EP0921541B1 - Herstellungsverfahren für einen nanokristallinen weichmagnetischen Kern für Anwendung in einem Differentialschutzschalter - Google Patents

Herstellungsverfahren für einen nanokristallinen weichmagnetischen Kern für Anwendung in einem Differentialschutzschalter Download PDF

Info

Publication number
EP0921541B1
EP0921541B1 EP98402804A EP98402804A EP0921541B1 EP 0921541 B1 EP0921541 B1 EP 0921541B1 EP 98402804 A EP98402804 A EP 98402804A EP 98402804 A EP98402804 A EP 98402804A EP 0921541 B1 EP0921541 B1 EP 0921541B1
Authority
EP
European Patent Office
Prior art keywords
alloy
magnetic
heat treatment
core
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98402804A
Other languages
English (en)
French (fr)
Other versions
EP0921541A1 (de
Inventor
Georges Couderchon
Philippe Verin
Christian Caquard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mecagis SNC
Original Assignee
Mecagis SNC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mecagis SNC filed Critical Mecagis SNC
Publication of EP0921541A1 publication Critical patent/EP0921541A1/de
Application granted granted Critical
Publication of EP0921541B1 publication Critical patent/EP0921541B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0213Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
    • H01F41/0226Manufacturing of magnetic circuits made from strip(s) or ribbon(s) from amorphous ribbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H83/00Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current
    • H01H83/14Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by imbalance of two or more currents or voltages, e.g. for differential protection
    • H01H83/144Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by imbalance of two or more currents or voltages, e.g. for differential protection with differential transformer

Definitions

  • the present invention relates to a magnetic core of magnetic alloy soft nanocrystalline usable in particular for the manufacture of a circuit breaker Class A differential.
  • Class A RCDs are self-contained RCDs sensitive not only to sinusoidal fault currents, but also to pulsed fault currents.
  • These differential circuit breakers comprise a magnetic core of soft magnetic alloy having a maximum magnetic permeability of impedance ⁇ z at 50 Hertz high and a Br / Bm ratio of the residual induction to the induction at saturation of less than 0.2, and a good temperature stability of magnetic properties in the operating temperature range from - 25 ° C to + 100 ° C.
  • the maximum magnetic permeability of impedance ⁇ z must be high, because the higher it is, the more it is possible to reduce the dimensions of the magnetic core and therefore to miniaturize the residual current device; ; the Br / Bm ratio must remain low to preserve the sensitivity of the circuit breaker to pulsed currents.
  • the sensitivity of the circuit breaker to pulsed fault currents is all the better as the magnitudes ⁇ B stat and ⁇ B dyn are higher; ⁇ B stat and ⁇ B dyn being the amplitudes of variation of the magnetic induction generated by a half-wave rectified alternating excitation field in the first case and full wave in the second.
  • Magnetic cores for class A residual current devices can be manufactured using a soft magnetic alloy of the type comprising more than 60 atoms% of iron, copper, silicon, boron and an element selected from niobium, titanium, zirconium, hafnium, vanadium, tantalum, chromium, molybdenum, tungsten and manganese.
  • These magnetic cores are obtained by casting the alloy in the form of an amorphous ribbon which is wound to form a torus, then subjected to a crystallization heat treatment intended to give the alloy a nanocrystalline structure, and, finally, subjected to a heat treatment under magnetic field parallel to the axis of the core applied continuously throughout the heat treatment, the heat treatment taking place at around 400 ° C.
  • the magnetic cores thus obtained have a satisfactory temperature stability and a Br / Bm ratio of less than 0.2. However, they do not make it possible to obtain a magnetic permeability of ⁇ z impedance measured at 50 Hz in a maximum excitation field of 10 mA / cm (peak value) at 25 ° C greater than 170,000 nor values of ⁇ B stat and ⁇ B dyn greater than 0.19 Tesla for an excitation field with a maximum amplitude of 10 mA / cm, which limits the possibilities of miniaturization.
  • DE 4,019,636 describes a process for improving the magnetic properties of amorphous ferromagnetic materials consisting in subjecting them continuously to an alternating magnetic field whose frequency is between 50 and 50 kHz, in sinusoidal form, at right angles or triangular and the current density between 10 and 500 A / cm 2 .
  • the aim of the present invention is to remedy this drawback in The aim of the present invention is to remedy this drawback by proposing a means for manufacturing a magnetic core usable in a class A differential circuit breaker having both magnetic permeability impedance ⁇ z measured at 50 Hz in a maximum excitation field of 10 mA / cm (peak value) greater than 200,000 and values of ⁇ B stat and ⁇ B dyn greater than 0.2 Tesla for a field of maximum amplitude excitation of 10 mA / cm.
  • the invention relates to a process for the manufacture of a core magnetic nanocrystalline soft magnetic alloy with a chemical composition contains more than 60 atom% of iron, from 10 to 20 atom% of silicon, from 0.1 to 2 atom% of copper, 5 to 20 atom% of boron, 0.1 to 10 atom% of at least minus one element taken from niobium, titanium, zirconium, hafnium, vanadium, tantalum, chromium, molybdenum, tungsten and manganese, as well only impurities resulting from processing; the sum of the silicon and boron being less than 30 atom%; the nanocrystalline alloy being obtained by a heat treatment for crystallization of the alloy in an amorphous state.
  • a thermal treatment is carried out on the magnetic core magnetic parallel to the axis of the core at a temperature between 250 ° C and 450 ° C, the magnetic field being applied in the form of slots.
  • the heat treatment under magnetic field parallel to the axis of the core is carried out at a temperature between 300 ° C and 400 ° C.
  • This process applies more particularly to soft magnetic alloys nanocrystalline whose chemical composition contains from 10 to 17 atom% of silicon, from 0.5 to 1.5 atom% of copper, from 5 to 14 atom% of boron and from 2 to 4% at least one element taken from niobium, titanium, zirconium, hafnium, vanadium, tantalum, chromium, molybdenum, tungsten and manganese.
  • the thermal relaxation treatment consists of maintaining at a temperature between 250 ° C and 480 ° C for a time between 0.1 and 10 hours.
  • the magnetic core obtained by the process according to the invention can be used advantageously for the manufacture of a differential circuit breaker with its own current class A.
  • the sum of the silicon and boron contents should preferably remain less than 30 at% and, better still, remain less than 25 at%.
  • the crystallization annealing consists of maintaining at a temperature higher than the start of crystallization temperature and lower than the temperature from the onset of secondary phases which deteriorate the properties magnetic.
  • the crystallization annealing temperature is understood between 500 ° C and 600 ° C, but it can be optimized for each ribbon, by example, by determining by tests the temperature which leads to permeability maximum magnetic. The crystallization annealing temperature can then be chosen equal to this temperature.
  • the heat treatment carried out under magnetic field is carried out at a temperature between 250 ° C and 450 ° C, and preferably between 300 ° C and 400 ° C.
  • the magnetic field is applied in the form of a succession of slots.
  • a slot corresponds to a period during which the applied magnetic field is maximum, followed by a period during which it is zero or very weak (less than 10% of the magnetic field reached during treatment).
  • the magnetic field applied for a period can be continuous or alternating, in the latter case, the intensity of the magnetic field is peak intensity (maximum intensity reached at each alternation).
  • the intensity of magnetic field can be constant during the entire period of application of the field (rectangular slots) or variable. All slots can be from same intensity or on the contrary of variable intensity from one niche to another.
  • the heat treatment can end at the end of the field application period magnetic of the last slot; the main thing is that the treatment involves at least two periods during which the applied magnetic field separated by a period during which the magnetic field is not applied.
  • the the inventors have in fact found that by doing so, the temperature stability magnetic properties of the magnetic core were very noticeably improved.
  • a magnetic core is obtained, the magnetic permeability of impedance ⁇ z measured at 50 Hertz in a magnetic field of maximum excitation of 10 mA / cm (peak value) at 25 ° C is greater than 200,000, and whose magnetic permeability varies by less than 25% over the temperature range between - 25 ° C and + 100 ° C.
  • the Br / Bm ratio of the residual induction to the saturation induction is less than 0.2
  • ⁇ B stat and ⁇ B dyn are both greater than 0.2 Tesla, the ⁇ B stat / ⁇ B dyn ratio being close to 1.
  • Such a magnetic core can be used in a class A differential circuit breaker. Due to its magnetic properties, at equal sensitivity of the circuit breaker, the section of the core can be reduced significantly compared to the section of a core magnetic according to the prior art.
  • the other series, B was subjected to a heat treatment of 1 hour at 350 under magnetic field parallel to the axis of the core applied in the form of slots of 5 min under magnetic field separated by periods 15 min without magnetic field.
  • the magnitudes ⁇ z , ⁇ B stat and ⁇ B dyn were measured at 25 ° C for an alternating magnetic excitation field at 50 Hertz with a maximum amplitude of 10 mA / cm; the Br / Bm ratio was also measured.
  • the results were as follows: series ⁇ (10 mA / cm ° ⁇ B stat (T) ⁇ B dyn (T) ⁇ B stat / ⁇ B dyn Br / Bm To compare. 153,000 0.172 0.169 1,017 0.05 B invention 230,000 0,240 0.234 1.025 0.1

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Claims (7)

  1. Verfahren zur Herstellung eines Magnetkerns aus einer nanokristallinen weichmagnetischen Legierung, deren chemische Zusammensetzung mehr als 60 At.% Eisen, 10 bis 20 At.% Silicium, 0,1 bis 2 At.% Kupfer, 5 bis 20 At.% Bor, 0,1 bis 10 At.% mindestens eines Elements, das unter Niob, Titan, Zirconium, Hafnium, Vanadin, Tantal, Chrom, Molybdän, Wolfram und Mangan ausgewählt ist, sowie aus der Verarbeitung stammende Verunreinigungen enthält, wobei die Summe der Anteile von Silicium und Bor unter 30 At.% liegt und wobei die nanokristalline Legierung durch eine thermische Kristallisationsbehandlung der Legierung im amorphen Zustand hergestellt wird, dadurch gekennzeichnet, dass an dem Magnetkern eine thermische Behandlung in einem zur Achse des Kerns parallelen Magnetfeld bei einer Temperatur im Bereich von 250 bis 450 °C durchgeführt wird, wobei das Magnetfeld in Form von Pulsen angewandt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die thermische Behandlung in dem zur Achse des Kerns parallelen Magnetfeld bei einer Temperatur von 300 bis 400 °C durchgeführt wird.
  3. Verfahren nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, dass die chemische Zusammensetzung der nanokristallinen weichmagnetischen Legierung 10 bis 17 At.% Silicium, 0,5 bis 1,5 At.% Kupfer, 5 bis 14 At.% Bor und 2 bis 4 At.% mindestens eines Elements umfasst, das unter Niob, Titan, Zirconium, Hafnium, Vanadin, Tantal, Chrom, Molybdän, Wolfram und Mangan ausgewählt ist.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass vor der Durchführung der thermischen Kristallisationsbehandlung der Legierung im amorphen Zustand eine thermische Relaxationsbehandlung an der Legierung im amorphen Zustand bei einer Temperatur unter der Temperatur der beginnenden Kristallisation der Legierung im amorphen Zustand durchgeführt wird.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die thermische Relaxationsbehandlung darin besteht, eine Temperatur im Bereich von 250 bis 480 °C während einer Zeitspanne von 0,1 bis 10 Stunden zu halten.
  6. Magnetkern aus einer nanokristallinen weichmagnetischen Legierung, deren chemische Zusammensetzung mehr als 60 At.% Eisen, 10 bis 20 At.% Silicium, 0,1 bis 2 At.% Kupfer, 5 bis 20 At.% Bor, 0,1 bis 10 At.% mindestens eines Elements, das unter Niob, Titan, Zirconium, Hafnium, Vanadin, Tantal, Chrom, Molybdän, Wolfram und Mangan ausgewählt ist, sowie aus der Verarbeitung stammende Verunreinigungen enthält, wobei die Summe der Anteile von Silicium und Bor unter 30 At.% liegt, wobei die nanokristalline Legierung erhältlich ist durch eine thermische Kristallisationsbehandlung der Legierung im amorphen Zustand in einem zur Achse des Kerns parallelen Feld, dadurch gekennzeichnet, dass bei einem mit 50 Hz und mit einer maximalen Amplitude von 10 mA/cm alternierenden magnetischen Anregungsfeld bei 25 °C die magnetische Permeabilität (Impedanz) µz über 200 000 liegt, das Verhältnis Br/Bm der Remanenz Br und der Sättigungsflussdichte Bm unter 0,2 liegt und die Werte ΔBstat und ΔBdyn über 0,2 Tesla liegen.
  7. Verwendung eines Magnetkerns nach Anspruch 6 zur Herstellung eines Fehlerstromschutzschalters mit Eigenstrom der Klasse A.
EP98402804A 1997-12-04 1998-11-13 Herstellungsverfahren für einen nanokristallinen weichmagnetischen Kern für Anwendung in einem Differentialschutzschalter Expired - Lifetime EP0921541B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9715273 1997-12-04
FR9715273A FR2772181B1 (fr) 1997-12-04 1997-12-04 Procede de fabrication d'un noyau magnetique en alliage magnetique doux nanocristallin utilisable dans un disjoncteur differentiel de la classe a et noyau magnetique obtenu

Publications (2)

Publication Number Publication Date
EP0921541A1 EP0921541A1 (de) 1999-06-09
EP0921541B1 true EP0921541B1 (de) 2004-05-06

Family

ID=9514143

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98402804A Expired - Lifetime EP0921541B1 (de) 1997-12-04 1998-11-13 Herstellungsverfahren für einen nanokristallinen weichmagnetischen Kern für Anwendung in einem Differentialschutzschalter

Country Status (5)

Country Link
EP (1) EP0921541B1 (de)
AT (1) ATE266245T1 (de)
DE (1) DE69823621T2 (de)
FR (1) FR2772181B1 (de)
PL (1) PL186806B1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19948897A1 (de) * 1999-10-11 2001-04-19 Vacuumschmelze Gmbh Schnittstellenmodule für lokale Datennetzwerke
PL1710812T3 (pl) * 2005-02-25 2008-12-31 Magnetec Gmbh Wyłącznik różnicowo prądowy i rdzeń magnetyczny do tego wyłącznika
US8699190B2 (en) 2010-11-23 2014-04-15 Vacuumschmelze Gmbh & Co. Kg Soft magnetic metal strip for electromechanical components
CN107419200B (zh) * 2017-06-30 2019-11-22 江苏理工学院 一种含锰的软磁性铁基纳米晶-非晶合金及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4881989A (en) * 1986-12-15 1989-11-21 Hitachi Metals, Ltd. Fe-base soft magnetic alloy and method of producing same
KR910002375B1 (ko) * 1987-07-14 1991-04-20 히다찌 긴조꾸 가부시끼가이샤 자성코어 및 그 제조방법
DE3911480A1 (de) * 1989-04-08 1990-10-11 Vacuumschmelze Gmbh Verwendung einer feinkristallinen eisen-basislegierung als magnetwerkstoff fuer fehlerstrom-schutzschalter
JPH0346205A (ja) * 1989-07-01 1991-02-27 Jionkoo Kantee Guufun Yousenkonsuu 交流ないしパルス電流による磁化特性改善方法
DE4210748C1 (de) * 1992-04-01 1993-12-16 Vacuumschmelze Gmbh Stromwandler für pulsstromsensitive Fehlerstromschutzschalter, Fehlerstromschutzschalter mit einem solchen Stromwandler, und Verfahren zur Wärmebehandlung des Eisenlegierungsbandes für dessen Magnetkern
FR2733376B1 (fr) * 1995-04-18 1997-06-06 Schneider Electric Sa Transformateur d'intensite notamment pour declencheur par courant de defaut sensible aux courants pulses et declencheur equipe d'un tel transformateur

Also Published As

Publication number Publication date
PL186806B1 (pl) 2004-02-27
PL330101A1 (en) 1999-06-07
FR2772181A1 (fr) 1999-06-11
DE69823621D1 (de) 2004-06-09
ATE266245T1 (de) 2004-05-15
EP0921541A1 (de) 1999-06-09
FR2772181B1 (fr) 2000-01-14
DE69823621T2 (de) 2005-05-19

Similar Documents

Publication Publication Date Title
EP0848397B1 (de) Herstellungsverfahren für eine auf Eisen basierende weichmagnetische Komponente mit nanokristalliner Struktur
EP0844628B1 (de) Herstellungsverfahren eines Magnetkernes aus weichmagnetischem nanokristallinen Material
JPH05192821A (ja) 放電加工用電極及びその製造方法
EP2387788B1 (de) Prozess zur herstellung eines aus einer magnetischen legierung mit einer nanokristallinen struktur bestehenden magnetkerns
EP0921541B1 (de) Herstellungsverfahren für einen nanokristallinen weichmagnetischen Kern für Anwendung in einem Differentialschutzschalter
FR2465004A1 (fr) Procede de fabrication d'une tole en acier non oriente pour applications electromagnetiques
EP0921540B1 (de) Herstellungsverfahren für einen Magnetkern aus einer weichmagnetischen nanokristallinen Legierung und Anwendung in einem Differentialschutzschalter
JP2001295005A (ja) ナノ結晶軟磁性合金用Fe基アモルファス合金薄帯及び磁性部品
KR100360762B1 (ko) 권선트랜스용철기비정질합금박대
JPS5834162A (ja) 良好な耐磁気時効性を有する非晶質合金及びその薄帯の製造法
JP2000119821A (ja) 恒透磁率性に優れた高飽和磁束密度低損失磁性合金ならびにそれを用いた磁性部品
JP4217038B2 (ja) 軟磁性合金
JPH1046301A (ja) Fe基磁性合金薄帯ならびに磁心
Kojima et al. Soft magnetic properties of nanocrystalline Fe-Nb-BP alloys produced in the atmosphere by melt-spinning method
JPS6052557A (ja) 低損失非晶質磁性合金
JPS62124250A (ja) 電流検出装置用非晶質合金
JP2908723B2 (ja) 巻きトランス用鉄基非晶質合金薄帯
Shishido et al. Influence of toroid radius on magnetic properties of iron-based amorphous alloys and 6.5 WT% Si-Fe rapidly solidified ribbons
RU2009249C1 (ru) Магнитный сплав на основе кобальта и способ производства ленты из него
EP0905263A1 (de) Verfahren zum Herstellen eines dünnes Bandes aus Eisen-Nickel-Legierung ausgehend von einem stranggegossenem Dünnband
JPS6159815B2 (de)
JPH04275409A (ja) 磁心の熱処理方法
JPH04275411A (ja) 磁心の熱処理方法
JP2011068998A (ja) Fe−Ni系パーマロイ合金
JP2000080413A (ja) Fe族基非晶質金属薄帯の製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE ES FR IT NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19991209

AKX Designation fees paid

Free format text: AT DE ES FR IT NL

17Q First examination report despatched

Effective date: 20021022

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: FABRICATION PROCESS OF A SOFT NANOCRYSTALLINE MAGNETIC CORE FOR USE IN A DIFFERENTIAL CIRCUIT BREAKER

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE ES FR IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040506

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040506

REF Corresponds to:

Ref document number: 69823621

Country of ref document: DE

Date of ref document: 20040609

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040817

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050208

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20061130

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071113

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20171116

Year of fee payment: 20

Ref country code: FR

Payment date: 20171130

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69823621

Country of ref document: DE