WO2018091836A1 - Alpha-1,3-(3,6-ANHYDRO)-D-GALACTOSIDASES ET LEUR UTILISATION POUR HYDROLYSER DES POLYSACCHARIDES - Google Patents

Alpha-1,3-(3,6-ANHYDRO)-D-GALACTOSIDASES ET LEUR UTILISATION POUR HYDROLYSER DES POLYSACCHARIDES Download PDF

Info

Publication number
WO2018091836A1
WO2018091836A1 PCT/FR2017/053144 FR2017053144W WO2018091836A1 WO 2018091836 A1 WO2018091836 A1 WO 2018091836A1 FR 2017053144 W FR2017053144 W FR 2017053144W WO 2018091836 A1 WO2018091836 A1 WO 2018091836A1
Authority
WO
WIPO (PCT)
Prior art keywords
anhydro
carrageenans
kappa
beta
galactose
Prior art date
Application number
PCT/FR2017/053144
Other languages
English (en)
Inventor
Elizabeth FICKO-BLEAN
Robert LAROCQUE
Gaëlle CORREC
Mirjam Czjzek
Gurvan Michel
Original Assignee
Centre National De La Recherche Scientifique
Université Pierre et Marie Curie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique, Université Pierre et Marie Curie filed Critical Centre National De La Recherche Scientifique
Publication of WO2018091836A1 publication Critical patent/WO2018091836A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/731Carrageenans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/60Sugars; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0036Galactans; Derivatives thereof
    • C08B37/0042Carragenan or carragen, i.e. D-galactose and 3,6-anhydro-D-galactose, both partially sulfated, e.g. from red algae Chondrus crispus or Gigantia stellata; kappa-Carragenan; iota-Carragenan; lambda-Carragenan; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/10General cosmetic use
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to the isolation, purification and characterization of a novel polypeptide having ⁇ -1,3-(3,6-anhydro) -D-galactosidase activity, and uses thereof.
  • This polypeptide is the terminal enzyme for the degradation of carrageenans, one of the main families of polysaccharides forming the cell wall of red algae. It is an exo-enzyme that acts after the action of endo-carrageenases, which they hydrolyze the ⁇ -1, 4 binding of carrageenans according to an endo-lytic mode of action. This new enzyme specifically hydrolyzes the glycoside linkage a-1, 3 between 3,6-anhydro-D-galactose located at the non-reducing end of oligo-carrageenans and the D-galactose that precedes it. This enzymatic catalyst is therefore useful for producing the 3,6-anhydro-D-galactose monosaccharide.
  • this exo-enzyme also releases odd oligosaccharides from the series of carrabiose, whereas the known endo-carrageenases release even oligo-carrageenans from the neocarrabiose series.
  • the present invention finds, for example, applications in the cosmetics, food, pharmaceutical or biofuel fields.
  • references in brackets ([]) refer to the list of references at the end of the text.
  • Carrageenans have unique rheological properties and are widely used as gelling or thickening agents in various branches of activity, particularly in the food and cosmetics industry.
  • enoxaparin which is marketed for the treatment of thromboembolic disorders, is a mixture of sulfated polysaccharide chains of varying lengths and formed of recurrent disaccharic units.
  • Sulfated polysaccharides from red algae showed anticoagulant properties, reduced plasma cholesterol in chickens, showed anti-thrombotic properties in dogs and humans, were used for ulcer control, were used for treatment of diarrhea and dysentery [2].
  • polysaccharides extracted from red algae stimulate collagen biosynthesis and connective tissue formation, show anti-tumor and immunomodulation properties in mice and have anti-viral effects [2].
  • Carrageenans are complex anionic polysaccharides (sulfated galactans) found in the walls of red algae. Some algal species contain carrageenans given as a major component, such as the algae Tichocarpus crinitus, which contains beta-carrageenan as its main constituent in the wall (formerly and incorrectly called "Danish agar").
  • the basic disaccharide unit forming carrageenan is called carrabiose and consists of a ⁇ -1,4-linked D-galactose unit (see Figure 1) with a 3,6-anhydro-D-galactose unit (see Figure 1) [3].
  • the disaccharide units are then connected to each other via a-1, 3 linkages.
  • the disaccharide units may be non-sulphated (beta-carrabiosis) or be sulfated, for example, once on D-galactose unit (kappa-carrabiose) O4 or twice on D-galactose O4 and O2.
  • 3,6-anhydro-D-galactose unit iota-carrabiose or twice, on the 02 unit D-galactose and the unit O 2 3,6-anhydro-D-galactose (theta-carrabiose).
  • the 3,6-anhydro-D-galactose residue is unique to red algae and is responsible for the gelling properties of carrageenans of the Kappa family (including kappa- and iota-carrageenans). commercial).
  • Some carrageenans, such as lambda carrageenan have an ester sulfate group at 06 instead of the 3,6-anhydro bridge. This type of carrageenan is very viscous but can not gel.
  • Native carrageenans actually have hybrid structures with different ratios of different carrabiose motifs (eg kappa / iota carrageenan, kappa / beta-carrageenans).
  • the variations of sulfation patterns modulate the gelling character of the polymer. It is possible to desulfate kappa, iota or thetecargagenan by chemical and / or enzymatic methods (e.g. with sulfatases) to generate the beta-carrabiose base pattern.
  • Kappa carrageenases hydrolyze the ⁇ -1, 4 bond of carrageenans, mainly consisting of sulfated kappa- carrabiose units on the O4 of the D-galactose unit.
  • the iota-carrageenases produced by Z. galactanivorans and the marine bacterium Alteromonas fortis, hydrolyze the ⁇ -1, 4 binding of iota-carrageenans, between sulfated D-galactose on O4 and 3,6-anhydro-D-galactose. sulphated on the O2 [7, 13].
  • the lambda carrageenase of Pseudoalteromonas carrageenovora hydrolyzes the ⁇ -1, 4 binding of lambda-carrageenans, between sulfated D-galactose on O2 and second D-galactose disulfated on O2 and O6 [8, 14].
  • the inventors have quite unexpectedly isolated and characterized the first? -1,3-(3,6-anhydro) -D-galactosidase described to date.
  • This glycoside hydrolase is produced by the marine bacterium Z. galactanivorans and it releases the non-sulfated 3,6-anhydro-D-galactoses by cleaving the ⁇ -1,3 linkage at the non-reducing end of the oligos-carrageenans. Although it belongs to the GH129 family of glycoside hydrolases, it has only 15% sequence identity with the only other member of the family characterized to date, an alpha-N-acetylgalactosaminidase of an intestinal bacterium that is specific mucins of human intestinal cells [16].
  • Zobellia_3152 The gene for this protein, Zobellia_3152, has been identified in the complete genome of Z. galactanivorans.
  • the corresponding recombinant protein (hereinafter after named Zobellia_3152) was overexpressed in Escherichia coli and purified to electrophoretic homogeneity.
  • Zobellia_3152 has been shown to have ⁇ -1,3- (3,6-anhydro) -D-galactosidase activity.
  • An enzyme having such enzymatic activity has never been described. This enzyme has an exo mode of action, attacking oligosaccharides by the non-reducing end.
  • Zobellia_3152 is also specific for non-sulfated 3,6-anhydro-D-galactose, which has been demonstrated by the activity of the enzyme on kappa / beta-oligocarragenans derived from red algae Tichocarpus crinitus [17] and Furcellaria.
  • Zobellia_3152 can be used to hydrolyze oligos-carrageenans to obtain oligosaccharides of defined size and structure. More particularly, Zobellia_3152 makes it possible to obtain odd oligosaccharides without 3,6-anhydro-D-galactose at the non-reducing end, as well as 3,6-anhydro-D-galactose monosaccharide.
  • the subject of the present invention is therefore a polypeptide characterized in that it has ⁇ -1,3-(3,6-anhydro) -D-galactosidase activity.
  • the polypeptide is in isolated form and purified.
  • the isolated polypeptide is a recombinant polypeptide.
  • ⁇ -1, 3- (3,6-anhydro) -D-galactosidase activity is meant here the ability to hydrolyze the ⁇ -1,3 bonds of carrageenans (or oligo-carrageenans) ex release the 3,6-anhydro-D-galactose monosaccharide.
  • ⁇ -1,3- (3,6-anhydro) -D-galactosidase activity can for example be measured by digesting kappa / beta-oligocarragenans (even oligosaccharides of the neocarrabiose series) as described in Example 3. .
  • a solution containing 1% (w / v) oligosaccharide may be used.
  • This oligosaccharide was produced from the beta-carrageenan polymer extracted from Tichocarpus crinitus previously hydrolysed by kappa-carrageenase from P. carrageenovora [18] and then purified by size exclusion chromatography. 10 ⁇ l of the oligosaccharide solution is incubated at 18 ° C. with
  • kappa-carrageenan is meant here the molecule consisting of a chain of kappa-carrabiose disaccharide units consisting of a majority of D-galactose units modified by O-sulfation on the ⁇ -1-linked position O-1. , 4 with a 3,6-anhydro-D-galactose unit. The disacchand units are then connected to each other via links a-1, 3.
  • beta-carrageenan is meant here the polysaccharide consisting of a disaccharide chain linking assembly or kappa-carrabiose, consisting of a D-galactose unit modified by O-sulfation on the position 4 ⁇ -linked -1, 4 with a 3,6-anhydro-D-galactose unit or is beta-carrabiose, consisting of a ⁇ -1,4-linked D-galactose unit with a 3,6-anhydro-D-galactose unit.
  • the disaccharide units are then connected to each other via a-1, 3 linkages.
  • DP2 up to DP100 consisting of a disaccharide chain linking assembly or kappa-carrabiose, consisting of a D-galactose unit modified by O-sulfation on the 4-position bound ⁇ -1, 4 with a 3,6-anhydro-D-galactose or beta-carrabiose unit, consisting of a ⁇ -1,4-linked D-galactose unit with a 3,6-anhydro-D-galactose unit.
  • the disaccharide units are then connected to each other via a-1, 3 linkages.
  • polypeptide according to the present invention comprises or consists of a sequence chosen from:
  • polypeptides according to the invention also include polypeptides derived from the Zobellia_3152 protein of sequence SEQ ID NO: 2 being understood that these derived polypeptides retain the ⁇ -1,3- (3,6-anhydro) -D-galactosidase activity.
  • derivative polypeptides comprise or consist of a sequence selected from:
  • the percentage of identity is usually determined using sequence analysis software.
  • the "needle” program which uses the “Needleman-Wunsch” global alignment algorithm to find the optimal alignment (with gaps) of two sequences over their entire length, can for example be used. This program is available on the ebi.ac.uk website.
  • the derived polypeptides may differ from the reference sequence (in this case the sequence SEQ ID NO: 2 or one of its fragments) by the presence of mutations of deletion, insertion and / or amino acid substitution type.
  • the substitutions may be conservative or non-conservative.
  • the derived polypeptides differ from the reference sequence solely by the presence of conservative substitutions.
  • Conservative substitutions are amino acid substitutions of the same class, such as amino acid substitutions to uncharged side chains (such as asparagine, glutamine, serine, cysteine, and tyrosine), amino acids with basic side chains (such as lysine, arginine, and histidine), amino acids with acid side chains (such as aspartic acid and glutamic acid), chain amino acids apolar side effects (such as alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine and tryptophan).
  • the derived polypeptides may also correspond to allelic variants of the Zobellia_3152 protein of sequence SEQ ID NO: 2, to proteins homologous to Zobellia_3152 in species other than Zobellia. galactanivorans, or fragments of such allelic variants or homologous proteins, all of which retain the ⁇ -1, 3- (3,6-anhydro) -D-galactosidase activity.
  • the polypeptides according to the invention comprise a signal peptide.
  • a signal peptide may be the native signal peptide of the protein (e) residues 1 to 32 of SEQ ID NO: 2 for Zobellia_3152).
  • the signal peptide may be a Zobellia_3152 heterologous signal peptide, for example a signal peptide suitable for the expression of mature Zobellia_3152 protein in a given host cell.
  • polypeptides according to the invention may be prepared by purification from their original organism or microorganism, by chemical synthesis or by genetic engineering, and this using the techniques well known to those skilled in the art.
  • the polypeptides according to the invention are obtained by genetic engineering.
  • the present invention also relates to an isolated or recombinant nucleic acid encoding a polypeptide according to the invention.
  • the nucleic acid is in isolated form and purified.
  • the isolated nucleic acid is a synthesized nucleic acid.
  • nucleic acid refers to both DNA molecules and RNA molecules, and includes especially cDNA molecules and mRNA molecules.
  • the nucleic acid may be in double-stranded form (for example in the case of a nucleic acid included in an expression vector) or in single-stranded form (for example in the case of probes or primers).
  • nucleic acid according to the invention may comprise or consist of a sequence of nucleotides 1 to 2079 or 94 to 2079 of the sequence SEQ ID NO: 1.
  • the nucleic acid according to the invention may also comprise or consist of sequences derived from the sequences SEQ ID NO: 1.
  • Derived nucleic acids include nucleic acids whose sequences comprise or consist of a sequence selected from: a) a sequence having at least 30% identity, preferably at least 50% identity, preferably at least 65% identity, most preferably at least 80% identity, with the nucleotide sequence:
  • the percent identity between two nucleotide sequences is determined in the same manner as the percent identity between two amino acid sequences.
  • high stringency conditions are conditions known to those skilled in the art, and may, for example, correspond to hybridization conditions on DNA bound to a filter in 5X sodium citrate saline (SSC) buffer, dodecyl sulphate. sodium (SDS) 2%, 100 micrograms / mL of single-stranded DNA, at 55-65 ° C for 8 hours, and wash in 0.2X SSC and 0.2% SDS at 60-65 ° C for 30 minutes .
  • SSC sodium citrate saline
  • SDS dodecyl sulphate. sodium
  • Derived nucleic acid sequences may include mutations such as nucleotide substitutions, deletions, and / or insertions.
  • the substitutions can either be silent or lead to mutations at the level of the protein encoded by the nucleic acid.
  • the substitutions, deletions and / or insertions at the level of the nucleotide sequence do not lead to a change of reading phase, nor to the introduction of a stop codon.
  • the derived nucleic acid is a nucleic acid encoding the mature or complete Zobellia_3152 protein of sequence SEQ ID NO: 2, or for fragments thereof retaining the 3,6-anhydro-D-galactosidase activity, but whose nucleotide sequence differs from the sequence SEQ ID NO: 1 because of the degeneracy of the genetic code and / or because of an allelic variation.
  • the derived nucleic acid is a nucleic acid encoding homologous proteins of Zobellia_3152 in other species Zobellia galactanivorans, or fragments thereof retaining ⁇ -1,3- (3,6-anhydro) -D-galactosidase activity.
  • probes and nucleotide primers comprising or consisting of a fragment of SEQ ID NO: 1.
  • Such probes and primers may for example comprise or consist of 15 to 50 consecutive nucleotides, preferably 18 to 35 consecutive nucleotides, of SEQ ID NO: 1.
  • Such probes and primers do not encode a polypeptide according to the invention but are useful for the cloning, sequencing and / or detection of the nucleic acids according to the invention.
  • the probes may optionally be labeled, for example by means of a radioactive marker or a fluorophore.
  • the probes and primers may comprise, in addition to a fragment of the sequence SEQ ID NO: 1, a heterologous sequence such as the sequence of a restriction site or a linkage sequence to a marker.
  • the nucleic acids according to the invention may be prepared by chemical synthesis or genetic engineering using techniques well known to those skilled in the art and described, inter alia, in Molecular Cloning - A Laboratory Manual [19].
  • the nucleic acids according to the invention may, for example, be obtained by amplification of the Zobellia galactanivorans genes by means of the PCR (Polymerase Chain Reaction) method, as described in Example 1.
  • the nucleic acid fragment thus amplified can then be cloned into an expression vector according to the techniques described in Molecular Cloning - A Laboratory Manual. (19) and / or in Example 1.
  • the present invention also relates to an expression vector comprising a nucleic acid according to the invention.
  • These expression vectors comprise, in addition to the nucleic acid sequence according to the invention, the means necessary for its expression. These means may for example include a promoter and a transcription terminator.
  • the expression vector may also comprise other elements such as an origin of replication, a multiple cloning site, an enhancer, a signal peptide that can be fused in phase with the polypeptide of the invention during cloning, and one or more selection markers.
  • the subject of the present invention is also a host cell transformed with an expression vector or a nucleic acid according to the invention.
  • the host cell may be a prokaryotic cell or a eukaryotic cell.
  • Host cells commonly used for the expression of recombinant cells include, in particular, cells of bacteria such as Escherichia coli, yeast cells such as Saccharomyces cerevisiae, fungus cells such as Aspergillus niger, insect cells, and cells. mammals (especially human) such as cell lines CHO, HEK 293, PER-C6, etc.
  • Transformation of prokaryotic cells and eukaryotic cells is a technique well known to those skilled in the art. Depending on the cell to be transformed, those skilled in the art can easily determine the means necessary for the introduction and expression of the nucleic acid according to the invention in the chosen host cell. Thus, the expression vector and the method of introducing the expression vector into the host cell will be selected according to the chosen host cell.
  • the host cell transformed with an expression vector or a nucleic acid according to the invention preferably expresses the polypeptide according to the invention in a stable manner.
  • Those skilled in the art can easily verify that the host cell expresses the polypeptide according to the invention in a stable manner, for example using the Western Blot technique.
  • the host cells according to the invention are especially useful for producing polypeptides according to the invention.
  • the invention therefore relates to a method for producing a polypeptide according to the invention comprising the step of cultivating a host cell according to the invention under conditions allowing the expression of said polypeptide according to the invention.
  • This method may further comprise a step of purifying said polypeptide according to the invention.
  • the cultivation and purification steps may for example be carried out as described in Example 2.
  • the inventors have demonstrated for the first time that the enzyme Zobellia_3152 can be used to exolytically hydrolyze the ⁇ -1, 3 linkages of carrageenans and oligo-carrageenans having a disaccharide beta-carrabiose motif at the same time. non-reducing end. These patterns naturally occur in carrageenans extracted from certain red algae such as Tichocarpus sp. [17] and Furcellaria sp (called beta-carrageenans or formerly "Danish agar” or "furcellaran”).
  • beta-carrabiose motifs can also be artificially introduced into carrageenans of the Kappa family (including kappa- and iota-carrageenans, used especially in the food industry) or in carrageenan theta by chemical or enzymatic desulfation.
  • the inventors have prepared and purified kappa / beta-oligocarragenans by hydrolyzing beta-carrageenan from Tichocarpus crinitus with kappa carrageenase from P. carrageenovora [18].
  • oligosaccharides therefore have a 3,6-anhydro-D-galactose residue at the non-reducing end and a kappa-carrabiose disaccharide unit at the reducing end.
  • the hydrolysis of these kappa / beta-oligocarraghenans (DP4, DP6, DP8, etc.) by Zobellia_3152 makes it possible to obtain the 3,6-anhydro-D-galactose monosaccharide and the odd kappa / beta-oligocarraghenans (DP3, DP5, DP7 etc.) without 3,6-anhydro-D-galactose at the non-reducing end.
  • the polysaccharides used in the context of this method are polysaccharides and oligosaccharides capable of containing sulphated polysaccharides, which may or may not be the major component of said polysaccharide.
  • the polysaccharides and oligosaccharides used in this method comprise or consist of beta-carrabiose motifs.
  • the polysaccharides and oligosaccharides used in the context of this method may comprise or consist of a polysaccharide or oligosaccharide which contains disaccharide units other than beta-carrabiosis, but for which the beta-carrabiosis units may be introduced by chemical or enzymatic desulphating.
  • Such polysaccharides are present in red algae, and can be obtained using extraction protocols well known to those skilled in the art, such as the technique described in Morrice et al. (20). They may optionally be separated from other possible components by liquid chromatography methods.
  • the subject of the present invention is also a method for hydrolyzing oligosaccharides and / or polysaccharides containing disaccharide beta-carrabiose units and / or producing odd oligosaccharides of the carrabiose series and / or 3,6-anhydro-monosaccharide.
  • D-galactose comprising the following steps:
  • the conditions for obtaining hydrolysed oligosaccharides can easily be determined by those skilled in the art.
  • the conditions described in Example 3 can be used.
  • a kappa-carrageenase may first be used to digest the carrageenan into even oligosaccharides (DP2, DP4, DP6, DP8, DP10 etc.) and the oligosaccharides may, for example, be purified by size exclusion.
  • the Zobellia_3152 polypeptide or the host cell may be contacted with the oligosaccharides at a temperature of 18 ° C. 2 ⁇ g of Zobellia_3152 may for example be added to 10 ⁇ l of a solution containing 1% (w / v) of oligosaccharide.
  • the incubation may for example last 14 hours.
  • the 3,6-anhydro-D-galactose monosaccharide and odd oligo-carrageenans DP3, DP5, DP7, DP9, etc.
  • the method according to the invention may optionally comprise a step (c) of purifying said hydrolysed polyol oligosaccharides.
  • the techniques of purification of hydrolysed poly / oligosaccharides are well known to those skilled in the art.
  • the purification may for example be carried out by size exclusion chromatography, as described in Example 3.
  • the sample containing the oligosaccharides may, for example, be eluted with 50 mM ammonium carbonate at a rate of 1.5 ml. / min for 650 minutes.
  • the hydrolyzed oligosaccharides obtained by the method according to the invention have an average molecular weight (M w) less than or equal to 5800 Da.
  • the hydrolysed oligosaccharides obtained by the method according to the invention comprise at least 25% of one or more odd oligo-carrageenans (DP3, DP5, DP7, etc.).
  • odd oligo-carrageenans DP3, DP5, DP7, etc.
  • 3,6-anhydro-D-galactose monosaccharide is also obtained.
  • the odd oligosaccharides and the monosaccharide thus obtained and purified can then be formulated into an agrifood, cosmetic or pharmaceutical composition.
  • the beta-carrabiose motifs can also be generated by the desulfation of kappa-, iota-, and / or theta-carrabioses motifs present in kappa-, iota- and theta-carrageenans (using chemical or enzymatic methods).
  • the subject of the present invention is also odd oligosaccharides of the carrabiose series which can be obtained by the method according to the invention, and agri-food, cosmetic and pharmaceutical compositions containing the hydrolysis products described above: odd oligosaccharides of the series carrabiose and / or monosaccharide 3,6-anhydro-D-galactose.
  • Kappa / beta-hexasaccharide from beta-carrageenan extracted from Tichocarpus crinitus incubated at night A) with Zobellia_3152 and B) without enzyme.
  • Kappa / beta-hexasaccharide oil of beta-carrageenan extracted from Furcellaria incubated overnight C) with Zobellia_3152 and D) without enzyme.
  • the reaction products were dried and labeled with 8-aminonaphthalene-1,3,6-trisulphonate (ANTS) and then electrophoresed on a polyacrylamide gel.
  • the open reading frame encoding the enzyme Zobellia_3152 was identified based on the complete genome sequence of Z. galactanivorans (EMBL Accession No. FP476056).
  • the target gene was amplified in parallel by PCR, starting from the genomic DNA material of Z. galactanivorans, with 5 'and 3' primers as shown in Table 1 below.
  • Table 1 Sequence of primers for cloning the Zobellia_3152 gene
  • Zobellia_3152 gene (corresponding to the enzyme with its peptide signal and the catalytic modulus) was truncated by genetic engineering to produce a recombinant protein containing only the catalytic module (residues 32-693), which will be called thereafter Zobellia_3152 recombinant.
  • the PCR amplification products were then purified with the Qiaquick PCR kit and eluted with 50 ⁇ l of H2O.
  • the purified PCR products were in turn digested for three hours at 37 ° C with the restriction enzyme mixture SalI / PstI. After digestion, the products were purified again with the Qiaquick PCR kit and then eluted with 25 ⁇ l of H2O.
  • PCR products were ligated into the pFO4 vector (derived from Novagen's pET15b vector, Cf Groisillier et al., 2010, Microbial Cell Factories), previously digested with the restriction enzymes XhoI / Nsil and then dephosphorylated. This ligation procedure was performed with T4 DNA Ligase at 20 ° C for 4 hours followed by incubation overnight at 10 ° C.
  • pFO4 vector derived from Novagen's pET15b vector, Cf Groisillier et al., 2010, Microbial Cell Factories
  • Zobellia_3152 was overexpressed in E. coli cells. coli (strain BL21 (DE3)). Overexpression was performed at 20 ° C in 1 L of ZYP-5052 medium with 100 ⁇ g ml- 1 ampicillin (22) The cells were harvested by centrifugation (1398 g, 30 min, 4 ° C).
  • the pellet was then suspended in the following buffer (50 mM Tris pH 8, 25% sucrose, Lysozyme)
  • buffer 50 mM Tris pH 8, 25% sucrose, Lysozyme
  • the cells thus suspended were lysed with lysozyme for 30 minutes on ice, then mixed with buffer with 1% deoxycholate, 1% triton, 20 mM Tris pH 7.5, and 100 mM NaCl MgCl 2 was added at 5 mM and 200 g DNase was added by gently mixing at room temperature for half a minute.
  • the lysate was clarified by centrifugation (23700 g, 45 min, 4 ° C.), then by filtration using filters (Millipore) of 0.2 ⁇ . The solution thus filtered was loaded onto a 10 ml column. of IMAC resin
  • HyperCell (Pall Corporation), which was loaded with NiSO 4 solution.
  • the column had previously been equilibrated with buffer A (20 mM Tris pH 8, 100 mM NaCl, 5 mM imidazole).
  • buffer A 20 mM Tris pH 8, 100 mM NaCl, 5 mM imidazole.
  • the protein was eluted at 1 ml.min -1 in 60 ml by running a linear gradient between buffer A and 100% added buffer A buffer B (20 mM Tris pH 8, 200 mM NaCl and 500 mM Imidazole).
  • Hexasaccharide substrates were produced from beta-carrageenan extracted from Tichocarpus crinitus and Furcellaria sp. and which was previously digested with recombinant kappa-carrageenase from Pseudoalteromonas carrageenovora [18].
  • the oligocarraghenans obtained by this hydrolysis were purified by size exclusion chromatography and their chemical structure was established by nuclear magnetic resonance (NMR) [17].
  • a solution containing 1% (w / v) kappa / beta-hexasaccharide was used for enzymatic hydrolysis with Zobellia_3152. A total of 10 ⁇ l of the carbohydrate solution was incubated with 2 g of enzyme at 18 ° C overnight (about 14 hours). As a negative control, a sample without enzyme was also made.
  • the samples were analyzed by fluorescence assisted carbohydrate electrophoresis (FACE) method (21).
  • FACE fluorescence assisted carbohydrate electrophoresis
  • the reaction mixtures were dried using a SpeedVac system for 2 hours.
  • the oligosaccharides were labeled with 2 ⁇ 0.15 M ANTS and 5 ⁇ 1 M NaBH 3 CN at 37 ° C overnight.
  • the labeled oligosaccharides were resuspended in 20% glycerol and then electrophoresed on a 27% polyacrylamide gel and visualized under UV light.
  • FACE gels showed that the enzyme was active on kappa / beta-oligocarragenan.
  • the sizes of the bands corresponding to the initial even oligosaccharides were decreased after digestion with Zobellia_3152 and an additional band of low molecular size appeared.
  • the samples without and with Zobellia_3152 were compared using their mass imprints obtained in MALDI-MS mass spectrometry by the Biopolymers, Structural Biology (BIBS) platform of the INRA center in France.
  • the analyzes show that after treatment with Zobellia_3152 the even kappa / beta oligosaccharides (DP6, DP8) are decreased by a mass corresponding to a 3,6-anhydro-D-galactose monosaccharide (see FIG. 3).
  • the products of this reaction are thus odd oligosaccharides (DP5, DP7) and 3,6-anhydro-D-galactose.
  • the Zobellia_3152 preprotein is composed of 693 amino acids and has a theoretical molecular weight of 77839 Da. After removal of its signal peptide, the mature protein has a calculated molecular mass of 74572 Da.
  • oligosaccharides have a naturally occurring hybrid structure with disaccharide kappa-carrabiose (monosulfated) and beta-carrabiose (non-sulfated) disaccharide units.
  • This structure can also be obtained by the desulfation (by chemical or enzymatic methods) of kappa, iota or theta-type carrageenans.
  • Zobellia_3152 can not cleave an internal ⁇ -1, 3 linkage to these oligosaccharides; which demonstrates the exo-lytic character of this new glycoside hydrolase. This explains why the activity of Zobellia_3152 is difficult to detect on polysaccharides when the enzyme is alone.
  • beta-carrageenan the combined action of a carrageenase (here a kappa-carrageenase) and Zobellia_3152 makes it possible to obtain a greater saccharification of the carrageenans, resulting in particular in the release of the monosaccharide 3,6 -anhydro-D-galactose.
  • hydrolysis of oligosaccharides by Zobellia_3152 provides defined mixtures of odd oligosaccharides containing kappa- and beta-carrabiose motifs.
  • Zobellia_3152 protein is the first ⁇ -1,3- (3,6-anhydro) -D-galactosidase described to date.
  • List of references Ghosh, T., Chattopadhyay, K., Marschall, M., Karmakar, P., Mandai, P., and Ray, B. (2009) Focus on antivirally active sulfated polysaccharides: from structure-activity analysis to clinical Evaluation. Glycobiol 19, 2-15
  • Kiyohara M., Nakatomi, T., Kurihara, S., Fushinobu, S., Suzuki, H., Tanaka, T., Shoda, S., Kitaoka, M., Katayama, T., Yamamoto, K., and Ashida, H. (2012) alpha-N-acetylgalactosaminidase from infant-associated bifidobacteria belonging to novel glycoside hydrolase family 129 is implicated in alternative mucin degradation pathway. J Biol Chem 287, 693-700 17.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Birds (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Dermatology (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

La présente invention concerne l'isolement, la purification et la caractérisation d'une protéine ayant une nouvelle activité enzymatique, à savoir une activité a-1,3-(3,6-anhydro)-D-galactosidase. Cette protéine est utile pour hydrolyser des polysaccharides et oligosaccharides contenant des motifs bêta- carrabioses (non-sulfatés), qu'ils soient présent naturellement (exemple des carraghénanes extraits des algues rouges du genre Tichocarpus et de Furcellaria) ou introduit artificiellement par désulfatation chimique ou enzymatique (par exemple à partir des kappa- et iota-carraghénanes). L'activité cette protéine démontrée sur des oligocarraghénanes de structure hybride kappa/beta permet par exemple de produire le monosaccharide 3,6-anhydro-D-galactose et des oligocarraghénanes impairs de taille définie de la série carrabiose, c'est-à-dire qu'ils ont un résidu D-galactose à l'extrémité non-réductrice.

Description

Alpha-1 ,3-(3,6-ANHYDRO)-D-GALACTOSIDASES ET LEUR UTILISATION POUR HYDROLYSER DES POLYSACCHARIDES
DESCRIPTION
Domaine technique
La présente invention concerne l'isolement, la purification et la caractérisation d'un nouveau polypeptide ayant une activité a-1 ,3-(3,6-anhydro)- D-galactosidase, et ses utilisations.
Ce polypeptide est l'enzyme terminale de la dégradation des carraghénanes, l'une des principales familles de polysaccharides formant la paroi cellulaire des algues rouges. C'est une exo-enzyme qui agit après l'action des endo-carraghénases, qui elles hydrolysent la liaison β-1 ,4 des carraghénanes selon un mode d'action endo-lytique. Cette nouvelle enzyme hydrolyse spécifiquement la liaison glycosidique a-1 ,3 entre le 3,6-anhydro-D-galactose localisé à l'extrémité non-réductrice d'oligo-carraghénanes et le D-galactose qui le précède. Ce catalyseur enzymatique est donc utile pour produire le monosaccharide 3,6-anhydro-D-galactose. De plus cette exo-enzyme libère également des oligosaccharides impairs de la série du carrabiose, alors que les endo-carraghénases connues libèrent des oligo-carraghénanes pairs de la série du neocarrabiose.
La présente invention trouve par exemple des applications dans le domaine cosmétique, agroalimentaire, pharmaceutique ou des biocarburants.
Dans la description ci-dessous, les références entre crochets ([ ]) renvoient à la liste des références présentée à la fin du texte.
Etat de la technique
Les carraghénanes ont des propriétés rhéologiques uniques et sont très largement utilisés en tant qu'agents gélifiants ou épaississants dans diverses branches d'activité, notamment dans l'industrie agro-alimentaire et cosmétique.
Ainsi, environ 50 000 tonnes de carraghénanes sont extraits annuellement des algues rouges marines à des fins agro-alimentaires. Les carraghénanes et leurs dérivés présentent également un intérêt dans le domaine thérapeutique. Ainsi, l'énoxaparine (Lovenox®), lequel est commercialisé pour le traitement de troubles thromboemboliques, est un mélange de chaînes de polysaccharides sulfatés de longueurs variables et formées d'unités disacchariques récurrentes. Par ailleurs, certains polysaccharides et oligosaccharides sulfatés, tels que les oligo-fucanes sulfatés produits à partir de polysaccharides algaux, sont utiles en tant qu'agents anti-microbiens et/ou antiviraux chez l'homme [1 ]. Les polysaccharides sulfatés venant des algues rouges ont montré des propriétés anticoagulantes, ont réduit le cholestérol plasmatique chez les poulets, ont montré des propriétés anti-thrombiques chez les chiens et les humains, ont été utilisés pour le contrôle des ulcères, ont été utilisés pour le traitement de diarrhée et dysenterie [2]. De plus les polysaccharides extraits des algues rouges stimulent la biosynthèse de collagène et la formation de tissue connective, ils montrent des propriétés anti-tumeur et d'immunomodulation dans les souris et ils ont des effets anti-viraux [2].
Les carraghénanes sont des polysaccharides anioniques complexes (galactanes sulfatés) trouvés dans les parois des algues rouges. Certaines espèces d'algues contiennent des carraghénanes donnés comme composé majoritaire, comme par exemple l'algue Tichocarpus crinitus, qui contient comme constituant principal dans la paroi le bêta-carraghénane (appelé anciennement et incorrectement « Danish agar »).
L'unité disaccharidique de base formant le carraghénane est appelé le carrabiose et est constitué d'une unité D-galactose (voir Figure 1 ) lié en β-1 ,4 avec une unité 3,6-anhydro-D-galactose (voir Figure 1 ) [3]. Les unités disaccharides sont ensuite connectées entre elles par des liaisons a-1 ,3. Les unités disaccharides peut être non sulfatés (bêta-carrabiose) ou être sulfatés par exemple une fois sur le 04 d'unité D-galactose (kappa-carrabiose) ou deux fois, sur le O4 d'unité D-galactose et le 02 d'unité 3,6-anhydro-D-galactose (iota- carrabiose) ou deux fois, sur le 02 d'unité D-galactose et le 02 d'unité 3,6- anhydro-D-galactose (thêta-carrabiose). Le résidu 3,6-anhydro-D-galactose est unique aux algues rouges et est responsable des propriétés gélifiantes des carraghénanes de la famille Kappa (incluant les kappa- et iota-carraghénanes commerciaux). Certains carraghénanes, comme le lambda carraghénane, possèdent un groupement ester sulfate en 06 à la place du pont 3,6-anhydro. Ce type de carraghénane est très visqueux mais ne peut pas gélifier. Les carraghénanes natifs ont en réalité des structures hybrides avec différents ratios de différents motifs carrabioses (exemple : kappa/iota carraghénane, kappa/beta- carraghénanes). Les variantes de motifs de sulfations modulent le caractère gélifiant du polymère. Il est possible de désulfater le kappa, le iota ou le thêta- carraghénane par des méthodes chimiques et/ou enzymatique (par exemple avec les sulfatases) pour générer le motif de base bêta-carrabiose.
Plusieurs bactéries marines capables d'hydrolyser les carraghénanes ont été isolées [4-6]. A partir de ces microorganismes, plusieurs gènes de carraghénases agissant sur la liaison β-1 ,4 de carraghénane [4, 7, 8] ont déjà été clonés et les protéines correspondantes surexprimées et purifiées. En revanche, il n'y a aucune enzyme spécifique pour l'hydrolyse de la liaison a-1 ,3 dans les carraghénanes décrite à ce jour.
En particulier, l'une des bactéries carraghénolytiques les plus étudiées a été isolée à partir de l'algue rouge Delesseria sanguinea [9-1 1 ]. Cette souche bactérienne a été déposée à la Collection DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH) le 8 mai 1998 sous le numéro DSM 12170. L'identification taxonomique de cette souche montre qu'elle définit un nouveau genre dans la classe des Flavobactériia et sa caractérisation lui a valu le nom de Zobellia galactanivorans DsiJ [10]. Les carraghénases sont spécifiques d'un type de motif carrabiose et forment à ce jour trois familles de protéines n'ayant aucune homologie de séquence [7, 8, 12]. Les kappa-carraghénases hydrolysent la liaison β-1 ,4 des carraghénanes, majoritairement constitué de motifs kappa- carrabiose sulfatés sur le O4 de l'unité D-galactose. Les iota-carraghénases, produit par Z. galactanivorans et la marine bactérie Alteromonas fortis, hydrolysent la liaison β-1 ,4 des iota-carraghénanes, entre le D-galactose sulfaté sur le O4 et le 3,6-anhydro-D-galactose sulfaté sur le 02 [7, 13]. Finalement, la lambda carraghénase de Pseudoalteromonas carrageenovora hydrolyse la liaison β-1 ,4 des lambda-carraghénanes, entre le D-galactose sulfaté sur le 02 et le second D- galactose disulfaté sur le 02 et 06 [8, 14]. L'hydrolyse de la liaison β1 ,4 dans les kappa- et iota-carraghénanes par les kappa- et iota-carraghénases, respectivement, résultent dans la libération d'oligo-carraghénanes de degré de polymérisation (DP) pair de la série neocarrabiose, qui présentent à l'extrémité non-réductrice un résidu 3,6-anhydro-D-galactose (non sulfaté dans le cas du kappa, et sulfaté sur le 02 pour le iota) et à l'extrémité réductrice un résidu D- galactose, sulfaté sur le 04 aussi bien pour le kappa- que pour le iota- carraghénane.
Il existe donc un besoin en enzymes capables de catalyser l'hydrolyse de la liaison a-1 ,3 dans les carraghénanes. Ces enzymes seraient essentielles pour plusieurs applications : (i) pour réaliser l'hydrolyse complète des carraghénanes et donc ouvrir la voie vers leur saccharification et la production éventuelle de bioéthanol à partir des algues rouges carraghénophytes ; (ii) pour produire du 3,6- anhydro-D-galactose pur. Comme tout monosaccharide, il pourrait avoir de multiples applications, notamment pour servir de nouveaux synthons en chimie ; (iii) pour obtenir de nouveaux agents oligosaccharidiques utilisables dans l'industrie agro-alimentaire, cosmétique et/ou pharmaceutique. Il est important de noter que le gène pourrait être aussi directement utilisé à travers une approche de biologie synthétique, comme cela été réalisé pour la production de bioéthanol à partir d'algues brunes [15].
Description de l'invention
Les inventeurs ont de manière tout à fait inattendue isolé et caractérisé la première a-1 ,3-(3,6-anhydro)-D-galactosidase décrite à ce jour.
Cette glycoside hydrolase est produite par la bactérie marine Z. galactanivorans et elle libère les 3,6-anhydro-D-galactoses non-sulfatés en coupant la liaison a-1 ,3 à l'extrémité non-réductrice des oligos-carraghénanes. Bien qu'appartenant à la famille des GH129 des glycoside hydrolases, elle ne possède que 15 % d'identité de séquence avec le seul autre membre de la famille caractérisé à ce jour, une alpha-N-acetylgalactosaminidase d'une bactérie intestinale qui est spécifique des mucines des cellules intestinales humaines [16].
Le gène de cette protéine, Zobellia_3152, a été identifié dans le génome complet de Z. galactanivorans. La protéine recombinante correspondante (ci- après dénommée Zobellia_3152) a été surexprimée chez Escherichia coli et purifiée à l'homogénéité électrophorétique. Il a été démontré que Zobellia_3152 possède une activité a-1 ,3-(3,6-anhydro)-D-galactosidase. Une enzyme possédant une telle activité enzymatique n'a jamais encore été décrite. Cette enzyme a un mode d'action exo, attaquant les oligosaccharides par l'extrémité non-réductrice. Zobellia_3152 est également spécifique du 3,6-anhydro-D- galactose non sulfaté, ce qui a été démontré par l'activité de l'enzyme sur les kappa/beta-oligocarraghénanes issu des algues rouges Tichocarpus crinitus [17] et de Furcellaria.
II a également été démontré que Zobellia_3152 peut être utilisée pour hydrolyser des oligos-carraghénanes pour l'obtention d'oligosaccharides de structure et de taille définie. Plus particulièrement, Zobellia_3152 permet d'obtenir des oligosaccharides impairs sans le 3,6-anhydro-D-galactose à l'extrémité non- réductrice, ainsi que le monosaccharide 3,6-anhydro-D-galactose.
La présente invention a donc pour objet un polypeptide caractérisé en ce qu'il possède une activité a-1 ,3-(3,6-anhydro)-D-galactosidase.
Selon un mode de réalisation préférée, le polypeptide est sous forme isolée et purifiée. Dans un mode de réalisation particulièrement préféré, le polypeptide isolé est un polypeptide recombinant.
Par « activité a-1 ,3-(3,6-anhydro)-D-galactosidase », on entend ici la capacité à hydrolyser de manière exo- les liaisons a-1 ,3 des carraghénanes (ou des oligo-carraghénanes) pour libérer le monosaccharide 3,6-anhydro-D- galactose. L'activité a-1 ,3-(3,6-anhydro)-D-galactosidase peut par exemple être mesurée en réalisant une digestion de kappa/beta-oligocarraghénanes (oligosaccharides pairs de la série neocarrabiose) comme décrit dans l'exemple 3.
Plus particulièrement, une solution contenant 1 % (w/v) d'oligosaccharide peut être utilisée. Cet oligosaccharide a été produit à partir du polymère bêta-carraghénane extrait de Tichocarpus crinitus préalablement hydrolysé par la kappa- carraghénase de P. carrageenovora [18] puis purifié par chromatographie d'exclusion de taille. 10 μΙ de la solution oligosaccharidique est incubé à 18°C avec
2 g de Zobellia_3152 pendant une nuit. Cette incubation avec Zobellia_3152 résulte en la libération de 3,6-anhydro-D-galactose et des oligosaccharides impairs sans le 3,6-anhydro-D-galactose à l'extrémité non-réductrice.
Par « kappa-carraghénane », on entend ici la molécule constituée d'un enchaînement d'unités disaccharidiques kappa-carrabiose constitué d'une majorité d'unité D-galactose modifiée par une O-sulfatation sur la position 04 lié en β-1 ,4 avec une unité 3,6-anhydro-D-galactose. Les unités disacchandes sont ensuite connectées entre elles par des liaisons a-1 ,3.
Par « bêta-carraghénane », on entend ici le polysaccharide constitué d'un assemblage d'enchaînement d'unités disaccharidiques soit kappa-carrabiose, constituée d'une unité D-galactose modifiée par une O-sulfatation sur la position 04 liée en β-1 ,4 avec une unité 3,6-anhydro-D-galactose ou soit bêta-carrabiose, constituée d'une unité D-galactose liée en β-1 ,4 avec une unité 3,6-anhydro-D- galactose. Les unités disaccharides sont ensuite connectées entre elles par des liaisons a-1 ,3.
Par « kappa/beta-oligocarraghénane », on entend ici les oligosaccharides
(DP2 jusqu'à DP100) constitué d'un assemblage d'enchaînement d'unités disaccharidiques soit kappa-carrabiose, constitué d'une unité D-galactose modifiée par une O-sulfatation sur la position 04 liée en β-1 ,4 avec une unité 3,6- anhydro-D-galactose ou soit bêta-carrabiose, constitué d'une unité D-galactose liée en β-1 ,4 avec une unité 3,6-anhydro-D-galactose. Les unités disaccharides sont ensuite connectées entre-elles par des liaisons a-1 ,3.
De préférence, le polypeptide selon la présente invention comprend ou consiste en une séquence choisie parmi :
- les résidus 32 à 693 de la séquence SEQ ID NO : 2 (lesquels correspondent à la protéine Zobellia_3152 mature, sans son peptide signal);
- les résidus 1 à 693 de la séquence SEQ ID NO : 2 (lesquels correspondent à la protéine Zobellia_3152 complète, avec son peptide signal);
Les polypeptides selon l'invention incluent également des polypeptides dérivés de la protéine Zobellia_3152 de séquence SEQ ID NO : 2 étant entendu que ces polypeptides dérivés conservent l'activité a-1 ,3-(3,6-anhydro)-D- galactosidase. De tels polypeptides dérivés comprennent ou consistent en une séquence choisie parmi :
a) une séquence ayant au moins 26 % d'identité, de préférence au moins 30% d'identité, préférentiellement au moins 50% d'identité, tout préférentiellement au moins 80% d'identité, avec la séquence des résidus :
- 32 à 693 de la séquence SEQ ID NO : 2 ;
- 1 à 693 de la séquence SEQ ID NO : 2 ;
b) un fragment d'au moins 20 acides aminés consécutifs de la séquence SEQ ID NO : 2.
Le pourcentage d'identité est généralement déterminé en utilisant un logiciel d'analyse de séquences. Le programme « needle », qui fait appel à l'algorithme d'alignement global « Needleman-Wunsch » pour trouver l'alignement optimal (avec gaps) de deux séquences sur la totalité de leur longueur, peut par exemple être utilisé. Ce programme est notamment disponible sur le site ebi.ac.uk.
Les polypeptides dérivés peuvent différer de la séquence de référence (en l'occurrence la séquence SEQ ID NO : 2 ou l'un de ses fragments) par la présence de mutations de type délétion, insertion et/ou substitution d'acides aminés. Les substitutions peuvent être conservatives ou non conservatives.
Selon un mode de réalisation particulier de la présente invention, les polypeptides dérivés différent de la séquence de référence uniquement par la présence de substitutions conservatives. Les substitutions conservatives sont des substitutions d'acides aminés de même classe, telles que des substitutions d'acides aminés aux chaînes latérales non chargées (tels que l'asparagine, la glutamine, la serine, la cystéine, et la tyrosine), d'acides aminés aux chaînes latérales basiques (tels que la lysine, l'arginine, et l'histidine), d'acides aminés aux chaînes latérales acides (tels que l'acide aspartique et l'acide glutamique), d'acides aminés aux chaînes latérales apolaires (tels que l'alanine, la valine, la leucine, l'isoleucine, la proline, la phénylalanine, la méthionine et le tryptophane).
Les polypeptides dérivés peuvent également correspondre à des variants alléliques de la protéine Zobellia_3152 de séquence SEQ ID NO : 2, à des protéines homologues à Zobellia_3152 chez d'autres espèces que Zobellia galactanivorans, ou à des fragments de tels variants alleliques ou protéines homologues, tous conservant l'activité a-1 ,3-(3,6-anhydro)-D-galactosidase.
De manière optionnelle, les polypeptides selon l'invention comprennent un peptide signal. Si un peptide signal est présent, il peut être le peptide signal natif de la protéine ( e. les résidus 1 à 32 de SEQ ID NO : 2 pour Zobellia_3152). Alternativement, le peptide signal peut être un peptide signal hétérologue à Zobellia_3152, par exemple un peptide signal convenant à l'expression de la protéine Zobellia_3152 mature dans une cellule hôte donnée.
Les polypeptides selon l'invention peuvent être préparés par purification à partir de leur organisme ou microorganisme d'origine, par synthèse chimique ou par génie génétique, et ce en utilisant les techniques bien connues de l'homme du métier. Dans un mode de réalisation préféré, les polypeptides selon l'invention sont obtenus par génie génétique.
La présente invention a également pour objet un acide nucléique isolé ou recombinant codant pour un polypeptide selon l'invention.
De préférence, l'acide nucléique est sous forme isolée et purifiée. Dans un mode de réalisation particulièrement préféré, l'acide nucléique isolé est un acide nucléique synthétisé.
Le terme « acide nucléique » se réfère aussi bien à des molécules d'ADN qu'à des molécules d'ARN, et incluse notamment des molécules d'ADNc et des molécules d'ARNm. L'acide nucléique peut être sous forme double brin (par exemple dans le cas d'un acide nucléique compris dans un vecteur d'expression) ou sous forme simple brin (par exemple dans le cas de sondes ou d'amorces).
Plus particulièrement, l'acide nucléique selon l'invention peut comprendre ou consister en une séquence des nucléotides 1 à 2079 ou 94 à 2079 de la séquence SEQ ID NO : 1 .
L'acide nucléique selon l'invention peut également comprendre ou consister en des séquences dérivées des séquences SEQ ID NO : 1 . Les acides nucléiques dérivés incluent les acides nucléiques dont les séquences comprennent ou consistent en une séquence choisie parmi : a) une séquence ayant au moins 30 % d'identité, de préférence au moins 50% d'identité, préférentiellement au moins 65% d'identité, tout préférentiellement au moins 80% d'identité, avec la séquence des nucléotides :
- 1 à 2082 ou 94 à 2082 de la séquence SEQ ID NO : 1 .
b) un fragment d'au moins 1041 nucléotides consécutifs de la séquence
SEQ ID NO : 1 ;
c) une séquence d'acide nucléique qui s'hybride à la séquence SEQ ID NO : 1 dans des conditions de forte stringence ;
Le pourcentage d'identité entre deux séquences nucléotidiques est déterminé de la même manière que le pourcentage d'identité entre deux séquences d'acides aminés.
Les « conditions de forte de stringence » sont des conditions connues de l'homme du métier, et peuvent par exemple correspondre des conditions d'hybridations sur ADN lié à un filtre dans un tampon salin citrate de sodium (SSC) 5X, dodécyl sulfate de sodium (SDS) 2%, 100 microgrammes/mL d'ADN simple- brin, à 55-65°C pendant 8 heures, et lavage dans SSC 0,2X et SDS 0,2% à 60- 65°C pendant 30 minutes.
Les séquences des acides nucléiques dérivés peuvent inclure des mutations telles que des substitutions, délétions et/ou insertions de nucléotides. Les substitutions peuvent soit être silencieuses, soit conduire à des mutations au niveau de la protéine codée par l'acide nucléiques. De préférence, les substitutions, délétions et/ou insertions au niveau de la séquence nucléotidique ne conduisent pas à un changement de phase de lecture, ni à l'introduction d'un codon-stop.
De préférence, l'acide nucléique dérivé est un acide nucléique codant pour la protéine Zobellia_3152 mature ou complète de séquence SEQ ID NO : 2, ou pour des fragments de celles-ci conservant l'activité 3,6-anhydro-D-galactosidase, mais dont la séquence nucléotidique diffère de la séquence SEQ ID NO : 1 en raison de la dégénérescence du code génétique et/ou en raison d'une variation allélique.
Plus préférentiellement, l'acide nucléique dérivé est un acide nucléique codant pour des protéines homologues de Zobellia_3152 chez d'autres espèces que Zobellia galactanivorans, ou des fragments de celles-ci conservant l'activité a-1 ,3-(3,6-anhydro)-D-galactosidase.
Un autre aspect de l'invention porte sur des sondes et des amorces nucléotidiques comprenant ou consistant en un fragment de SEQ ID NO : 1 . De telles sondes et amorces peuvent par exemple comprendre ou consister en 15 à 50 nucléotides consécutifs, préférentiellement 18 à 35 nucléotides consécutifs, de SEQ ID NO : 1 . De telles sondes et amorces ne codent pas pour un polypeptide selon l'invention mais sont utiles pour le clonage, le séquençage et/ou la détection des acides nucléiques selon l'invention. Les sondes peuvent éventuellement être marquées, par exemple grâce à un marqueur radioactif ou à un fluorophore. Par ailleurs, les sondes et amorces peuvent comprendre, outre un fragment de la séquence SEQ ID NO : 1 , une séquence hétérologue telle que la séquence d'un site de restriction ou une séquence de liaison à un marqueur.
Les acides nucléiques selon l'invention peuvent être préparés par synthèse chimique ou par génie génétique en utilisant les techniques bien connues de l'homme du métier et décrites, entre autres, dans Molecular Cloning - A Laboratory Manual [19]. Les acides nucléiques selon l'invention peuvent par exemple être obtenus par amplification des gènes de Zobellia galactanivorans à l'aide de la méthode PCR (Polymerase Chain Reaction), comme décrit dans l'exemple 1 . Le fragment d'acides nucléiques ainsi amplifié peut ensuite être cloné dans un vecteur d'expression selon les techniques décrites Molecular Cloning - A Laboratory Manual. (19) et/ou dans l'exemple 1 .
La présente invention a également pour objet un vecteur d'expression comprenant un acide nucléique selon l'invention.
Ces vecteurs d'expression, qui peuvent par exemple être des plasmides, comportent, outre la séquence d'acide nucléique selon l'invention, les moyens nécessaires à son expression. Ces moyens peuvent par exemple inclure un promoteur et un terminateur de transcription. Le vecteur d'expression peut également comporter d'autres éléments tels qu'une origine de réplication, un site de clonage multiple, un enhanceur, un peptide signal qui pourra être fusionné en phase avec le polypeptide de l'invention lors du clonage, et un ou plusieurs marqueurs de sélection. La présente invention a également pour objet une cellule hôte transformée par un vecteur d'expression ou un acide nucléique selon l'invention.
La cellule hôte peut être une cellule procaryote ou une cellule eucaryote. Des cellules hôtes couramment utilisées pour l'expression de cellules recombinantes incluent notamment des cellules de bactéries telles que Escherichia coli, des cellules de levures telles que Saccharomyces cerevisiae, des cellules de champignons tels que Aspergillus niger, des cellules d'insecte, et des cellules de mammifères (notamment humaines) telles que les lignées cellulaires CHO, HEK 293, PER-C6, etc.
La transformation des cellules procaryotes et des cellules eucaryotes est une technique bien connue de l'homme du métier. En fonction de la cellule à transformer, l'homme du métier pourra aisément déterminer les moyens nécessaires à l'introduction et à l'expression l'acide nucléique selon l'invention chez la cellule hôte choisie. Ainsi, le vecteur d'expression et la méthode d'introduction du vecteur d'expression au sein de la cellule hôte seront sélectionnés en fonction de la cellule hôte choisie.
La cellule hôte transformée par un vecteur d'expression ou un acide nucléique selon l'invention exprime préférentiellement le polypeptide selon l'invention de manière stable. L'homme du métier peut aisément vérifier que la cellule hôte exprime le polypeptide selon l'invention de manière stable, par exemple en utilisant la technique du Western Blot.
Les cellules hôtes selon l'invention sont notamment utiles pour produire des polypeptides selon l'invention. L'invention concerne donc une méthode de production d'un polypeptide selon l'invention comprenant l'étape de cultiver une cellule hôte selon l'invention dans des conditions permettant l'expression du dit polypeptide selon l'invention. Cette méthode peut en outre comprendre une étape de purification dudit polypeptide selon l'invention. Les étapes de culture et de purification peuvent par exemple être réalisées comme décrit dans l'exemple 2.
La présente invention a également pour objet l'utilisation d'un polypeptide selon l'invention pour produire un monosaccharide (le 3,6-anhydro-D-galactose) et/ou pour produire des oligo-carraghénanes impairs (= oligosaccharides impairs de la série carrabiose) ; les oligo-carraghénanes impairs n'étant actuellement connu ni de l'art ni disponible dans le commerce.
En effet les inventeurs ont mis en évidence pour la première fois que l'enzyme Zobellia_3152 peut être utilisée pour hydrolyser de façon exo-lytique les liaisons a-1 ,3 des carraghénanes et oligo-carraghénanes présentant un motif disaccharide bêta-carrabiose à l'extrémité non-réductrice. Ces motifs existent naturellement dans les carraghénanes extraits de certaines algues rouges comme Tichocarpus sp. [17] et Furcellaria sp (appelés bêta-carraghénanes ou anciennement « Danish agar » ou « furcellaran »). Ces motifs bêta-carrabiose peuvent aussi être artificiellement introduits dans les carraghénanes de la famille Kappa (incluant les kappa- et les iota-carraghénanes, utilisés notamment dans l'industrie agroalimentaire) ou dans le thêta carraghénane par désulfatation chimique ou enzymatique. Les inventeurs ont préparé et purifié des kappa/beta- oligocarraghénanes en hydrolysant du bêta-carraghénane de Tichocarpus crinitus par la kappa-carraghénase de P. carrageenovora [18]. Ces oligosaccharides présentent donc un résidu 3,6-anhydro-D-galactose à l'extrémité non-réductrice et un motif disaccharidique kappa-carrabiose à l'extrémité réductrice. L'hydrolyse de ces kappa/beta-oligocarraghénanes (DP4, DP6, DP8 etc ..) par Zobellia_3152 permet d'obtenir le monosaccharide 3,6-anhydro-D-galactose et des kappa/beta- oligocarraghénanes impairs (DP3, DP5, DP7 etc ..) sans 3,6-anhydro-D-galactose à l'extrémité non-réductrice.
Les polysaccharides utilisés dans le cadre de cette méthode sont des polysaccharides et oligosaccharides susceptibles de contenir des polysaccharides sulfatés, lesquels peuvent être ou non le composé majoritaire dudit polysaccharide. Les polysaccharides et oligosaccharides utilisés dans le cadre de cette méthode comprennent ou consistent en des motifs bêta-carrabioses. Alternativement, les polysaccharides et oligosaccharides utilisés dans le cadre de cette méthode peuvent comprendre ou consister en un polysaccharide ou oligosaccharide qui contient des motifs disaccharides différent du bêta-carrabiose, mais pour lesquels les motifs bêta-carrabiose peuvent être introduit par désulfatation chimique ou enzymatique des motifs kappa-, iota- et thêta- carrabioses. De tels polysaccharides sont présents chez les algues rouges, et peuvent être obtenus en utilisant des protocoles d'extraction bien connus de l'homme du métier, tels que la technique décrite dans Morrice et al. (20). Ils peuvent éventuellement être séparés des autres composants éventuels par des méthodes de chromatographie liquide.
La présente invention a également pour objet une méthode d'hydrolyse d'oligosaccharides et/ou polysaccharides contenant des motifs disaccharidiques bêta-carrabioses et/ou de production d'oligosaccharides impairs de la série carrabiose et/ou de monosaccharide 3,6-anhydro-D-galactose comprenant les étapes suivantes :
a) fournir un polypeptide selon l'invention ou une cellule hôte selon l'invention ; et
b) mettre ledit polypeptide ou ladite cellule hôte exprimant ledit polypeptide en contact avec un oligosaccharide dans des conditions conduisant à l'obtention d'oligosaccharide modifié, par exemple dans des conditions conduisant à une hydrolyse complète ou une hydrolyse partielle.
Les conditions conduisant à l'obtention d'oligosaccharides hydrolysés peuvent aisément être déterminées par l'homme du métier. Par exemple, les conditions décrites dans l'exemple 3 peuvent être utilisées. Une kappa- carraghénase peut en premier être utilisé pour digérée le carraghénane en oligosaccharides pairs (DP2, DP4, DP6, DP8, DP10 etc..) et les oligosaccharides peuvent, par exemple, être purifier par exclusion de taille. Le polypeptide Zobellia_3152 ou la cellule hôte peut par exemple être mis en contact avec les oligosaccharides à une température de 18°C. 2 μg de Zobellia_3152 peuvent par exemple être ajoutés à 10 μΙ d'une solution contenant 1 % (w/v) d'oligosaccharide.
Pour avoir une réaction aussi complète que possible, l'incubation peut par exemple duré 14 heures. Ainsi, en partant d'une solution de carraghénane, il sera possible d'obtenir le monosaccharide 3,6-anhydro-D-galactose et des oligo-carraghénanes impairs (DP3, DP5, DP7, DP9 etc..) sans le résidu 3,6-anhydro-D-galactose à l'extrémité non réductrice.
La méthode selon l'invention peut éventuellement comprendre une étape (c) de purification desdits poly/oligosaccharides hydrolysés. Les techniques de purification de poly/oligosaccharides hydrolysés sont bien connues de l'homme du métier. La purification peut par exemple être réalisée par chromatographie d'exclusion de taille, tel que décrit dans l'exemple 3. L'échantillon contenant les oligosaccharides peut par exemple être élué avec de l'ammonium carbonate 50mM à une vitesse de 1 ,5 ml/min pendant 650 minutes.
Dans un mode de réalisation préféré, les oligosaccharides hydrolysés obtenus par la méthode selon l'invention ont une masse moléculaire moyenne (Mw) inférieur ou égal à 5800 Da.
Dans un autre mode de réalisation préférée, les oligosaccharides hydrolysés obtenus par la méthode selon l'invention comprennent au moins 25% d'un ou plusieurs oligo-carraghénanes impairs (DP3, DP5, DP7 etc . ). Dans ces deux modes de réalisation préférés, on obtient également le monosaccharide 3,6- anhydro-D-galactose.
Par exemple, le traitement d'un hexasaccharide kappa/beta- oligocarraghénane avec Zobellia_3152 avec deux motifs kappa-carrabioses et un motif bêta-carrabiose (produit par la digestion de bêta-carraghénane par une kappa-carraghénase) résulterait en un monosaccharide 3,6-anhydro-D-galactose et un pentasaccharide sans 3,6-anhydro-D-galactose à l'extrémité non-réductrice.
Par exemple, le traitement d'un octasaccharide kappa/beta- oligocarraghénane (produit par la digestion de bêta-carraghénane par une kappa- carraghénase) avec Zobellia_3152 contenant deux unités bêta-carrabiose et deux unités kappa-carrabiose résulterait en un monosaccharide 3,6-anhydro-D- galactose et un heptasaccharide sans le 3,6-anhydro-D-galactose sur la coté non- réductrice.
Les oligosaccharides impairs et le monosaccharide ainsi obtenus et purifiés peuvent ensuite être formulés en composition agroalimentaire, cosmétique ou pharmaceutique. Les motifs bêta-carrabiose peuvent être aussi générés par la désulfation des motifs kappa-, iota-, et/ou thêta-carrabioses présent dans les kappa-, iota- et thêta-carraghénanes (en utilisant des méthodes chimiques ou enzymatiques).
La présente invention a également pour objet des oligosaccharides impairs de la série carrabiose susceptibles d'être obtenus par la méthode selon l'invention, ainsi que des compositions agroalimentaires, cosmétiques et pharmaceutiques contenant les produits d'hydrolyse décrits ci-dessus : oligosaccharides impairs de la série carrabiose et/ou monosaccharide 3,6-anhydro-D-galactose.
Brève Description des figures
- Figure 1 : Présentation schématique des unités disaccharidiques de répétition de carraghénanes.
- Figure 2 Activité enzymatique de Zobellia_3152 évaluée par électrophorèse de glucides assistée par fluorescence (Fluorescence- assisted carbohydrate electrophoresis, FACE) [21 ]. Les substrats hexasaccharides sont produits à partir de bêta-carraghénane de Tichocarpus crinitus. (qui contient à la fois des motifs kappa- et bêta- carrabioses) préalablement digéré par la kappa-carraghénase recombinante venant de Pseudoalteromonas carrageenovora. Ces oligosaccharides sont purifiés par chromatographie d'exclusion de taille [17]. Kappa/beta-hexasaccharide (issu du bêta-carraghénane extrait de Tichocarpus crinitus) incubé la nuit A) avec Zobellia_3152 et B) sans enzyme. Kappa/beta-hexasaccharide (d'origine du bêta-carraghénane extrait de Furcellaria) incubé la nuit C) avec Zobellia_3152 et D) sans enzyme. Les produits de réaction ont été séchées et marquées avec du 8- aminonaphthalene-l,3,6-trisulphonate (ANTS) et puis soumis à une électrophorèse sur un gel de polyacrylamide.
- Figure 3 : Analyse par spectrométrie de masse (MALDI-MS) des produits d'hydrolyse des kappa/beta-oligocarraghénanes obtenus avec l'enzyme Zobellia_3152. Kappa/beta-hexasaccharide (issu du bêta-carraghénane de Tichocarpus crinitus) incubé la nuit A) sans enzyme et B) avec Zobellia_3152. Kappa/beta-hexasaccharide (issu du bêta-carraghénane de Furcellaria sp.) incubé la nuit C) sans enzyme et D) avec Zobellia_3152. EXEMPLES
Exemple 1 : Clonage des gènes de Zobellia 3152
Le cadre de lecture ouvert codant pour l'enzyme Zobellia_3152 a été identifié sur la base de la séquence complète du génome de Z. galactanivorans (EMBL Accession No. FP476056). Le gène cible a été amplifié en parallèle par PCR, partant du matériel ADN génomique de Z. galactanivorans, avec des amorces 5' et 3' comme indiqué dans le Tableau 1 ci-dessous. Tableau 1 : Séquence des amorces pour le clonage du gène de Zobellia_3152
Figure imgf000018_0001
Le gène entier de Zobellia_3152 (correspondant à l'enzyme avec son signal peptide et le module catalytique) a été tronqué par génie génétique pour produire une protéine recombinante contenant uniquement la module catalytique (résidus 32-693), qui sera appelé par la suite Zobellia_3152 recombinante.
Les produits d'amplification PCR ont ensuite été purifiés avec le kit Qiaquick PCR et élués avec 50 μΙ de H2O. Les produits PCR purifiés ont à leur tour été digérés pendant trois heures à 37°C avec le mélange des enzymes de restriction Sall/Pstl. Après digestion, les produits ont été à nouveau purifiés avec le kit Qiaquick PCR puis élués avec 25 μΙ de H2O.
Les produits de PCR ont été ligaturés dans le vecteur pFO4 (dérivé du vecteur pET15b de Novagen, Cf Groisillier et al, 2010, Microbial Cell Factories), préalablement digéré par les enzymes de restrictions Xhol/Nsil et ensuite déphosphorylé. Cette procédure de ligature a été effectuée avec la T4 ADN Ligase à 20°C pendant 4 heures suivi d'une incubation durant une nuit à 10 °C.
Pour la procédure de transformation, des cellules ô'Escherichia coli (souche NEB5alpha) compétentes disponibles commercialement ont été utilisées. Pour cela, les cellules ont été mises sur glace pour être décongelées, puis ont été incubées pendant 30 minutes sur glace avec le mélange résultant de la ligature. La transformation a été effectuée en appliquant un choc thermique pendant 45 sec à 42°C, puis les cellules ont été remises dans la glace 5 minutes. Les cellules ont été étalées sur des boites de Pétri LB-agar contenant de l'ampicilline (100 ug/mL) et incubées à 37°C pendant la nuit. Les minipreps pour avoir l'ADN plasmidique des colonies d'E. coli ont été effectuées avec les kits Qiagen.
Exemple 2 : Production et purification de Zobellia 3152:
Zobellia_3152 a été surexprimée dans des cellules d'E. coli (souche BL21 (DE3)). La surexpression a été effectuée à 20 °C dans 1 L d'un milieu ZYP- 5052 avec 100 g.ml"1 d'ampicilline (22). Les cellules ont été récoltées par centrifugation (1398 g, 30 min, 4°C) après 3 jours et demi de culture. Le culot a ensuite été suspendu dans le tampon suivant (50 mM Tris pH 8, 25 % sucrose, Lysozyme). Les cellules ainsi suspendues ont été lysées par du lysozyme pendant 30 minutes sur glace, puis mélangées avec un tampon avec 1 % deoxycholate, 1 % triton, 20 mM Tris pH 7.5, et 100 mM NaCI. Du MgCI2 a été ajouté à 5 mM et 200 g de DNase ont été ajoutés en mélangeant doucement à température ambiante pendant une demi-heure. Le lysat a été clarifié par centrifugation (23700 g, 45 min, 4°C), puis par une filtration en utilisant des filtres (Millipore) de 0.2 μιτι. La solution ainsi filtrée a été chargée sur une colonne de 10 ml de résine IMAC
HyperCell (Pall Corporation), laquelle a été chargée avec une solution NiSO4. La colonne avait préalablement été équilibrée avec du tampon A (20 mM Tris pH 8, 100 mM NaCI, 5 mM imidazole). Après une étape de lavage avec le tampon A (dix volumes de colonne), la protéine a été éluée, à 1 ml .min-1 , dans 60 ml en effectuant un gradient linéaire entre le tampon A et un tampon A additionné de 100 % de tampon B (20 mM Tris pH 8, 200 mM NaCI et 500 mM Imidazole). Toutes les fractions contenant la protéine pure (comme analysé par SDS-PAGE) ont été additionnées et concentrées par filtration/centrifugation (Amicon, taille limite 10 kDa) et dialyser dans 1 xPBS (MWCO 3000 Da). La concentration finale était 10 mg/ml avec un volume final de 200 μΙ. Toutes les procédures de chromatographie ont été effectuées avec un système ÀKTA Purifier (GE-Healthcare) à température ambiante.
Exemple 3 : Dégradation enzymatique des kappa/beta-hexasaccharides
Les substrats hexasaccharides ont été produits à partir de bêta- carraghénane extrait de Tichocarpus crinitus et de Furcellaria sp. et qui a été préalablement digéré avec la kappa-carraghénase recombinante issue de Pseudoalteromonas carrageenovora [18]. Les oligocarraghénanes obtenus par cette hydrolyse ont été purifiés par chromatographie d'exclusion de taille et leur structure chimique a été établie par résonnance magnétique nucléaire (RMN) [17]. Une solution contenant 1 % (w/v) de kappa/beta-hexasaccharide a été utilisée pour l'hydrolyse enzymatique avec Zobellia_3152. Un total de 10 μΙ de la solution de glucides a été incubé avec 2 g d'enzyme à 18°C pendant une nuit (environ 14 heures). Comme contrôle négatif un échantillon sans enzyme a été aussi réalisé.
Les échantillons ont été analysés par la méthode d'électrophorèse de glucides assistée par fluorescence (Fluorescence-assisted carbohydrate electrophoresis, FACE) (21 ). Les mélanges réactionnels ont été séchés en utilisant un système SpeedVac pendant 2 heures. Les oligosaccharides ont été marqués avec 2 μΙ 0.15M ANTS et 5 μί 1 M NaBH3CN, à 37 °C pendant une nuit. Les oligosaccharides marqués ont été resuspendus en 20% glycérol puis ont été soumis à électrophorèse sur un gel de polyacrylamide 27%, puis visualisés sous lumière UV.
Les gels FACE ont montré que l'enzyme était active sur kappa/beta- oligocarraghénane. Les tailles des bandes correspondant aux oligosaccharides pairs initiaux ont été diminuées après digestion avec Zobellia_3152 et une bande additionnelle de basse taille moléculaire a fait son apparition. Exemple 4 : Analyse des produits d'hydrolyse par spectrométrie de masse
Les échantillons sans et avec Zobellia_3152 (correspondant aux mélanges réactionnels décrits dans l'exemple 3) ont été comparés en utilisant leurs empreintes massiques obtenues en spectrométrie de masse MALDI-MS par la plateforme Biopolymères, biologie structurale (BIBS) du centre INRA de Nantes. Les analyses montrent qu'après traitement avec Zobellia_3152 les oligosaccharides kappa/beta pair (DP6, DP8) sont diminués par une masse correspondant à un monosaccharide 3,6-anhydro-D-galactose (voir Figure 3). Les produits de cette réaction sont donc des oligosaccharides impairs (DP5, DP7) et 3,6-anhydro-D-galactose.
Exemple 5 : Résultats
Le séquençage du génome complet de la bactérie Zobellia galactanivorans (déposée à la Collection DSMZ le 8 mai 1998 sous le numéro DSM 12170) a été réalisé en collaboration avec Genoscope. La séquence du génome a été déposée à l'EMBL sous le numéro d'accession FP476056. L'analyse de ce génome a permis d'identifier un gène (zobellia_3152) qui code pour une protéine appartenant à la famille GH129 des glycosides hydrolases [23]. La protéine correspondante (Zobellia_3152) possède seulement 15% d'identité de séquence avec le seul autre membre caractérisé de la famille qui est une alpha-N-acetylgalactosaminidase d'une bactérie intestinal qui dégrade les mucines des cellules épithéliales humaines [16].
Une fois le clonage du gène zobellia_3152 effectué, la protéine Zobellia_3152 a été surexprimée chez Escherichia coli comme exposé dans l'exemple 2.
La pré-protéine Zobellia_3152 est composée de 693 acides aminés et a une masse moléculaire théorique de 77839 Da. Après élimination de son peptide signal, la protéine mature a une masse moléculaire calculée de 74572 Da.
L'activité de la protéine recombinante Zobellia_3152 sur plusieurs galactanes d'algues rouges a ensuite été étudiée (exemple 3). Il a été constaté que cette protéine n'a pas activité détectable sur les carraghénanes sous leur forme polysaccharidique, ni les oligosaccharides kappa, iota, ou lambda- carraghénanes lorsqu'ils possèdent encore leurs motifs de sulfatation initiaux (Figure 2A). En revanche, Zobellia_3152 présentent une forte activité sur les oligosaccharides provenant de bêta-carraghénane pré-hydrolysés par une kappa- carraghénase (Figure 2B). Ces oligosaccharides présentent une structure naturelle hybride avec des motifs disaccharides kappa-carrabiose (monosulfaté) et bêta-carrabiose (non-sulfaté). Cette structure peut être aussi obtenue par la désulfation (par méthodes chimiques ou enzymatiques) des carraghénanes de type kappa, iota ou thêta.
La caractérisation des réactions enzymatique par spectrométrie de masse (exemple 4) a démontré que l'enzyme Zobellia_3152 hydrolysait spécifiquement les liaisons a-1 ,3 entre les unités 3,6-anhydro-D-galactose et les unités D- galactose non-sulfatés. L'analyse de spectrométrie de masse des hexasaccharide kappa/beta-carraghénanes a démontré que ce clivage avait lieu à partir de l'extrémité non-réductrice des oligosaccharides. Cette réaction résulte en la libération du 3,6-anhydro-D-galactose et d'oligosaccharides impairs de la série carrabiose (DP5, DP7, etc.). Comme ces oligosaccharides impairs s'accumulent, ce sont des produits terminaux et ils ne sont donc plus substrat de Zobellia_3152. Par conséquent, Zobellia_3152 ne peut pas cliver une liaison a-1 ,3 interne à ces oligosaccharides ; ce qui démontre le caractère exo-lytique de cette nouvelle glycoside hydrolase. Ceci explique pourquoi l'activité de Zobellia_3152 est difficile à détecter sur les polysaccharides lorsque l'enzyme est seule. Par contre, comme montré sur le bêta-carraghénane, l'action combinée d'une carraghénase (ici une kappa-carraghénase) et de Zobellia_3152 permet d'obtenir une plus grande saccharification des carraghénanes, résultant notamment en la libération du monosaccharide 3,6-anhydro-D-galactose. Enfin, comme montré dans l'exemple
4, l'hydrolyse des oligosaccharides par Zobellia_3152 permet d'obtenir des mélanges définis d'oligosaccharides impairs contenant des motifs kappa- et bêta- carrabiose.
Par conséquent, la protéine Zobellia_3152 est la première a-1 ,3-(3,6- anhydro)-D-galactosidase décrite à ce jour. Liste de références Ghosh, T., Chattopadhyay, K., Marschall, M., Karmakar, P., Mandai, P., and Ray, B. (2009) Focus on antivirally active sulfated polysacchahdes: from structure-activity analysis to clinical évaluation. Glycobiol 19, 2-15
Holdt, S. L, and kraan, S. (201 1 ) Bioactive compounds in seaweed: functional food applications and législation. J Appl Phycol 23, 543-597 Ficko-Blean, E. (2015) Sweet and sour sugars from the sea: the biosynthesis and remodeling of sulfated cell wall polysaccharides from marine macroalgae. Perspectives in Phycology l, 51 -64
Michel, G., Nyval-Collen, P., Barbeyron, T., Czjzek, M., and Helbert, W. (2006) Bioconversion of red seaweed galactans: a focus on bacterial agarases and carrageenases. Appl Microbiol Biotechnol 71 , 23-33
Michel, G., and Czjzek, M. (2013) Polysaccharide-degrading enzymes from marine bacteria. in Marine enzymes for biocatalysis: Sources, biocatalytic characteristics and bioprocesses of marine enzymes (Trincone, A. éd.), Woodhead Publishing Limited, pp 429-464
Martin, M., Portetelle, D., Michel, G., and Vandenbol, M. (2014) Microorganisms living on macroalgae: diversity, interactions, and biotechnological applications. Appl Microbiol Biotechnol 98, 2917-2935 Barbeyron, T., Michel, G., Potin, P., Henrissat, B., and Kloareg, B. (2000) iota-Carrageenases constitute a novel family of glycoside hydrolases, unrelated to that of kappa-carrageenases. J Biol Chem 275, 35499-35505 Guibet, M., Colin, S., Barbeyron, T., Genicot, S., Kloareg, B., Michel, G., and Helbert, W. (2007) Dégradation of lambda-carrageenan by Pseudoalteromonas carrageenovora lambda-carrageenase: a new family of glycoside hydrolases unrelated to kappa- and iota-carrageenases. Biochem J 404, 105-1 14
Potin, P., Sanseau, A., Le Gall, Y., Rochas, C, and Kloareg, B. (1991 ) Purification and characterization of a new kappa-carrageenase from a marine Cytophaga-like bacterium. European journal of biochemistry / FEBS 201 , 241 -247 Barbeyron, T., L'Haridon, S., Corre, E., Kloareg, B., and Potin, P. (2001 ) Zobellia galactanovorans gen. nov., sp nov., a marine species of Flavobacteriaceae isolated from a red alga, and classification of [Cytophaga] uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Zobellia uliginosa gen. nov., comb. nov. International journal of systematic and evolutionary microbiology 51 , 985-997
Barbeyron, T., Gérard, A., Potin, P., Henrissat, B., and Kloareg, B. (1998) The kappa-carrageenase of the marine bacterium Cytophaga drobachiensis. Structural and phylogenetic relationships within family-16 glycoside hydrolases. Mol Biol Evol 15, 528-537
Barbeyron, T., Henrissat, B., and Kloareg, B. (1994) The gene encoding the kappa-carrageenase of Alteromonas carrageenovora is related to beta-1 ,3- 1 ,4-glucanases. Gene 139, 105-109
Michel, G., Chantalat, L, Fanchon, E., Henrissat, B., Kloareg, B., and Dideberg, O. (2001 ) The iota-carrageenase of Alteromonas fortis. A beta- helix fold-containing enzyme for the dégradation of a highly polyanionic polysaccharide. J Biol Chem 276, 40202-40209
Rebuffet, E., Barbeyron, T., Jeudy, A., Jam, M., Czjzek, M., and Michel, G. (2010) Identification of catalytic residues and mechanistic analysis of family GH82 iota-carrageenases. Biochemistry 49, 7590-7599
Wargacki, A. J., Léonard, E., Win, M. N., Regitsky, D. D., Santos, C. N., Kim, P. B., Cooper, S. R., Raisner, R. M., Herman, A., Sivitz, A. B., Lakshmanaswamy, A., Kashiyama, Y., Baker, D., and Yoshikuni, Y. (2012) An engineered microbial platform for direct biofuel production from brown macroalgae. Science 335, 308-613
Kiyohara, M., Nakatomi, T., Kurihara, S., Fushinobu, S., Suzuki, H., Tanaka, T., Shoda, S., Kitaoka, M., Katayama, T., Yamamoto, K., and Ashida, H. (2012) alpha-N-acetylgalactosaminidase from infant-associated bifidobacteria belonging to novel glycoside hydrolase family 129 is implicated in alternative mucin dégradation pathway. J Biol Chem 287, 693- 700 17. Anastyuk, S. D., Barabanova, A. O., Correc, G., Nazarenko, E. L, Davydova, V. N., Helbert, W., Dmitrenok, P. S., and Yermak, I. M. (201 1 ) Analysis of structural heterogeneity of kappa/beta-carrageenan oligosaccharides from Tichocarpus crinitus by negative-ion ESI and tandem MALDI mass spectrometry. Carbohyd Polym 86, 546-554
18. Michel, G., Chantalat, L, Duee, E., Barbeyron, T., Henrissat, B., Kloareg, B., and Dideberg, O. (2001 ) The kappa-carrageenase of P. carrageenovora features a tunnel-shaped active site: a novel insight in the évolution of Clan- B glycoside hydrolases. Structure 9, 513-525
19. Orkin, S. (1990) Molecular-Cloning - a Laboratory Manual, 2nd Edition - Sambrook,J, Fritsch,Ef, Maniatis,T. Nature 343, 604-605
20. Morrice, L. M., McLean, M. W., Long, W. F., and Williamson, F. B. (1983) Porphyran primary structure. An investigation using beta-agarase I from Pseudomonas atlantica and 13C-NMR spectroscopy. European journal of biochemistry / FEBS 133, 673-684
21 . Jackson, P. (1993) Fluorophore-assisted carbohydrate electrophoresis: a new technology for the analysis of glycans. Biochemical Society transactions 21 , 121 -125
22. Studier, F. W. (2005) Protein production by auto-induction in high density shaking cultures. Protein expression and purification 41 , 207-234
23. Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M., and Henrissat, B. (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42, D490-495

Claims

REVENDICATIONS
1 . Acide nucléique isolé codant pour un polypeptide consistant en une séquence ayant au moins 50% d'identité avec les résidus 1 à 693 de la séquence SEQ ID NO : 2 ou un fragment d'au moins 20 aminés consécutifs de la séquence SEQ ID NO : 2, et possédant une activité a-1 ,3-(3,6-anhydro)-D-galactosidase.
2. Vecteur d'expression comprenant un acide nucléique selon la revendication 1 .
3. Cellule hôte transformée par un vecteur d'expression selon la revendication 2.
4. Utilisation d'un polypeptide tel que défini dans la revendication 1 pour hydrolyser des oligosaccharides et/ou polysaccharides contenant des motifs disaccharidiques bêta-carrabioses.
5. Utilisation selon la revendication 4, où lesdits polysaccharides sont des carraghénanes.
6. Utilisation d'un polypeptide tel que défini dans la revendication 1 , pour la production de bioéthanol à partir d'algues rouges.
7. Méthode d'hydrolyse d'oligosaccharides et/ou polysaccharides contenant des motifs disaccharidiques bêta-carrabioses comprenant les étapes suivantes :
a) fournir un polypeptide tel que défini dans la revendication 1 ; et b) mettre ledit polypeptide en contact avec lesdits polysaccharides et/ou oligosaccharide dans des conditions permettant leur hydrolyse.
8. Méthode selon la revendication 7, où lesdits polysaccharides sont des carraghénanes.
9. Méthode selon la revendication 7 ou 8, où ledit polypeptide est produit par une cellule hôte selon la revendication 3.
10. Méthode selon l'une quelconque des revendications 7 à 9, comprenant en outre une étape (c) de purification des produits d'hydrolyse obtenus de l'étape b) comprenant des oligosacchandes impairs de la série carrabiose et/ou le monosaccharide 3,6-anhydro-D-galactose.
1 1 . Méthode selon la revendication 10, comprenant en outre une étape (d) de formulation desdits oligosacchandes impairs de la série carrabiose et/ou monosaccharide 3,6-anhydro-D-galactose obtenus de l'étape c) en composition agroalimentaire, cosmétique ou pharmaceutique.
PCT/FR2017/053144 2016-11-17 2017-11-17 Alpha-1,3-(3,6-ANHYDRO)-D-GALACTOSIDASES ET LEUR UTILISATION POUR HYDROLYSER DES POLYSACCHARIDES WO2018091836A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1661157A FR3058732B1 (fr) 2016-11-17 2016-11-17 Alpha-1,3-(3,6-anhydro)-d-galactosidases et leur utilisation pour hydrolyser des polysaccharides
FR1661157 2016-11-17

Publications (1)

Publication Number Publication Date
WO2018091836A1 true WO2018091836A1 (fr) 2018-05-24

Family

ID=58547574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2017/053144 WO2018091836A1 (fr) 2016-11-17 2017-11-17 Alpha-1,3-(3,6-ANHYDRO)-D-GALACTOSIDASES ET LEUR UTILISATION POUR HYDROLYSER DES POLYSACCHARIDES

Country Status (2)

Country Link
FR (1) FR3058732B1 (fr)
WO (1) WO2018091836A1 (fr)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2730651A1 (fr) * 2012-11-08 2014-05-14 Centre National de la Recherche Scientifique (CNRS) Kappa carraghénane sulfatase, procédé de fabrication et utilisation

Non-Patent Citations (30)

* Cited by examiner, † Cited by third party
Title
ANASTYUK, S. D.; BARABANOVA, A. O.; CORREC, G.; NAZARENKO, E. L.; DAVYDOVA, V. N.; HELBERT, W.; DMITRENOK, P. S.; YERMAK, I. M.: "Analysis of structural heterogeneity of kappa/beta-carrageenan oligosaccharides from Tichocarpus crinitus by negative-ion ESI and tandem MALDI mass spectrometry", CARBOHYD POLYM, vol. 86, 2011, pages 546 - 554
BARBEYRON TRISTAN ET AL: "iota-Carrageenases constitute a novel family of glycoside hydrolases, unrelated to that of kappa-carrageenases", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 275, no. 45, 10 November 2000 (2000-11-10), pages 35499 - 35505, XP002770157, ISSN: 0021-9258 *
BARBEYRON, T.; GERARD, A.; POTIN, P.; HENRISSAT, B.; KLOAREG, B.: "The kappa-carrageenase of the marine bacterium Cytophaga drobachiensis. Structural and phylogenetic relationships within family-16 glycoside hydrolases", MOL BIOL EVOL, vol. 15, 1998, pages 528 - 537, XP002093711
BARBEYRON, T.; HENRISSAT, B.; KLOAREG, B.: "The gene encoding the kappa-carrageenase of Alteromonas carrageenovora is related to beta-1,3-1,4-glucanases", GENE, vol. 139, 1994, pages 105 - 109, XP023540347, DOI: doi:10.1016/0378-1119(94)90531-2
BARBEYRON, T.; L'HARIDON, S.; CORRE, E.; KLOAREG, B.; POTIN, P.: "Zobellia galactanovorans gen. nov., sp nov., a marine species of Flavobacteriaceae isolated from a red alga, and classification of [Cytophaga] uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Zobellia uliginosa gen. nov., comb. nov.", INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, vol. 51, 2001, pages 985 - 997
BARBEYRON, T.; MICHEL, G.; POTIN, P.; HENRISSAT, B.; KLOAREG, B.: "iota-Carrageenases constitute a novel family of glycoside hydrolases, unrelated to that of kappa-carrageenases", J BIOL CHEM, vol. 275, 2000, pages 35499 - 35505, XP002770157, DOI: doi:10.1074/jbc.M003404200
DATABASE UniProt [online] 2 November 2016 (2016-11-02), "Hypothetical periplasmic protein Zobellia_3152", XP002770155, Database accession no. G0L004 *
FICKO-BLEAN E ET AL: "Biochemical and structural investigation of two paralogous glycoside hydrolases from Zobellia galactanivorans: novel insights into the evolution, dimerization plasticity and catalytic mechanism of the GH117 family", ACTA CRYSTALLOGRAPHICA, SECTION D (BIOLOGICAL CRYSTALLOGRAPHY) IUCR - INTERNATIONAL UNION OF CRYSTALLOGRAPHY UK, vol. D71, 1 February 2015 (2015-02-01), pages 1 - 39, XP002770159, Retrieved from the Internet <URL:https://hal.archives-ouvertes.fr/hal-01140143/document> *
FICKO-BLEAN, E.: "Sweet and sour sugars from the sea: the biosynthesis and remodeling of sulfated cell wall polysaccharides from marine macroalgae", PERSPECTIVES IN PHYCOLOGY, vol. 2, 2015, pages 51 - 64
GHOSH, T.; CHATTOPADHYAY, K.; MARSCHALL, M.; KARMAKAR, P.; MANDAI, P.; RAY, B.: "Focus on antivirally active sulfated polysaccharides: from structure-activity analysis to clinical evaluation", GLYCOBIOL, vol. 19, 2009, pages 2 - 15
GUIBET, M.; COLIN, S.; BARBEYRON, T.; GENICOT, S.; KLOAREG, B.; MICHEL, G.; HELBERT, W.: "Dégradation of lambda-carrageenan by Pseudoalteromonas carrageenovora lambda-carrageenase: a new family of glycoside hydrolases unrelated to kappa- and iota-carrageenases", BIOCHEM J, vol. 404, 2007, pages 105 - 114, XP002736694, DOI: doi:10.1042/BJ20061359
GURVAN MICHEL ET AL: "Bioconversion of red seaweed galactans: a focus on bacterial agarases and carrageenases", APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, vol. 71, no. 1, 21 March 2006 (2006-03-21), SPRINGER, BERLIN, DE, pages 23 - 33, XP019422046, ISSN: 1432-0614, DOI: 10.1007/S00253-006-0377-7 *
HEHEMANN J-H ET AL: "Analysis of keystone enzyme in agar hydrolysis provides insight into the degradation of a polysaccharide from red seaweeds", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 287, no. 17, 20 April 2012 (2012-04-20), AMERICAN SOCIETY FOR BIOCHEMISTRY AND MOLECULAR BIOLOGY INC. USA, pages 13985 - 13995, XP002770158, DOI: 10.1074/JBC.M112.345645 *
HOLDT, S. L.; KRAAN, S.: "Bioactive compounds in seaweed: functional food applications and legislation", J APPL PHYCOI, vol. 23, 2011, pages 543 - 597, XP019914110, DOI: doi:10.1007/s10811-010-9632-5
JACKSON, P.: "Fluorophore-assisted carbohydrate electrophoresis: a new technology for the analysis of glycans", BIOCHEMICAL SOCIETY TRANSACTIONS, vol. 21, 1993, pages 121 - 125
KIYOHARA, M.; NAKATOMI, T.; KURIHARA, S.; FUSHINOBU, S.; SUZUKI, H.; TANAKA, T.; SHODA, S.; KITAOKA, M.; KATAYAMA, T.; YAMAMOTO, K: "alpha-N-acetylgalactosaminidase from infant-associated bifidobacteria belonging to novel glycoside hydrolase family 129 is implicated in alternative mucin dégradation pathway", J BIOL CHEM, vol. 287, 2012, pages 693 - 700
LOMBARD, V.; GOLACONDA RAMULU, H.; DRULA, E.; COUTINHO, P. M.; HENRISSAT, B.: "The carbohydrate-active enzymes database (CAZy) in 2013", NUCLEIC ACIDS RES, vol. 42, 2014, pages D490 - 495
MARTIN MARJOLAINE ET AL: "Microorganisms living on macroalgae: diversity, interactions, and biotechnological applications", APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, vol. 98, no. 7, 22 February 2014 (2014-02-22), SPRINGER, DE, pages 2917 - 2935, XP035329052, ISSN: 0175-7598, [retrieved on 20140222], DOI: 10.1007/S00253-014-5557-2 *
MARTIN, M.; PORTETELLE, D.; MICHEL, G.; VANDENBOL, M.: "Microorganisms living on macroalgae: diversity, interactions, and biotechnological applications", APPL MICROBIOL BIOTECHNOL, vol. 98, 2014, pages 2917 - 2935, XP035329052, DOI: doi:10.1007/s00253-014-5557-2
MICHEL, G.; CHANTALAT, L.; DUEE, E.; BARBEYRON, T.; HENRISSAT, B.; KLOAREG, B.; DIDEBERG, O.: "The kappa-carrageenase of P. carrageenovora features a tunnel-shaped active site: a novel insight in the évolution of Clan-B glycoside hydrolases", STRUCTURE, vol. 9, 2001, pages 513 - 525
MICHEL, G.; CHANTALAT, L.; FANCHON, E.; HENRISSAT, B.; KLOAREG, B.; DIDEBERG, O.: "The iota-carrageenase of Alteromonas fortis. A beta-helix fold-containing enzyme for the dégradation of a highly polyanionic polysaccharide", J BIOL CHEM, vol. 276, 2001, pages 40202 - 40209
MICHEL, G.; CZJZEK, M.: "Marine enzymes for biocatalysis: Sources, biocatalytic characteristics and bioprocesses of marine enzymes", 2013, WOODHEAD PUBLISHING LIMITED, article "Polysaccharide-degrading enzymes from marine bacteria", pages: 429 - 464
MICHEL, G.; NYVAL-COLLEN, P.; BARBEYRON, T.; CZJZEK, M.; HELBERT, W.: "Bioconversion of red seaweed galactans: a focus on bacterial agarases and carrageenases", APPL MICROBIOL BIOTECHNOL, vol. 71, 2006, pages 23 - 33, XP019422046, DOI: doi:10.1007/s00253-006-0377-7
MORRICE, L. M.; MCLEAN, M. W.; LONG, W. F.; WILLIAMSON, F. B.: "Porphyran primary structure. An investigation using beta-agarase I from Pseudomonas atlantica and 13C-NMR spectroscopy", EUROPEAN JOURNAL OF BIOCHEMISTRY / FEBS, vol. 133, 1983, pages 673 - 684, XP002731009, DOI: doi:10.1111/j.1432-1033.1983.tb07516.x
ORKIN, S.: "Nature", vol. 343, 1990, article "Molecular-Cloning - a Laboratory Manual", pages: 604 - 605
POTIN, P.; SANSEAU, A.; LE GALL, Y.; ROCHAS, C.; KLOAREG, B.: "Purification and characterization of a new kappa-carrageenase from a marine Cytophaga-like bacterium", EUROPEAN JOURNAL OF BIOCHEMISTRYLFEBS, vol. 201, 1991, pages 241 - 247, XP000673940, DOI: doi:10.1111/j.1432-1033.1991.tb16280.x
REBUFFET E ET AL: "Identification of catalytic residues and mechanistic analysis of family GH82 -carrageenases", BIOCHEMISTRY, vol. 49, no. 35, 7 September 2010 (2010-09-07), AMERICAN CHEMICAL SOCIETY USA, pages 7590 - 7599, XP002770156, DOI: 10.1021/BI1003475 *
REBUFFET, E.; BARBEYRON, T.; JEUDY, A.; JAM, M.; CZJZEK, M.; MICHEL, G.: "Identification of catalytic residues and mechanistic analysis of family GH82 iota-carrageenases", BIOCHEMISTRY, vol. 49, 2010, pages 7590 - 7599, XP002770156, DOI: doi:10.1021/BI1003475
STUDIER, F. W.: "Protein production by auto-induction in high density shaking cultures", PROTEIN EXPRESSION AND PURIFICATION, vol. 41, 2005, pages 207 - 234, XP027430000, DOI: doi:10.1016/j.pep.2005.01.016
WARGACKI, A. J.; LÉONARD, E.; WIN, M. N.; REGITSKY, D. D.; SANTOS, C. N.; KIM, P. B.; COOPER, S. R.; RAISNER, R. M.; HERMAN, A.;: "An engineered microbial platform for direct biofuel production from brown macroalgae", SCIENCE, vol. 335, 2012, pages 308 - 613

Also Published As

Publication number Publication date
FR3058732B1 (fr) 2021-01-01
FR3058732A1 (fr) 2018-05-18

Similar Documents

Publication Publication Date Title
Descamps et al. Isolation and culture of a marine bacterium degrading the sulfated fucans from marine brown algae
Inoue et al. Functional identification of alginate lyase from the brown alga Saccharina japonica
Colin et al. Cloning and biochemical characterization of the fucanase FcnA: definition of a novel glycoside hydrolase family specific for sulfated fucans
Zeng et al. Cloning, expression, and characterization of a new pH‐and heat‐stable alginate lyase from Pseudoalteromonas carrageenovora ASY5
Li et al. Insights into algal polysaccharides: a review of their structure, depolymerases, and metabolic pathways
Zhu et al. Cloning and biochemical characterization of a novel κ-carrageenase from newly isolated marine bacterium Pedobacter hainanensis NJ-02
Kool et al. Characterization of an acetyl esterase from Myceliophthora thermophila C1 able to deacetylate xanthan
Kojima et al. Characterization of an LPMO from brown-rot fungus Gloeophyllum trabeum with broad xyloglucan specificity and its action on cellulose-xyloglucan complexes
Wang et al. Characterization of a thermostable PL-31 family alginate lyase from Paenibacillus ehimensis and its application for alginate oligosaccharides bioproduction
WO1998015617A2 (fr) Genes de carraghenases et leur utilisation pour la production d&#39;enzymes de biodegradation des carraghenanes
Mengi et al. Factors affecting decreasing viscosity of the culture medium during the stationary growth phase of exopolysaccharide-producing Lactobacillus fermentum MTCC 25067
WO2018091836A1 (fr) Alpha-1,3-(3,6-ANHYDRO)-D-GALACTOSIDASES ET LEUR UTILISATION POUR HYDROLYSER DES POLYSACCHARIDES
EP2456866B1 (fr) Porphyranases et leur utilisation pour hydrolyser des polysaccharides
EP2421961B1 (fr) 4s-iota-carraghénane sulfatase et son utilisation pour l&#39;obtention de l&#39;alpha-carraghénane
EP2627778B1 (fr) Procede de transformation du iota-carraghenane en alpha-carraghenane a l&#39;aide d&#39;une nouvelle classe de 4s-iota-carraghenane sulfatase
WO2004090127A1 (fr) Enzyme de digestion d&#39;agar-agar et utilisation associee
EP3512942B1 (fr) Nouvelle ulvane lyase et son utilisation pour cliver des polysaccharides
WO2014072636A1 (fr) Kappa carraghénane sulfatase, procédé de fabrication et utilisation
JP7090291B2 (ja) ソホロースの製造方法
CN109797142B (zh) 一种降解普鲁兰糖产生单一潘糖的糖苷酶及其编码基因和应用
Bechtner Molecular mechanisms of water kefir lactobacilli to persist in and shape their environment
Inoue et al. Identification and characterization of cellouronate (β-1, 4-linked polyglucuronic acid) lyase from the scallop Mizuhopecten yessoensis
KR20050079035A (ko) 신규 해양성 미생물 슈도알테로모나스 에스피 비엘-3이 분비하는 저분자량 알파-아가레이즈와 활용
FR3045608A1 (fr) Dextrane carboxyle
TWI597362B (zh) 洋菜酶、含其之組合物、及其應用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17811999

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17811999

Country of ref document: EP

Kind code of ref document: A1