EP0915987A2 - Poly-(alpha-l-asparaginsäure), poly-(alpha-l-glutaminsäure) und copolymere von l-asp und l-glu, methoden ihrer herstellung und verwendung - Google Patents

Poly-(alpha-l-asparaginsäure), poly-(alpha-l-glutaminsäure) und copolymere von l-asp und l-glu, methoden ihrer herstellung und verwendung

Info

Publication number
EP0915987A2
EP0915987A2 EP98922651A EP98922651A EP0915987A2 EP 0915987 A2 EP0915987 A2 EP 0915987A2 EP 98922651 A EP98922651 A EP 98922651A EP 98922651 A EP98922651 A EP 98922651A EP 0915987 A2 EP0915987 A2 EP 0915987A2
Authority
EP
European Patent Office
Prior art keywords
poly
asp
glu
acid
glutamic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98922651A
Other languages
English (en)
French (fr)
Inventor
David A. Tirrell
Michael Del Grosso
Rainer Siegmeier
Andreas Bommarius
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Massachusetts UMass
Donlar Corp
Original Assignee
University of Massachusetts UMass
Donlar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Massachusetts UMass, Donlar Corp filed Critical University of Massachusetts UMass
Publication of EP0915987A2 publication Critical patent/EP0915987A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof

Definitions

  • the terms polymer and copolymer comprise 5 to approx 200 amino acid units.
  • the invention also refers to a method for producing said polymers and copolymers by means of a microbiological process.
  • a further object of the invention is directed to the use of said polymers and copolymers as sequestering and dispersing agent.
  • Polyaspartic acids produced chemically from L- or DL-aspartic acid or suitable precursors, their salts as well as copolymers with other copolymerizable compounds are used as water-soluble sequestering agent and dispersing agents .
  • Polyamino acids and their salts are accessible in various methods of chemical production. Different methods of production and a few properties of polyamino acids are described, e.g., in Nachr. Chem. Tech. Lab., 1996, 44, 1167 - 1170 as well as in Hydrophylic Polymers, Performance with Environmental Acceptance, editor: J. Edward Glass, ACE, Washington, 1996, Commercial Poly (Aspartic Acid) and It's Uses, K.C. Low, A. P. Wheeler, L.P. Koskan, 99-111.
  • sodium salts of polyaspartic acids are obtained via the thermal polymerization of aspartic acid:
  • maleic acid anhydride is converted via maleic acid into fumaric acid, which is aminated in a following chemical or enzymatic method step to the ammonium salt of aspartic acid.
  • the free aspartic acid isolated therefrom is subjected to a solid-phase polymerization to the primary polymerization product.
  • suitable catalysts such as phosphoric acid.
  • maleic acid anhydride or maleic acid anhydride derivatives such as maleic acid ammonium salts, maleic amide acid, maleic amide acid ammonium salts can be thermally polymerized to a primary polymerization product in the presence of nitrogen- containing compounds such as ammonia but also of ammonium salts such as ammonium carbonate.
  • the primarily formed polymerization products are distinguished by polysuccinimide structural elements which result in subsequent hydrolysis in polyaspartic acids with ⁇ - and ⁇ - linked aspartic acid units.
  • the ⁇ / ⁇ ratio can be determined via NMR spectroscopic methods.
  • An ⁇ / ⁇ ratio of approximately 30:70 which can be influenced only slightly, results for all polyaspartic acids obtained according to the thermal polymerization methods and alkaline hydrolysis described here.
  • the main production methods described up to the present determine the structural parameters such as, e.g., the molecular weight, the linearity and the properties correlating therewith as well as the action in various applications and the biological degradability.
  • the EP-patent application 256 423 of Chisso discloses a process for the manufacture of ⁇ -poly-L-lysine, derived from Streptomyces albulus subspecies lysinopolymerus No. 346-D.
  • the process for the manufacture of of ⁇ -poly-L- lysine is characterized by the addition of sugar to the culturing medium.
  • the EP-A 0 557 954 refers to a process for the manufacture of ⁇ -poly-L-lysine with immobilized bacterial cells under aerobic conditions.
  • An isolated ⁇ -polyglutamate hydrolase is known from the EP- A 559 175 and US 5,356,805. Takeda Chemical discloses in the EP-A 410 638 a process to the manufacture of polyglutamic acid.
  • the microorganisms used for the polymerisation of L-glutamic acid were bacteria such as Bacillus subtilis or Bacillus licheniformis .
  • the product contains poly- ⁇ -L-glutamic acid with a wide spectrum of Glu-units in the polymer.
  • Poly- ⁇ -L-Glu has not been synthesized either directly through microbiological methods.
  • chemically generated poly-Glu the same observations and arguments hold as for chemcally generated poly-Asp.
  • the polymerisation degree is well defined and only dependent on the length of the polynucleotide which is used in the microbiological manufacturing process .
  • the task to find the a. m. polymers consisting of poly- ⁇ -L- Asp, poly- ⁇ -L-glu or copolymers of both amino acids that feature improved properties with respect to biological degradability and discoloration is solved by employing a oligonucleotide construct that encodes the desired sequence of Asp polymers (or Asp/Glu polymers) .
  • the amino acid Glu is encoded by two codons , GAA and GAG. In certain organisms such as E. coli , Glu is preferably encoded by GAA. Asp is encoded by two codons as well, GAC and GAT. The latter is preferred in many organisms such as E. coli .
  • the oligonucleotide construct encoding for the desired Asp length (or Asp/Glu length) is cloned into a plasmid.
  • Cells of the desired host cell line such as Escherichia coli , Bacillus subtilis ox Corynebacterium glutamicum, are transformed with the altered plasmids, and the genetic information expressed.
  • the oligonucleotide duplex which encodes the desired Glu or Asp or Glu/Asp amino acid sequence of the predetermined number of amino acid units of each polymer chain is synthesized on a DNA synthesizer.
  • the oligonucleotides are purified by electrophoresis on a polyacrylamide denaturing gel, annealed, enzymatically phosphorylated at the 5' termini, and ligated with BamUI -digested, phosphatase- treated plasmid pUC18.
  • the sequence of the insert is verified by a technique such as the Sanger dideoxy sequencing strategy.
  • E. coli strains are transformed with the recombinant plasmid and marked by an appropriate technique such as insertional inactivation of a gene or resistance against antibiotics.
  • a Glu/Asp sequence which by itself is a multimer of a simpler Glu/Asp sequence the recombinant plasmid is digested and affords a DNA fragment encoding the desired poly-Glu/Asp sequence.
  • This DNA is purified on a polyacrylamide gel and self-ligated in head- to-tail fashion with T4 DNA ligase to yield a population of multimers. A portion of the ligation mixture is analyzed on a 1.5% agarose gel. The ligation mixture is cloned into a plasmid such as pUC803 or pUC18. E. coli cells are then transformed with the recombinant plasmids .
  • a plasmid containing the repeat units of the DNA monomer is isolated, and the nucleotide sequence confirmed by sequencing of the double-stranded DNA.
  • the BamRI segment is recovered, purified and inserted into a suitable expression vector.
  • the ligation mix is used to transform E. coli cells, and the presence and orientation of the insert are checked by digestion with restriction enzymes BamHI and Aval , respectively.
  • the fusion protein is purified by standard techniques such as affinity chromatography, precipitation in organic solvent, and the like. Electrophoretic purification on a non-denaturing polyacrylamide gel affords a product which migrates as a single band at the expected molecular weight and which yields amino acid analyses consistent with the desired sequence .
  • the new aminoacid polymers and copolymers have many fold usefulness in any kind of water treatment and relevant processes :
  • Polyaspartic acid Na-salts have a dispersing action which reinforces the primary washing power.
  • Polyaspartic acids and their salts are used in washing [detergent] - and cleaning agents.
  • the detergents can be powdery or also be present in liquid form.
  • the composition of the washing- and cleaning agent formulations can be very different. Washing- and cleaning agent formulations customarily contain 2 to 50 % by weight surfactants and optional builders. This data applies both to liquid and to powdery detergents. Washing- and cleaning agent formulations customary in Europe, the USA and Japan are to be found, e.g., in Chemical and Engn. News, vol. 67, 35 (1989) in table form.
  • washing- and cleaning agents can be gathered from Ullmanns Encyklopadie der ischen Chemie, Verlag Chemie, Weinheim, 1983, 4 edition, pp. 63 - 160.
  • the use of polyaspartic acid in washing- and cleaning agents is described, among other places, in WO 95/16020, WO 95/16726, DE 44 30 520, DE 44 28 638, DE 44 28 597.
  • Inhibitors are used in cooling-water circuits, in the treating of boiler and feed water and in the desalination of see water for avoiding and eliminating precipates and coatings .
  • Polyaspartic acids prevent and/or delay the crystallization of alkaline-earth salts such as calcium carbonate, calcium sulfate, etc. The action thereby is far below the concentrations necessary for complex formation (threshold effect) .
  • Polyaspartic acid synthezised by thermal condensation of L-aspartic acid, is described as an inhibitor of corrosion in Little et al .
  • thermal Polyaspartate surface reactive peptides and polymers, pp. 263-279, ACS Symposium Series 444 (1990) .
  • Thermal polyaspartate binds to surfaces of mild steel and moderately supresses both anodic and cathodic corrosion reactions .
  • the see water contains sulfate.
  • the petroleum is accompanied by formation water containing barium ions and strontium ions. If the formation water and the see water mix, poorly soluble Ba sulfates and Sr sulfates form which may possibly clog boreholes and pipelines. Polyaspartic acids prevent and/or delay the crystallization of the precipitates so that the undesired coating formations do not occur.
  • Natural gas standing under pressure has a residual moisture content in the winning process. Salts are dissolved in this residual moisture. During the winning [extraction] process, especially during the expansion of the gas, a critical pressure is dropped below which results in a crystallizing out of the salts and a clogging of the porous sandstone .
  • Polyaspartic acids prevent and/or delay the crystallization of the salts in both instances on account of their dispersing properties.
  • Amino acid analyses were carried out on an apparatus like, for example, the Applied Biosystems 420/130A derivatizer/analyzer device.
  • Oligonucleotides were prepared by means of ⁇ - cyanoethylphosphorus amidite chemistry on a synthesizer like Biosearch Model 8700 and purified by means of 10 % denaturing polyacrylamid gel electrophoresis .
  • the purified oligonucleotides were annealed at 80 °C and allowed to cool off for several hours until room temperature.
  • the double strand was phosphorylated by T4-polynucleotide kinase, precipitated in ethanol and dried in a vacuum.
  • the double strand was ligated into a plasmid like pUC18 which had been cleaved by restriction endonucleases like, e.g., Eco RT or Bam HI and transformed in cells like, e.g., E. coli DH5 ⁇ F' .
  • restriction endonucleases like, e.g., Eco RT or Bam HI
  • cells like, e.g., E. coli DH5 ⁇ F' .
  • the cells were cultivated at 37 °C on a medium like 2xYT under the addition of ampicillin (about 0.2 mg/ml) , isopropyl- ⁇ -D-thiogalactopyranoside (IPTG) (0.025 mg/ml) and a chromogenic substrate like 5-bromo-4- chloro-3-indolyl- ⁇ -D-galactopyranoside (called X-Gal here) which turned blue in the case of cells with active ⁇ - galactosidase gene but remained white in the case of cells which had lost the corresponding activity by inserting inactivation of the ⁇ -galactosidase gene.
  • ampicillin about 0.2 mg/ml
  • IPTG isopropyl- ⁇ -D-thiogalactopyranoside
  • X-Gal 5-bromo-4- chloro-3-indolyl- ⁇ -D-galactopyranoside
  • Plasmid DNA from the white transformants is sequenced in order to verify the identity of the inserted DNA, e.g. by sequenase 2.0 of Amersham Life Sciences. After isolation of the recombinant plasmid from the 2xYT culture medium the DNA was digested by the restriction endonuclease BanI and the fragments separated by non-denaturing PAGE and the interesting DNA monomer washed down.
  • the purified DNA monomer is self- ligated with T4 DNA ligase in order to produce a distribution of multimers.
  • the multimers are separated by electrophoresis and ligated into a dephosphorylated, high copy number cloning vector digested with BanI.
  • the recombinant plasmid was transformed into a strain like E. coli. Transformants are analyzed by analysis of the restriction enzyme digestion pattern and the desired DNA chain length (with the desired number of repeating units) selected. Construction of the bacterial expression vector
  • the recombinant plasmids from the transformants were digested with restriction endonucleases like BamHI , the multimer fragments separated on 1 % agarose gel electrophoresis and recovered by extraction e.g. in phenol, phenol/chloroform or ethanol. Transformants were checked by digestion with nucleases like Aval for the presence and orientation of multimers. Transformants with correct sequence were used for the transformation of the expression host.
  • the fusion protein was obtained by centrifugation after the thawed [defrosted] cells had been treated successively twice with EDTA/surfactant , then with lipase, finally with organic solvents (chloroform/methanol) and were finally washed with water.
  • An affinity chromatography then selectively follows, e.g., via glutathione-linked sepharose . Cleaving of the fusion protein
  • the fusion protein is preferably cleaved by the bromocyanogen method (cf . B.J. Smith, Methods in Biology, New Protein Techniques, Humana, Clifton, NH, 1988) . After the cleaving the solvent is drawn off by vacuum evaporation and the insoluble portion recovered by centrifugation and dried by lyophilization.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Polyamides (AREA)
EP98922651A 1997-04-21 1998-04-06 Poly-(alpha-l-asparaginsäure), poly-(alpha-l-glutaminsäure) und copolymere von l-asp und l-glu, methoden ihrer herstellung und verwendung Withdrawn EP0915987A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US4472797P 1997-04-21 1997-04-21
US44727P 1997-04-21
PCT/EP1998/001996 WO1998048032A2 (en) 1997-04-21 1998-04-06 POLY-(α-L-ASPARTIC ACID), POLY-(α-L-GLUTAMIC ACID) AND COPOLYMERS OF L-ASP AND L-GLU, METHOD FOR THEIR PRODUCTION AND THEIR USE

Publications (1)

Publication Number Publication Date
EP0915987A2 true EP0915987A2 (de) 1999-05-19

Family

ID=21933997

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98922651A Withdrawn EP0915987A2 (de) 1997-04-21 1998-04-06 Poly-(alpha-l-asparaginsäure), poly-(alpha-l-glutaminsäure) und copolymere von l-asp und l-glu, methoden ihrer herstellung und verwendung

Country Status (2)

Country Link
EP (1) EP0915987A2 (de)
WO (1) WO1998048032A2 (de)

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8802820B2 (en) 2004-11-12 2014-08-12 Xencor, Inc. Fc variants with altered binding to FcRn
JP4652414B2 (ja) 2004-11-12 2011-03-16 ゼンコー・インコーポレイテッド FcRnとの変化した結合を有するFc変異体
PL2808343T3 (pl) 2007-12-26 2019-11-29 Xencor Inc Warianty Fc ze zmienionym wiązaniem do FcRn
CN110317272A (zh) 2008-10-14 2019-10-11 霍夫曼-拉罗奇有限公司 免疫球蛋白变体及其用途
AU2009329866B2 (en) 2008-12-23 2016-09-29 Genentech, Inc. Immunoglobulin variants with altered binding to protein A
BRPI1010297A2 (pt) 2009-04-07 2017-06-06 Roche Glycart Ag anticorpos biespecíficos trivalentes.
US9676845B2 (en) 2009-06-16 2017-06-13 Hoffmann-La Roche, Inc. Bispecific antigen binding proteins
US20120302737A1 (en) 2009-09-16 2012-11-29 Genentech, Inc. Coiled coil and/or tether containing protein complexes and uses thereof
WO2011097527A2 (en) 2010-02-04 2011-08-11 Xencor, Inc. Immunoprotection of therapeutic moieties using enhanced fc regions
TW201138821A (en) 2010-03-26 2011-11-16 Roche Glycart Ag Bispecific antibodies
CA2807278A1 (en) 2010-08-24 2012-03-01 F. Hoffmann - La Roche Ag Bispecific antibodies comprising a disulfide stabilized - fv fragment
SG191153A1 (en) 2010-12-23 2013-07-31 Hoffmann La Roche Polypeptide-polynucleotide-complex and its use in targeted effector moiety delivery
WO2012116927A1 (en) 2011-02-28 2012-09-07 F. Hoffmann-La Roche Ag Monovalent antigen binding proteins
RU2607038C2 (ru) 2011-02-28 2017-01-10 Ф. Хоффманн-Ля Рош Аг Антигенсвязывающие белки
CN103476795B (zh) 2011-03-29 2016-07-06 罗切格利卡特公司 抗体Fc变体
CN104105711B (zh) 2012-02-10 2018-11-30 弗·哈夫曼-拉罗切有限公司 单链抗体及其他异多聚体
WO2013192131A1 (en) 2012-06-21 2013-12-27 Indiana University Research And Technology Corporation Incretin receptor ligand polypeptide fc-region fusion polypeptides and conjugates with altered fc-effector function
CA2871882A1 (en) 2012-06-27 2014-01-03 F. Hoffmann-La Roche Ag Method for making antibody fc-region conjugates comprising at least one binding entity that specifically binds to a target and uses thereof
CN104395339A (zh) 2012-06-27 2015-03-04 弗·哈夫曼-拉罗切有限公司 用于选择并产生含有至少两种不同结合实体的定制高度选择性和多特异性靶向实体的方法及其用途
EA032192B1 (ru) 2012-07-13 2019-04-30 Роше Гликарт Аг Биспецифическое антитело к vegf/ang-2, нуклеиновая кислота, кодирующая это антитело, вектор, содержащий нуклеиновую кислоту, клетка-хозяин, способ получения биспецифического антитела и содержащая его фармацевтическая композиция
US20140161790A1 (en) 2012-11-19 2014-06-12 Xencor, Inc. Engineered immunoglobulins with extended in vivo half-life
US9260527B2 (en) 2013-03-15 2016-02-16 Sdix, Llc Anti-human CXCR4 antibodies and methods of making same
AU2014232416B2 (en) 2013-03-15 2017-09-28 Xencor, Inc. Modulation of T Cells with Bispecific Antibodies and FC Fusions
EP2951203B1 (de) 2013-03-15 2019-05-22 Xencor, Inc. Heterodimere proteine
RU2687043C2 (ru) 2013-04-29 2019-05-06 Ф. Хоффманн-Ля Рош Аг МОДИФИЦИРОВАННЫЕ АСИММЕТРИЧНЫЕ АНТИТЕЛА, СВЯЗЫВАЮЩИЕ Fc-РЕЦЕПТОР, И СПОСОБЫ ИХ ПРИМЕНЕНИЯ
SG11201508911PA (en) 2013-04-29 2015-11-27 Hoffmann La Roche Human fcrn-binding modified antibodies and methods of use
BR112016006929A2 (pt) 2013-10-11 2017-09-19 Hoffmann La Roche Anticorpo, ácido nucleico, vetor de expressão, célula hospedeira, métodos de preparação de anticorpo, de tratamento de pacientes e de geração de um anticorpo, composição farmacêutica e uso do anticorpo
JP2017504598A (ja) 2013-12-20 2017-02-09 インディアナ ユニヴァーシティ リサーチ アンド テクノロジー コーポレイション 脂質化インクレチン受容体リガンドヒト免疫グロブリンfc−領域融合ポリペプチド
CN110903398B (zh) 2014-01-15 2023-08-15 豪夫迈·罗氏有限公司 具有修饰的FCRN和保持的蛋白A结合性质的Fc区变体
BR112016022385A2 (pt) 2014-03-28 2018-06-19 Xencor, Inc anticorpos específicos que se ligam a cd38 e cd3
KR20170076697A (ko) 2014-11-06 2017-07-04 에프. 호프만-라 로슈 아게 개질된 FCRN-결합 특성 및 단백질 A-결합 특성을 가진 Fc-영역 변이체
EP3611188B1 (de) 2014-11-06 2022-05-04 F. Hoffmann-La Roche AG Fc-region-varianten mit modifizierter fcrn-bindung und verfahren zur verwendung
EA037065B1 (ru) 2014-11-26 2021-02-01 Ксенкор, Инк. Гетеродимерные антитела, связывающие cd3 и cd38
TN2017000223A1 (en) 2014-11-26 2018-10-19 Xencor Inc Heterodimeric antibodies that bind cd3 and tumor antigens
US20160176969A1 (en) 2014-11-26 2016-06-23 Xencor, Inc. Heterodimeric antibodies including binding to cd8
ES2764111T3 (es) 2014-12-03 2020-06-02 Hoffmann La Roche Anticuerpos multiespecíficos
WO2016141387A1 (en) 2015-03-05 2016-09-09 Xencor, Inc. Modulation of t cells with bispecific antibodies and fc fusions
CN115536750A (zh) 2015-05-08 2022-12-30 森科股份有限公司 结合cd3和肿瘤抗原的异二聚体抗体
WO2016207304A2 (en) 2015-06-26 2016-12-29 Mab Discovery Gmbh Monoclonal anti-il-1racp antibodies
CN114920846A (zh) 2015-10-29 2022-08-19 豪夫迈·罗氏有限公司 抗变体Fc区抗体及使用方法
KR102523682B1 (ko) 2016-05-02 2023-04-19 에프. 호프만-라 로슈 아게 콘톨스바디 - 단쇄 표적 결합제
EP3241845A1 (de) 2016-05-06 2017-11-08 MAB Discovery GmbH Humanisierte anti-il-1r3-antikörper
WO2017210485A1 (en) 2016-06-01 2017-12-07 Xencor, Inc. Bispecific antibodies that bind cd20 and cd3 for use in the treatment of lymphoma
WO2017210443A1 (en) 2016-06-01 2017-12-07 Xencor, Inc. Bispecific antibodies that bind cd123 and cd3
IL301682A (en) 2016-08-17 2023-05-01 Compugen Ltd Antibodies against TIGIT, antibodies against PVRIG and their combinations
WO2018045110A1 (en) 2016-08-30 2018-03-08 Xencor, Inc. Bispecific immunomodulatory antibodies that bind costimulatory and checkpoint receptors
AU2017342560B2 (en) 2016-10-14 2022-03-17 Xencor, Inc. IL15/IL15Ralpha heterodimeric Fc-fusion proteins
WO2018129522A1 (en) 2017-01-09 2018-07-12 Torch Therapeutics Conditionally effective bispecific therapeutics
EP3401332A1 (de) 2017-05-08 2018-11-14 MAB Discovery GmbH Anti-il-1r3 antikörper zur verwendung bei entzündungskrankheiten
SG10202111336RA (en) 2017-06-01 2021-11-29 Compugen Ltd Triple combination antibody therapies
WO2018223004A1 (en) 2017-06-01 2018-12-06 Xencor, Inc. Bispecific antibodies that bind cd20 and cd3
JP2020522498A (ja) 2017-06-01 2020-07-30 ゼンコー・インコーポレイテッドXencor、 Inc. Cd123 cd3に結合する二重特異性抗体
WO2019006472A1 (en) 2017-06-30 2019-01-03 Xencor, Inc. TARGETED HETETRODIMERIC FUSION PROTEINS CONTAINING IL-15 / IL-15RA AND ANTIGEN-BINDING DOMAINS
JP2021500930A (ja) 2017-11-01 2021-01-14 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Compボディ−多価標的結合物質
US11319355B2 (en) 2017-12-19 2022-05-03 Xencor, Inc. Engineered IL-2 Fc fusion proteins
UY38080A (es) 2018-02-08 2019-08-30 Amgen Inc FORMULACIÓN FARMACÉUTICA DE pH BAJO
CN112105645A (zh) 2018-04-18 2020-12-18 Xencor股份有限公司 Il-15/il-15ra异二聚体fc融合蛋白及其用途
JP2021520829A (ja) 2018-04-18 2021-08-26 ゼンコア インコーポレイテッド IL−15/IL−15RA Fc融合タンパク質およびTIM−3抗原結合ドメインを含む、TIM−3標的化ヘテロ二量体融合タンパク質
WO2019204665A1 (en) 2018-04-18 2019-10-24 Xencor, Inc. Pd-1 targeted heterodimeric fusion proteins containing il-15/il-15ra fc-fusion proteins and pd-1 antigen binding domains and uses thereof
JP7366056B2 (ja) 2018-04-18 2023-10-20 ゼンコア インコーポレイテッド IL-15/IL-15RA Fc融合タンパク質およびLAG-3抗原結合ドメインを含む、LAG-3を標的とするヘテロ二量体融合タンパク質
KR20210005683A (ko) 2018-04-27 2021-01-14 노파르티스 아게 Cd123 및 cd3에 결합하는 이중특이적 항체의 투약
AU2019276578A1 (en) 2018-06-01 2021-01-14 Compugen Ltd Anti-PVRIG/anti-TIGIT bispecific antibodies and methods of use
EP3801617A1 (de) 2018-06-01 2021-04-14 Novartis Ag Dosierung eines bispezifischen antikörpers, der cd123 und cd3 bindet
KR20210028204A (ko) 2018-07-02 2021-03-11 암젠 인크 항-steap1 항원 결합 단백질
WO2020018556A1 (en) 2018-07-16 2020-01-23 Amgen Inc. Method of treating multiple myeloma
AU2019359475A1 (en) 2018-10-12 2021-05-20 Xencor, Inc. PD-1 targeted IL-15/IL-15Ralpha Fc fusion proteins and uses in combination therapies thereof
US11618776B2 (en) 2018-12-20 2023-04-04 Xencor, Inc. Targeted heterodimeric Fc fusion proteins containing IL-15/IL-15RA and NKG2D antigen binding domains
CN113710324A (zh) 2019-01-23 2021-11-26 千禧制药公司 抗cd38抗体
TW202128757A (zh) 2019-10-11 2021-08-01 美商建南德克公司 具有改善之特性的 PD-1 標靶 IL-15/IL-15Rα FC 融合蛋白
WO2021113831A1 (en) 2019-12-05 2021-06-10 Compugen Ltd. Anti-pvrig and anti-tigit antibodies for enhanced nk-cell based tumor killing
TW202136318A (zh) 2020-01-28 2021-10-01 美商建南德克公司 用於治療癌症的 IL15/IL15R α 異二聚體 Fc 融合蛋白質
TW202146452A (zh) 2020-02-28 2021-12-16 瑞士商諾華公司 結合cd123和cd3之雙特異性抗體的給藥
US20240002509A1 (en) 2020-11-06 2024-01-04 Novartis Ag ANTIBODY Fc VARIANTS
JP2023554456A (ja) 2020-12-18 2023-12-27 チューハイ トリノマブ ファーマシューティカル カンパニー リミテッド 呼吸器合胞体ウイルスに特異的に結合する分子
WO2022140701A1 (en) 2020-12-24 2022-06-30 Xencor, Inc. Icos targeted heterodimeric fusion proteins containing il-15/il-15ra fc-fusion proteins and icos antigen binding domains
EP4376869A1 (de) 2021-07-28 2024-06-05 Genentech, Inc. Il15/il15r-alpha-heterodimere fc-fusionsproteine zur behandlung von blutkrebs
EP4380596A1 (de) 2021-08-04 2024-06-12 Genentech, Inc. Il15/il15r alpha heterodimere fc-fusionsproteine zur expansion von nk-zellen bei der behandlung von soliden tumoren
EP4388014A1 (de) 2021-08-19 2024-06-26 F. Hoffmann-La Roche AG Multivalente antivariante antikörper gegen fc-region und verfahren zur verwendung
WO2023175498A1 (en) 2022-03-17 2023-09-21 Pfizer Inc. Improved igg-degrading enzymes and methods of use thereof
WO2023196905A1 (en) 2022-04-07 2023-10-12 Xencor, Inc. Lag-3 targeted heterodimeric fusion proteins containing il-15/il-15ra fc-fusion proteins and lag-3 antigen binding domains

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2068971B (en) * 1980-01-30 1983-06-08 Searle & Co Recombinant dna techniques
EP0410638A3 (en) * 1989-07-26 1991-06-05 Takeda Chemical Industries, Ltd. Method for producing polyglutamic acid or a salt thereof
US5498410A (en) * 1991-04-22 1996-03-12 Gleich; Gerald J. Method for the treatment of eosinophil-associated conditions with anionic polymers
US5371179A (en) * 1992-07-10 1994-12-06 Rohm And Haas Company Polysuccinimide polymers and process for preparing polysuccinimide polymers
DE4342316A1 (de) * 1993-12-11 1995-06-14 Basf Ag Verwendung von Polyasparaginsäure in Wasch- und Reinigungsmitteln

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9848032A3 *

Also Published As

Publication number Publication date
WO1998048032A3 (en) 1999-01-28
WO1998048032A2 (en) 1998-10-29

Similar Documents

Publication Publication Date Title
EP0915987A2 (de) Poly-(alpha-l-asparaginsäure), poly-(alpha-l-glutaminsäure) und copolymere von l-asp und l-glu, methoden ihrer herstellung und verwendung
EP0530358A1 (de) Polyasparaginsäure als kalziumsulfat- und bariumsulfat-inhibitor.
RU2004104198A (ru) Бактерия, продуцирующая l-аминокислоту, и способ получения l- аминокислоты
JP2000505291A (ja) トランスアミナーゼ及びアミノトランスフェラーゼ
RU2006109216A (ru) Новая альдолаза, днк, кодирующая альдолазу, клетки, трансформированные днк, способ получения альдолазы и способ получения 4-гидрокси-l-изолейцина (варианты)
CN104178532A (zh) 从5-甲酰缬草酸制备6-氨基己酸
US6465233B1 (en) Nucleic acid molecule encoding a cephalosporin acetylesterase
CN110777123B (zh) 突变的l-氨基酸连接酶以及酶催化法制备l-谷氨酸-l-色氨酸二肽的工艺
KR100901554B1 (ko) 신규한 d-세린 합성 활성을 갖는 효소를 코드하는 dna,상기 효소의 제조방법, 및 이것을 이용한 d-세린의제조방법
US5373086A (en) Polyaspartic acid having more than 50% β form and less that 50% α form
KR20160057478A (ko) 정제 화학약품의 개선된 생산을 위한 재조합 미생물
CN112280755B (zh) 一种突变酶及其应用和酶催化法制备三胜肽的工艺
CA2856127C (en) Mutants of hydantoinase
KR20020020898A (ko) 아미드화합물의 제조방법
KR20010102572A (ko) 아미드화합물의 정제방법
Schroeder et al. Peptidase D of Escherichia coli K-12, a metallopeptidase of low substrate specificity
EP1302472A1 (de) Zur bindung an telomere und dergleichen befähigte moleküle und verwendungsmethode derselben
WO2000023609A1 (en) Transaminase biotransformation process employing glutamic acid
US5427934A (en) Genetic engineering process for the production of S-(+)-2,2-dimethylcyclopropanecarboxamide by microorganisms
EP3792349A1 (de) Peptidmakrozyklase
EP1306438A4 (de) Neue carbonylreduktase, deren gen und verfahren zu dessen verwendung
US5968801A (en) Polyhydroxyalkanoate depolymerase and process for producing the same
RU2805253C1 (ru) Новый модифицированный полипептид с ослабленной активностью цитратсинтазы и способ получения L-аминокислоты с его использованием
KR100311891B1 (ko) 아퀴펙스 파이로필러스의 내열성 글루타메이트 라세메이즈를 코딩하는 유전자, 이로부터 발현되는 내열성 글루타메이트 라세메이즈 및 그의 제조 방법
KR20010090321A (ko) 브레비바실러스 보스테렌시스 bcs-1 에서 유래한 신규내열성 d-입체특이적 디펩티다아제 및 이를 이용한d-아미노산 함유 펩타이드의 합성 방법

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990118

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RTI1 Title (correction)

Free format text: POLY-ALPHA-L-ASPARTIC ACID), POLY-ALPHA-L-GLUTAMIC ACID) AND COPOLYMERS OF L-ASP AND L-GLU, METHOD FOR THEIR PRODUCTION AND THEIR USE

17Q First examination report despatched

Effective date: 20020211

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20020612