EP0922210A2 - Diagnoseeinrichtung zum überwachen eines abgasrückführsystems einer brennkraftmaschine - Google Patents

Diagnoseeinrichtung zum überwachen eines abgasrückführsystems einer brennkraftmaschine

Info

Publication number
EP0922210A2
EP0922210A2 EP97941799A EP97941799A EP0922210A2 EP 0922210 A2 EP0922210 A2 EP 0922210A2 EP 97941799 A EP97941799 A EP 97941799A EP 97941799 A EP97941799 A EP 97941799A EP 0922210 A2 EP0922210 A2 EP 0922210A2
Authority
EP
European Patent Office
Prior art keywords
egr
exhaust gas
gas recirculation
value
diagnostic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97941799A
Other languages
English (en)
French (fr)
Other versions
EP0922210B1 (de
Inventor
Klaus Bayerle
Stefan Schneider
Hong Zhang
Maximilian Engl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0922210A2 publication Critical patent/EP0922210A2/de
Application granted granted Critical
Publication of EP0922210B1 publication Critical patent/EP0922210B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • F02D41/0072Estimating, calculating or determining the EGR rate, amount or flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/49Detecting, diagnosing or indicating an abnormal function of the EGR system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1415Controller structures or design using a state feedback or a state space representation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1415Controller structures or design using a state feedback or a state space representation
    • F02D2041/1416Observer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • F02D2200/0408Estimation of intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/48EGR valve position sensors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • Diagnostic device for monitoring an exhaust gas recirculation system of an internal combustion engine
  • the invention relates to a diagnostic device for monitoring an exhaust gas recirculation system of an internal combustion engine according to the preamble of claim 1.
  • An exhaust gas recirculation system of an internal combustion engine serves to reduce the nitrogen oxide content in the exhaust gas. Since the main components of the exhaust gas of the internal combustion engine are an inert gas, the peak combustion temperature can be reduced by adding exhaust gas to the intake of combustion air and thus the emission of nitrogen oxides can be reduced.
  • the mass of the recirculated exhaust gas in relation to the sum of the mass of a fresh gas (intake air) and the mass of the recirculated exhaust gas is referred to below as the exhaust gas recirculation rate.
  • Exhaust gas recirculation systems can also be used to reduce fuel consumption. With such exhaust gas recirculation systems, a significant reduction in fuel consumption in part-load operation of the internal combustion engine is achieved by a very high EGR rate (> 20%), since the throttle losses and the wall heat losses in the combustion chamber of the internal combustion engine are reduced.
  • a known diagnostic device monitors an exhaust gas recirculation system of an internal combustion engine.
  • the exhaust gas recirculation system comprises an exhaust gas recirculation line which connects an exhaust tract to an intake tract and whose opening cross section can be influenced by means of an exhaust gas recirculation valve. Furthermore, a control device for controlling the exhaust gas recirculation valve is provided. From DE 42 16 044 it is known to design the diagnostic device such that the temperature of the recirculated exhaust gas in the exhaust gas recirculation line is measured in order to monitor the necessary exhaust gas recirculation rate. However, this monitoring is not possible reliably, especially with a high exhaust gas recirculation rate, since the temperature rise gradients are very flat and disturbances due to the environmental conditions such as B. the engine compartment temperature cannot be eliminated.
  • the exhaust gas recirculation valve closed and then opened.
  • the known diagnostic device is designed such that it performs misfire detection in predetermined operating states of the internal combustion engine.
  • the object of the invention is to provide a diagnostic device for monitoring an exhaust gas recirculation system of an internal combustion engine without the disadvantages mentioned, which is also simple and reliable.
  • Figure 1 An internal combustion engine that the invention
  • FIG. 2 a flowchart of the program with which a first embodiment of the diagnostic device monitors the exhaust gas recirculation system
  • Figure 3 A flow chart of the program with which a second embodiment of the diagnostic device monitors the exhaust gas recirculation system
  • Figure 4 A flowchart of the program with which a third embodiment of the diagnostic device monitors the exhaust gas recirculation system.
  • FIG. 1 An internal combustion engine is shown in FIG. 1, only those parts of the internal combustion engine being shown which are necessary for understanding the invention.
  • An intake tract 1 has a collector 2 and a suction pipe 3. Furthermore, a throttle valve 4 is arranged in the intake tract 1.
  • the suction pipe 3 connects the collector 2 to an inlet of a cylinder 6.
  • the cylinder 6 is connected to an exhaust tract 8, through which the exhaust gases are expelled.
  • An exhaust gas recirculation line 9 branches off from the exhaust tract 8 and opens into the intake tract 1 in the direction of flow of the intake air (indicated by arrow 12).
  • An electronic engine control unit 14 includes a preprocessing unit 15, which processes signals from sensors that record operating variables of the internal combustion engine.
  • a temperature sensor 17 is provided which detects the temperature of the intake air.
  • An angle sensor 18 detects the opening angle of the throttle valve 4
  • a pressure sensor 19 detects an intake manifold pressure MAP_MES
  • a crankshaft angle sensor 20 detects the current crankshaft angle
  • an opening degree sensor 21 detects an opening degree of the exhaust gas recirculation valve 10.
  • an air mass meter 17a which detects an air mass flow
  • an engine temperature sensor 19a which detects the engine temperature of the internal combustion engine
  • an exhaust gas temperature sensor 19b which detects the exhaust gas temperature in the exhaust tract 8.
  • the sensor signals can also be transmitted via a bus (CAN bus).
  • the electronic engine control 14 also has a diagnostic device 23 according to the invention, which monitors the exhaust gas recirculation system.
  • the electronic engine control 14 also has a control device 24 which is electrically conductively connected to the actuator of the exhaust gas recirculation valve 10. It controls the actuator of the exhaust gas recirculation valve 10 such that, depending on at least one operating variable of the internal combustion engine - for. B. the opening angle of the throttle valve 4 and a speed n of the crankshaft 20a - the opening degree of the exhaust gas recirculation valve 10 is set.
  • an electropneumatic converter can also be provided.
  • the control device 24 determines in a known manner a fuel mass which is injected per working cycle of the cylinder 6.
  • the control device 24 has an observer 25, which comprises a physical model of the intake tract 1.
  • This model can also be used to determine operating variables in non-stationary operation of the internal combustion engine, which are not detected directly by sensors.
  • the observer determines depending on an observer intake manifold pressure MAP_MDL from the opening angle of the throttle valve and the speed n.
  • the observer is also preferably provided with the ambient pressure and / or the exhaust gas temperature and / or the temperature in the intake tract and / or a control variable determining the stroke course of the gas exchange valves of the internal combustion engine for determining the observer intake manifold pressure MAP_MDL.
  • the model is based, for example, on differential equations that can be derived from the equation of state of ideal gases and the flow equation of ideal gases. Such a model is described in an earlier application by the same applicant (WO 96/32579).
  • the observer has a physical model of the intake tract 1 and the exhaust gas recirculation system and determines the observer intake manifold pressure MAP_EGR_MDL, which is a model size, as a function of the opening angle of the throttle valve, the opening degree of the exhaust gas recirculation valve 10 and the speed n for the exhaust gas partial pressure in the intake tract.
  • the observer is also preferably provided with the ambient pressure and / or the exhaust gas temperature and / or the temperature in the intake tract and a control variable determining the stroke course of the gas exchange valves of the internal combustion engine for determining the observer intake manifold pressure MAP_EGR_MDL.
  • FIG. 2 A flowchart of the program with which a first embodiment of the diagnostic device the exhaust gas recirculation system is monitored is shown in FIG. 2.
  • the program is started in a step S1.
  • a target value EGR_AV of the exhaust gas recirculation rate is determined.
  • the pressure sensor 19 detects the intake manifold pressure MAP_MES and the observer 25 determines the observer intake manifold pressure MAP_MDL.
  • the observer comprises only one model of the intake tract 1 of the internal combustion engine.
  • the exhaust gas partial pressure which is proportional to an exhaust gas mass flow to the exhaust gas recirculation valve 10, is therefore not covered by this model.
  • the actual value EGR_AV is advantageously determined using the formula ⁇ - r . n ⁇ ., MAP MES - MAP MDL
  • step S3 a target value EGR_SP of the exhaust gas recirculation rate is read out from a permanently stored map KF1.
  • setpoints are stored as a function of a load size (e.g. an air mass flow at the throttle valve 4) and the speed n and / or an engine temperature and / or a control variable which determines the stroke course of the gas exchange valves of the internal combustion engine.
  • a diagnostic value EGR_VER, EGR_DIF of the exhaust gas recirculation system is determined. So the diagnostic value EGR_VER assigned the ratio of the actual value EGR_AV and the setpoint EGR_SP. Alternatively, a difference between the actual value EGR_AV and the setpoint EGR_SP can also be assigned to the diagnostic value EGR_DIF.
  • a diagnostic threshold EGR_DIAG is read from a second map KF2 and, if necessary, interpolated. Diagnostic threshold values EGR_DIAG are permanently stored in the map KF2 depending on at least one operating size of the internal combustion engine. It is advantageous if the diagnostic threshold values in the map KF2 are dependent on a load size - e.g. the air mass flow at the throttle valve 4 or the opening angle of the throttle valve 4 and the speed n - and / or the ambient pressure and / or the exhaust gas temperature and / or the temperature in the intake tract 1 and / or one that determines the stroke profile of the gas exchange valves of the internal combustion engine Tax variable are stored.
  • a load size e.g. the air mass flow at the throttle valve 4 or the opening angle of the throttle valve 4 and the speed n - and / or the ambient pressure and / or the exhaust gas temperature and / or the temperature in the intake tract 1 and / or one that determines the stroke profile of the gas exchange valves of the internal combustion engine Tax variable are stored
  • step S6 it is checked whether the diagnostic value of the exhaust gas recirculation system EGR_VER, EGR_DIF is greater than the diagnostic threshold value EGR_DIAG plus a hysteresis value HYS.
  • the hysteresis value HYS is either predefined or depends on at least one operating size of the internal combustion engine. If the condition checked in step S6 is met, then step S7 branches to. There, the diagnostic device 23 recognizes that the flow through the EGR return line 9 is too high. The program is then ended in step S11.
  • step S6 If the condition checked in step S6 is not met, a branch is made to step S8 by checking whether the diagnostic value EGR_VER, EGR_DIF is less than the diagnostic threshold value EGR_DIAG minus the hysteresis value HYS. If this is the case, a branch is made to step S9, in which the diagnostic device 23 recognizes the flow through the exhaust gas recirculation line 9 as too low. The method is then ended in step S11.
  • step S8 If the condition checked in step S8 is not met, a branch is made to step S10, in which it is recognized that the exhaust gas recirculation system is functioning properly. The program is then ended in step S10.
  • steps S6 and S8 it is checked whether the diagnostic value EGR_VER lies outside a value range, the lower limit of which is the diagnostic threshold value EGR_DIAG minus the hysteresis value and the upper limit of which is the diagnostic threshold value EGR_DIAG plus the hysteresis value. It is advantageous if the hysteresis value HYS is also determined as a function of at least one company variable.
  • a program according to the flow chart is preferably started cyclically at predetermined time intervals during the operation of the internal combustion engine.
  • FIG. 3 shows a flowchart of the program with which a second embodiment of the diagnostic device 23 monitors the exhaust gas recirculation system.
  • a branch is made to a step S8a if step S8 was set that the diagnostic value EGR_VER, EGR_DIF is less than the diagnostic threshold value EGR_DIAG minus the hysteresis value HYS.
  • step S8a it is checked whether the actual value EGR_AV of the exhaust gas recirculation rate is plausible.
  • the actuator of the exhaust gas recirculation valve 10 is controlled by the control device 24 such that the exhaust gas recirculation valve 10 closes.
  • the diagnostic value EGR_VER lies within a second value range, the upper limit of which is predetermined by the sum of a second diagnostic threshold value and the hysteresis value HYS, and the lower limit of which is predetermined by the difference between a second diagnostic threshold value and the hysteresis value HYS.
  • step S9 in which, analogously to FIG. 1, an insufficient flow through the exhaust gas recirculation line 9 is detected.
  • step S9a A diagnosis is not possible in this step because there is a fault in the electronic motor control 14 or in one of the sensors. Possibly. another function to detect this error is called here.
  • the program is then ended in step S11.
  • FIG. 4 shows a flow chart of the program with which a third embodiment of the diagnostic device 23 monitors the exhaust gas recirculation system. The program is started in a step S14
  • an observer intake manifold pressure MAP_EGR_MDL is determined.
  • This observer intake manifold pressure MAP_EGR_MDL is determined in the observer 25 with the aid of a physical model of the intake tract 1 and the exhaust gas recirculation system - as described above.
  • a step S16 the intake manifold pressure MAP_MES is detected by the pressure sensor 19.
  • the diagnostic value EGR_VER is determined, to which the relationship between the intake manifold pressure MAP_MES and the observer intake manifold pressure MAP_EGR_MDL is assigned.
  • an upper diagnostic threshold EGR_DIAG_U is determined from a third map KF3, which is dependent on at least one operating variable of the internal combustion engine, preferably depending on an air mass flow, which is detected by the air mass meter 17a, and the speed n and / or the engine temperature and / or a control variable determining the stroke course of the gas exchange valves of the internal combustion engine. Furthermore, in step S18, a lower diagnostic threshold EGR_DIAG_U is determined from a map KF4, which is dependent on the air mass flow, the speed n and / or an engine temperature and / or a control variable which determines the stroke course of the gas exchange valves of the internal combustion engine.
  • step S19 it is checked whether the diagnostic value EGR_VER is greater than the upper diagnostic threshold EGR_DIAG_U. If this is the case, a branch is made to step S20, in which a rough-running actual value ER_AV and a rough-running target value ER_SP are determined.
  • a method for determining the uneven running actual value and setpoint value ER_AV, ER_SP is described in an older application by the same applicant (WO 97/22786).
  • step S20 it is then checked whether the actual uneven running value ER_AV is greater than the uneven running setpoint value ER_SP. If this is the case, a branch is made to step S22a, in which the diagnostic device 23 recognizes that the flow through the exhaust gas recirculation line 9 is too high. The program is then ended in step S24.
  • step S20 If the condition of step S20 is not fulfilled, a branch is made to step S22, in which the diagnostic device 23 recognizes that the exhaust gas recirculation system is error-free. The program is then ended in step S24.
  • step S19 If the diagnostic value EGR_VER is not greater than the upper diagnostic threshold value EGR_DIAG_U in step S19, a branch is made to step S21, in which a check is made to determine whether the diagnostic value EGR_VER is less than the lower diagnostic threshold value EGR_DIAG_L.
  • step S25 in which it is checked whether the intake manifold pressure MAP_MES is plausible is.
  • the exhaust gas recirculation valve is closed and, in accordance with steps S15 to S21, it is checked whether the diagnostic value EGR_VER is within the value range, the lower limit of which is the lower diagnostic threshold value EGR_DIAG_L and the upper limit of which is the upper diagnostic threshold value EGR_DIAG_U. If this is the case, the intake manifold pressure MAP_MES is plausible and a branch is made to step S26, in which the diagnostic device 23 detects an insufficient flow through the exhaust gas recirculation line 9.
  • step S27 which corresponds to step S9a.
  • the program is ended both after step S26 and after step S27 in step S24.
  • the diagnostic value EGR_VER, EGR_DIF is subjected to averaging, and an average diagnostic value MW_EGR_VER, MW_EGR_DIF is used as the basis for the further calculation.
  • the averaging is carried out according to one of the following calculation rules:
  • MW_EGR_VER MW_EGR_VER al . + (EGR_VER -MW_EGR_VER a (t ) -
  • the embodiment of the diagnostic device 23 described in FIG. 4 has the advantage that the diagnosis runs in several stages and thus extremely precise results are determined. In addition, if the exhaust gas recirculation system functions properly, there is no influence on the operation of the internal combustion engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

Eine Diagnoseeinrichtung zum Überwachen eines Abgasrückführ-Systems weist Mittel auf zum Ermitteln eines Diagnosewertes (EGR_VER, EGR_DIF) des Abgasrückführ-Systems ohne ein Beeinflussen des Betriebs der Brennkraftmaschine. Der Diagnosewert (EGR_VER, EGR_DIF) hängt von dem Saugrohrdruck (MAP_MES) und einem Beobachter-Saugrohrdruck (MAP_MDL, MAP_EGR_MDL) ab, den ein Beobachter (25) aus mindestens einer weiteren Betriebsgröße der Brennkraftmaschine ermittelt. Die Diagnoseeinrichtung weist zudem Mittel auf zum Erkennen des Abgasrückführ-Systems als fehlerhaft, wenn der Diagnosewert (EGR_VER, EGR_DIF) außerhalb eines von mindestens einer Betriebsgröße abhängigen Wertebereichs liegt.

Description

Beschreibung
Diagnoseeinrichtung zum Überwachen eines Abgasrückführsystems einer Brennkraftmaschine
Die Erfindung betrifft eine Diagnoseeinrichtung zum Überwachen eines Abgasrückführsystems einer Brennkraftmaschine nach dem Oberbegriff von Patentanspruch 1.
Ein Abgasruckfuhrsystem einer Brennkraftmaschine dient dazu, den Stickoxidanteil im Abgas zu reduzieren. Da das Abgas der Brennkraftmaschine in seinen wesentlichen Bestandteilen ein Inertgas ist, kann durch Zumischen von Abgas zur angesaugten Verbrennungsluf die Verbrennungs-Spitzentemperatur gesenkt und damit der Ausstoß von Stickoxiden reduziert werden. Die Masse des rückgeführten Abgases im Verhältnis zur Summe aus der Masse eines Frischgases (Ansaugluft) und der Masse des rückgeführten Abgases wird im folgenden als Abgasrückführrate bezeichnet .
Bei einer Abgasrückführrate von 10% werden die Stickoxidemissionen bereits um etwa 50% reduziert. Die HC- und CO- Emissionen der Brennkraftmaschine können durch ein Abgasrück- führ-System nicht signifikant verringert werden. Die Abgas - rückführrate muß möglichst genau eingestellt werden, da sonst bei einer zu hohen Abgasrückführrate ein Anstieg der HC- und CO-Anteile im Abgas erfolgt.
Abgasrückführsysteme können darüber hinaus auch zu einer Sen- kung des Kraftstoffverbrauchs eingesetzt werden. Bei derarti- gen Abgasrückführsystemen wird eine signifikante Verringerung des Kraftstoffverbrauchs im Teillastbetrieb der Brennkraftmaschine erreicht durch eine sehr hohe AGR-Rate (>20%), da die Drosselverluste sowie die Wandwärmeverluste im Brennraum der Brennkraftmaschine verringert werden.
Eine bekannte Diagnoseeinrichtung (DE 42 16 044 AI) überwacht ein Abgasrückführ-System einer Brennkraftmaschine. Das Abgas- rückführ- System umfaßt eine Abgasrückführleitung, die einen Abgastrakt mit einem Ansaugtrakt verbindet und deren Öffnungsquerschnitt mittels eines Abgasrückführventils beeinflußbar ist. Desweiteren ist eine Steuereinrichtung zum Steuern des Abgasrückführventils vorgesehen. Aus der DE 42 16 044 ist es bekannt, die Diagnoseeinrichtung derart auszubilden, daß zum Überwachen der notwendigen Abgasrückführrate die Temperatur des rückgeführten Abgases in der Abgasrückführleitung gemessen wird. Diese Überwachung ist jedoch insbesondere bei einer hohen Abgasrückführrate nicht zuverlässig möglich, da die Temperaturanstiegsgradienten sehr flach sind und Störun- gen durch die Umgebungsbedingungen wie z. B. die Motorraumtemperatur nicht zu eliminieren sind.
Aus der DE 42 16 044 AI ist es auch bekannt, die eine Änderung des Saugrohrdrucks bei einem Öffnen oder Schließen des Abgasrückführventils zu erfassen und somit zu erkennen, ob
Abgas ordnungsgemäß durch den Abgasrückführkanal strömt, wenn das Abgasrückführventil geöffnet wird. Dazu wird in einem vorgegebenen Betriebszustand der Brennkraftmaschine, wie z. B. im Schubbetrieb, das Abgasrückführventil geschlossen und anschließend geöffnet. Somit ist ein aktiver Eingriff in die Steuerung des Abgasrückführventils notwendig, der zu Emissi- ons- und Fahrbarkeitsproblemen führt.
Die bekannte Diagnoseeinrichtung ist derart ausgebildet, daß sie in vorgegebenen Betriebszuständen der Brennkraftmaschine eine Aussetzererkennung durchführt. Dabei erfolgt jedoch auch wieder ein aktiver Eingriff in die Abgasrückführsteuerung.
Die Aufgabe der Erfindung ist es, eine Diagnoseeinrichtung zum Überwachen eines Abgasrückführsystems einer Brennkraf maschine zu schaffen ohne die genannten Nachteile, die darüber hinaus einfach und zuverlässig ist.
Die Aufgabe wird erfindungsgemäß durch die Merkmale des Pa- tentanspruchs 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen gekennzeichnet.
Ausführungsbeispiele der Erfindung sind im folgenden unter Bezugnahme auf die schematischen Zeichnungen näher erläuter .
Es zeigen:
Figur 1: Eine Brennkraftmaschine, die die erfindungsgemäße
Diagnoseeinrichtung umfaßt,
Figur 2: Ein Ablaufdiagramm des Programms, mit dem eine erste Ausführungsform der Diagnoseeinrichtung das Abgasruckfuhrsystem überwacht,
Figur 3: Ein Ablaufdiagramm des Programms, mit dem eine zweite Ausführungsform der Diagnoseeinrichtung das Abgasruckfuhrsystem überwacht , und Figur 4: Ein Ablaufdiagramm des Programms, mit dem eine dritte Ausführungsform der Diagnoseeinrichtung das Abgasruckfuhrsystem überwacht wird.
In Figur 1 ist eine Brennkraftmaschine gezeigt, wobei nur diejenigen Teile der Brennkraftmaschine dargestellt sind, die für das Verständnis der Erfindung notwendig sind.
Ein Ansaugtrakt 1 weist einen Sammler 2 und ein Saugrohr 3 auf. Des weiteren ist im Ansaugtrakt 1 eine Drosselklappe 4 angeordne . Das Saugrohr 3 verbindet den Sammler 2 mit einem Einlaß eines Zylinders 6. Der Zylinder 6 ist mit einem Abgastrakt 8 verbunden, über den die Abgase ausgestoßen werden. Eine Abgasrückführleitung 9 zweigt von dem Abgastrakt 8 ab und mündet in Strömungsrichtung der Ansaugluft (mit dem Pfeil 12 bezeichnet) in den Ansaugtrakt 1. Ein Abgasrückführventil 10, das einen nicht dargestellten elektromagnetischen Aktor umfaßt ist in der Abgasrückführleitung 9 angeordnet.
Eine elektronische Motorsteuerung 14 umfaßt eine Vorverarbeitungseinheit 15, die Signale aufbereitet von Sensoren, die Betriebsgrößen der Brennkraftmaschine erfassen. In dem hier dargestellten Ausführungsbeispiel ist ein Temperatursensor 17 vorgesehen, der die Temperatur der Ansaugluft erfaßt. Ein Winkelgeber 18 erfaßt den Öffnungswinkel der Drosselklappe 4, einen Drucksensor 19 erfaßt einen Saugrohrdruck MAP_MES, ein Kurbelwelienwinkelgeber 20 erfaßt jeweils den aktuellen Kurbelwellenwinkel, ein Öffnungsgrad-Fühler 21 erfaßt einen Öffnungsgrad des Abgasrückführventils 10. In einer komfortablen Ausführungsform der Erfindung ist darüber hinaus noch minde- stens einer der folgenden Sensoren vorgesehen: ein Luft- massenmesser 17a, der einen Luftmassenstrom erfaßt; ein Motortemperatursensor 19a, der die Motortemperatur der Brennkraftmaschine erfaßt und ein Abgastemperatursensor 19b, der die Abgastemperatur in dem Abgastrakt 8 erfaßt. Alternativ können die Sensorsignale auch über einen Bus (CAN-Bus) übertragen werden.
Die elektronische Motorsteuerung 14 weist darüber hinaus eine erfindungsgemäße Diagnoseeinrichtung 23 auf, die das Abgas - rückführ-System überwacht. Die elektronische Motorsteuerung 14 weist auch eine Steuereinrichtung 24 auf, die elektrisch leitend mit dem Aktor des Abgasrückführventils 10 verbunden ist. Sie steuert den Aktor des Abgasrückführventils 10 derart an, daß in Abhängigkeit von mindestens einer Betriebsgröße der Brennkraftmaschine - z. B. der Öffnungswinkel der Drosselklappe 4 und einer Drehzahl n der Kurbelwelle 20a - der Öffnungsgrad des Abgasrückführventils 10 eingestellt wird. Alternativ zu dem elektromagnetischen Aktor des Abgasrück- führventils 10 kann auch ein elektropneumatischer Wandler vorgesehen sein. Die Steuereinrichtung 24 ermittelt in bekannter Weise eine Kraftstoffmasse, die pro Arbeitsspiel des Zylinders 6 eingespritzt wird.
Die Steuereinrichtung 24 weist einen Beobachter 25 auf, der ein physikalisches Modell des Ansaugtraktes 1 umfaßt. Durch dieses Modell können auch im Instationärbetrieb der Brennkraftmaschine Betriebsgrößen ermittelt werden, die nicht direkt von Sensoren erfaßt werden. In diesem Ausführungsbei- spiel der Erfindung ermittelt der Beobachter in Abhängigkeit von dem Öffnungswinkel der Drosselklappe und der Drehzahl n einen Beobachter Saugrohrdruck MAP_MDL. Vorzugsweise stehen dem Beobachter auch der Umgebungsdruck und/oder die Abgastemperatur und/oder die Temperatur in dem Ansaugtrakt und/oder eine den Hubverlauf der Gaswechselventile der Brennkraftmaschine bestimmende Steuergröße zum Ermitteln des Beobachter Saugrohrdrucks MAP_MDL zur Verfügung. Das Modell beruht beispielsweise auf Differentialgleichungen, die sich aus der Zu- standsgleichung idealer Gase ableiten lassen, und der Durch- flußgleichung idealer Gase. Ein derartiges Modell ist in einer älteren Anmeldung derselben Anmelderin (WO 96/32579) beschrieben.
In einer anderen vorteilhaften Ausführungsform der Erfindung weist der Beobachter ein physikalisches Modell des Ansaugtraktes 1 und des Abgasrückführsystems auf und ermittelt in Abhängigkeit von dem Öffnungswinkel der Drosselklappe, dem Öffnungsgrad des Abgasrückführventils 10 und der Drehzahl n den Beobachter-Saugrohrdruck MAP_EGR_MDL, der eine Modellgrö- ße für den Abgaspartialdruck im Ansaugtrakt ist. Vorzugsweise stehen dem Beobachter auch der Umgebungsdruck und/oder die Abgastemperatur und/oder die Temperatur in dem Ansaugtrakt und eine den Hubverlauf der Gaswechselventile der Brennkraftmaschine bestimmende Steuergröße zum Ermitteln des Beobach- ter-Saugrohrdrucks MAP_EGR_MDL zur Verfügung. Ein derartiges Modell ist in einer nichtveröffentlichten Anmeldung derselben Anmelderin ( Amtl . Aktenzeichen P 19610290.1 - unser Zeichen GR 96 P1259) beschrieben. Es ist selbstverständlich, daß außer den genannten Betriebsgrößen zum Ermitteln des Beobach- ter-Saugrohrdrucks MAP_MDL, MAP_EGR_MDL auch noch weitere Betriebsgrößen verwendet werden können.
Ein Ablaufdiagramm des Programms, mit dem eine erste Ausfüh- rungsform der Diagnoseeinrichtung das Abgasrückführ-System überwacht wird, ist in Figur 2 dargestellt. In einem Schritt Sl wird das Programm gestartet .
In einem Schritt S2 wird ein Sollwert EGR_AV der Abgasrück- führrate bestimmt. Der Drucksensor 19 erfaßt den Saugrohrdruck MAP_MES und der Beobachter 25 ermittelt den Beobachter- Saugrohrdruck MAP_MDL. Der Beobachter umfaßt in diesem Aus- führungsbeispiel nur ein Modell des Ansaugtraktes 1 der Brennkraftmaschine. Der Abgaspartialdruck, der proportional zu einem Abgasmassenstrom an den Abgasrückführventil 10 ist, wird somit durch dieses Modell nicht erfaßt. So wird der Istwert EGR_AV vorteilhaft ermittelt nach der Formel τ-r.n Λ ., MAP MES - MAP MDL
EGR A V = = (Fl
MAP _ MES
In dem Schritt S3 wird ein Sollwert EGR_SP der Abgasrückführrate aus einem fest abgespeicherten Kennfeld KF1 ausgelesen. In dem Kennfeld KF1 sind Sollwerte abhängig von einer Lastgröße (z. B. ein Luf massenstrom an der Drosselklappe 4) und der Drehzahl n und/ oder einer Motortemperatur und/ oder einer dem Hubverlauf der Gaswechselventile der Brennkraftmaschine bestimmenden Steuergröße abgelegt.
In einem Schritt S4 wird ein Diagnosewert EGR_VER, EGR_DIF des Abgasrückführsystems ermittelt. So wird dem Diagnosewert EGR_VER das Verhältnis von dem Istwert EGR_AV und dem Sollwert EGR_SP zugeordnet. Alternativ kann auch dem Diagnosewert EGR_DIF eine Differenz von dem Istwert EGR_AV und dem Sollwert EGR_SP zugeordnet werden.
In einem Schritt S5 wird ein Diagnoseschwellenwert EGR_DIAG aus einem zweiten Kennfeld KF2 ausgelesen und ggf. interpoliert. In dem Kennfeld KF2 sind Diagnoseschwellenwerte EGR_DIAG fest abgespeichert in Abhängigkeit von mindestens einer Betriebsgroße der Brennkraftmaschine Es ist vorteilhaft, wenn die Diagnoseschwellenwerte in dem Kennfeld KF2 in Abhängigkeit von einer Lastgroße - z.B. der Luftmassenstrom an der Drosselklappe 4 oder der Öffnungswinkel der Drosselklappe 4 und der Drehzahl n - und/ oder des Umgebungsdrucks und/ oder der Abgastemperatur und/ oder der Temperatur in dem Ansaugtrakt 1 und/ oder einer von dem Hubverlauf der Gaswech- selventile der Brennkraftmaschine bestimmenden Steuergröße abgelegt sind.
In einem Schritt S6 wird geprüft, ob der Diagnosewert des Abgasrückführsystems EGR_VER, EGR_DIF größer ist als der Diagnoseschwellenwert EGR_DIAG plus ein Hysteresewert HYS. Der Hysteresewert HYS ist entweder fest vorgegeben oder abhangig von mindestens einer Betriebsgroße der Brennkraftmaschine. Ist die im Schritt S6 geprüfte Bedingung erfüllt, so wird m dem Schritt S7 verzweigt . Dort erkennt die Diagnoseeinrichtung 23, daß der Durchfluß durch die AGR Rückf hrleitung 9 zu hoch ist. Anschließend wird das Programm m Schritt Sll beendet . Ist die im Schritt S6 geprüfte Bedingung nicht erfüllt, so wird in den Schritt S8 verzweigt, indem überprüft wird, ob der Diagnosewert EGR_VER, EGR_DIF kleiner ist als der Diagnoseschwellenwert EGR_DIAG minus dem Hysteresewert HYS. Ist dies der Fall so wird in den Schritt S9 verzweigt, in dem die Diagnoseeinrichtung 23 den Durchfluß durch die Abgasrückführleitung 9 als zu gering erkennt. Das Verfahren wird dann im Schritt Sll beendet.
Ist die im Schritt S8 geprüfte Bedingung nicht erfüllt, so wird in den Schritt S10 verzweigt, in dem erkannt wird, daß das Abgasruckfuhrsystem einwandfrei funktioniert. Anschließend wird das Programm im Schritt S10 beendet.
In den Schritten S6 und S8 wird somit überprüft ob der Diagnosewert EGR_VER außerhalb eines Wertebereichs liegt, dessen untere Grenze der Diagnoseschwellenwert EGR_DIAG minus dem Hysteresewert und dessen obere Grenze der Diagnoseschwellenwert EGR_DIAG plus dem Hysteresewert ist. Es ist vorteilhaft, wenn auch der Hysteresewert HYS abhängig von mindestens einer Betriebsgröße ermittelt wird.
Ein Programm gemäß des Ablaufdiagramms wird vorzugsweise in vorgegebenen Zeitabständen während des Betriebs der Brenn- kraftmaschine zyklisch gestartet.
Ein Ablaufdiagramm des Programms, mit dem eine zweite Ausführungsform der Diagnoseeinrichtung 23 das Abgasrückführ-System überwacht zeigt Figur 3. Im Unterschied zu Figur 2 wird in einen Schritt S8a verzweigt, wenn in dem Schritt S8 festge- stellt wurde, daß der Diagnosewert EGR_VER, EGR_DIF kleiner ist als der Diagnoseschwellenwert EGR_DIAG minus dem Hysteresewert HYS ist. In dem Schritt S8a wird überprüft, ob der Istwert EGR_AV der Abgasrückführrate plausibel ist. Hierzu wird der Aktor des Abgasrückführventils 10 von der Steuereinrichtung 24 derart angesteuert, daß das Abgasrückführventil 10 schließt.
Bei geschlossenem Abgasrückführventil 10 wird dann überprüft, ob der Diagnosewert EGR_VER innerhalb eines zweiten Wertebereichs liegt, dessen obere Grenze durch die Summe eines zweiten Diagnoseschwellenwerts und des Hysteresewertes HYS vorgegeben ist und dessen untere Grenze durch die Differenz eines zweiten Diagnoseschwellenwertes und des Hysteresewertes HYS vorgegeben ist.
Ist dies der Fall, so wird auf Plausibilität erkannt und in den Schritt S9 verzweigt, in dem analog zu Figur 1 auf einen zu geringen Durchfluß durch die Abgasrückführleitung 9 er- kannt wird.
Ist der Istwert EGR_AV in Schritt S8 nicht plausibel, so wird in den Schritt S9a verzweigt. Eine Diagnose ist in diesem Schritt nicht möglich, da ein Fehler in der elektronischen Motorsteuerung 14 oder bei einem der Sensoren vorliegt. Ggf. wird hier eine weitere Funktion zur Erkennung dieses Fehlers aufgerufen. Anschließend wird das Programm in dem Schritt Sll beendet . Ein Ablaufdiagramm des Programms, mit dem eine dritte Ausführungsform der Diagnoseeinrichtung 23 das Abgasrückführ-System überwacht, zeigt Figur 4. In einem Schritt S14 wird das Programm gestartet
In einem Schritt S15 wird ein Beobachter-Saugrohrdruck MAP_EGR_MDL ermittelt. Dieser Beobachtersaugrohrdruck MAP_EGR_MDL wird in dem Beobachter 25 mit Hilfe eines physikalischen Modells des Ansaugtraktes 1 und des Abgasrückführ- Systems - wie es weiter oben beschrieben wurde - ermittelt.
In einem Schritt S16 wird der Saugrohrdruck MAP_MES von dem Drucksensor 19 erfaßt. In einem Schritt S17 wird der Diagnosewert EGR_VER ermittelt, dem hier das Verhältnis aus dem Saugrohrdruck MAP_MES und dem Beobachter-Saugrohrdruck MAP_EGR_MDL zugeordnet ist.
In dem Schritt S18 wird ein oberer Diagnoseschwellenwert EGR_DIAG_U aus einem dritten Kennfeld KF3 ermittelt, das ab- hängig von mindestens einer Betriebsgröße der Brennkraftmaschine ist, vorzugsweise abhängig von einem Luf massenstrom, der von dem Luftmassenmesser 17a erfaßt wird, und der Drehzahl n und/ oder der Motortemperatur und/ oder einer dem Hubverlauf der Gaswechselventile der Brennkraftmaschine bestim- mende Steuergröße. Des weiteren wird im Schritt S18 ein unterer Diagnoseschwellenwert EGR_DIAG_U aus einem Kennfeld KF4 ermittelt, das abhängig ist von dem Luftmassenstrom, der Drehzahl n und/ oder einer Motortemperatur und/ oder einer den Hubverlauf der Gaswechselventile der Brennkraftmaschine bestimmenden Steuergröße. In dem Schritt S19 wird überprüft, ob der Diagnosewert EGR_VER größer ist als der obere Diagnoseschwellenwert EGR_DIAG_U. Ist dies der Fall, so wird in den Schritt S20 verzweigt, in dem ein Laufunruhe-Istwert ER_AV und ein Laufunruhe-Sollwert ER_SP ermittelt werden. Ein Verfahren zum Ermitteln des Laufunruhe- Istwertes und -Sollwertes ER_AV, ER_SP ist in einer älteren Anmeldung derselben Anmelderin ( WO 97/22786) beschrieben.
In dem Schritt S20 wird anschließend überprüft, ob der Laufunruhe-Istwert ER_AV größer ist als der Laufunruhe-Sollwert ER_SP. Ist dies der Fall, so wird in den Schritt S22a verzweigt, in dem die Diagnoseeinrichtung 23 erkennt, daß der Durchfluß durch die Abgasrückführleitung 9 zu hoch ist. Anschließend wird das Programm im Schritt S24 beendet.
Ist die Bedingung von Schritt S20 nicht erfüllt, so wird in den Schritt S22 verzweigt, in dem die Diagnoseeinrichtung 23 erkennt, daß das Abgasrückführ-System fehlerfrei ist. Das Programm wird dann im Schritt S24 beendet .
Ist im Schritt S19 der Diagnosewert EGR_VER nicht größer als der obere Diagnoseschwellenwert EGR_DIAG_U, so wird in den Schritt S 21 verzweigt, in dem überprüft wird, ob der Diagnosewert EGR_VER kleiner als der untere Diagnoseschwellenwert EGR_DIAG_L ist .
Ist dies der Fall, so wird in den Schritt S25 verzweigt, in dem überprüft wird, ob der Saugrohrdruck MAP_MES plausibel ist. Dazu wird das Abgasrückführventil geschlossen und gemäß der Schritte S15 bis S21 überprüft, ob der Diagnosewert EGR_VER innerhalb des Wertebereichs liegt, dessen untere Grenze der untere Diagnoseschwellenwert EGR_DIAG_L und dessen obere Grenze der obere Diagnoseschwellenwert EGR_DIAG_U ist. Ist dies der Fall, so ist der Saugrohrdruck MAP_MES plausibel und es wird in den Schritt S26 verzweigt, in dem die Diagnoseeinrichtung 23 auf einen zu geringen Durchfluß durch die Abgasrückführleitung 9 erkennt.
Ist dies nicht der Fall so wird in den Schritt S27 verzweigt, der dem Schritt S9a entspricht. Das Programm wird sowohl nach Schritt S26 als auch nach Schritt S27 in dem Schritt S24 beendet .
In einer weiteren Ausführungsform der Erfindung wird der Diagnosewert EGR_VER, EGR_DIF einer Mittelung unterzogen, und ein ge ittelter Diagnosewert MW_EGR_VER, MW_EGR_DIF der weiteren Berechnung zugrunde gelegt . Die Mittelung erfolgt nach einer der im folgenden angegebenen Berechnungvorschriften:
MW_EGR_VER =MW_EGR_VERal. +(EGR_VER -MW_EGR_VERa(t)-
b) MW _ EGR_VER = -∑ EGR - VER^
/-l
- ) MW _ EGR_ VER -= >.]EGR_ VER, EGR_ VER- .... EGR_ VER,
mit i = Anzahl der Messungen, k = Wichtungsfaktor, Die in Figur 4 beschriebene Ausführungsform der Diagnoseeinrichtung 23 hat den Vorteil, daß die Diagnose mehrstufig abläuft und somit äußerst präzise Ergebnisse ermittelt werden. Bei einem einwandfrei funktionierenden Abgasrückführ-System erfolgt darüber hinaus kein Beeinflussen des Betriebs der Brennkraftmaschine .

Claims

Patentansprüche
1. Diagnoseeinrichtung zum Überwachen eines Abgasrückführ- Systems einer Brennkraf maschine, das eine Abgasrückführ- leitung (9) umfaßt, die einen Abgastrakt (8) mit einen Ansaugtrakt (1) verbindet und deren Öffnungsquerschnitt mittels eines Abgasrückführventils (10) eingestellt wird, wobei eine Steuereinrichtung (24) zum Steuern des Abgasrückführventils (10) vorgesehen ist und in dem Ansaugtrakt (1) ein Drucksensor (19) angeordnet ist, der einen Saugrohrdruck (MAP_MES) erfaßt , dadurch gekennzeichnet, - daß sie Mittel aufweist zum Ermitteln eines Diagnosewertes (EGR_VER, EGR_DIF) des Abgasrückführ-Systems ohne ein Beeinflussen des Betriebs der Brennkraftmaschine, wobei der Diagnosewert (EGR_VER, EGR_DIF) abhängt von dem Saugrohrdruck (MAP_MES) und einem Beobachter-Saugrohrdruck (MAP_MDL, MAP_EGR_MDL) , den ein Beobachter (25) aus mindestens einer weiteren Betriebsgröße der Brennkraftmaschine ermittelt, und - daß sie Mittel aufweist zum Erkennen des Abgasrückführ- Systems als fehlerhaft, wenn der Diagnosewert (EGR_VER, EGR_DIF) außerhalb eines von mindestens einer Betriebsgröße abhängigen Wertebereichs liegt.
2. Diagnoseeinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Diagnosewert (EGR_VER) durch Bilden des Verhältnisses ermittelt wird von dem Istwert (EGR__AV) zu dem Sollwert (EGR_SP) einer Abgasrückführrate.
3. Diagnoseeinrichtung nach Anspruch l, dadurch gekennzeichnet, daß der Diagnosewert (EGR_DIF) ermittelt wird durch Bilden der Differenz zwischen dem Istwert (EGR_AV) und dem Sollwert (EGR_SP) einer Abgasrückführrate.
4. Diagnoseeinrichtung nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß der Sollwert aus einem Kennfeld ermittelt wird, das abhängt von einer Lastgröße.
5. Diagnoseeinrichtung nach Anspruch 3, dadurch gekennzeichnet, daß der Istwert (EGR_AV) nach der Beziehung
MAP_MES- AP_MDL MAP_Mes ermittelt wird, wobei MAP_MDL der Beobachter-Saugrohrdruck ist, und daß die Steuereinrichtung (24) den Beobachter (25) aufweist, der ein physikalisches Modell des Ansaugtraktes (1) umfaßt und der in Abhängigkeit von dem Öffnungswinkel einer Drosselklappe (4) und einer Drehzahl (n) den Beobachter- Saugrohrdruck (MAP_MDL) ermittelt.
6. Diagnoseeinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Diagnosewert (EGR_VER) durch Bilden des Verhältnisses von dem Saugrohrdruck (MAP_MES) zu dem Beobachter- Saugrohrdruck (MAP_EGR_MDL) ermittelt wird, und daß die Steuereinrichtung (24) den Beobachter (25) aufweist, der ein phy- sikalisches Modell des Ansaugtraktes (1) und des Abgasrückführ-Systems umfaßt und der in Abhängigkeit von einem Öffnungswinkel einer Drosselklappe (4), dem Öffnungsgrad des Abgasrückführventils (10) und der Drehzahl (n) den Beobachter- Saugrohrdruck (MAP_EGR_MDL) ermittelt.
7. Diagnoseeinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Wertebereich durch einen Diagnoseschwellenwert
(EGR_DIAG) und einen Hysteresewert (HYS) vorgegeben ist, daß der Diagnoseschwellenwert (EGR_DIAG) aus einem Kennfeld er- mittelt wird, das abhängig ist von mindestens einer Betriebsgröße der Brennkraftmaschine .
8. Diagnoseeinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Mittel zum Erkennen des Abgasrückführ-Systems als fehlerhaft derart ausgebildet sind, daß ein zu hoher Massenstrom durch die Abgasrückführleitung (9) erkannt wird, wenn der Diagnosewert (EGR_VER, EGR_DIF) über dem Wertebereich liegt und ein Laufunruhe-Sollwertes (ER_SP) überschritten wird.
9. Diagnoseeinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Mittel zum Erkennen des Abgasrückführ-Systems als fehlerhaft derart ausgebildet sind, daß wenn der Diagnosewert (EGR_VER, EGR_DIF) unter dem Wertebereich liegt, eine Plausibilitätsprüfung des Istwertes (EGR_AV) durchgeführt wird, und daß bei einem plausiblen Istwert (EGR_AV) ein zu geringer Massenstrom durch die Abgasrückführleitung (9) erkannt wird.
10. Diagnoseeinrichtung nach Anspruch 9, dadurch gekennzeichnet, daß zur Plausibilitätsprüfung das Abgasrückführventil (10) geschlossen wird.
EP97941799A 1996-08-29 1997-08-20 Diagnoseeinrichtung zum überwachen eines abgasrückführsystems einer brennkraftmaschine Expired - Lifetime EP0922210B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19634975 1996-08-29
DE19634975A DE19634975C1 (de) 1996-08-29 1996-08-29 Diagnoseeinrichtung zum Überwachen eines Abgasrückführsystems einer Brennkraftmaschine
PCT/DE1997/001803 WO1998009067A2 (de) 1996-08-29 1997-08-20 Diagnoseeinrichtung zum überwachen eines abgasrückführsystems einer brennkraftmaschine

Publications (2)

Publication Number Publication Date
EP0922210A2 true EP0922210A2 (de) 1999-06-16
EP0922210B1 EP0922210B1 (de) 2003-05-21

Family

ID=7804050

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97941799A Expired - Lifetime EP0922210B1 (de) 1996-08-29 1997-08-20 Diagnoseeinrichtung zum überwachen eines abgasrückführsystems einer brennkraftmaschine

Country Status (4)

Country Link
US (1) US6044826A (de)
EP (1) EP0922210B1 (de)
DE (2) DE19634975C1 (de)
WO (1) WO1998009067A2 (de)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19731420A1 (de) * 1997-07-22 1999-01-28 Bosch Gmbh Robert Vorrichtung zur Erfassung des Drucks und der Temperatur im Saugrohr einer Brennkraftmaschine und Verfahren zu ihrer Herstellung
DE19849256A1 (de) * 1998-10-26 2000-04-27 Bosch Gmbh Robert Verfahren und Vorrichtung zur Diagnose einer Abgasrückführung eines Verbrennungsprozesses
DE19941006A1 (de) * 1999-08-28 2001-03-01 Volkswagen Ag Funktionsüberwachung eines Luftmassenregelsystems
JP2001304043A (ja) * 2000-04-20 2001-10-31 Hitachi Ltd 排気ガス再循環装置の故障診断装置
JP3535077B2 (ja) * 2000-06-19 2004-06-07 本田技研工業株式会社 内燃機関の制御装置
DE10118878A1 (de) * 2001-04-18 2002-10-31 Bosch Gmbh Robert Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
US6708104B2 (en) 2001-07-27 2004-03-16 Detroit Diesel Corporation Engine control based on exhaust back pressure
US6763708B2 (en) 2001-07-31 2004-07-20 General Motors Corporation Passive model-based EGR diagnostic
JP2003155957A (ja) * 2001-09-04 2003-05-30 Mitsubishi Motors Corp Egr制御装置及びegr制御方法
US20060235629A1 (en) * 2003-05-21 2006-10-19 Walker Jeffrey S Flow meter monitoring and data logging system
US6848418B1 (en) * 2003-11-10 2005-02-01 Ford Global Technologies, Llc External exhaust gas recirculation on board diagnostic using EGR effect on a combination of engine operating parameters
JP4636336B2 (ja) * 2004-06-02 2011-02-23 トヨタ自動車株式会社 排気弁の故障診断装置
DE102006012656A1 (de) * 2006-03-20 2007-09-27 Siemens Ag Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
US7739027B2 (en) 2007-08-17 2010-06-15 Gm Global Technology Operations, Inc. Method and apparatus for monitoring an EGR valve in an internal combustion engine
DE102007044937B4 (de) * 2007-09-20 2010-03-25 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102007045264B4 (de) * 2007-09-21 2012-10-04 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102008041804B4 (de) * 2008-09-04 2020-06-25 Robert Bosch Gmbh Verfahren und Vorrichtung zur Überwachung einer Abgasrückführungsanordnung
GB2484297A (en) * 2010-10-05 2012-04-11 Gm Global Tech Operations Inc A combustion engine evaluation unit comprising fault detection system for engine using EGR
KR20130063946A (ko) * 2011-12-07 2013-06-17 현대자동차주식회사 배기가스 재순환 진단장치 및 배기가스 재순환 진단방법
CN102840995B (zh) * 2012-09-10 2015-03-25 临海市伟达汽车部件有限公司 Egr冷却器性能测试分析系统
US9422877B2 (en) * 2013-10-11 2016-08-23 General Electric Company System and method for control of exhaust gas recirculation (EGR) utilizing process temperatures
FR3048455B1 (fr) * 2016-03-04 2020-01-10 Renault S.A.S. Procede de diagnostic d'une vanne egr
KR20210069411A (ko) * 2019-12-03 2021-06-11 현대자동차주식회사 Egr 유량 진단 방법
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2586205B2 (ja) * 1990-11-07 1997-02-26 三菱電機株式会社 排気ガス還流制御装置の故障診断装置
DE4216044C2 (de) * 1992-05-15 2001-03-15 Bosch Gmbh Robert Abgasrückführungs-Diagnosesystem an einem Verbrennungsmotor
JP2881075B2 (ja) * 1992-08-05 1999-04-12 三菱電機株式会社 排気還流制御装置の故障診断方法
JPH06264827A (ja) * 1993-03-10 1994-09-20 Nissan Motor Co Ltd Egr制御装置
US5508926A (en) * 1994-06-24 1996-04-16 General Motors Corporation Exhaust gas recirculation diagnostic
JP2870418B2 (ja) * 1994-09-30 1999-03-17 三菱自動車工業株式会社 排気ガス再循環装置の故障診断装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9809067A2 *

Also Published As

Publication number Publication date
US6044826A (en) 2000-04-04
DE19634975C1 (de) 1998-04-16
WO1998009067A3 (de) 1998-04-16
WO1998009067A2 (de) 1998-03-05
DE59710135D1 (de) 2003-06-26
EP0922210B1 (de) 2003-05-21

Similar Documents

Publication Publication Date Title
EP0922210B1 (de) Diagnoseeinrichtung zum überwachen eines abgasrückführsystems einer brennkraftmaschine
DE102007013250B4 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine mit mindestens einem Zylinder
DE102007036258B4 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE10312387B4 (de) Verfahren und Vorrichtung zum Betrieb einer Brennkraftmaschine
DE3532783C2 (de)
DE19857183A1 (de) Diagnose einer variablen Ventilsteuerung bei Verbrennungsmotoren
DE10341010B4 (de) Fehlererfassungsvorrichtung für eine Brennkraftmaschine
EP1934453B1 (de) Verfahren und vorrichtung zum betreiben einer brennkraftmaschine
EP1115964B1 (de) Verfahren zum steuern einer brennkraftmaschine abhängig von einem abgasdruck
DE102008000691A1 (de) Verfahren und Vorrichtung zur Überwachung eines Zuluftsystems einer Brennkraftmaschine
EP1305514B1 (de) Verfahren zur diagnose der funktionstüchtigkeit eines abgasrückführungssystems einer brennkraftmaschine
DE102016219781A1 (de) Verfahren und Steuergerät zum Abgleich und zur Diagnose eines Abgasrückführmassenstrommessers
DE102008040857B4 (de) Steuergerät und Informationserlangungsgerät für ein Abgassystem einer Brennkraftmaschine
DE19627644C2 (de) Verfahren und Vorrichtung zur Diagnose einer Auspuffgas-Rückführeinheit einer Brennkraftmaschine mit innerer Verbrennung
DE19927674A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE4203235A1 (de) Ausfalldiagnosevorrichtung einer abgas-rueckfuehrungs-(agr)-steuereinrichtung
DE10211282A1 (de) Verfahren zur Steuerung und/oder Diagnose eines Kraftstoffzumesssystems, Computerprogramm, Steuergerät und Brennkraftmaschine
DE102022104858A1 (de) Verfahren und systeme für ein agr-system
DE10038258C2 (de) Verfahren zum Überprüfen der Funktionstüchtigkeit eines Abgasrückführungssystems einer Brennkraftmaschine
WO2001046579A2 (de) Verfahren zur erkennung einer fehlfunktion bei einem sensor
EP1609970A2 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
EP2076667A1 (de) Verfahren und vorrichtung zur überwachung eines kraftstoffeinspritzsystems
EP2142783B1 (de) Verfahren und vorrichtung zur steuerung einer brennkraftmaschine
WO2002059471A1 (de) Verfahren zum ermitteln eines schätzwertes eines massenstroms in den ansaugtrakt einer brennkraftmaschine
DE10329039B3 (de) Verfahren zur Überprüfung der Funktionsfähigkeit eines Temperatursensors

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990219

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB SE

17Q First examination report despatched

Effective date: 20010724

RIC1 Information provided on ipc code assigned before grant

Free format text: 7G 01M 15/00 A, 7F 02M 25/07 B

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59710135

Country of ref document: DE

Date of ref document: 20030626

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030821

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040224

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080813

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080821

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090820

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090820

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140831

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59710135

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160301