EP0911426B1 - Herstellung von Formteilen - Google Patents

Herstellung von Formteilen Download PDF

Info

Publication number
EP0911426B1
EP0911426B1 EP98120105A EP98120105A EP0911426B1 EP 0911426 B1 EP0911426 B1 EP 0911426B1 EP 98120105 A EP98120105 A EP 98120105A EP 98120105 A EP98120105 A EP 98120105A EP 0911426 B1 EP0911426 B1 EP 0911426B1
Authority
EP
European Patent Office
Prior art keywords
thermal spraying
gas
base body
layer
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98120105A
Other languages
English (en)
French (fr)
Other versions
EP0911426A1 (de
Inventor
Peter Dipl.-Ing. Heinrich
Heinrich Professor Dr.-Ing. Kreye
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP0911426A1 publication Critical patent/EP0911426A1/de
Application granted granted Critical
Publication of EP0911426B1 publication Critical patent/EP0911426B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • C23C4/185Separation of the coating from the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying

Definitions

  • the invention relates to a method for producing molded parts.
  • molded parts or moldings are very different Geometry needed. The requirements for the properties of the molded parts are included differently. The production of molded parts is particularly difficult made of or with difficult to form materials.
  • EP 911424 A1 with the same priority has a method for producing Composite bodies described in which an object by thermal spraying is made from two different materials.
  • EP 911425 A1 with the same priority has a method for coating Substrate materials described by thermal spraying, in which special gases and special temperatures are used.
  • DE 195 20 885 C1 describes a method for thermal spraying Layer of a metal or a metal alloy described. With this Processes can spray layers with a thickness of 20 mm and more getting produced.
  • the spray layer can be bonded to the substrate be used. At least 60% by weight of the wettable powder particles have the Impact on the substrate at a temperature between the solidus and the liquidus temperature of the metal alloy or up to 80 ° C below the Melting temperature is.
  • the present invention is based on the object of a method for the production to show molded parts that simplify the manufacture of molded parts, cheaper or made possible at all and / or which contributes significantly to to improve the quality and properties of molded parts. In particular, should the production of molded parts from or with difficult to form materials be made possible.
  • a base body is coated by thermal spraying, a powdered filler material by means of a gas on the to be coated Surface of the base body is passed without the powder particles of the Filler material are melted in the gas jet.
  • Thermal spraying for coating knows that as process variants autogenous flame spraying or the high speed flame spraying that Arc spraying, plasma spraying, detonation spraying and that Laser spraying.
  • Thermal spray processes are essentially characterized in that they enable evenly applied coatings.
  • Coatings can be applied by varying the spray materials can be adapted to different requirements.
  • the spray materials can be processed in the form of wires, rods or as powder. With thermal In addition, thermal post-treatment can be provided for spraying.
  • An essential feature of the invention is that the powder particles of Filler material in the gas jet should not be melted.
  • the aim is to have the powder particles of the filler material in the Do not melt the gas jet (i.e. convert it completely into the liquid phase) that but is not aimed that the powder particles of the filler in Gas jet as a mixture of on and / or unmelted particles and on the other hand, composed of molten particles.
  • the statement that the powder particles of the filler material not be melted in the gas jet can be ensured that the Temperature of the gas jet below the melting point of the powder particles Filler material is.
  • the cold gas spray process has compared to conventional processes of thermal spraying has a number of advantages.
  • the thermal action and The effect of force on the surface of the substrate material is reduced, as a result unwanted changes in the material properties of the substrate material can be prevented or at least significantly reduced. You can also changes in the structure of the substrate material are largely prevented.
  • a base body can be sprayed on by a layer or a layer Coating reinforced to a desired thickness using the cold gas spraying process become.
  • Relatively thin base bodies e.g. a relatively thin walled after A molded part produced by a conventional method as a starting material be used. This body is then sprayed on same or different material on the inside and / or the outside reinforced to the necessary thickness. Special advantages can be achieved if the Base body has a smaller thickness than that by thermal spraying sprayed-on layer This variant facilitates the production of molded parts or with materials that are difficult to form.
  • Moldings made of easily plastically deformable are also suitable as base bodies Material, for example copper, aluminum or alloys containing them.
  • the Base bodies can be relatively thin, for example in the range from 0.1 to 10 mm, preferably 0.5 to 5.0 mm. After spraying a particularly heavy malleable material by means of the cold spray process can then Molded articles, for example mechanically or chemically by dissolving, be removed from the sprayed-on layer. In this case, only that Spray layer the desired molded part.
  • This method supports in particular Dimensions the production of molded parts from or with difficult to form materials.
  • a raw body according to one of the possibilities described above or produced by a combination.
  • This raw body does not have to have the desired shape of the molded part to be produced, on the contrary, e.g. consist of a flat sheet metal body.
  • the workpiece can (the coated raw or basic body or just the layer) in one or several of the known forming processes (drawing, deep drawing, rolling, pressing and the like) are processed further. This is how you finally get that desired molding.
  • the advantage of this variant is that sprayed sheets or raw bodies are very fine-grained and practically texture-free. Your deformation takes place therefore very uniform and allows higher degrees of deformation than with sheet metal were produced by annealing or rolling.
  • the gas for thermal spraying can be nitrogen, helium, Argon, neon, krypton, xenon, a gas containing hydrogen, a carbon-containing one Gas, especially carbon dioxide, oxygen, an oxygen-containing Contain gas, air, hydrogen or mixtures of the aforementioned gases.
  • gases air and / or helium known from EP 0 484 533 B1 are suitable nitrogen, argon, also for the gas carrying the powdered filler material, Neon, krypton, xenon, oxygen, a gas containing hydrogen, a carbon-containing one Gas, especially carbon dioxide, hydrogen or mixtures of the aforementioned gases and mixtures of these gases with helium.
  • the proportion of helium of the total gas can be up to 90% by volume. A helium content of 10 to 50 vol .-% observed in the gas mixture.
  • the so produced Layers adhere very well to a wide variety of substrate materials, for example on metal, metal alloys, ceramics, glass, plastics and composite materials.
  • the coatings produced using the method according to the invention are of high quality, have an extremely low porosity and possess extremely smooth spray surfaces, so that there is usually no need for reworking
  • the gases used according to the invention have a sufficient density and Speed of sound to the required high speeds of the powder particles to be able to guarantee.
  • the gas can be inert and / or reactive gases contain. With the gases mentioned is the production of very dense and special uniform coatings possible, which is also due to their hardness and distinguish strength.
  • the layers have extremely low oxide contents. They have no or at least no pronounced texture, i.e. There is none Preferred orientation of the individual grains or crystals.
  • the substrate becomes further not heated by a flame or a plasma, so no or only extreme minor changes to the base body and no distortion of workpieces due to thermal stress due to thermal spraying.
  • the gas jet can be heated to a temperature in the range between 30 and 800 ° C are, all known powdery spray materials are used can.
  • the invention is particularly suitable for wettable powders made of metals, metal alloys, Hard materials, ceramics and / or plastics.
  • the temperature of the gas jet selected between 300 and 500 ° C. These gas temperatures are particularly suitable for the use of reactive gases or reactive Gas constituents. As reactive gas or gas components are in particular Hydrogen admixtures, carbon-containing gases or nitrogenous gases mention.
  • a gas jet with a pressure of 5 to 50 bar used. Above all, working with higher gas pressures brings additional Advantages because the energy transfer in the form of kinetic energy is increased. It gas pressures in the range from 21 to 50 bar are particularly suitable. Excellent Spray results were achieved, for example, with gas pressures of around 35 bar.
  • the High pressure gas supply can, for example, by the in the German patent application DE 197 16 414.5 described method or the one described there Gas supply system can be ensured.
  • the powder particles can run at one speed can be accelerated from 300 to 1600 m / s. Suitable in the process according to the invention speeds of the powder particles between 1000 and 1600 m / s, particularly preferably between 1250 and 1600 m / s, since in this case the Energy transfer in the form of kinetic energy is particularly high.
  • the powders used in the process according to the invention preferably have Particle sizes from 1 to 100 ⁇ m.
  • the method according to the invention offers the possibility in connection with a Automation and with computer-controlled movement of the base body or Spray gun to produce molded parts particularly quickly and inexpensively (rapid prototyping).
  • a shaped sheet 1 is shown in FIG. 1 in FIG. This sheet1 is applied a layer 2 by thermal spraying using the cold gas spraying method.
  • the sheet 1 has a smaller thickness than the sprayed-on layer 2.
  • the molding obtained in this way in Figure B consists of base body 1 (sheet metal) and Spray layer 2.
  • a molded body 1 made of a copper sheet is shown in FIG. After this Applying a thermal spray layer 2 as shown in Figure B, the copper sheet 1 mechanically detached from layer 2 The molded part obtained in this way is shown in Figure C. only from the spray layer 2.
  • the initially unshaped raw body or sheet 1 from Figure A of Figure 3 is provided with a layer 2 by thermal spraying using the cold gas spraying method (Picture B).
  • the workpiece consisting of the spray layer 2 is made according to a conventional Forming process deforms and receives, as shown in Figure D, on this Way its desired shape as a molding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Coating By Spraying Or Casting (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von Formteilen.
In der industriellen Fertigung werden Formteile bzw. Formkörper unterschiedlichster Geometrie benötigt. Die Anforderungen an die Eigenschaften der Formteile sind dabei unterschiedlich. Besondere Schwierigkeiten bereitet die Herstellung von Formteilen aus bzw. mit schwer formbaren Werkstoffen.
In der EP 911424 A1 mit gleichem Zeitrang ist ein Verfahren zur Herstellung von Verbundkörpern beschrieben, bei dem durch thermisches Spritzen ein Gegenstand aus zwei unterschiedlichen Werkstoffen hergestellt wird.
In der EP 911425 A1 mit gleichem Zeitrang ist ein Verfahren zum Beschichten von Substratwerkstoffen durch thermisches Spritzen beschrieben, bei dem spezielle Gase und spezielle Temperaturen zur Anwendung kommen.
In der DE 195 20 885 C1 ist ein Verfahren zum thermischen Spritzen einer Schicht aus einem Metall oder einer Metallegierung beschrieben. Mit diesem Verfahren können Spritzschichten mit einer Dicke von 20 mm und mehr hergestellt werden. Die Spritzschicht kann im Verbund mit dem Substrat eingesetzt werden. Wenigstens 60 Gew-% der Spritzpulverteilchen weisen beim Auftreffen auf das Substrat eine Temperatur auf, die zwischen der Solidus- und der Liquidus-Temperatur der Metallegierung oder bis zu 80 °C unterhalb der Schmelztemperatur liegt.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung von Formteilen aufzuzeigen, welches die Herstellung von Formteilen vereinfacht, verbilligt oder überhaupt erst ermöglicht und/oder welches wesentlich dazu beiträgt, die Qualität und die Eigenschaften von Formteilen zu verbessern. Insbesondere sollte die Herstellung von Formteilen aus bzw. mit schwer formbaren Werkstoffen ermöglicht werden.
Die gestellte Aufgabe wird durch ein Verfahren nach den Ansprüchen gelöst Hierbei wird ein Grundkörper durch thermisches Spritzen beschichtet, wobei ein pulverförmiger Zusatzwerkstoff mittels eines Gases auf die zu beschichtende Oberfläche des Grundkörpers geleitet wird, ohne dass die Pulverpartikel des Zusatzwerkstoffes im Gasstrahl geschmolzen werden.
Das thermische Spritzen zum Beschichten kennt als Verfahrensvarianten das autogene Flammspritzen oder das Hochgeschwindigkeits-Flammspritzen, das Lichtbogenspritzen, das Plasmaspritzen, das Detonationsspritzen und das Laserspritzen.
Thermische Spritzverfahren werden in allgemeiner Form beispielsweise in
  • Übersicht und Einführung in das "Thermische Spritzen", Peter Heinrich, Linde-Berichte aus Technik und Wissenschaft, 52/1982, Seiten 29 bis 37, oder
  • Thermisches Spritzen - Fakten und Stand der Technik, Peter Heinrich, Jahrbuch Oberflächentechnik 1992, Band 48, 1991, Seiten 304 bis 327, Metall-Verlag GmbH,
beschrieben.
Thermische Spritzverfahren zeichnen sich im wesentlichen dadurch aus, daß sie gleichmäßig aufgetragene Beschichtungen ermöglichen. Durch thermische Spritzverfahren aufgetragene Beschichtungen können durch Variation der Spritzmaterialien an unterschiedliche Anforderungen angepaßt werden. Die Spritzmaterialien können dabei in Form von Drähten, Stäben oder als Pulver verarbeitet werden. Beim thermischen Spritzen kann zusätzlich eine thermische Nachbehandlung vorgesehen sein.
In jüngerer Zeit wurde darüber hinaus ein weiteres thermisches Spritzverfahren entwickelt, welches auch als Kaltgasspritzen bezeichnet wird. Es handelt sich dabei um eine Art Weiterentwicklung des Hochgeschwindigkeits-Flammspritzens mit Pulver. Dieses Verfahren ist beispielsweise in der europäischen Patentschrift EP 0 484 533 B1 beschrieben. Beim Kaltgasspritzen kommt ein Zusatzwerkstoff in Pulverform zum Einsatz. Die Pulverpartikel werden beim Kaltgasspritzen jedoch nicht im Gasstrahl geschmolzen. Vielmehr liegt die Temperatur des Gasstrahles unterhalb des Schmelzpunktes der Pulverpartikel des Zusatzwerkstoffes (EP 0 484 533 B1) oder aber nur in geringem Maße oberhalb der Schmelztemperatur des Pulvers. Im Kaltgasspritzverfahren wird also ein im Vergleich zu den herkömmlichen Spritzverfahren "kaltes" bzw. ein vergleichsweise kälteres Gas verwendet. Gleichwohl wird das Gas aber ebenso wie in den herkömmlichen Verfahren erwärmt, aber lediglich auf Temperaturen unterhalb des Schmelzpunktes der Pulverpartikel des Zusatzwerkstorfes oder auf Temperaturen des Gasstrahles von 100 K bis zu 200 K oberhalb des Schmelzpunktes der Pulverpartikel des Zusatzwerkstoffes.
Ein wesentliches Merkmal der Erfindung besteht darin, daß die Pulverpartikel des Zusatzwerkstoffes im Gasstrahl nicht geschmolzen werden. Dies soll gemäß der Erfindung bedeuten, daß angestrebt wird, die Pulverpartikel des Zusatzwerkstoffes im Gasstrahl nicht aufzuschmelzen (d.h. völlig in die flüssige Phase zu wandeln), daß aber nicht angestrebt wird, daß sich die Pulverpartikel des Zusatzwerkstoffes im Gasstrahl als Mischung einerseits aus an- und/oder ungeschmolzenen Partikeln und andererseits aus geschmolzenen Partikeln zusammensetzen. Die Angabe, daß die Pulverpartikel des Zusatzwerkstoffes im Gasstrahl nicht geschmolzen werden kann dadurch sichergestellt werden, daß die Temperatur des Gasstrahles unterhalb des Schmelzpunktes der Pulverpartikel des Zusatzwerkstoffes liegt. Aber selbst bei Temperaturen des Gasstrahles von 100 K bis zu 200 K oberhalb des Schmelzpunktes der Pulverpartikel des Zusatzwerkstoffes kann aufgrund der extrem kurzen Verweilzeit der Partikel im Gasstrahl im Bereich von Millisekunden ein Schmelzen oder auch ein Anschmelzen der Pulverpartikel verhindert werden. Die Bedeutung der höheren Gastemperaturen bzw. der Vorteil der Erwärmung des Gases liegt darin, daß in heißeren Gasen die Schallgeschwindigkeit höher ist und dadurch auch die Partikelgeschwindigkeit vergleichsweise größer wird.
Das Kaltgasspritzverfahren besitzt gegenüber herkömmlichen Verfahren des thermischen Spritzens eine Reihe von Vorteilen. Die thermische Einwirkung und Kraftwirkung auf die Oberfläche des Substratwerkstoffes ist verringert, wodurch ungewollte Veränderungen der Materialeigenschaften des Substratwerkstoffes verhindert oder zumindest merklich verringert werden können. Ebenso können weitgehend Änderungen in der Struktur des Substratwerkstoffs unterbunden werden.
Überraschenderweise wurde nun festgestellt, daß die zahlreichen verfahrenstechnischen Möglichkeiten des thermischen Spritzens nach dem Kaltgasspritzverfahren für die Herstellung von Formteilen genutzt werden können. Durch die Möglichkeiten der Verwendung unterschiedliche Pulvermaterialien und Pulvermischungen eröffnet sich eine breite Palette für die Zusammensetzung von Formteilen.
Ein Grundkörper kann erfindungsgemäß durch Aufspritzen einer Schicht oder eines Überzugs mittels des Kaltgasspritzverfahrens auf eine gewünschte Dicke verstärkt werden. Dabei können relativ dünne Grundkörper, z.B. ein relativ dünnwandiges nach einem herkömmlichem Verfahren hergestelltes Formteil, als Ausgangsmaterial verwendet werden. Dieser Grundkörper wird anschließend durch Aufspritzen von gleichartigem oder unterschiedlichem Material auf der Innen- und/oder der Außenseite auf die notwendige Dicke verstärkt. Besondere Vorteile sind zu erzielen, wenn der Grundkörper eine geringere Dicke aufweist als die durch thermisches Spritzen aufgespritzte Schicht Diese Variante erleichtert die Herstellung von Formteilen aus bzw. mit schwer formbaren Werkstoffen.
Es eignen sich als Grundkörper auch Formkörper aus leicht plastisch verformbarem Material, beispielsweise Kupfer, Aluminium oder diese enthaltenden Legierungen. Die Grundkörper können relativ dünn sein, beispielsweise im Bereich von 0,1 bis 10 mm, vorzugsweise 0,5 bis 5,0 mm. Nach dem Aufspritzen eines insbesondere schwer formbaren Materials mittels des Kaltspritzverfahrens kann anschließend der Formkörper, beispielsweise auf mechanischem Wege oder chemisch durch Auflösen, von der aufgespritzten Schicht entfernt werden. In diesem Fall bildet allein die Spritzschicht das gewünschte Formteil. Diese Methode unterstützt in besonderem Maße die Herstellung von Formteilen aus bzw. mit schwer formbaren Werkstoffen.
In einer weiteren Variante der Erfindung wird zunächst ein Rohkörper nach einem der oben beschrieben Möglichkeiten oder nach einer Kombination hergestellt. Dieser Rohkörper muß noch nicht die gewünschte Form des herzustellenden Formteils aufweisen, sondern kann im Gegenteil z.B. aus einem flachen Blechkörper bestehen. Nach dem Auftragen der Schicht durch thermisches Spritzen kann das Werkstück (der beschichtete Roh- oder Grundkörper oder nur die Schicht) in einem oder mehreren der bekannten Umformprozesse (Ziehen, Tiefziehen, Walzen, Pressen und dergleichen) weiter bearbeitet werden. Auf diese Weise erhält man schließlich das gewünschte Formteil. Der Vorteil dieser Variante liegt darin, daß gespritzte Bleche bzw. Rohkörper sehr feinkörnig und praktisch texturfrei sind. Ihre Verformung erfolgt daher sehr gleichmäßig und erlaubt höhere Verformungsgrade als bei Blechen, die durch Glühen oder Walzen hergestellt wurden.
Erfindungsgemäß kann das Gas für das thermische Spritzen Stickstoff, Helium, Argon, Neon, Krypton, Xenon, ein Wasserstoff enthaltendes Gas, ein kohlenstoffhaltiges Gas, insbesondere Kohlendioxid, Sauerstoff, ein Sauerstoff enthaltendes Gas, Luft, Wasserstoff oder Mischungen der vorgenannten Gase enthalten. Neben den aus der EP 0 484 533 B1 bekannten Gasen Luft und/oder Helium eignen sich auch für das den pulverförmigen Zusatzwerkstoff tragende Gas ein Stickstoff, Argon, Neon, Krypton, Xenon, Sauerstoff, ein Wasserstoff enthaltendes Gas, ein kohlenstoffhaltiges Gas, insbesondere Kohlendioxid, Wasserstoff oder Mischungen der vorgenannten Gase und Mischungen dieser Gase mit Helium. Der Anteil des Helium am Gesamtgas kann bis zu 90 Vol.-% betragen. Bevorzugt wird ein Heliumanteil von 10 bis 50 Vol.-% im Gasgemisch eingehalten.
Es hat sich gezeigt, daß durch den Einsatz von unterschiedlichen Gasen zum Beschleunigen und Tragen des pulverförmigen Zusatzwerkstoffes die Flexibilität und Wirksamkeit des Verfahrens wesentlich vergrößert werden kann. Die so hergestellten Schichten haften sehr gut auf den verschiedensten Substratwerkstoffen, beispielsweise auf Metall, Metallegierungen, Keramik, Glas, Kunststoffe und Verbundwerkstoffe. Die mit dem erfindungsgemäßen Verfahren hergestellten Beschichtungen sind von hoher Güte, weisen eine außerordentlich geringe Porosität auf und besitzen extrem glatte Spritzoberflächen, so daß sich in der Regel eine Nacharbeitung erübrigt Die erfindungsgemäß eingesetzten Gase besitzen eine ausreichende Dichte und Schallgeschwindigkeit, um die erforderlichen hohen Geschwindigkeiten der Pulverpartikel gewährleisten zu können. Das Gas kann dabei inerte und/oder reaktive Gase enthalten. Mit den genannten Gasen ist die Herstellung von sehr dichten und besonders gleichmäßigen Beschichtungen möglich, welche sich außerdem durch ihre Härte und Festigkeit auszeichnen. Die Schichten weisen extrem geringe Oxidgehalte auf. Sie besitzen keine oder zumindest keine ausgeprägte Textur, d.h. es gibt keine Vorzugsorientierung der einzelnen Körner oder Kristalle. Das Substrat wird femer nicht durch eine Flamme oder ein Plasma erwärmt, so daß keine oder nur extrem geringe Veränderungen am Grundkörper und auch kein Verzug von Werkstücken durch Wärmespannungen infolge des thermischen Spritzens auftreten.
Der Gasstrahl kann auf eine Temperatur im Bereich zwischen 30 und 800 °C erwärmt werden, wobei alle bekannten pulverförmigen Spritzmaterialien eingesetzt werden können. Die Erfindung eignet sich insbesondere für Spritzpulver aus Metallen, Metalllegierungen, Hartstoffen, Keramiken und/oder Kunststoffen.
In Ausgestaltung des erfindungsgemäßen Verfahrens wird die Temperatur des Gasstrahles im Bereich zwischen 300 und 500 °C gewählt. Diese Gastemperaturen eignen sich insbesondere für den Einsatz von reaktiven Gasen oder reaktiven Gasbestandteilen. Als reaktive Gas oder Gasbestandteile sind insbesondere Wasserstoffzumischungen, kohlenstoffhaltige Gase oder stickstoffhaltige Gase zu erwähnen.
In Weiterbildung der Erfindung wird ein Gasstrahl mit einem Druck von 5 bis 50 bar eingesetzt. Vor allem das Arbeiten mit höheren Gasdrücken bringt zusätzliche Vorteile, da die Energieübertragung in Form von kinetischer Energie erhöht wird. Es eignen sich insbesondere Gasdrücke im Bereich von 21 bis 50 bar. Hervorragende Spritzergebnisse wurden beispielsweise mit Gasdrücken von etwa 35 bar erzielt. Die Hochdruckgasversorgung kann beispielsweise durch das in der deutschen Patentanmeldung DE 197 16 414.5 beschriebene Verfahren bzw. die dort beschriebene Gasversorgungsanlage sichergestellt werden.
Im erfindungsgemäßen Verfahren können die Pulverpartikel auf eine Geschwindigkeit von 300 bis 1600 m/s beschleunigt werden. Im erfindungsgemäßen Verfahren eignen sich dabei insbesondere Geschwindigkeiten der Pulverpartikel zwischen 1000 und 1600 m/s, besonders bevorzugt zwischen 1250 und 1600 m/s, da in diesem Fall die Energieübertragung in Form von kinetischer Energie besonders hoch ausfällt.
Die im erfindungsgemäßen Verfahren eingesetzten Pulver besitzen bevorzugt Partikelgrößen von 1 bis 100 µm.
Das erfindungsgemäße Verfahren bietet die Möglichkeit, in Verbindung mit einer Automatisierung und mit computergesteuerter Bewegung des Grundkörpers oder der Spritzpistole Formteile besonders rasch und kostengünstig herzustellen (rapid prototyping).
Zur Durchführung des erfindungsgemäßen Verfahrens können alle geeigneten Vorrichtungen eingesetzt werden, insbesondere gilt dies für die in der EP 0 484 533 B1 beschriebene Vorrichtung.
Besondere Vorteile gegenüber herkömmlichen Formteilen bringen folgende nach der Erfindung hergestellte Formteile mit sich:
  • Formteile, welche einen Grundkörper und eine durch thermisches Spritzen erzeugte Schicht umfassen, wobei der Grundkörper vorzugsweise eine geringere Dicke aufweist als die aufgespritzte Schicht und
  • Formteile, welche jeweils aus einer (oder auch mehreren) mittels thermischen Spritzens erzeugten Schicht bestehen.
Die Erfindung sowie weitere Einzelheiten der Erfindung werden im folgenden anhand von in den Zeichnungen dargestellten Ausführungsbeispielen näher erläutert.
Hierbei zeigen:
Figur 1
ein erfindungsgemäß hergestelltes Formteil aus Grundkörper und Schicht;
Figur 2
ein erfindungsgemäß hergestelltes Formteil bestehend aus der Spritzschicht;
Figur 3
ein erfindungsgemäß hergestelltes Formteil bestehend aus der Spritzschicht nach Umformung mit herkömmlichem Verfahren.
In Figur 1 ist im Bild A eine geformtes Blech 1 dargestellt. Auf dieses Blech1 wird durch thermisches Spritzen nach dem Kaltgasspritzverfahren eine Schicht 2 aufgetragen. Das Blech 1 weist eine geringere Dicke auf als die aufgespritzte Schicht 2. Das so erhaltene Formteil in Bild B besteht aus Grundkörper 1 (Blech) und Spritzschicht 2.
In Figur 2 ist im Bild A ein Formkörper 1 aus einem Kupferblech gezeigt. Nach dem Auftragen einer thermischen Spritzschicht 2 gemäß Bild B, wird das Kupferblech 1 mechanisch von der Schicht 2 gelöst Das so erhaltene Formteil in Bild C besteht lediglich aus der Spritzschicht 2.
Der zunächst ungeformte Rohkörper bzw. das Blech 1 aus Bild A von Figur 3 wird durch thermisches Spritzen nach dem Kaltgasspritzverfahren mit einer Schicht 2 versehen (Bild B). Nachdem mechanisch das Blech 1 von der Schicht 2 entfernt wurde (Bild C), wird das aus der Spritzschicht 2 bestehende Werkstück nach einem herkömmlichen Umformprozess verformt und erhält, wie in Bild D dargestellt, auf diese Weise seine gewünschte Form als Formteil.

Claims (8)

  1. Verfahren zur Herstellung von Formteilen (1, 2; 2) wobei ein Grundkörper (1) durch thermisches Spritzen beschichtet (2) wird, wobei ein pulverförmiger Zusatzwerkstoff mittels eines Gases auf die zu beschichtende Oberfläche des Grundkörpers (1) geleitet wird, ohne dass die Pulverpartikel des Zusatzwerkstoffes im Gasstrahl geschmolzen werden, und dass der Grundkörper (1) durch Aufspritzen auf eine gewünschte Dicke verstärkt wird, wobei der Grundkörper (1) eine geringere Dicke aufweist als die durch thermisches Spritzen aufgespritzte Schicht (2).
  2. Verfahren zur Herstellung von Formteilen (1, 2; 2) nach Anspruch 1, dadurch gekennzeichnet, dass das durch thermisches Spritzen hergestellte Formteil (1, 2; 2) einem oder mehreren herkömmlichen Umformprozessen, insbesondere durch Ziehen, Tiefziehen, Walzen und/oder Pressen, unterzogen wird.
  3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass der Grundkörper (1), nachdem die Schicht (2) durch thermisches Spritzen aufgespritzt worden ist, von dieser Schicht (2) entfernt wird.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der Grundkörper (1) durch mechanische Bearbeitung oder chemisch durch Auflösen von der Schicht (2) entfernt wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Gas für das thermische Spritzen Stickstoff, Helium, Argon, Neon, Krypton, Xenon, ein Wasserstoff enthaltendes Gas, ein kohlenstoffhaltiges Gas, insbesondere Kohlendioxid, Sauerstoff, ein Sauerstoff enthaltendes Gas, Luft, Wasserstoff oder Mischungen der vorgenannten Gase enthält.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Temperatur des Gasstrahles beim thermischen Spritzen im Bereich zwischen 30 und 800 °C liegt.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Gasstrahl beim thermischen Spritzen einen Druck von 5 bis 50 bar aufweist
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Pulverpartikel beim thermischen Spritzen auf eine Geschwindigkeit von 300 bis 1600 m/s beschleunigt werden.
EP98120105A 1997-10-27 1998-10-23 Herstellung von Formteilen Expired - Lifetime EP0911426B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19747385 1997-10-27
DE19747385A DE19747385A1 (de) 1997-10-27 1997-10-27 Herstellung von Formteilen

Publications (2)

Publication Number Publication Date
EP0911426A1 EP0911426A1 (de) 1999-04-28
EP0911426B1 true EP0911426B1 (de) 2002-12-18

Family

ID=7846742

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98120105A Expired - Lifetime EP0911426B1 (de) 1997-10-27 1998-10-23 Herstellung von Formteilen

Country Status (2)

Country Link
EP (1) EP0911426B1 (de)
DE (2) DE19747385A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009048706A1 (de) * 2009-10-08 2011-04-28 Hermle Maschinenbau Gmbh Verfahren und Vorrichtung zur Herstellung eines Formteils mittels generativen Auftragens
DE102015102908A1 (de) 2015-03-02 2016-09-08 Schuler Pressen Gmbh Verfahren zum Fertigen eines Formteils, Formteil, Werkzeug und Presse mit einem Werkzeug

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19747386A1 (de) * 1997-10-27 1999-04-29 Linde Ag Verfahren zum thermischen Beschichten von Substratwerkstoffen
DE19747384A1 (de) * 1997-10-27 1999-04-29 Linde Ag Herstellung von Verbundkörpern
US6602545B1 (en) * 2000-07-25 2003-08-05 Ford Global Technologies, L.L.C. Method of directly making rapid prototype tooling having free-form shape
US7367488B2 (en) * 2005-05-10 2008-05-06 Honeywell International, Inc. Method of repair of thin wall housings
US20080145688A1 (en) 2006-12-13 2008-06-19 H.C. Starck Inc. Method of joining tantalum clade steel structures
DE102007018211A1 (de) 2007-04-16 2008-10-23 Linde Ag Herstellung eines Elektronenaustrittsfensters mittels eines thermischen Spritzprozesses
DE102007017753A1 (de) * 2007-04-16 2008-10-23 Innovaris Gmbh & Co. Kg Herstellung großer Bauteile durch kinetisches Kaltgaskompaktieren von Werkstoffpartikeln
US8197894B2 (en) 2007-05-04 2012-06-12 H.C. Starck Gmbh Methods of forming sputtering targets
EP2262922B1 (de) * 2008-03-06 2015-04-29 Commonwealth Scientific and Industrial Research Organisation Herstellung von rohren
US8246903B2 (en) * 2008-09-09 2012-08-21 H.C. Starck Inc. Dynamic dehydriding of refractory metal powders
DE102010014747A1 (de) * 2010-04-13 2011-10-13 Hermle Maschinenbau Gmbh Verfahren zur Herstellung eines Bauteils
US9412568B2 (en) 2011-09-29 2016-08-09 H.C. Starck, Inc. Large-area sputtering targets
US10519552B2 (en) 2016-12-22 2019-12-31 United Technologies Corporation Deposited material structure with integrated component
US10648084B2 (en) 2016-12-22 2020-05-12 United Technologies Corporation Material deposition to form a sheet structure
US20180179639A1 (en) * 2016-12-22 2018-06-28 United Technologies Corporation Modular tooling for a deposited structure
US10363634B2 (en) 2016-12-22 2019-07-30 United Technologies Corporation Deposited structure with integral cooling enhancement features
US10563310B2 (en) 2016-12-22 2020-02-18 United Technologies Corporation Multi-wall deposited thin sheet structure
US10907256B2 (en) 2016-12-22 2021-02-02 Raytheon Technologies Corporation Reinforcement of a deposited structure forming a metal matrix composite
DE102018005363A1 (de) * 2018-07-02 2020-01-02 Technische Universität Chemnitz Verfahren zur Herstellung eines metallischen Halbzeugs oder Fertigteils als Werkstoffverbund mit funktionalisierter Oberfläche und derartiges Halbzeug oder Fertigteil

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0911424A1 (de) * 1997-10-27 1999-04-28 Linde Aktiengesellschaft Herstellung von Verbundkörpern
EP0911425A1 (de) * 1997-10-27 1999-04-28 Linde Aktiengesellschaft Verfahren zum thermischen Beschichten von Substratwerkstoffen

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE810223C (de) * 1949-04-14 1951-08-06 Deutsche Edelstahlwerke Ag Verfahren zur Herstellung metallischer Formkoerper
US3165570A (en) * 1962-08-22 1965-01-12 Alexander T Deutsch Refractory powder injection, process and apparatus
DE2646554C3 (de) * 1976-10-15 1980-01-10 Castolin S.A., Lausanne (Schweiz) Pulver Schweißverfahren zum Beschichten von metallischen Werkstoffen
NL7908745A (nl) * 1979-12-04 1981-07-01 Skf Ind Trading & Dev Werkwijze voor het vervaardigen van een voorwerp, waarop door thermisch opspuiten een buitenlaag wordt aangebracht en voorwerp, in het bijzonder een boor- beitel, verkregen volgens deze werkwijze.
CH658045A5 (en) * 1982-05-12 1986-10-15 Castolin Sa Process for the production of glass moulds for machines for the production of hollow glass
EP0305142A1 (de) * 1987-08-28 1989-03-01 Corning Glass Works Verfahren zur Formgebung eines Formkörpers mit gewünschter Geometrie
DE3806177A1 (de) * 1988-02-26 1989-09-07 Siemens Ag Verfahren zum aufbringen von schichten aus hochtemperatur-supraleitendem material auf substrate
EP0484533B1 (de) * 1990-05-19 1995-01-25 Anatoly Nikiforovich Papyrin Beschichtungsverfahren und -vorrichtung
WO1995007768A1 (fr) * 1993-09-15 1995-03-23 Societe Europeenne De Propulsion Procede pour la realisation de materiaux ou revetements composites et installation pour sa mise en ×uvre
DE4413306C1 (de) * 1994-04-16 1995-10-19 Daimler Benz Aerospace Ag Verfahren zur Verstärkung eines Bauteils und Anwendung des Verfahrens
DE4427262C1 (de) * 1994-07-30 1995-03-23 Mtu Muenchen Gmbh Verfahren und Vorrichtung zum Flammspritzen
DE19520885C2 (de) * 1995-06-08 1999-05-20 Daimler Benz Ag Verfahren zum thermischen Spritzen von Schichten aus Metallegierungen oder Metallen und seine Verwendung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0911424A1 (de) * 1997-10-27 1999-04-28 Linde Aktiengesellschaft Herstellung von Verbundkörpern
EP0911425A1 (de) * 1997-10-27 1999-04-28 Linde Aktiengesellschaft Verfahren zum thermischen Beschichten von Substratwerkstoffen

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009048706A1 (de) * 2009-10-08 2011-04-28 Hermle Maschinenbau Gmbh Verfahren und Vorrichtung zur Herstellung eines Formteils mittels generativen Auftragens
DE102015102908A1 (de) 2015-03-02 2016-09-08 Schuler Pressen Gmbh Verfahren zum Fertigen eines Formteils, Formteil, Werkzeug und Presse mit einem Werkzeug
WO2016138892A1 (de) 2015-03-02 2016-09-09 Schuler Pressen Gmbh Verfahren zum fertigen eines formteils, formteil, werkzeug und presse mit einem werkzeug

Also Published As

Publication number Publication date
EP0911426A1 (de) 1999-04-28
DE19747385A1 (de) 1999-04-29
DE59806703D1 (de) 2003-01-30

Similar Documents

Publication Publication Date Title
EP0911426B1 (de) Herstellung von Formteilen
EP0911425B1 (de) Verfahren zum thermischen Beschichten von Substratwerkstoffen
DE69535062T2 (de) Produktherstellung durch metallabscheidung
EP1083013B1 (de) Herstellen von aufschäumbaren Metallkörpern und Metallschäumen
DE69210146T2 (de) Verfahren zur Herstellung einer porenfreien, harten Schicht
DE3242543C2 (de) Schichtwerkstoff mit einer auf einer metallischen Trägerschicht aufgebrachten Funktionsschicht aus metallischer Suspensionslegierung und Verfahren zu seiner Herstellung
EP2154264A1 (de) Formkörper
DE2125562B2 (de) Verfahren zur pulvermetallurgischen herstellung dichter koerper aus nickelsuperlegierungen
DE19501659C1 (de) Verfahren zur Herstellung eines Metallschaumteils
DE102020116865A1 (de) Nickel-Basislegierung für Pulver und Verfahren zur Herstellung eines Pulvers
EP2009132A1 (de) Verfahren zur Herstellung einer funktionalen Schicht, Beschichtungsmaterial, Verfahren zu seiner Herstellung sowie funktionale Schicht
EP0911424B1 (de) Herstellung von selbsttragenden Verbundkörpern
EP0911423B1 (de) Verfahren zum Verbinden von Werkstücken
EP3314033A1 (de) EISENBASIERTE LEGIERUNG ZUR HERSTELLUNG THERMISCH AUFGEBRACHTER VERSCHLEIßSCHUTZSCHICHTEN
DE69105585T2 (de) Plasmagas und seine Verwendung zum Plasmaspritzen von metallischem Oxyd.
DE19756594A1 (de) Heißgaserzeugung beim thermischen Spritzen
DE102007016411B4 (de) Halbzeug aus Molybdän, welches mit einer Schutzschicht versehen ist, und Verfahren zu dessen Herstellung
EP3411516B1 (de) Tiegel
EP3347505A1 (de) Verfahren zum verbinden von werkstücken und mit diesem verfahren hergestellte verbindungsstücke
EP3473749B1 (de) Verfahren zum aufbringen einer schicht auf ein bauteil und bauteil hergestellt nach dem verfahren
DE10246454A1 (de) Herstellung beschichteter geschäumter Bauteile und Bauteile mit keramischer oder Hartstoffbeschichtung
DE102012020814A1 (de) Verfahren und Vorrichtung zum Aufbringen eines Zusatzwerkstoffs auf ein Werkstück
DE3003045A1 (de) Verfahren zum bearbeiten eines teils mittels eines gaspartikelstrahles
WO2017059467A1 (de) Komponente einer metallverarbeitungsmaschine
WO2017059468A1 (de) Komponente einer kunststoffverarbeitungsmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19990914

AKX Designation fees paid

Free format text: CH DE FR GB LI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE TECHNISCHE GASE GMBH

17Q First examination report despatched

Effective date: 20001013

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE GAS AG

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE AG

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59806703

Country of ref document: DE

Date of ref document: 20030130

Kind code of ref document: P

Ref document number: 59806703

Country of ref document: DE

Date of ref document: 20030130

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030326

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030919

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: LINDE AKTIENGESELLSCHAFT

Free format text: LINDE AG#ABRAHAM-LINCOLN-STRASSE 21#65189 WIESBADEN (DE) -TRANSFER TO- LINDE AKTIENGESELLSCHAFT#LEOPOLDSTRASSE 252#80807 MUENCHEN (DE)

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20131023

Year of fee payment: 16

Ref country code: DE

Payment date: 20131016

Year of fee payment: 16

Ref country code: FR

Payment date: 20131009

Year of fee payment: 16

Ref country code: CH

Payment date: 20131014

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59806703

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150501

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141023

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031