui possèdent trois groupements ester-sulfate.
Les propriétés physico-chimiques et les utilisations de ces polysaccharides en tant que gélifiants reposent sur leur capacité à établir des transitions conformationnelles pelote-hélice en fonction de l'environnement thermique et ionique [Kloareg et al. Oceanography and Marine Biology - An annual review 26 : 259-315 (1988) ]
Par ailleurs, les carraghénanes sont des analogues structuraux des polysaccharides sulfatés de la matrice extracellulaire animale (héparine, chondroïtine, kératane, dermatane) et ils présentent des activités biologiques qui s'apparentent à certaines fonctions de ces glycosaminoglycanes. En particulier, les carraghénanes sont connus :
(i) - pour leur action sur le système immunitaire en provoquant la sécrétion d'interleukine ou de prostaglandines, (ii) - pour leur action antivirale sur les virus du sida HIV1, de l'herpès
HSV1 et de l'hépatite A, (iii) - en tant qu'antagonistes de la fixation des facteurs de croissance des cellules humaine et aussi,
(iv) - pour leur action sur la prolifération des kératinocytes et leur action sur le pouvoir contractile des fibroblastes. Par ailleurs, les oligocarraghénanes agissent sur l'adhérence, la division et la synthèse protéique de cultures de cellules humaines, sans doute en tant qu'analogues structuraux de la partie glycosylée des protéines de la matrice extracellulaire. Dans les plantes, les oligocarraghénanes élicitent très significativement des activités enzymatiques marqueurs de la croissance (amylase) ou du métabolisme phénolique de défense (laminarinase, phénylalanine- ammonium lyase).
Les carraghénanes sont extraits des algues rouges marines par des procédés classiques, tels que l'extraction aqueuse à chaud et les oligocarraghénanes sont obtenus à partir de carraghénanes par hydrolyse chimique ou de préférence par hydrolyse enzymatique.
La production d'oligo-carraghénanes par hydrolyse enzymatique comprend généralement les étapes de :
1) production d'une glycosyle hydrolase par culture d'une bactérie marine ; 2) hydrolyse enzymatique du carraghénane par la glycosyle hydrolase ainsi obtenue ;
3) fractionnement et purification des oligo-carraghénanes obtenus.
Des microorganismes produisant des enzymes capables d'hydrolyser les iota- et kappa-carraghénanes ont été isolées par Bellion et al. en 1982 [Can. J. Microbiol. 28 : 874-80, (1982)]. Certaines sont spécifiques pour le K- OU le i- carraghénane et d'autres sont capables d'hydrolyser les deux substrats. Un autre groupe de bactéries capables de dégrader les carraghénanes a été caractérisé par
Sarwar et al. en 1983 [J. Gen. Appl. Microbiol. 29 : 145-55, (1983)]. Ces bactéries de couleur jaune-orange sont assignées au groupe des bactéries de type Cytophaga et certaines de ces bactéries ont la propriété d'hydrolyser à la fois l'agar et les carraghénanes.
La production d'oligo-carraghénanes pourrait être nettement améliorée si l'on disposait d'enzymes spécifiques et d'outils pour leur obtention par génie génétique. La Demanderesse a maintenant trouvé de nouveaux gènes de glycosyle hydrolases, qui permettent d'obtenir de manière spécifique soit des oligo-iota- carraghénanes, soit des oligo-kappa-carraghénanes.
Ainsi, la présente invention concerne des nouveaux gènes qui codent pour des glycosyle hydrolases ayant un score HCA avec la iota-carraghénase d'Alteromonas fortis qui est supérieur ou égal à 65 %, de préférence supérieur ou égal à 70 % et avantageusement supérieur ou égal à 75 %, sur le domaine s'étendant entre les acides aminés 164 et 311 de la séquence [SEQ ID N° 2] de la iota-carraghénase d'Alteromonas fortis. La présente invention concerne plus particulièrement la séquence nucléique [SED ID N°l] qui code pour une iota-carraghénase telle que définie ci- dessus dont la séquence en acides aminés est la séquence [SEQ ID N°2].
La présente invention a également pour objet les gènes qui codent pour des glycosyle hydrolases ayant un score HCA avec la kappa-carraghénase d'Alteromonas carrageenovora qui est supérieur ou égal à 75 %, de préférence supérieur à 80 %, avantageusement supérieur à 85 %, sur le domaine s'étendant entre les acides aminés 117 et 262 de la séquence [SEQ ID N° 6] de la kappa- carraghénase d'Alteromonas carrageenovora.
En particulier, l'invention concerne la séquence nucléique [SEQ ID N° 7] qui code pour une kappa-carraghénase ayant un score tel que défini ci- dessus dont la séquence en acides aminés est la séquence [SEQ ID N° 8].
Les gènes de glycosyle hydrolases de l'invention sont obtenus par le procédé qui consiste à sélectionner des protéines qui ont un score HCA avec la iota-carraghénase d'Alteromonas fortis qui est supérieur ou égal à 65 %, de préférence supérieur ou égal à 70 % et avantageusement supérieur ou égal à 75 %, sur le domaine s'étendant entre les acides aminés 164 et 311 de la séquence [SEQ
ID N° 2] de la iota-carraghénase d'Alteromonas fortis et à séquencer les gènes ainsi obtenus selon les techniques classiques bien connues de l'homme du métier.
Les gènes glycosyle hydrolases de l'invention peuvent aussi être obtenus pas le procédé qui consiste à sélectionner des protéines qui ont un score HCA avec la kappa-carraghénase d'Alteromonas carrageenovora qui est supérieur ou égal à 75 %, de préférence supérieur à 80 %, avantageusement supérieur à 85 %, sur le domaine s'étendant entre les acides aminés 117 et 262 de la séquence [SEQ ID N° 6] de la kappa-carraghénase d'Alteromonas carrageenovora et à séquencer les gènes ainsi obtenus selon les techniques classiques bien connues de l'homme du métier. Enfin, la présente invention concerne l'utilisation des gènes de glycosyle hydrolases ci-dessus pour l'obtention de glycosyle hydrolases par génie génétique, lesquelles sont utiles pour la production biotechnologique d'oligo- carraghénanes. Les glysosyle hydrolases selon l'invention sont donc caractérisées par le score HCA qu'elles possèdent avec un domaine particulier de la séquence en acides aminés de la iota-carraghénase d'Alteromonas fortis ou de la kappa- carraghénase d'Alteromonas carrageenovora.
La méthode HCA de l'anglais "Hydrophobic Cluster Analysis" est une méthode d'analyse des séquences de protéines représentées en structure bidimensionnelle, qui a été décrite par Gaboriaud et al. [FEBS Letters 224 149- 155 (1987)].
On sait que la structure tridimensionnelle d'une protéine conditionne ses propriétés biologiques, la production d'une protéine active exigeant un repliement correct.
On sait aussi que la structure primaire de protéines varie de façon beaucoup plus importante que les structures d'ordre supérieur et que les protéines peuvent être regroupées en familles montrant des structures secondaires et tertiaires similaires ayant parfois des séquences primaires si divergentes que la parenté de telles protéines entre elles n'est pas évidente. Le code reliant structure primaire et structure secondaire apparaît donc très dégénéré puisque des structures primaires très différentes peuvent aboutir à des structures secondaires et tertiaires similaires [Structure 3, 853-859 (1995) et Proc. Natl. Acad. Sci. USA 92 (1995)].
L'utilisation de la méthode HCA a montré que la répartition, la taille et la forme de ces amas hydrophobes le long des séquences d'acides aminés sont représentatifs du repliement 3D des protéines étudiées.
De plus, Woodcock et al. [Protein. Eng. 5, 629-635, (1992)] ont démontré que les amas hydrophobes définis par le diagramme 2D α-hélicoïdal sont statistiquement centrés sur les structures secondaires régulières (hélices α, brins β), que le diagramme 2D basé sur l'hélice α porte la plus grande quantité d'information structurale et que la correspondance entre amas hydrophobes et éléments de structure secondaire est de même qualité pour tout type de repliement (tout α, tout β, α/β et α + β), démontrant ainsi que la méthode HCA peut être utilisée quel que soit le type de protéine. L. Lemesle-Varloot et al. [Biochimie 72, 555-574, (1990)] ont montré que lorsque deux protéines présentent une distribution similaire des amas hydrophobes sur un domaine d'au moins 50 résidus, leurs structures tridimensionnelles dans ce domaine sont considérées comme superposables et leurs fonctions analogues.
La représentation bidimensionnelle utilisée dans la méthode HCA est une hélice α où, par traitement informatique, les acides aminés sont disposés à raison de 3,6 résidus par révolution. Afin d'obtenir une image plane facile à lire, l'hélice est coupée dans le sens longitudinal. Enfin, pour obtenir dans leur intégralité les amas hydrophobes qui sont situés sur les bords de l'image, le diagramme est dupliqué. La méthode utilise un code qui ne reconnaît que deux états : l'état hydrophobe et l'état hydrophile.
Les acides aminés reconnus comme étant hydrophobes sont identifiés et regroupés en figures géométriques caractéristiques. L'utilisation de ces deux états permet de s'affranchir de la tolérance que montrent les structures bi- et tridimensionnelles vis-à-vis de la variabilité des séquences primaires. De plus, cette représentation permet d'observer rapidement des interactions sur une courte ou une moyenne distance puisque le premier acide aminé et le second acide aminé voisin d'un résidu donné sont localisés sur un segment de 17 acides aminés. Enfin, aucune "fenêtre" de longueur prédéfinie n'est utilisée, contrairement aux méthodes d'analyses basées sur les structures primaires ou secondaires des protéines. La caractéristique fondamentale de la représentation en hélice α est que, pour une protéine globulaire donnée ou seulement un domaine de cette protéine, la distribution des résidus hydrophobes sur le diagramme n'est pas aléatoire. Les résidus hydrophobes (VILFWMY) forment des amas de géométrie et de taille variées. Sur le diagramme, les faces hydrophiles et hydrophobes des hélices amphiphiles sont très reconnaissables. Ainsi, un amas en diamant horizontal correspond à la face hydrophobe d'une hélice α, les hélices internes apparaissent comme de grands amas hydrophobes horizontaux et les brins β comme des amas hydrophobes assez courts et verticaux. La méthode permet d'identifier les résidus hydrophobes formant le coeur des protéines globulaires et de localiser les éléments de structure secondaire que sont les hélices α et les brins β, indépendamment de toute connaissance de la structure secondaire de la protéine étudiée.
Le score HCA entre deux protéines se calcule de la façon suivante : pour chaque amas : score HCA = 2CR/(RCι + RC2) x 100 % où - RCi et RC2 représentent respectivement le nombre de résidus hydrophobes dans l'amas de la protéine 1 (amas 1) et l'amas de la protéine 2 (amas 2).
- CR représente le nombre de résidus hydrophobes dans l'amas 1 qui sont en correspondance avec les résidus hydrophobes dans l'amas 2.
La valeur moyenne obtenue pour l'ensemble des amas le long des séquences protéiques comparées donne le score final HCA.
Sur les profils HCA, les acides aminés sont représentés par leur code standard à une seule lettre à l'exception de la proline (P), la glycine (G), la serine (S), la thréonine (T).
En effet, du fait de leurs propriétés particulières, ces résidus sont représentés par les symboles spéciaux indiqués ci-après afin de faciliter leur identification visuelle sur les diagrammes HCA (voir liste des abbréviations).
La proline introduit de fortes contraintes dans la chaîne polypeptidique et est considérée de manière systématique comme une interruption dans les amas.
En effet, les résidus proline stoppent ou déforment les hélices et les feuillets. La glycine possède une flexibilité conformationnelle très importante en raison de l'absence de chaîne latérale dans cet acide aminé. La serine et la thréonine sont normalement hydrophiles, mais on peut aussi les rencontrer dans des environnements hydrophobes, tels que les hélices α, dans lesquels leur groupe hydroxyle perd leur caractère hydrophile du fait de la liaison hydrogène formée avec le groupe carbonyle de la chaîne principale. Au sein des feuillets β hydrophobes, la thréonine est susceptible de remplacer parfois des résidus hydrophobes, grâce au groupe méthyle de sa chaîne latérale. On peut distinguer quatre groupes d'acides aminés selon leur hydrophobicité :
(i) - les résidus fortement hydrophobes : V, I, L et F, (ii) - les résidus moyennement hydrophobes : W, M et Y, - W apparait à des sites de surface plus souvent que F, -> M est rencontré à des sites divers, internes ou non ;
— » Y peut s'accommoder des environnements hydrophobes internes et est souvent trouvé dans des boucles ;
(iii) - les résidus peu hydrophobes : A et C sont quasiment insensibles au caractère hydrophobe de leur environnement ; (iv) - les résidus hydrophiles : D, E, N, Q, H, K et R. Grâce à cette méthode HCA, la Demanderesse a trouvé que des protéines qui ont un score HCA avec la iota-carraghénase d'Alteromonas fortis supérieur ou égal à 65 % sur le domaine s'étendant entre les acides aminés 164- 311 de ladite iota-carraghénase sont des enzymes de type glycosyle hydrolase et plus particulièrement des iota-carraghénases appropriées pour la production d'oligo-iota-carraghénanes à partir de carraghénanes.
Les protéines qui ont un score HCA supérieur ou égal à 70 %, de préférence supérieur ou égal à 75 %, avec le domaine 164-311 ci-dessus, sont particulièrement préférées aux fins de l'invention. Un exemple particulier de glycosyle hydrolase obtenue avec un gène selon l'invention est la protéine ayant la séquence en acides aminés [SEQ ID N° 2] extraite d'Alteromonas fortis.
Un autre exemple particulier de glycosyle hydrolase obtenue avec un gène selon l'invention est la protéine ayant la séquence en acides aminés [SEQ ID N° 4] extraite de Cytophaga drobachiensis.
De même, la Demanderesse a trouvé que les protéines qui ont un score HCA avec la kappa-carraghénase d'Alteromonas carrageenovora supérieur ou égal à 75 % sur le domaine s'étendant entre les acides aminés 117 et 262 de ladite kappa-carraghénase sont des enzymes de type glycosyle hydrolase, et plus particulièrement des kappa-carraghénases appropriées pour la production d'oligo- kappa-carraghénanes à partir de carraghénanes.
Les protéines qui ont un score HCA supérieur ou égal à 80 , de préférence supérieur ou égal à 85 %, avec le domaine 117-262 ci-dessus, sont particulièrement préférés aux fins de l'invention. Les protéines ci-dessus sont avantageusement extraites de bactéries marines.
Un exemple particulier de glycosyle hydrolase obtenue avec un gène selon l'invention est la protéine ayant la séquence en acides aminés [SEQ ID n° 6] extraite d'Alteromonas carrageenovora. Un autre exemple particulier de glycosyle hydrolase obtenue avec un gène selon l'invention est la protéine ayant la séquence en acides aminés [SEQ ID n° 8] extraite de Cytophaga drobachiensis. Comme indiqué précédemment, les gènes codant pour les glycosyle hydrolases selon l'invention peuvent être obtenus par séquençage du patrimoine génétique des bactéries qui produisent les glycosyle hydrolases, telles que définies ci-dessus, selon les méthodes classiques bien connues de l'homme du métier. L'invention concerne également les vecteurs d'expression qui portent, avec les moyens pour leur expression, les séquences nucléiques selon l'invention.
Ces vecteurs d'expression peuvent être utilisés pour transformer des microorganismes procaryotes, en particulier Escherichia coli ou des cellules eucaryotes, telles que des levures ou des champignons. L'invention va être maintenant décrite plus en détail par les exemples illustratifs et non limitatifs ci-après.
Les méthodes utilisées dans ces exemples sont des méthodes, bien connues de l'homme du métier, qui sont décrites en détail dans l'ouvrage de
Sambrook, Fristsch et Maniatis intitulé "Molecular cloning : a laboratory manual" publié en 1989 par les éditions Cold Spring Harbor Press à New- York (2ème édition).
La description ci-après sera mieux comprise à l'aide des figures 1 à 4 qui représentent respectivement :
Fig. 1 : L'alignement d'après la similitude maximale selon la méthode de Needleman et Wunsch, [J. Mol. Biol. 48, 443-453 (1970)] de la séquence en acides aminés de la iota-carraghénase Alteromonas fortis (partie supérieure) et de la iota-carraghénase de G drobachiensis (partie inférieure).
Fig. 2 : Les profils HCA des séquences en acides aminés des iota- carraghénases de Cytophaga drobachiensis et d'Alteromonas fortis.
Fig. 3 : L'alignement d'après la similitude maximale selon la méthode de Needleman et Wunsch 1970, J. Mol. Biol. 48, 443-453 de la séquence en acides aminés de la kappa-carraghénase d'Alteromonas carrageenovora (partie supérieure) et de Cytophaga drobachiensis (partie inférieure).
Fig. 4 : Les profils HCA des séquences en acides aminés des kappa- carraghénases de Cytophaga drobachiensis et d'Alteromonas fortis. Les abréviations ou symboles spéciaux utilisés dans les exemples ci-après pour les acides aminés sont les suivants :
Glycine : Proline : *
Thréonine : I — I Serine :
Alanine : A
Valine : V Leucine : L
Isoleucine : I
Méthionine : M
Phenylalanine : F
Tryptophane : W Cystéine : C
Asparagine : N
Glutamine : Q
Tyrosine : Y
Aspartate : D Glutamate : E
Lysine : K
Arginine : R
Histidine : H
EXEMPLE 1
Les iota-carraghénases de Cytophaga drobachiensis et d'Alteromonas fortis
SECTION 1 : Clonage des gènes des iota-carraghénases de Cytophaga drobachiensis et d'Alteromonas fortis Cytophaga drobachiensis a été isolée par la Demanderesse à partir de l'algue rouge Delesseria sanguinea Eur. J. Biochem. 201 : 241-247 (1991)/.
Alteromonas fortis (ATCC 43554) a été obtenue auprès de l'American Type
Culture Collection. Les souches ont été cultivées sur un milieu de Zobell à 25°C.
On a constitué des banques génomiques d'ADN de C. drobachiensis et d'A. fortis.
La souche utilisée pour réaliser ces banques, qui est Escherichia coli
DH5α (Rec A, endAl, gyrA96, thil, hsdRll [rk- mk+], supEU, relAl, /αcZΔM15) a été cultivée sur milieu de Luria-Bertani (milieu LB) à 37°C ou sur un milieu appelé Zd (Bacto tryptone 5 g/1, extrait de levure 1 g/1, NaCl 10 g/1 ; pH = 7,2) à 22°C auquel on a ajouté 2 % de κ-carraghénane.
Les milieux de culture géloses ou non ont été additionnés d'ampicilline (50 / g/ml) ou de tétracycline (15 μg/ml), à partir de solutions stock préparées dans 50 % d'éthanol (pour éviter la prise en masse à la température de stockage, - 20°C) sauf pour la souche DH5α non recombinante. Le vecteur d'expression utilisé est le plasmide pAT153 décrit dans
Nature 283 : 216 (1980). Ce plasmide contient deux gènes de résistance aux antibiotiques : un gène de résistance à la tétracycline et un gène qui code pour une β-lactamase, enzyme de la membrane cytoplasmique qui dégrade l'ampicilline.
L'ADN total de C. drobachiensis et l'ADN total de A. fortis ont été préparés selon le mode décrit par Barbeyron et al. [J. Bacteriol. 160. 586-590 (1984)].
Les ADN génomiques de C. drobachiensis et A. fortis ont été coupés avec les endonucléases de restriction, respectivement Ndëll et Sau3Al. En effet, dans le cas de C. drobachiensis, l'endonucléase de restriction Ndell a été utilisée de façon préférentielle du fait que l'ADN de cette bactérie est méthylé sur le résidu C de la séquence GATC.
Les fragments purifiés d'ADN de 5 000 à 10 000 pb ont été clones sur le site BamEl du plasmide pAT153, qui coupe le gène de résistance à la tétracycline. Dans chacune des banques génomiques, 6 000 clones ont été obtenus. Les cinq clones positifs C. drobachiensis et les deux clones positifs A. fortis, qui ont creusé un trou dans le t-carraghénane après une semaine de culture à 22°C, sont respectivement référencés pICl à pIC5 et pIPl à pIP2. 1. Clonage à partir de C. drobachiensis Le clonage de ce gène est décrit en détail par T. Barbeyron dans la
Thèse de Doctorat de l'Université Pierre et Marie Curie, Roscoff, soutenue le 28 Octobre 1993.
L'ADN plasmidique a été isolé des cinq clones ci-dessus par la méthode de la lyse alcaline [Nucleic Acid. Res 1 : 1513 (1979)]. Les tailles et la cartographie des inserts montrant une activité i- carraghénase ont été déterminées par électrophorèse sur gel d'agarose après simple et double digestion de leurs plasmides à l'aide de diverses enzymes de restriction.
Les fragments d'ADN ont été extraits de l'agarose par la méthode sur laine de verre. Tous les plasmides obtenus contiennent un fragment identique PVMII de 3,3 kb.
Ce fragment a été sous-cloné dans le phagemide pbluescript KSII (Stratagene) (pICP07 et pICPlό).
De même, le fragment interne Miel et un fragment Hindlll comprenant partiellement le fragment PVMII ont été sous-clonés et on a obtenu respectivement les sous-clones (pICN22 et pICH42).
Afin de localiser le gène v-carraghénase, on a réalisé des banques à partir des sous-clones pICPO7 et pICPlό dans le phagemide pbluescript à l'aide de l'exonucléase III de E. coli en utilisant le kit "ExoIII" de chez Pharmacia. Les sous-clones et les clones ExoIII obtenus ont été étalés sur milieu
Zd solidifié avec du t-carraghénane.
Seuls les clones pICPlό, pICP07 et les clones ExoIII pICP074 et pICP0712 (obtenus par dégradation avec l'ExoIII pendant 4 minutes et 12 minutes respectivement à partir du clone pICP07) sont i-carraghénases positifs. 2. Clonage à partir d'Alteromonas fortis
L'ADN des clones pIPl et pIP2 ont montré des inserts de 10,45 kb et 4,125 kb, respectivement ayant un fragment commun de 3kb. Ces clones ont montré une activité i-carraghénase positive. Différents fragments ont été sous- clonés et étalés tels que décrits ci-dessus. Cependant, aucun des sous-clones obtenus ne s'est révélé i-carraghénase positif . SECTION 2 : Détermination des séquences nucléotidiques des gènes codant pour les i-carraghénases de Cytophaga drobachiensis et d'Alteromonas fortis
1. Séquence du gène de Cytophaga drobachiensis Le plasmide pICP0712 a été utilisé pour déterminer la séquence nucléotidique du gène responsable de l'activité i-carraghénase de C. drobachiensis [SEQ ID N° 3].
Cette séquence nucléotidique est composée de 1 837 pb. La traduction des six cadres de lecture n'a révélé qu'une seule phase ouverte appelée cgiA. Le codon d'initiation potentiel se situe 333 pb au-delà de l'extrémité 5'P de la séquence.
La séquence protéique déduite [SEQ ID N°4] de la séquence de cgiA est composée de 391 acides aminés, ce qui correspond à une masse moléculaire théorique de 53,4 kDa. Le profil hydropathique de cette protéine montre une région hydrophobe couvrant les 24 premiers acides aminés. La présence d'un acide aminé chargé positivement (Lys) suivi d'un corps hydrophobe, puis d'un segment polaire de six acides aminés suggère que ce domaine pourrait être un peptide signal. Selon les analyses effectuées selon la méthode de Von Heijne [J. Mol. Biol. 184 : 99-105 (1985)], la signal-peptidase couperait entre la valine (Val24) et la thréonine (Thr~5). La protéine mature dénuée de son peptide signal aurait une masse moléculaire théorique de 50,7 kDa. L'identité du gène cgL a été confirmée par la détermination des acides aminés du côté NH2 de la protéine partiellement purifiée. La séquence obtenue est conforme à celle déduite de la séquence nucléotidique. Le premier acide aminé se situe à 14 résidus de l'extrémité NH2 générée par la signal-peptidase. La présence des deux prolines qui suivent les acides aminés déterminés par microséquençage ayant perturbé légèrement l'ordre d'apparition des résidus N-terminaux, la séquence d'un oligopeptide interne, purifié par HPLC après coupure à la trypsine, a été établie. La séquence NH2ATYKCOOH obtenue se situe vers l'extrémité C-terminale de la iotase (résidus 396 à 399).
2. Séquence du gène d'Alteromonas fortis
Les plasmides pIHP15 et pIHPX17 sousclonés à partir de pIPl et pIP2 ont été utilisés afin de déterminer la séquence nucléotidique du gène responsable de l'activité i-carraghénase d'Alteromonas fortis SEQ ID N° 1. Le fragment de 2085 pb contient une seule phase ouverte de lecture de 1 473 pb appelée cgiA. La séquence située en amont du codon initiateur (ATG^H) n'est pas codante. La séquence protéique déduite de la séquence du gène i-carraghénase d'A. fortis [SEQ ID N° 2] est constituée de 491 acides aminés, ce qui correspond à une masse moléculaire théorique de 54,802 kDa. Dans le cas présent, également, la partie N-terminale de la protéine présente une grande hydrophobicité suggérant que ce domaine pourrait être un signal peptide, le site de clivage hypothétique se situerait entre la glycine (Gly26) et l'alanine (Ala27). La protéine mature dénuée de son peptide signal aurait une masse moléculaire théorique de 51,95 kDa, ce qui correspond à une valeur similaire à la masse moléculaire obtenue avec la protéine purifiée par SDS-PAGE de 57 kDa.
SECTION 3 : Comparaison des séquences protéiques des i- carraghénases de Cytophaga drobachiensis et de Alteromonas fortis
Après élimination du peptide signal de chaque séquence, on a pu constater que la t-carraghénase de C. drobachiensis présente des similarités de séquence avec la v-carraghénase d'A. fortis.
En effet, les deux séquences de iota-carraghénase sont similaires à 43,2 % sur l'ensemble de l'alignement en séquences linéaires. Cette similitude est particulièrement forte (57,8 %) entre les acides aminés 164 et 311 (numérotation de la iota-carraghénase d'Alteromonas fortis (Fig. 1). Parallèlement, une analyse HCA a permis de constater que le score
HCA entre les deux protéines est de 82 % sur un domaine de 293 acides aminés et atteint 90,5 % dans le cas dudit domaine 164-311 (Fig. 2).
Aucune similarité significative n'a pu être mise en évidence avec d'autres polysaccharidases connues à ce jour. Ces deux enzymes constituent donc une nouvelle famille de glycosyle hydrolases. EXEMPLE π :
Les kappa-carraghénases d'Alteromonas carrageenovora et de Cytophaga drobachiensis SECTION 1 : Clonage des gènes des kappa-carraghénases
Alteromonas carrageenovora ATCC 43555 a été obtenue auprès de l'American Type Culture Collection. Les souches A. carrageenovora et C. drobachiensis ont été cultivées dans des conditions identiques à celles mentionnées dans la section 1 de l'Exemple I. De façon similaire, des banques génomiques ont été réalisées en utilisant la souche Escherichia coli DH5 et le vecteur plasmidique pAT153. 1. Clonage à partir d'Alteromonas carrageenovora
L'obtention de ce gène est décrite en détail par T. Barbeyron dans la Thèse citée ci-dessus (voir exemple 1) et dans Gène 139, 105-109 (1994).
A partir de la banque génomique d'Alteromonas carrageenova, 4 clones d'E. coli appelés Kl à K4 ont été capables d'hydrolyser le kappa- carraghénane.
Les plasmides pKAl à pKA4 ont été purifiés à partir des quatre clones indépendants et cartographiés à l'aide des endonucléases de restriction BamHl, Oral, EcoRl, Hindïll, MM, Pstl, Pvull, Sali, Sspl, Xbal et Xhol. Dans chaque plasmide, on a remarqué la présence d'un fragment Dral-
Hindlll de 2,2 kb.
Ce fragment commun, qui est l'insert entier du plasmide pKA3, a été entièrement séquence à partir du plasmide pKA3.
2. Clonage à partir de Cytophaga drobachiensis A partir de la banque génomique de C. drobachiensis, cinq clones de
E. coli appelés pKCl à pKC5 ont été capables de creuser un trou dans le substrat. Les plasmides isolés et purifiés à partir desdits clones ont été cartographiés avec des endonucléases de restriction.
Des fragments internes de 1 100 pb et 600 pb, respectivement ont été sous-clonés à partir de pKCl dans le phagemide pbluescript et ont été appelés pKCEll et pKCNό.
Les plasmides pKCl, pKCEll et pKCNό ont été utilisés pour déterminer la séquence nucléotique du gène de la kappa-carraghénase.
SECTION 2 : Détermination des séquences des gènes codant pour les kappa-carraghénases d'Alteromonas carrageenovora et de
Cytophaga drobachiensis
1. Séquence du gène d'Alteromonas carrageenovora Le nombre de nucléotides de l'insert de pKA3, est de 2 180 pb. La traduction dans les six cadres de lecture révèle la présence de trois phases ouvertes, dont une seule est complète, séparant les deux autres qui ne sont que partielles. Elles sont toutes les trois localisées sur le même brin d'ADN. La seconde phase ouverte appelée cg i, lue dans le troisième cadre de lecture, contient 1 191 pb [SEQ ID N°5].
Le produit de traduction du gène cg 4 correspond à une protéine de 397 acides aminés pour une masse moléculaire théorique de 44 212 Da (SEQ ID
N°6). Le profil hydropathique de cette protéine montre à l'extrémité N-terminale un domaine hautement hydrophobe qui s'étend sur 25 acides aminés. Ce domaine comprend un acide aminé chargé positivement (Lys), suivi d'un segment riche en acides aminés hydrophobes, puis de trois acides aminés polaires. Ces résultats suggèrent qu'il s'agit là d'un peptide signal. La séquence N-teπninale de la protéine purifiée à partir du surnageant de culture a été déterminée, confirmant ainsi l'identité du gène. Ces résultats indiquent que la signal peptidase coupe la protéine entre les résidus 25 et 26, en accord avec la règle (-3, -1) de Von Heijne. La protéine mature a donc une masse moléculaire théorique de 41,6 kDa.
2. Séquence du gène de Cytophaga drobachiensis
L'insert de pKCl de 4 425 pb contient un seul cadre ouvert de lecture de 1 635 pb appelé cgkA (SEQ ID N°7).
La protéine traduite à partir du gène de la kappa-carraghénase est une protéine comprenant 545 acides aminés avec une masse moléculaire de 61,466 kDa [SEQ ID N°8]
Le profil hydropathique de cette protéine montre à l'extrémité N- terminale un domaine hautement hydrophobe, suggérant qu'il s'agit là d'un peptide signal.
En accord avec la règle (-3, -1) de Von Heijne, le site de clivage de la signal peptidase doit se situer entre la thréonine et la serine aux positions respectives 35 et 36, avec comme codon initiateur le codon ATG 75
La masse moléculaire de la protéine calculée après retrait du peptide signal est de 57,4 kDa, supérieure à la masse moléculaire déterminée pour la K- carraghénase purifiée extracellulaire de 40,0 kDa. SECTION 3 : Comparaison des séquences protéiques des K- carraghénases d'Alteromonas carrageenovora et de Cytophaga drobachiensis
La K-carraghénase de C. drobachiensis est similaire à 36,1 % sur l'ensemble de l'alignement en séquences linéaires avec la K-carraghénase d'Alteromonas carrageenovora.
Cette similitude est particulièrement forte entre les acides aminés 117 et 262 (51,8 %) (numérotation de la K-carraghénase d'Alteromonas carrageenovora) (Fig. 3).
Cette similitude est soulignée comme précédemment par analyse HCA qui montre un score HCA entre les deux protéines de 75,4 % sur ledit domaine de 145 acides aminés (Fig. 4). L'analyse HCA montre également que ces deux protéines appartiennent à la famille 16 des glycosyle hydrolases qui comprend des endoxyglucane transférases (XET), des laminarinases, des lichénases et des agarases. En effet, le score HCA des deux kappa-carraghénases avec les XET est de 67,5 %, de 67,6 % avec les laminarinases, de 73,7 % avec les lichénases et de 71,5 % avec les agarases.
LISTE DE SEQUENCES
(1) INFORMATIONS GENERALES:
(l) DEPOSANT:
(A) NOM: LABORATOIRES GOEMAR S.A.
(B) RUE: La Madeleine B.P. 55
(C) VILLE: Samt-Malo
(E) PAYS: France
(F) CODE POSTAL: 35413 Cedex
(G) TELEPHONE: 99 21 53 70 (H) TELECOPIE: 99 82 56 17
(il) TITRE DE L' INVENTION: Gènes de glycolyse hydrolases et leur utlisation pour la production d'enzymes de biodégradation des carraghénanes
(ni) NOMBRE DE SEQUENCES: 8
(îv) FORME DECHIFFRABLE PAR ORDINATEUR:
(A) TYPE DE SUPPORT: Floppy disk
(B) ORDINATEUR: IBM PC compatible
(C) SYSTEME D' EXPLOITATION: PC-DOS/MS-DOS
(D) LOGICIEL: Patentln Release #1.0, Version #1.30 (OEB)
(2) INFORMATIONS POUR LA SEQ ID NO: 1:
(î) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 2085 paires de bases
(B) TYPE: nucleotide
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire
(il) TYPE DE MOLECULE: ADN (génomique)
(m) HYPOTHETIQUE: NON
(ix) CARACTERISTIQUE:
(A) NOM/CLE: CDS
(B) EMPLACEMENT: join (211..1683, 1880..2083)
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 1:
AAGCTTTCCG ATTCTATCAT CGAAGTCATA GGAGTGGGTA AACAAAAAAG CATGAAACTA 60 GCTTTTTAAA ATACAGACTT TCAATATAGG TCGCACACAA TATTAACGAA TAAATAAGCA 120 AATCATATAC ATAATCATTG CTTTAAATAT GTTTTAATAC AGATATAAAC ATAGTATGTT 180 TGTGTTTTTG GTATCTATCG GAGTGAAAAC ATG CGC TTA TAT TTT AGA AAG TTG 234
Met Arg Leu Tyr Phe Arg Lys Leu 1 5
TGG TTA ACA AAT TTA TTT TTA GGC GGA GCA CTG GCC TCT TCA GCT GCG 282 Trp Leu Thr Asn Leu Phe Leu Gly Gly Ala Leu Ala Ser Ser Ala Ala 10 15 20
ATA GGG GCT GTC TCC CCC AAG ACT TAT AAG GAC GCA GAT TTT TAT GTT 330 Ile Gly Ala Val Ser Pro Lys Thr Tyr Lys Asp Ala Asp Phe Tyr Val 25 30 35 40
GCC CCT ACT CAA CAA GAT GTT AAC TAT GAT TTA GTT GAT GAT TTT GGC 378 Ala Pro Thr Gin Gin Asp Val Asn Tyr Asp Leu Val Asp Asp Phe Gly 45 50 55
GCT AAT GGA AAC GAC ACT AGT GAT GAC AGT AAT GCT TTA CAA AGA GCA 426 Ala Asn Gly Asn Asp Thr Ser Asp Asp Ser Asn Ala Leu Gin Arg Ala 60 65 70
ATT AAT GCT ATT AGT AGA AAA CCG AAT GGG GGC ACT TTA CTA ATA CCG 474 Ile Asn Ala Ile Ser Arg Lys Pro Asn Gly Gly Thr Leu Leu Ile Pro 75 80 85
AAT GGA ACT TAC CAT TTC CTC GGC ATA CAG ATG AAG TCG AAC GTA CAC 522 Asn Gly Thr Tyr His Phe Leu Gly Ile Gin Met Lys Ser Asn Val His 90 95 100
ATC CGT GTT GAG AGT GAC GTG ATA ATC AAG CCA ACG TGG AAT GGG GAT 570 Ile Arg Val Glu Ser Asp Val Ile Ile Lys Pro Thr Trp Asn Gly Asp 105 110 115 120
GGC AAA AAC CAC CGA CTA TTT GAA GTT GGC GTA AAC AAT ATT GTA AGA 618 Gly Lys Asn His Arg Leu Phe Glu Val Gly Val Asn Asn Ile Val Arg 125 130 135
AAC TTC AGC TTT CAA GGG TTA GGA AAC GGT TTT TTG GTG GAT TTT AAA 666 Asn Phe Ser Phe Gin Gly Leu Gly Asn Gly Phe Leu Val Asp Phe Lys 140 145 150
GAT TCT CGC GAC AAA AAC TTA GCT GTT TTT AAG TTA GGC GAT GTT AGA 714 Asp Ser Arg Asp Lys Asn Leu Ala Val Phe Lys Leu Gly Asp Val Arg 155 160 165 AAT TAC AAA ATT TCC AAT TTT ACC ATT GAT GAT AAT AAA ACG ATA TTT 762 Asn Tyr Lys Ile Ser Asn Phe Thr Ile Asp Asp Asn Lys Thr Ile Phe 170 175 180
GCC TCA ATT TTA GTG GAC GTA ACA GAA CGT AAT GGG CGG TTA CAT TGG 810 Ala Ser Ile Leu Val Asp Val Thr Glu Arg Asn Gly Arg Leu His Trp 185 190 195 200
TCG CGT AAT GGA ATT ATC GAA AGA ATA AAA CAA AAT AAC GCT TTG TTC 858 Ser Arg Asn Gly Ile Ile Glu Arg Ile Lys Gin Asn Asn Ala Leu Phe 205 210 215
GGC TAC GGC CTT ATT CAA ACC TAT GGC GCA GAT AAT ATT TTG TTT AGG 906 Gly Tyr Gly Leu Ile Gin Thr Tyr Gly Ala Asp Asn Ile Leu Phe Arg 220 225 230
AAC CTC CAT TCG GAA GGC GGA ATT GCG TTA CGG ATG GAA ACT GAC AAC 954 Asn Leu His Ser Glu Gly Gly Ile Ala Leu Arg Met Glu Thr Asp Asn 235 240 245
TTA CTT ATG AAA AAT TAT AAG CAA GGC GGA ATA AGA AAC ATC TTT GCT 1002 Leu Leu Met Lys Asn Tyr Lys Gin Gly Gly Ile Arg Asn Ile Phe Ala 250 255 260
GAT AAT ATC AGA TGT AGC AAA GGA CTT GCG GCG GTC ATG TTT GGC CCA 1050 Asp Asn Ile Arg Cys Ser Lys Gly Leu Ala Ala Val Met Phe Gly Pro 265 270 275 280
CAT TTT ATG AAG AAT GGA GAT GTG CAA GTG ACC AAT GTC AGC TCA GTT 1098 His Phe Met Lys Asn Gly Asp Val Gin Val Thr Asn Val Ser Ser Val 285 290 295
AGT TGC GGT TCG GCT GTA CGA AGT GAT AGT GGA TTT GTC GAA CTC TTT 1146 Ser Cys Gly Ser Ala Val Arg Ser Asp Ser Gly Phe Val Glu Leu Phe 300 305 310
AGC CCG ACA GAC GAA GTA CAT ACG CGT CAA AGT TGG AAA CAA GCC GTT 1194 Ser Pro Thr Asp Glu Val His Thr Arg Gin Ser Trp Lys Gin Ala Val 315 320 325
GAA AGT AAA TTG GGC CGA GGG TGT GCG CAA ACC CCT TAT GCT AGA GGT 1242 Glu Ser Lys Leu Gly Arg Gly Cys Ala Gin Thr Pro Tyr Ala Arg Gly 330 335 340 AAT GGT GGT ACA CGG TGG GCG GCT CGC GTA ACA CAA AAA GAC GCG TGT 1290 Asn Gly Gly Thr Arg Trp Ala Ala Arg Val Thr Gin Lys Asp Ala Cys 345 350 355 360
TTA GAT AAA GCA AAA CTG GAA TAT GGA ATA GAG CCT GGT TCA TTT GGC 1338 Leu Asp Lys Ala Lys Leu Glu Tyr Gly Ile Glu Pro Gly Ser Phe Gly 365 370 375
ACG GTT AAA GTC TTT GAT GTT ACA GCG CGT TTT GGT TAT AAC GCA GAT 1386 Thr Val Lys Val Phe Asp Val Thr Ala Arg Phe Gly Tyr Asn Ala Asp 380 385 390
CTT AAA CAG GAC CAG CTA GAC TAC TTT TCT ACA TCC AAC CCT ATG TGC 1434 Leu Lys Gin Asp Gin Leu Asp Tyr Phe Ser Thr Ser Asn Pro Met Cys 395 400 405
AAG CGT GTA TGC CTT CCT ACA AAA GAA CAA TGG AGT AAG CAA GGC CAA 1482 Lys Arg Val Cys Leu Pro Thr Lys Glu Gin Trp Ser Lys Gin Gly Gin 410 415 420
ATT TAC ATT GGT CCG TCA TTA GCT GCA GTA ATT GAT ACC ACA CCT GAA 1530 Ile Tyr Ile Gly Pro Ser Leu Ala Ala Val Ile Asp Thr Thr Pro Glu 425 430 435 440
ACT TCA AAA TAC GAT TAT GAT GTG AAA ACT TTT AAC GTC AAA AGA ATA 1578 Thr Ser Lys Tyr Asp Tyr Asp Val Lys Thr Phe Asn Val Lys Arg Ile 445 450 455
AAT TTT CCT GTA AAT TCA CAC AAG ACT ATC GAC ACG AAT ACT GAA AGT 1626 Asn Phe Pro Val Asn Ser His Lys Thr Ile Asp Thr Asn Thr Glu Ser 460 465 470
AGC CGT GTC TGC AAT TAT TAC GGT ATG TCC GAA TGC TCC AGC AGT CGA 1674 Ser Arg Val Cys Asn Tyr Tyr Gly Met Ser Glu Cys Ser Ser Ser Arg 475 480 485
TGG GAG CGA TAGATTAAGC CGCTATATTC ATTTACTAGG TAAAACTTCA 1723
Trp Glu Arg 490
AGCCGCATTC GAAGAACTAT CGAACGCGGC TTTTTTGTTA AGAGCGCCTA TGACTCAGTA 1783 TATTTTGTAT AAATATAATT TTACATCTTG TTAAAGTAAA CATCATATGT TTATATAGGT 1843 GCAATCTAAT TTGTTAATAT AGTGTTGGAG ATAGGT ATG AAA GGT GTT TCT ACG 1897
Met Lys Gly Val Ser Thr 495 AAA AAT GCT CTT TTA TTT GCA GGC TTT TCG TTA AGT CTA GTT GCA CAG 1945 Lys Asn Ala Leu Leu Phe Ala Gly Phe Ser Leu Ser Leu Val Ala Gin 500 505 510
TCA GTT AGT GCA CAA GAA GCA AAA CAG CCT GAA AAA GAA GAA AAA GAT 1993 Ser Val Ser Ala Gin Glu Ala Lys Gin Pro Glu Lys Glu Glu Lys Asp 515 520 525
GTT GAG GTG ATT TTG GTA TCG GCA CAA AAG CGT GAG CAA GCG CTT AAA 2041 Val Glu Val Ile Leu Val Ser Ala Gin Lys Arg Glu Gin Ala Leu Lys 530 535 540 545
GAA GTG CCT GTA TCA ATT GAA GTT ATT CAA GGC GAC CTT CTA GA 2085
Glu Val Pro Val Ser Ile Glu Val Ile Gin Gly Asp Leu Leu 550 555
(2) INFORMATIONS POUR LA SEQ ID NO: 2:
(l) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 559 acides aminés
(B) TYPE: acide aminé
(D) CONFIGURATION: linéaire
(il) TYPE DE MOLECULE: protéine
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 2:
Met Arg Leu Tyr Phe Arg Lys Leu Trp Leu Thr Asn Leu Phe Leu Gly
1 5 10 15
Gly Ala Leu Ala Ser Ser Ala Ala Ile Gly Ala Val Ser Pro Lys Thr
20 25 30
Tyr Lys Asp Ala Asp Phe Tyr Val Ala Pro Thr Gin Gin Asp Val Asn
35 40 45
Tyr Asp Leu Val Asp Asp Phe Gly Ala Asn Gly Asn Asp Thr Ser Asp
50 55 60
Asp Ser Asn Ala Leu Gin Arg Ala Ile Asn Ala Ile Ser Arg Lys Pro 65 70 75 80
Asn Gly Gly Thr Leu Leu Ile Pro Asn Gly Thr Tyr His Phe Leu Gly
85 90 95
Ile Gin Met Lys Ser Asn Val His Ile Arg Val Glu Ser Asp Val Ile
100 105 110
Ile Lys Pro Thr Trp Asn Gly Asp Gly Lys Asn His Arg Leu Phe Glu
115 120 125
Val Gly Val Asn Asn Ile Val Arg Asn Phe Ser Phe Gin Gly Leu Gly 130 135 140 Asn Gly Phe Leu Val Asp Phe Lys Asp Ser Arg Asp Lys Asn Leu Ala 145 150 155 160
Val Phe Lys Leu Gly Asp Val Arg Asn Tyr Lys Ile Ser Asn Phe Thr
165 170 175
Ile Asp Asp Asn Lys Thr Ile Phe Ala Ser Ile Leu Val Asp Val Thr
180 185 190
Glu Arg Asn Gly Arg Leu His Trp Ser Arg Asn Gly Ile Ile Glu Arg
195 200 205
Ile Lys Gin Asn Asn Ala Leu Phe Gly Tyr Gly Leu Ile Gin Thr Tyr
210 215 220
Gly Ala Asp Asn Ile Leu Phe Arg Asn Leu His Ser Glu Gly Gly Ile 225 230 235 240
Ala Leu Arg Met Glu Thr Asp Asn Leu Leu Met Lys Asn Tyr Lys Gin
245 250 255
Gly Gly Ile Arg Asn Ile Phe Ala Asp Asn Ile Arg Cys Ser Lys Gly
260 265 270
Leu Ala Ala Val Met Phe Gly Pro His Phe Met Lys Asn Gly Asp Val
275 280 285
Gin Val Thr Asn Val Ser Ser Val Ser Cys Gly Ser Ala Val Arg Ser
290 295 300
Asp Ser Gly Phe Val Glu Leu Phe Ser Pro Thr Asp Glu Val His Thr 305 310 315 320
Arg Gin Ser Trp Lys Gin Ala Val Glu Ser Lys Leu Gly Arg Gly Cys
325 330 335
Ala Gin Thr Pro Tyr Ala Arg Gly Asn Gly Gly Thr Arg Trp Ala Ala
340 345 350
Arg Val Thr Gin Lys Asp Ala Cys Leu Asp Lys Ala Lys Leu Glu Tyr
355 360 365
Gly Ile Glu Pro Gly Ser Phe Gly Thr Val Lys Val Phe Asp Val Thr
370 375 380
Ala Arg Phe Gly Tyr Asn Ala Asp Leu Lys Gin Asp Gin Leu Asp Tyr 385 390 395 400
Phe Ser Thr Ser Asn Pro Met Cys Lys Arg Val Cys Leu Pro Thr Lys
405 410 415
Glu Gin Trp Ser Lys Gin Gly Gin Ile Tyr Ile Gly Pro Ser Leu Ala
420 425 430
Ala Val Ile Asp Thr Thr Pro Glu Thr Ser Lys Tyr Asp Tyr Asp Val
435 440 445
Lys Thr Phe Asn Val Lys Arg Ile Asn Phe Pro Val Asn Ser His Lys
450 455 460
Thr Ile Asp Thr Asn Thr Glu Ser Ser Arg Val Cys Asn Tyr Tyr Gly 465 470 475 480
Met Ser Glu Cys Ser Ser Ser Arg Trp Glu Arg Met Lys Gly Val Ser
485 490 495
Thr Lys Asn Ala Leu Leu Phe Ala Gly Phe Ser Leu Ser Leu Val Ala 500 505 510 Gin Ser Val Ser Ala Gin Glu Ala Lys Gin Pro Glu Lys Glu Glu Lys
515 520 525
Asp Val Glu Val Ile Leu Val Ser Ala Gin Lys Arg Glu Gin Ala Leu
530 535 540
Lys Glu Val Pro Val Ser Ile Glu Val Ile Gin Gly Asp Leu Leu
545 550 555
(2) INFORMATIONS POUR LA SEQ ID NO: 3:
(1) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 1997 paires de bases
(B) TYPE: nucleotide
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire
(il) TYPE DE MOLECULE: ADN (génomique)
(ni) HYPOTHETIQUE: NON
(ix) CARACTERISTIQUE:
(A) NOM/CLE: CDS
(B) EMPLACEMENT: jOin( 333..1805, 1866..1997)
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 3:
CCCTAAAAAC TATTCTTCAT ACCCTTTGAT GTATACGTTT AAACTATAGG GAGTTAATCT 60
GGTTTTGGTG CAATTCTAGT TTAATAAATG AAGCCTTCTT TTTTGACTTA CATTTTATTA 120
ACCTCTTGAA TTCTTGGGGC TTGCTAATTA TAAAATACTT AATATCAGGT GGTTGTGTAA 180
AAGAGGTGGA AGGGTATAGG ACCGTTACTT ATAATTGGCC CCTGTCGGAA GGGGGGTTAA 240
AGGTAAAATA GTGTTTAAGT GTATTAATTA ACTTCTATAT AAGTAGGAAA ATACACTATA 300
TATTGCGACA TTATTAACCT TAAATTCTTA CA ATG AAA TTΛ CAA TTT AAA CCT 353
Met Lys Leu Gin Phe Lys Pro 1 5
GTT TAT TTA GCG TCA ATT GCC ATA ATG GCA ATA GGA TGC ACC AAA GAA 401 Val Tyr Leu Ala Ser Ile Ala Ile Met Ala Ile Gly Cys Thr Lys Glu 10 15 20
GTG ACG GAA AAC GAT ACC TCC GAA ATT TCG GAA GTT CCA ACT GAA TTG 449 Val Thr Glu Asn Asp Thr Ser Glu Ile Ser Glu Val Pro Thr Glu Leu 25 30 35
AGG GCC GCG GCT TCT TCA TTT TAT ACC CCA CCG GGT CAG AAT GTA CGG 497 Arg Ala Ala Ala Ser Ser Phe Tyr Thr Pro Pro Gly Gin Asn Val Arg 40 45 50 55 GCC AAT AAA AAA AAC CTG GTC ACG GAT TAC GGT GTT AAC CAC AAT GAT 545 Ala Asn Lys Lys Asn Leu Val Thr Asp Tyr Gly Val Asn His Asn Asp 60 65 70
CAG AAC GAT GAT AGT AGC AAA TTA AAC CTG GCT ATC AAA GAT TTA TCG 593 Gin Asn Asp Asp Ser Ser Lys Leu Asn Leu Ala Ile Lys Asp Leu Ser 75 80 85
GAT ACC GGT GGT ATA CTG ACC CTT CCT AAG GGA AAG TAC TAT TTG ACC 641 Asp Thr Gly Gly Ile Leu Thr Leu Pro Lys Gly Lys Tyr Tyr Leu Thr 90 95 100
AAA ATT AGA ATG CGC TCT AAT GTA CAT CTT GAA ATA GAA AAG GGA ACG 689 Lys Ile Arg Met Arg Ser Asn Val His Leu Glu Ile Glu Lys Gly Thr 105 110 115
GTA ATC TAT CCG ACC AAG GGG TTG ACT CCT GCG AAG AAT CAC AGA ATT 737 Val Ile Tyr Pro Thr Lys Gly Leu Thr Pro Ala Lys Asn His Arg Ile 120 125 130 135
TTT GAT TTT GCC AGT AAA ACA GAG GAA AAA ATA GAA AAC GCC AGT ATA 785 Phe Asp Phe Ala Ser Lys Thr Glu Glu Lys Ile Glu Asn Ala Ser Ile 140 145 150
GTG GGT AAA GGA GGT AAG TTT ATA GTA GAC CTA AGA GGC AAC AGT TCT 833 Val Gly Lys Gly Gly Lys Phe Ile Val Asp Leu Arg Gly Asn Ser Ser 155 160 165
AAA AAC CAA ATT GTA GCC GAT GTT GGT AAC GTA ACC AAC TTT AAA ATA 881 Lys Asn Gin Ile Val Ala Asp Val Gly Asn Val Thr Asn Phe Lys Ile 170 175 180
TCG AAT TTT ACG ATC AAG GAT GAA AAA ACC ATC TTT GCT TCG ATA TTG 929 Ser Asn Phe Thr Ile Lys Asp Glu Lys Thr Ile Phe Ala Ser Ile Leu 185 190 195
GTA AGC TTT ACG GAT AAG GCA GGC AAT GCT TGG CCA CAT AAA GGT ATT 977 Val Ser Phe Thr Asp Lys Ala Gly Asn Ala Trp Pro His Lys Gly Ile 200 205 210 215
ATT GAG AAT ATA GAC CAG GCG AAT GCC CAT ACG GGA TAT GGC CTC ATA 1025 Ile Glu Asn Ile Asp Gin Ala Asn Ala His Thr Gly Tyr Gly Leu Ile 220 225 230 CAG GCG TAC GCG GCA GAT AAC ATT CTG TTC AAC AAT CTA AGT TGT ACG 1073 Gin Ala Tyr Ala Ala Asp Asn Ile Leu Phe Asn Asn Leu Ser Cys Thr 235 240 245
GGC GGG GTA ACC TTG CGT TTA GAA ACC GAC AAC CTC GCT ATG AAA ACC 1121 Gly Gly Val Thr Leu Arg Leu Glu Thr Asp Asn Leu Ala Met Lys Thr 250 255 260
GCT AAA AAA GGG GGG GTA AGG GAT ATT TTT GCC ACA AAG ATC AAG AAT 1169 Ala Lys Lys Gly Gly Val Arg Asp Ile Phe Ala Thr Lys Ile Lys Asn 265 270 275
ACC AAT GGC TTG ACC CCG GTA ATG TTC TCT CCC CAT TTT ATG GAA AAC 1217 Thr Asn Gly Leu Thr Pro Val Met Phe Ser Pro His Phe Met Glu Asn 280 285 290 295
GGT AAA GTG ACC ATA GAT GAT GTA ACC GCC ATC GGT TGT GCA TAT GCC 1265 Gly Lys Val Thr Ile Asp Asp Val Thr Ala Ile Gly Cys Ala Tyr Ala 300 305 310
GTA CGT GTA GAG CAC GGT TTT ATA GAG ATT TTC GAT AAG GGG AAT AGG 1313 Val Arg Val Glu His Gly Phe Ile Glu Ile Phe Asp Lys Gly Asn Arg 315 320 325
GCA AGT GCC GAC GCT TTC AAG AAC TAT ATT GAA GGT ATT CTA GGA GCT 1361 Ala Ser Ala Asp Ala Phe Lys Asn Tyr Ile Glu Gly Ile Leu Gly Ala 330 335 340
GGC TCG GTA GAA GTC GTG TAC AAA CGT AAT AAC GGA AGA ACA TGG GCG 1409 Gly Ser Val Glu Val Val Tyr Lys Arg Asn Asn Gly Arg Thr Trp Ala 345 350 355
GCA CGT ATC GCA AAC GAC TTT AAC GAA GCG GCG TAT AAC CAC TCC AAT 1457 Ala Arg Ile Ala Asn Asp Phe Asn Glu Ala Ala Tyr Asn His Ser Asn 360 365 370 375
CCT GCC GTT AGC GGA ATC AAA CCA GGG AAA TTC GCC ACA TCT AAG GTA 1505 Pro Ala Val Ser Gly Ile Lys Pro Gly Lys Phe Ala Thr Ser Lys Val 380 385 390
ACC AAT GTT AAG GCA ACC TAT AAG GGT ACT GGC GCC AAA CTC AAG CAG 1553 Thr Asn Val Lys Ala Thr Tyr Lys Gly Thr Gly Ala Lys Leu Lys Gin 395 400 405 GCA TTC TTA TCC TAT TTA CCC TGT TCG GAA CGT TCT AAG GTT TGT CGG 1601 Ala Phe Leu Ser Tyr Leu Pro Cys Ser Glu Arg Ser Lys Val Cys Arg 410 415 420
CCA GGT CCA GAT GGG TTC GAG TAT AAC GGA CCC TCC TTG GGA GTT ACC 1649 Pro Gly Pro Asp Gly Phe Glu Tyr Asn Gly Pro Ser Leu Gly Val Thr 425 430 435
ATC GAT AAC ACG AAA AGG GAC AAC AGC CTT GGC AAT TAT AAC GTC AAT 1697 Ile Asp Asn Thr Lys Arg Asp Asn Ser Leu Gly Asn Tyr Asn Val Asn 440 445 450 455
GTA AGC ACC TCC AGT GTT CAG GGC TTT CCC AAT AAT TAC GTT TTA AAC 1745 Val Ser Thr Ser Ser Val Gin Gly Phe Pro Asn Asn Tyr Val Leu Asn 460 465 470
GTA AAG TAT AAT ACC CCT AAA GTA TGT AAC CAA AAT CTA GGT AGT ATT 1793 Val Lys Tyr Asn Thr Pro Lys Val Cys Asn Gin Asn Leu Gly Ser Ile 475 480 485
ACT TCG TGT AAC TGATCACGAA ACAATTTGTA AATAAAAAGC AGCTGTCCCT 1845
Thr Ser Cys Asn 490
TATTACGGGC GGCTGCTTTT ATG TCT TTA AGC CAT GTC GTG ATT TAT TGG 1895
Met Ser Leu Ser His Val Val Ile Tyr Trp 495 500
CGA CTT TTG ATA AAG GCT TGG ATT TCT TCC GGG GTA AAT ATC GGA TTG 1943 Arg Leu Leu Ile Lys Ala Trp Ile Ser Ser Gly Val Asn Ile Gly Leu 505 510 515
GCC CCT TCC CTA CCG GCT ACC ATA GCT CTA TGC TCC TAT GCA CAG GCG 1991 Ala Pro Ser Leu Pro Ala Thr Ile Ala Leu Cys Ser Tyr Ala Gin Ala 520 525 530
AAA TCT 1997
Lys Ser 535
(2) INFORMATIONS POUR LA SEQ ID NO: 4:
(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 535 acides aminés
(B) TYPE: acide aminé
(D) CONFIGURATION: linéaire (ii) TYPE DE MOLECULE: protéine
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 4:
Met Lys Leu Gin Phe Lys Pro Val Tyr Leu Ala Ser Ile Ala Ile Met
1 5 10 15
Ala Ile Gly Cys Thr Lys Glu Val Thr Glu Asn Asp Thr Ser Glu Ile
20 25 30
Ser Glu Val Pro Thr Glu Leu Arg Ala Ala Ala Ser Ser Phe Tyr Thr
35 40 45
Pro Pro Gly Gin Asn Val Arg Ala Asn Lys Lys Asn Leu Val Thr Asp
50 55 60
Tyr Gly Val Asn His Asn Asp Gin Asn Asp Asp Ser Ser Lys Leu Asn 65 70 75 80
Leu Ala Ile Lys Asp Leu Ser Asp Thr Gly Gly Ile Leu Thr Leu Pro
85 90 95
Lys Gly Lys Tyr Tyr Leu Thr Lys Ile Arg Met Arg Ser Asn Val His
100 105 110
Leu Glu Ile Glu Lys Gly Thr Val Ile Tyr Pro Thr Lys Gly Leu Thr
115 120 125
Pro Ala Lys Asn His Arg Ile Phe Asp Phe Ala Ser Lys Thr Glu Glu
130 135 140
Lys Ile Glu Asn Ala Ser Ile Val Gly Lys Gly Gly Lys Phe Ile Val 145 150 155 160
Asp Leu Arg Gly Asn Ser Ser Lys Asn Gin Ile Val Ala Asp Val Gly
165 170 175
Asn Val Thr Asn Phe Lys Ile Ser Asn Phe Thr Ile Lys Asp Glu Lys
180 185 190
Thr Ile Phe Ala Ser Ile Leu Val Ser Phe Thr Asp Lys Ala Gly Asn
195 200 205
Ala Trp Pro His Lys Gly Ile Ile Glu Asn Ile Asp Gin Ala Asn Ala
210 215 220
His Thr Gly Tyr Gly Leu Ile Gin Ala Tyr Ala Ala Asp Asn Ile Leu 225 230 235 240
Phe Asn Asn Leu Ser Cys Thr Gly Gly Val Thr Leu Arg Leu Glu Thr
245 250 255
Asp Asn Leu Ala Met Lys Thr Ala Lys Lys Gly Gly Val Arg Asp Ile
260 265 270
Phe Ala Thr Lys Ile Lys Asn Thr Asn Gly Leu Thr Pro Val Met Phe
275 280 285
Ser Pro His Phe Met Glu Asn Gly Lys Val Thr Ile Asp Asp Val Thr
290 295 300
Ala Ile Gly Cys Ala Tyr Ala Val Arg Val Glu His Gly Phe Ile Glu 305 310 315 320 Ile Phe Asp Lys Gly Asn Arg Ala Ser Ala Asp Ala Phe Lys Asn Tyr
325 330 335
Ile Glu Gly Ile Leu Gly Ala Gly Ser Val Glu Val Val Tyr Lys Arg
340 345 350
Asn Asn Gly Arg Thr Trp Ala Ala Arg Ile Ala Asn Asp Phe Asn Glu
355 360 365
Ala Ala Tyr Asn His Ser Asn Pro Ala Val Ser Gly Ile Lys Pro Gly
370 375 380
Lys Phe Ala Thr Ser Lys Val Thr Asn Val Lys Ala Thr Tyr Lys Gly 385 390 395 400
Thr Gly Ala Lys Leu Lys Gin Ala Phe Leu Ser Tyr Leu Pro Cys Ser
405 410 415
Glu Arg Ser Lys Val Cys Arg Pro Gly Pro Asp Gly Phe Glu Tyr Asn
420 425 430
Gly Pro Ser Leu Gly Val Thr Ile Asp Asn Thr Lys Arg Asp Asn Ser
435 440 445
Leu Gly Asn Tyr Asn Val Asn Val Ser Thr Ser Ser Val Gin Gly Phe
450 455 460
Pro Asn Asn Tyr Val Leu Asn Val Lys Tyr Asn Thr Pro Lys Val Cys 465 470 475 480
Asn Gin Asn Leu Gly Ser Ile Thr Ser Cys Asn Met Ser Leu Ser His
485 490 495
Val Val Ile Tyr Trp Arg Leu Leu Ile Lys Ala Trp Ile Ser Ser Gly
500 505 510
Val Asn Ile Gly Leu Ala Pro Ser Leu Pro Ala Thr Ile Ala Leu Cys
515 520 525
Ser Tyr Ala Gin Ala Lys Ser 530 535
(2) INFORMATIONS POUR LA SEQ ID NO: 5:
(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 2180 paires de bases
(B) TYPE: nucléotide
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire
(ii) TYPE DE MOLECULE: ADN (génomique)
(iii) HYPOTHETIQUE: NON
(ix) CARACTERISTIQUE:
(A) NOM/CLE: CDS
(B) EMPLACEMENT: joind..498, 741..1940, 2009..2179)
(Xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 5: GAT CAT ATC ATT CCT TTG CAA ATT AAA AAT TCT CAA GAT AGT CAA ATA 48 Asp His Ile Ile Pro Leu Gin Ile Lys Asn Ser Gin Asp Ser Gin Ile 1 5 10 15
ATT AGT TTT TTT AAA GCT GAC AAA GGG AGT GTG AGC AGG CAA GTA CAC 96 Ile Ser Phe Phe Lys Ala Asp Lys Gly Ser Val Ser Arg Gin Val His 20 25 30
CCA CCT TGG CCT GTG CCT TGT AAA AGT AAA CTG CAA GAG CAA GAT AGT 144 Pro Pro Trp Pro Val Pro Cys Lys Ser Lys Leu Gin Glu Gin Asp Ser 35 40 45
AGT GAG TCT AAA GAG AGT AAG GCA GAG CAA GTT AAA ATT AAC AAC TGC 192 Ser Glu Ser Lys Glu Ser Lys Ala Glu Gin Val Lys Ile Asn Asn Cys 50 55 60
GTT GTA CAG AAC GCA ATG CTG TAC ATA GAA AAC AAT TAT TTC AAC GAT 240 Val Val Gin Asn Ala Met Leu Tyr Ile Glu Asn Asn Tyr Phe Asn Asp 65 70 75 80
ATA AAT ATA GAC ACG GTT GCT TTT TCT GTT GGC GTA AGT CGC TCT TAT 288 Ile Asn Ile Asp Thr Val Ala Phe Ser Val Gly Val Ser Arg Ser Tyr 85 90 95
CTC GTT AAA CAA TTT AAG TTA GCA ACG AAT AAA ACG ATT AAT AAT AGA 336 Leu Val Lys Gin Phe Lys Leu Ala Thr Asn Lys Thr Ile Asn Asn Arg 100 105 110
ATC ATA GAA GTA AGA ATA GAG CAG GCT AAA AAA GTA TTA CTA AAA AAA 384 Ile Ile Glu Val Arg Ile Glu Gin Ala Lys Lys Val Leu Leu Lys Lys 115 120 125
TCT GTT ACA GAA ACA GCT TAT GAA GTT GGT TTT AAT AAC TCA AAC TAC 432 Ser Val Thr Glu Thr Ala Tyr Glu Val Gly Phe Asn Asn Ser Asn Tyr 130 135 140
TTC GCG ACA GTT TTT AAA AAA AGA ACA AAC TAC ACG CCC AAG CAA TTT 480 Phe Ala Thr Val Phe Lys Lys Arg Thr Asn Tyr Thr Pro Lys Gin Phe 145 150 155 160
AAA CGT ACT TTT TCC AGC TAAAACTACA ACTAAATAAC GATTAAAAGC 528
Lys Arg Thr Phe Ser Ser 165
CATTTTTAGA GAACAGTAAA ACCATTTTTT GAGGTTTGGT GTTGTATATA AATATTAAAT 588 ATCCCCACTC GCTCAGCTTT TTTTGTGCGA GTTGTGAGAA TTAGCTTAAC AGGTAAGGTT 648 TACGTATCTG TATATCTAAA CTCTTCGAAT ATAACACTGT ATCTGTTGCT GAGCTGTGGC 708 TCAGTTCACA CTAACAAAGG ATGGATAAAT AA ATG AAA CCT ATA AGT ATT GTG 761
Met Lys Pro Ile Ser Ile Val 170
GCA TTC CCT ATA CCA GCT ATA AGT ATG CTT CTT TTA AGT GCA GTA TCA 809 Ala Phe Pro Ile Pro Ala Ile Ser Met Leu Leu Leu Ser Ala Val Ser 175 180 185
CAA GCA GCA TCT ATG CAA CCT CCC ATC GCA AAA CCT GGT GAA ACA TGG 857 Gin Ala Ala Ser Met Gin Pro Pro Ile Ala Lys Pro Gly Glu Thr Trp 190 195 200 205
ATT TTA CAA GCC AAA CGC TCT GAC GAA TTT AAC GTA AAA GAT GCG ACA 905 Ile Leu Gin Ala Lys Arg Ser Asp Glu Phe Asn Val Lys Asp Ala Thr 210 215 220
AAG TGG AAC TTT CAA ACA GAA AAC TAT GGG GTA TGG TCT TGG AAA AAT 953 Lys Trp Asn Phe Gin Thr Glu Asn Tyr Gly Val Trp Ser Trp Lys Asn 225 230 235
GAA AAT GCG ACA GTA TCT AAT GGC AAA CTA AAA TTA ACC ACT AAG CGA 1001 Glu Asn Ala Thr Val Ser Asn Gly Lys Leu Lys Leu Thr Thr Lys Arg 240 245 250
GAA TCT CAT CAA CGT ACA TTC TGG GAT GGC TGT AAT CAG CAG CAA GTT 1049 Glu Ser His Gin Arg Thr Phe Trp Asp Gly Cys Asn Gin Gin Gin Val 255 260 265
GCA AAT TAC CCA CTT TAT TAT ACA TCG GGT GTC GCT AAA TCC AGA GCT 1097 Ala Asn Tyr Pro Leu Tyr Tyr Thr Ser Gly Val Ala Lys Ser Arg Ala 270 275 280 285
ACA GGT AAT TAT GGC TAT TAC GAA GCT CGA ATC AAA GGA GCG AGT ACA 1145 Thr Gly Asn Tyr Gly Tyr Tyr Glu Ala Arg Ile Lys Gly Ala Ser Thr 290 295 300
TTT CCT GGC GTA TCG CCT GCT TTT TGG ATG TAT AGC ACC ATT GAC CGT 1193 Phe Pro Gly Val Ser Pro Ala Phe Trp Met Tyr Ser Thr Ile Asp Arg 305 310 315
TCA TTA ACG AAA GAA GGG GAT GTC CAA TAT AGC GAA ATA GAC GTA GTG 1241 Ser Leu Thr Lys Glu Gly Asp Val Gin Tyr Ser Glu Ile Asp Val Val 320 325 330 GAA CTT ACT CAA AAA AGT GCA GTG AGA GAG TCT GAT CAT GAC TTA CAC 1289 Glu Leu Thr Gin Lys Ser Ala Val Arg Glu Ser Asp His Asp Leu His 335 340 345
AAT ATT GTA GTA AAA AAT GGA AAA CCA ACA TGG ATG CGT CCA GGG TCT 1337 Asn Ile Val Val Lys Asn Gly Lys Pro Thr Trp Met Arg Pro Gly Ser 350 355 360 365
TTT CCG CAG ACA AAT CAT AAC GGA TAC CAT CTA CCT TTC GAT CCT CGA 1385 Phe Pro Gin Thr Asn His Asn Gly Tyr His Leu Pro Phe Asp Pro Arg 370 375 380
AAT GAC TTT CAC ACC TAT GGT GTC AAT GTA ACT AAA GAC AAG ATC ACT 1433 Asn Asp Phe His Thr Tyr Gly Val Asn Val Thr Lys Asp Lys Ile Thr 385 390 395
TGG TAC GTA GAT GGT GAA ATT GTG GGC GAA AAG GAT AAC TTA TAC TGG 1481 Trp Tyr Val Asp Gly Glu Ile Val Gly Glu Lys Asp Asn Leu Tyr Trp 400 405 410
CAT CGT CAA ATG AAT CTC ACA TTA TCA CAA GGC TTA CGC GCG CCG CAT 1529 His Arg Gin Met Asn Leu Thr Leu Ser Gin Gly Leu Arg Ala Pro His 415 420 425
ACA CAA TGG AAA TGT AAT CAA TTT TAC CCA TCA GCG AAT AAA TCA GCA 1577 Thr Gin Trp Lys Cys Asn Gin Phe Tyr Pro Ser Ala Asn Lys Ser Ala 430 435 440 445
GAA GGC TTC CCA ACA TCA ATG GAA GTT GAT TAT GTA AGA ACG TGG GTA 1625 Glu Gly Phe Pro Thr Ser Met Glu Val Asp Tyr Val Arg Thr Trp Val 450 455 460
AAG GTG GGC AAT AAC AAC TCT GCT CCA GGC GAG GGG CAG TCA TGT CCT 1673 Lys Val Gly Asn Asn Asn Ser Ala Pro Gly Glu Gly Gin Ser Cys Pro 465 470 475
AAC ACG TTT GTA GCT GTC AAT AGT GTT CAA CTA AGC GCA GCA AAA CAA 1721 Asn Thr Phe Val Ala Val Asn Ser Val Gin Leu Ser Ala Ala Lys Gin 480 485 490
ACA CTT CGA AAG GGC CAA TCT ACA ACG CTA GAA AGC ACA GTT CTT CCA 1769 Thr Leu Arg Lys Gly Gin Ser Thr Thr Leu Glu Ser Thr Val Leu Pro 495 500 505 AAC TGT GCA ACC AAC AAG AAA GTC ATT TAT TCA TCA AGC AAT AAA AAT 1817 Asn Cys Ala Thr Asn Lys Lys Val Ile Tyr Ser Ser Ser Asn Lys Asn 510 515 520 525
GTG GCA ACT GTG AAC AGT GCT GGC GTT GTA AAA GCT AAA AAT AAA GGC 1865 Val Ala Thr Val Asn Ser Ala Gly Val Val Lys Ala Lys Asn Lys Gly 530 535 540
ACT GCG ACG ATT ACG GTT AAA ACT AAA AAC AAA GGG AAA ATA GAT AAA 1913 Thr Ala Thr Ile Thr Val Lys Thr Lys Asn Lys Gly Lys Ile Asp Lys 545 550 555
TTA ACC ATT GCG GTG AAT TAAGCTAACT CAAACTAGCC TCGAAGGATT 1961
Leu Thr Ile Ala Val Asn 560
GAGGCACTTT ATTTATAGGT CTCAGGCTTC GACTTTTTGG AGGGGGT ATG AAA AAG 2017
Met Lys Lys 565
GTA AAT TTA TCC AGC AAG TGG ATA ATT AGC ATT AGT TTA CTA ATC ATT 2065 Val Asn Leu Ser Ser Lys Trp Ile Ile Ser Ile Ser Leu Leu Ile Ile 570 575 580
TGT GAT TAT GTT TAT TTA ATA CGA ACA AAC GTT AAC GAG CAA GCT AAC 2113 Cys Asp Tyr Val Tyr Leu Ile Arg Thr Asn Val Asn Glu Gin Ala Asn 585 590 595
GCA GAA GCT ACT GCA CAT ATG CAT TAC AAA ATA AAT AAT ACG AAA CAC 2161 Ala Glu Ala Thr Ala His Met H s Tyr Lys Ile Asn Asn Thr Lys His 600 605 610
TCA AAA GGA AAG CTT GAT C 2180
Ser Lys Gly Lys Leu Asp 615 620
(2) INFORMATIONS POUR LA SEQ ID NO: 6:
(l) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 620 acides ammes
(B) TYPE: acide aminé
(D) CONFIGURATION: linéaire
(il) TYPE DE MOLECULE: protéine (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 6:
Asp His Ile Ile Pro Leu Gin Ile Lys Asn Ser Gin Asp Ser Gin Ile
1 5 10 15
Ile Ser Phe Phe Lys Ala Asp Lys Gly Ser Val Ser Arg Gin Val His
20 25 30
Pro Pro Trp Pro Val Pro Cys Lys Ser Lys Leu Gin Glu Gin Asp Ser
35 40 45
Ser Glu Ser Lys Glu Ser Lys Ala Glu Gin Val Lys Ile Asn Asn Cys
50 55 60
Val Val Gin Asn Ala Met Leu Tyr Ile Glu Asn Asn Tyr Phe Asn Asp 65 70 75 80
Ile Asn Ile Asp Thr Val Ala Phe Ser Val Gly Val Ser Arg Ser Tyr
85 90 95
Leu Val Lys Gin Phe Lys Leu Ala Thr Asn Lys Thr Ile Asn Asn Arg
100 105 110
Ile Ile Glu Val Arg Ile Glu Gin Ala Lys Lys Val Leu Leu Lys Lys
115 120 125
Ser Val Thr Glu Thr Ala Tyr Glu Val Gly Phe Asn Asn Ser Asn Tyr
130 135 140
Phe Ala Thr Val Phe Lys Lys Arg Thr Asn Tyr Thr Pro Lys Gin Phe 145 150 155 160
Lys Arg Thr Phe Ser Ser Met Lys Pro Ile Ser Ile Val Ala Phe Pro
165 170 175
Ile Pro Ala Ile Ser Met Leu Leu Leu Ser Ala Val Ser Gin Ala Ala
180 185 190
Ser Met Gin Pro Pro Ile Ala Lys Pro Gly Glu Thr Trp Ile Leu Gin
195 200 205
Ala Lys Arg Ser Asp Glu Phe Asn Val Lys Asp Ala Thr Lys Trp Asn
210 215 220
Phe Gin Thr Glu Asn Tyr Gly Val Trp Ser Trp Lys Asn Glu Asn Ala 225 230 235 240
Thr Val Ser Asn Gly Lys Leu Lys Leu Thr Thr Lys Arg Glu Ser His
245 250 255
Gin Arg Thr Phe Trp Asp Gly Cys Asn Gin Gin Gin Val Ala Asn Tyr
260 265 270
Pro Leu Tyr Tyr Thr Ser Gly Val Ala Lys Ser Arg Ala Thr Gly Asn
275 280 285
Tyr Gly Tyr Tyr Glu Ala Arg Ile Lys Gly Ala Ser Thr Phe Pro Gly
290 295 300
Val Ser Pro Ala Phe Trp Met Tyr Ser Thr Ile Asp Arg Ser Leu Thr 305 310 315 320
Lys Glu Gly Asp Val Gin Tyr Ser Glu Ile Asp Val Val Glu Leu Thr
325 330 335
Gin Lys Ser Ala Val Arg Glu Ser Asp His Asp Leu His Asn Ile Val 340 345 350 Val Lys Asn Gly Lys Pro Thr Trp Met Arg Pro Gly Ser Phe Pro Gin
355 360 365
Thr Asn His Asn Gly Tyr His Leu Pro Phe Asp Pro Arg Asn Asp Phe
370 375 380
His Thr Tyr Gly Val Asn Val Thr Lys Asp Lys Ile Thr Trp Tyr Val 385 390 395 400
Asp Gly Glu Ile Val Gly Glu Lys Asp Asn Leu Tyr Trp His Arg Gin
405 410 415
Met Asn Leu Thr Leu Ser Gin Gly Leu Arg Ala Pro His Thr Gin Trp
420 425 430
Lys Cys Asn Gin Phe Tyr Pro Ser Ala Asn Lys Ser Ala Glu Gly Phe
435 440 445
Pro Thr Ser Met Glu Val Asp Tyr Val Arg Thr Trp Val Lys Val Gly
450 455 460
Asn Asn Asn Ser Ala Pro Gly Glu Gly Gin Ser Cys Pro Asn Thr Phe 465 470 475 480
Val Ala Val Asn Ser Val Gin Leu Ser Ala Ala Lys Gin Thr Leu Arg
485 490 495
Lys Gly Gin Ser Thr Thr Leu Glu Ser Thr Val Leu Pro Asn Cys Ala
500 505 510
Thr Asn Lys Lys Val Ile Tyr Ser Ser Ser Asn Lys Asn Val Ala Thr
515 520 525
Val Asn Ser Ala Gly Val Val Lys Ala Lys Asn Lys Gly Thr Ala Thr
530 535 540
Ile Thr Val Lys Thr Lys Asn Lys Gly Lys Ile Asp Lys Leu Thr Ile 545 550 555 560
Ala Val Asn Met Lys Lys Val Asn Leu Ser Ser Lys Trp Ile Ile Ser
565 570 575
Ile Ser Leu Leu Ile Ile Cys Asp Tyr Val Tyr Leu Ile Arg Thr Asn
580 585 590
Val Asn Glu Gin Ala Asn Ala Glu Ala Thr Ala His Met His Tyr Lys
595 600 605
Ile Asn Asn Thr Lys His Ser Lys Gly Lys Leu Asp 610 615 620
(2) INFORMATIONS POUR LA SEQ ID NO: 7:
(l) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 2600 paires de bases
(B) TYPE: nucléotide
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire
(il) TYPE DE MOLECULE: ADN (génomique)
(m) HYPOTHETIQUE: NON ( ix ) CARACTERISTIQUE :
(A) NOM/CLE : CDS
( B ) EMPLACEMENT : 875 . . 2509
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 7:
GCCTCCGTAT TCGACAATGT TGTACGATGC TTGGCGATTC GGACTCTGTT TAAGCACTCG 60
ATTTCGTAAA GGCACTATCC ACTCATTCAT TCCGACTCAA TATTCTTTTC GACAAATGCA 120
ACCGGTTCCA TTGAAAAGGC CCTAAAAATA CAGCTTTCCC GCCCCCCATC GTAGAAGGTT 180
CCAATATGCT TCAACCCCTT TTTCAGCCTT ACTTCAGGGG TATTACTTTC ATGCCTAGGG 240
CCGCAAATAC ATTCGCTTGG ACCCAGTCAC CTATATAATT GAATACGGAA CTACCCATGG 300
CTTCCTTCCC TTTGGGAACC TATGGTACAG ACTTGCCTTT TTTAAACCGG TTACTTCAGC 360
TAATTCGCCA AGCTGGTTCC TTCATAACCT TTGGCCCGAA ACACCTTGCA AGCACATAAA 420
TCTTATCCAA TATTTTGCGG TCTCATGGGA CAAATCTATA ACAAACATTC AATTTTACCA 480
AACGTTCGGT AATAAATCTA GTCAAAAACG GGGTCCGATT CATTTTAGAA GAAAGGTAAA 540
GCCCCCAAAA GAGCGGTTTA CTTGAAGATA TGATTTATAA AACACAATAA GTGACAAAGG 600
AAGATCATGG CTATAATTAG TTGAAAAAAC AGGGCTTACC ATGACATGGA GCTTTATTGA 660
AAACAGATGT CCAACAAGAA TAAAGGAGGG CCGTTCGACC GCGACGTTTA AATAAAAACA 720
TATTCCATAT CAAAATTTAA TTAAGGTTCT TTCCTACAGT ATTTATAAGA AATTACTAAA 780
ATTAGTTAGG ATAATACTAC AAAATGGTAA AATTGGATTA CTCAGATTGA ACCATAGCCT 840
CTACTTTAGT CGGCTAACAA AAACAATTAT AGTA ATG AAA AAA CCA AAT TTT 892
Met Lys Lys Pro Asn Phe 1 5
TAT GGC AAG ATG GGT AGA ACT GCA CTT TCA AGT CTT TTC TAC CTC TTT 940 Tyr Gly Lys Met Gly Arg Thr Ala Leu Ser Ser Leu Phe Tyr Leu Phe 10 15 20
TTC CTA GGC CTT GTG TAT GGG CAA CAA CCT ACG AAG ACT TCA AAT CCG 988 Phe Leu Gly Leu Val Tyr Gly Gin Gin Pro Thr Lys Thr Ser Asn Pro 25 30 35
AAC GAT CAG TGG ACC ATC AAA TGG AGT GCT TCG GAC GAA TTC AAC AAA 1036 Asn Asp Gin Trp Thr Ile Lys Trp Ser Ala Ser Asp Glu Phe Asn Lys 40 45 50
AAT GAC CCC GAC TGG GCA AAA TGG ATC AAG ACA GGA AAC CTT CCG AAT 1084 Asn Asp Pro Asp Trp Ala Lys Trp Ile Lys Thr Gly Asn Leu Pro Asn 55 60 65 70
ACA TCG GCA TGG AAA TGG AAC AAT CAA AAA AAC GTA AAG ATT TCC AAC 1132 Thr Ser Ala Trp Lys Trp Asn Asn Gin Lys Asn Val Lys Ile Ser Asn 75 80 85 GGA ATT GCG GAA CTA ACG ATG AGG CAT AAC GCC AAT AAT ACC CCA CCT 1180 Gly Ile Ala Glu Leu Thr Met Arg His Asn Ala Asn Asn Thr Pro Pro 90 95 100
GAC GGA GGA ACC TAT TTC ACC TCT GGG ATA TTT AAG TCG TAC CAA AAA 1228 Asp Gly Gly Thr Tyr Phe Thr Ser Gly Ile Phe Lys Ser Tyr Gin Lys 105 110 115
TTT ACG TAT GGA TAC TTT GAG GCC AAA ATC CAA GGA GCG GAT ATA GGT 1276 Phe Thr Tyr Gly Tyr Phe Glu Ala Lys Ile Gin Gly Ala Asp Ile Gly 120 125 130
GAA GGC GTA TGC CCA TCG TTT TGG CTT TAT AGT GAT TTC GAC TAT TCC 1324 Glu Gly Val Cys Pro Ser Phe Trp Leu Tyr Ser Asp Phe Asp Tyr Ser 135 140 145 150
GTA GCC AAT GGG GAA ACG GTA TAC AGT GAA ATA GAT GTA GTT GAA CTA 1372 Val Ala Asn Gly Glu Thr Val Tyr Ser Glu Ile Asp Val Val Glu Leu 155 160 165
CAA CAA TTC GAT TGG TAT GAA GGC CAT CAG GAC GAC ATT TAC GAC ATG 1420 Gin Gin Phe Asp Trp Tyr Glu Gly His Gin Asp Asp Ile Tyr Asp Met 170 175 180
GAC TTA AAT CTA CAC GCC GTT GTC AAA GAA AAC GGA CAG GGG GTT TGG 1468 Asp Leu Asn Leu His Ala Val Val Lys Glu Asn Gly Gin Gly Val Trp 185 190 195
AAA AGG CCA AAA ATG TAC CCT CAA GAA CAG TTG AAC AAA TGG AGA GCC 1516 Lys Arg Pro Lys Met Tyr Pro Gin Glu Gin Leu Asn Lys Trp Arg Ala 200 205 210
ATG GAC CCG AGT AAA GAC TTT CAT ATC TAT GGT TGT GAA GTG AAC CAG 1564 Met Asp Pro Ser Lys Asp Phe His Ile Tyr Gly Cys Glu Val Asn Gin 215 220 225 230
AAC GAA ATC ATA TGG TAT GTT GAC GGT GTC GAG GTT GCC CGA AAA CCA 1612 Asn Glu Ile Ile Trp Tyr Val Asp Gly Val Glu Val Ala Arg Lys Pro 235 240 245
AAT AAA TAT TGG CAT CGC CCC ATG AAC GTT ACC CTT TCA TTG GGA CTC 1660 Asn Lys Tyr Trp His Arg Pro Met Asn Val Thr Leu Ser Leu Gly Leu 250 255 260 AGA AAA CCA TTT GTG AAA TTT TTC GAC AAT AAG AAC AAT GCC ATA AAT 1708 Arg Lys Pro Phe Val Lys Phe Phe Asp Asn Lys Asn Asn Ala Ile Asn 265 270 275
CCA GAA ACC GAT GCC AAG GCA AGG GAA AAA TTA TCG GAT ATA CCT ACA 1756 Pro Glu Thr Asp Ala Lys Ala Arg Glu Lys Leu Ser Asp Ile Pro Thr 280 285 290
TCG ATG TAT GTG GAT TAC GTT CGG GTC TGG GAA AAA TCA GCA GGT AAC 1804 Ser Met Tyr Val Asp Tyr Val Arg Val Trp Glu Lys Ser Ala Gly Asn 295 300 305 310
ACT ACC AAT CCC CCA ACC AGC GAG GTC GGC ACA CTA AAA ACA AAG GGT 1852 Thr Thr Asn Pro Pro Thr Ser Glu Val Gly Thr Leu Lys Thr Lys Gly 315 320 325
TCG AAA CTG GTG ATT GAC CAT TGG GAT GCA AGT ACA GGG ACT ATT TCG 1900 Ser Lys Leu Val Ile Asp His Trp Asp Ala Ser Thr Gly Thr Ile Ser 330 335 340
GCT GTC AGT AAC AAT ACA AAG ACA GGT CAA TAT GCC GGT TCA GTG AAC 1948 Ala Val Ser Asn Asn Thr Lys Thr Gly Gin Tyr Ala Gly Ser Val Asn 345 350 355
AAC GCG AGC ATC GCC CAG ATA GTA ACA TTA AAA GCG AAT ACT TCA TAT 1996 Asn Ala Ser Ile Ala Gin Ile Val Thr Leu Lys Ala Asn Thr Ser Tyr 360 365 370
AAG GTA TCG GCT TTC GGA AAG GCC AGC TCA CCC GGA ACA TCG GCT TAT 2044 Lys Val Ser Ala Phe Gly Lys Ala Ser Ser Pro Gly Thr Ser Ala Tyr 375 380 385 390
CTA GGC ATT AGT AAA GCA TCC AAC AAC GAA CTC ATA AGC AAT TTT GAA 2092 Leu Gly Ile Ser Lys Ala Ser Asn Asn Glu Leu Ile Ser Asn Phe Glu 395 400 405
TTC AAA ACA ACC TCA TAC TCC AAA GGC GAG ATT GAG ATA AGA ACT GGA 2140 Phe Lys Thr Thr Ser Tyr Ser Lys Gly Glu Ile Glu Ile Arg Thr Gly 410 415 420
AAT GTT CAG GAA TCA TAT CGC ATA TGG TAT TGG TCT TCC GGG CAA GCC 2188 Asn Val Gin Glu Ser Tyr Arg Ile Trp Tyr Trp Ser Ser Gly Gin Ala 425 430 435 TAT TGC GAT GAT TTT AAC CTT GTT GAA ATA AAC AGC GGG GCT TCA CAA 2236 Tyr Cys Asp Asp Phe Asn Leu Val Glu Ile Asn Ser Gly Ala Ser Gin 440 445 450
CTC AAT GAA AAT GAG ACT GAA ACA GCA CTG GAA AAA GGT ATA CAC ATT 2284 Leu Asn Glu Asn Glu Thr Glu Thr Ala Leu Glu Lys Gly Ile His Ile 455 460 465 470
TAT CCG AAT CCC TAT AAA AAC GGT CCA TTG ACA ATC GAT TTT GGC AAA 2332 Tyr Pro Asn Pro Tyr Lys Asn Gly Pro Leu Thr Ile Asp Phe Gly Lys 475 480 485
CCC TTC AGC GGC GAG GTC CAA ATC ACC GGT TTA AAC GGT AGA ACA TTC 2380 Pro Phe Ser Gly Glu Val Gin Ile Thr Gly Leu Asn Gly Arg Thr Phe 490 495 500
TTA AGA AGA AAT GTT GTC GAT CAA ACT TCG GTT CAG CTC CTA GAA TCC 2428 Leu Arg Arg Asn Val Val Asp Gin Thr Ser Val Gin Leu Leu Glu Ser 505 510 515
AAA TCT AAA TTC AAG AGC GGT CTA TAT ATC GTT AAA ATT AGT GGC CCG 2476 Lys Ser Lys Phe Lys Ser Gly Leu Tyr Ile Val Lys Ile Ser Gly Pro 520 525 530
GAT GGA GAG GTT TCA AAA AAG ATA CTC GTG GAG TAACTAAAAA TCAATTTTTA 2529 Asp Gly Glu Val Ser Lys Lys Ile Leu Val Glu 535 540 545
CAGGATTACA GACGGGCAAA GGGATTTTCC TTTGCCCGTT TTTAAAATTA TGGGCGGAAA 2589 CGATTGTTGC G 2600
(2) INFORMATIONS POUR LA SEQ ID NO: 8:
(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 545 acides aminés
(B) TYPE: acide aminé
(D) CONFIGURATION: linéaire
(ii) TYPE DE MOLECULE: protéine
(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 8:
Met Lys Lys Pro Asn Phe Tyr Gly Lys Met Gly Arg Thr Ala Leu Ser
1 5 10 15
Ser Leu Phe Tyr Leu Phe Phe Leu Gly Leu Val Tyr Gly Gin Gin Pro 20 25 30 Thr Lys Thr Ser Asn Pro Asn Asp Gin Trp Thr Ile Lys Trp Ser Ala
35 40 45
Ser Asp Glu Phe Asn Lys Asn Asp Pro Asp Trp Ala Lys Trp Ile Lys
50 55 60
Thr Gly Asn Leu Pro Asn Thr Ser Ala Trp Lys Trp Asn Asn Gin Lys 65 70 75 80
Asn Val Lys Ile Ser Asn Gly Ile Ala Glu Leu Thr Met Arg His Asn
85 90 95
Ala Asn Asn Thr Pro Pro Asp Gly Gly Thr Tyr Phe Thr Ser Gly Ile
100 105 110
Phe Lys Ser Tyr Gin Lys Phe Thr Tyr Gly Tyr Phe Glu Ala Lys Ile
115 120 125
Gin Gly Ala Asp Ile Gly Glu Gly Val Cys Pro Ser Phe Trp Leu Tyr
130 135 140
Ser Asp Phe Asp Tyr Ser Val Ala Asn Gly Glu Thr Val Tyr Ser Glu 145 150 155 160
Ile Asp Val Val Glu Leu Gin Gin Phe Asp Trp Tyr Glu Gly His Gin
165 170 175
Asp Asp Ile Tyr Asp Met Asp Leu Asn Leu His Ala Val Val Lys Glu
180 185 190
Asn Gly Gin Gly Val Trp Lys Arg Pro Lys Met Tyr Pro Gin Glu Gin
195 200 205
Leu Asn Lys Trp Arg Ala Met Asp Pro Ser Lys Asp Phe His Ile Tyr
210 215 220
Gly Cys Glu Val Asn Gin Asn Glu Ile Ile Trp Tyr Val Asp Gly Val 225 230 235 240
Glu Val Ala Arg Lys Pro Asn Lys Tyr Trp His Arg Pro Met Asn Val
245 250 255
Thr Leu Ser Leu Gly Leu Arg Lys Pro Phe Val Lys Phe Phe Asp Asn
260 265 270
Lys Asn Asn Ala Ile Asn Pro Glu Thr Asp Ala Lys Ala Arg Glu Lys
275 280 285
Leu Ser Asp Ile Pro Thr Ser Met Tyr Val Asp Tyr Val Arg Val Trp
290 295 300
Glu Lys Ser Ala Gly Asn Thr Thr Asn Pro Pro Thr Ser Glu Val Gly 305 310 315 320
Thr Leu Lys Thr Lys Gly Ser Lys Leu Val Ile Asp His Trp Asp Ala
325 330 335
Ser Thr Gly Thr Ile Ser Ala Val Ser Asn Asn Thr Lys Thr Gly Gin
340 345 350
Tyr Ala Gly Ser Val Asn Asn Ala Ser Ile Ala Gin Ile Val Thr Leu
355 360 365
Lys Ala Asn Thr Ser Tyr Lys Val Ser Ala Phe Gly Lys Ala Ser Ser
370 375 380
Pro Gly Thr Ser Ala Tyr Leu Gly Ile Ser Lys Ala Ser Asn Asn Glu 385 390 395 400 Leu Ile Ser Asn Phe Glu Phe Lys Thr Thr Ser Tyr Ser Lys Gly Glu
405 410 415
Ile Glu Ile Arg Thr Gly Asn Val Gin Glu Ser Tyr Arg Ile Trp Tyr
420 425 430
Trp Ser Ser Gly Gin Ala Tyr Cys Asp Asp Phe Asn Leu Val Glu Ile
435 440 445
Asn Ser Gly Ala Ser Gin Leu Asn Glu Asn Glu Thr Glu Thr Ala Leu
450 455 460
Glu Lys Gly Ile His Ile Tyr Pro Asn Pro Tyr Lys Asn Gly Pro Leu 465 470 475 480
Thr Ile Asp Phe Gly Lys Pro Phe Ser Gly Glu Val Gin Ile Thr Gly
485 490 495
Leu Asn Gly Arg Thr Phe Leu Arg Arg Asn Val Val Asp Gin Thr Ser
500 505 510
Val Gin Leu Leu Glu Ser Lys Ser Lys Phe Lys Ser Gly Leu Tyr Ile
515 520 525
Val Lys Ile Ser Gly Pro Asp Gly Glu Val Ser Lys Lys Ile Leu Val
530 535 540
Glu 545

Claims

REVENPICAπQNS
1. Gènes qui codent pour des glycosyle hydrolases, ayant un score HCA avec la iota-carraghénase d Alteromonas fortis qui est supérieur ou égal à 65 %, sur le domaine s'étendant entre les acides aminés 164 et 311 de la séquence protéique SEQ ID N° 2 de ladite iota-carraghénase.
2. Gènes selon la revendication 1, caractérisés en ce que le score HCA est supérieur ou égal à 70 %.
3. Gènes selon la revendication 1, caractérisés en ce que le score HCA est supérieur ou égal à 75 %.
4. Gène selon la revendication 1, caractérisé en ce qu'il code pour la i-carraghénase d'Alteromonas fortis et qu'il comprend la séquence nucléique SEQ ID N °1.
5. Gènes qui codent pour des glycosyle hydrolases ayant un score HCA avec la kappa-carraghénase d'Alteromonas carrageenovora qui est supérieur ou égal à 75 % sur le domaine s'étendant entre acides aminés 117 et 262 de la séquence protéique SEQ ID N° 6 de ladite kappa-carraghénase.
6. Gènes selon la revendication 5, caractérisés en ce que le score HCA est supérieur ou égal à 80 %.
7. Gènes selon la revendication 5, caractérisés en ce que le score HCA est supérieur ou égal à 85 %
8. Gène selon la revendication 5, caractérisé en ce qu'il code pour la κ-carτaghénase de Cytophaga drobachiensis et qu'il comprend la séquence nucléique SEQ ID N° 7.
9. Utilisation des gènes selon l'une quelconque des revendications 1 à
8, pour l'obtention de glycosyle hydrolases par génie génétique.
10. Utilisation du gène selon la revendication 4 pour l'obtention de la iota-carraghénase d'Alteromonas fortis par génie génétique.
11. Utilisation du gène selon la revendication 8 pour l'obtention de la kappa-carraghénase de Cytophaga drobachiensis par génie génétique.
EP97943947A 1996-10-07 1997-10-06 Genes de glycosyle hydrolases et leur utilisation pour la production d'enzymes de biodegradation des carraghenanes Withdrawn EP0954567A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP04291327A EP1466981A1 (fr) 1996-10-07 1997-10-06 Gènes de glycosyle hydrolases et leur utilisation pour la production d'enzymes de biodégradation des carraghénanes

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9612204 1996-10-07
FR9612204A FR2754270B1 (fr) 1996-10-07 1996-10-07 Genes codant pour des iota-carraghenases et leur utilisation pour la production d'enzymes de biodegradation des carraghenanes
PCT/FR1997/001768 WO1998015617A2 (fr) 1996-10-07 1997-10-06 Genes de carraghenases et leur utilisation pour la production d'enzymes de biodegradation des carraghenanes

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP04291327A Division EP1466981A1 (fr) 1996-10-07 1997-10-06 Gènes de glycosyle hydrolases et leur utilisation pour la production d'enzymes de biodégradation des carraghénanes

Publications (1)

Publication Number Publication Date
EP0954567A2 true EP0954567A2 (fr) 1999-11-10

Family

ID=9496429

Family Applications (2)

Application Number Title Priority Date Filing Date
EP04291327A Withdrawn EP1466981A1 (fr) 1996-10-07 1997-10-06 Gènes de glycosyle hydrolases et leur utilisation pour la production d'enzymes de biodégradation des carraghénanes
EP97943947A Withdrawn EP0954567A2 (fr) 1996-10-07 1997-10-06 Genes de glycosyle hydrolases et leur utilisation pour la production d'enzymes de biodegradation des carraghenanes

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP04291327A Withdrawn EP1466981A1 (fr) 1996-10-07 1997-10-06 Gènes de glycosyle hydrolases et leur utilisation pour la production d'enzymes de biodégradation des carraghénanes

Country Status (6)

Country Link
US (4) US6333185B1 (fr)
EP (2) EP1466981A1 (fr)
JP (1) JP2001501478A (fr)
CA (1) CA2267223A1 (fr)
FR (1) FR2754270B1 (fr)
WO (1) WO1998015617A2 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1181375A2 (fr) 1999-05-10 2002-02-27 CP Kelco APS Sulfohydrolases, sequences correspondantes d'acides amines et de nucleotides, preparations de sulfohydrolases, procedes, et leurs produits
CN1301836A (zh) * 1999-12-24 2001-07-04 上海博德基因开发有限公司 一种新的多肽——糖基水解酶12和编码这种多肽的多核苷酸
CN1301854A (zh) * 1999-12-29 2001-07-04 复旦大学 一种新的多肽——糖基水解酶12和编码这种多肽的多核苷酸
DE10163748A1 (de) * 2001-12-21 2003-07-17 Henkel Kgaa Neue Glykosylhydrolasen
US20060198800A1 (en) * 2003-08-14 2006-09-07 Natalie Dilallo Skin care compositions including hexapeptide complexes and methods of their manufacture
US20050063932A1 (en) * 2003-08-14 2005-03-24 Natalie Dilallo Skin care compositions including hexapeptide complexes and methods of their manufacture
US7658913B2 (en) 2005-11-28 2010-02-09 Verrow Pharmaceuticals, Inc. Compositions useful for reducing nephrotoxicity and methods of use thereof
US20090048136A1 (en) * 2007-08-15 2009-02-19 Mcdonald Hugh C Kappa-carrageenase and kappa-carrageenase-containing compositions
CL2007002369A1 (es) * 2007-08-16 2008-02-15 Leonor Solange Moenn Alejandra Composicion acuosa para estimular el crecimiento y la defensa contra patogenos y otras propiedades productivas favorables en plantas que comprende un oligocarragenano seleccionado de oligocarragenano kappa1, kappa2, lambda o iota; metodo de aplicacio
CL2009002014A1 (es) * 2009-10-30 2010-06-04 Univ Santiago Chile Metodo para estimular la fijacion de carbono en plantas que comprende asperjar sobre la planta una solucion acuosa de un oligo-carragenano seleccionado del grupo kappa 1 o 2, lambda o iota.
JP5827696B2 (ja) * 2011-12-20 2015-12-02 ヤマハ発動機株式会社 対象物選別装置および対象物選別方法
CN111763649B (zh) * 2020-07-31 2022-03-29 自然资源部第一海洋研究所 一种交替单胞菌及其应用
CN113444709B (zh) * 2021-07-05 2022-07-08 集美大学 一种κ-卡拉胶酶突变体及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9815617A2 *

Also Published As

Publication number Publication date
WO1998015617A2 (fr) 1998-04-16
JP2001501478A (ja) 2001-02-06
CA2267223A1 (fr) 1998-04-16
US6333185B1 (en) 2001-12-25
FR2754270A1 (fr) 1998-04-10
US20020086398A1 (en) 2002-07-04
US20020094553A1 (en) 2002-07-18
WO1998015617A3 (fr) 1998-08-27
EP1466981A1 (fr) 2004-10-13
FR2754270B1 (fr) 1998-12-24
US20020086397A1 (en) 2002-07-04
US6830915B2 (en) 2004-12-14

Similar Documents

Publication Publication Date Title
Cornet et al. Characterization of two cel (cellulose degradation) genes of Clostridium thermocellum coding for endoglucanases
JP2000506017A (ja) α―ガラクトシダーゼ
JP2001505403A (ja) エステラーゼ
WO1998015617A2 (fr) Genes de carraghenases et leur utilisation pour la production d'enzymes de biodegradation des carraghenanes
EP0541676A1 (fr) Nouvelles pullulanases thermostables
Kobayashi et al. Genetic and biochemical characterization of the Pseudoalteromonas tetraodonis alkaline κ-carrageenase
Kanai et al. Recombinant thermostable cycloinulo-oligosaccharide fructanotransferase produced by Saccharomyces cerevisiae
CN1768136B (zh) 琼脂分解酶及其应用
EP1318197B1 (fr) Ribonuclease h thermotolerant
JP2004313074A (ja) 新規α−1,2−マンノシダーゼおよびその遺伝子、ならびに該酵素を用いたα−マンノシル糖化合物の製造方法
FR2754271A1 (fr) Genes codant pour des kappa-carraghenases et leur utilisatio utilisation pour la production d'enzymes de biodegradation des carraghenanes
KR101796060B1 (ko) 한천을 분해하여 네오한천올리고당을 생성할 수 있는 아가라제
CN109486689B (zh) 一种增强l-天冬酰胺酶耐酸性的方法
EP2456866B1 (fr) Porphyranases et leur utilisation pour hydrolyser des polysaccharides
Skvortsova et al. Novel extracellular ribonuclease from Bacillus intermedius—Binase II: purification and some properties of the enzyme
KR101796059B1 (ko) 한천을 가수분해하여 사탄당을 생성하는 능력이 우수한 아가라아제 및 이를 코드하는 유전자
Fan et al. Small enzymes with esterase activities from two thermophilic fungi, Emericella nidulans and Talaromyces emersonii
KR102070415B1 (ko) 신규한 알파-아가레이즈 및 이를 이용한 한천 유래 홀수 개의 올리고당 생산 방법
EP0261009B1 (fr) Sequence d'ADN exercant une fonction se manifestant par une surproduction de protéines exocellulaires par diverses souches de bacillus, et vecteurs contenant cette séquence
JPH11313683A (ja) 新規キシロシダーゼ遺伝子、ベクター、それを用いた形質転換体及びその利用
JPH05344891A (ja) エステラーゼをコードする遺伝子及び該遺伝子を含有する新規微生物
US6509184B1 (en) Alkaline tolerant dextranase from streptomyces anulatus
JP3557271B2 (ja) 酵素をコードするdnaとそれを含む組換えdna並びに形質転換体
WO2018091836A1 (fr) Alpha-1,3-(3,6-ANHYDRO)-D-GALACTOSIDASES ET LEUR UTILISATION POUR HYDROLYSER DES POLYSACCHARIDES
CA2496603A1 (fr) Genes hydrolases glycosyles et leur utilisation dans la production d'enzymes pour la biodegradation de carraghenanes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990407

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20031107

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080226