EP0895525A1 - Thermoplastische formmassen auf der basis von vinylaromatischen polymeren mit syndiotaktischer struktur, niederviskosen polyamiden und mit polaren gruppen modifizierten polyphenylenethern - Google Patents

Thermoplastische formmassen auf der basis von vinylaromatischen polymeren mit syndiotaktischer struktur, niederviskosen polyamiden und mit polaren gruppen modifizierten polyphenylenethern

Info

Publication number
EP0895525A1
EP0895525A1 EP97916431A EP97916431A EP0895525A1 EP 0895525 A1 EP0895525 A1 EP 0895525A1 EP 97916431 A EP97916431 A EP 97916431A EP 97916431 A EP97916431 A EP 97916431A EP 0895525 A1 EP0895525 A1 EP 0895525A1
Authority
EP
European Patent Office
Prior art keywords
weight
molding compositions
thermoplastic molding
component
compositions according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97916431A
Other languages
English (en)
French (fr)
Inventor
Josef WÜNSCH
Martin Weber
Gunter Pipper
Alexander Glück
Wilfried Vogel
Thomas Heitz
Stefan Grutke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP0895525A1 publication Critical patent/EP0895525A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • C08L71/126Polyphenylene oxides modified by chemical after-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S525/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S525/905Polyphenylene oxide

Definitions

  • the present invention relates to thermoplastic molding compositions containing
  • the present invention relates to the use of the thermoplastic molding compositions for the production of fibers, films and moldings and the fibers, films and moldings obtainable therefrom.
  • compositions consist of syndiotactic polystyrene (s-PS) and polyphenylene ethers (PPE).
  • s-PS syndiotactic polystyrene
  • PPE polyphenylene ethers
  • EP-A 546 497 describes a composition of s-PS, inorganic fillers and modified PPE. Here, however, the material is also brittle.
  • the object of the present invention was therefore to remedy the disadvantages mentioned and to provide thermoplastic molding compositions which have improved flowability, reduced water absorption, better dimensional stability and improved resistance to hydrolysis.
  • thermoplastic molding compositions defined at the outset were found. Furthermore, the use of the thermoplastic molding compositions for the production of fibers, films and moldings and the fibers, films and moldings obtainable therefrom were found.
  • thermoplastic molding compositions according to the invention contain, as component A), 5 to 97.9% by weight, preferably 15 to 89.8% by weight, in particular 30 to 79.5% by weight, of a vinylaromatic polymer with a syndiotactic structure.
  • the term "with syndiotactic structure” means here that the polymers are essentially syndiotactic, ie the syndiotactic fraction determined according to 13 C-NMR is greater than 50%, preferably greater than 60%.
  • Component A) is preferably composed of compounds of the general formula I.
  • R 1 is hydrogen or C 1 -C 4 -alkyl
  • R 2 to R 6 independently of one another are hydrogen, Ci * to Ci 2 -alkyl r C. 6 - to Ci ⁇ -aryl, halogen or where two adjacent radicals together represent cyclic groups having 4 to 15 C atoms.
  • Vinylaromatic compounds of the formula I are preferably used in which
  • R 1 means hydrogen
  • R 2 to R 6 are hydrogen, Ci to C 4 alkyl, chlorine, phenyl,
  • Examples of such preferred compounds are: Styrene, p-methylstyrene, p-chlorostyrene, 2,4-dimethylstyrene, m, p-divinylbenzene, 4-vinylbiphenyl, vinylnaphthalene or vinyl anthracene.
  • Particularly preferred vinyl aromatic compounds are styrene, 10 p-methylstyrene and m, p-divinylbenzene.
  • Mixtures of various vinylaromatic polymers with a syndiotactic structure can also be used as component A), but preferably only one vinylaromatic polymer 15 is used, in particular s-PS.
  • Vinyl aromatic polymers with a syndiotactic structure and processes for their preparation are known per se and are described, for example, in EP-A 535 582.
  • the preferred procedure is to react compounds of the general formula I in the presence of a metallocene complex and a cocatalyst.
  • a metallocene complex and a cocatalyst.
  • pentamethylcyclopentadienyltitanium trichloride pentamethylcyclopentadienyltitanium trimethyl and pentamethylcyclopenta-
  • the vinyl aromatic polymers with a syndiotactic structure generally have a molecular weight M w (weight average) of 5,000 to 10,000,000, in particular 10,000 to 2,000,000.
  • M w weight average
  • M n number average
  • the thermoplastic molding compositions contain 2 to 90% by weight, preferably 10 to 80% by weight, in particular 20 to 35 65% by weight, of a low-viscosity polyamide with a viscosity number VZ in the range from 50 to 150 ml / g, preferably 60 to 150 ml / g, in particular 70 to 150 ml / g.
  • the viscosity number VZ is 0.5 wt. -% solution in 96% 0 sulfuric acid at 25 ° C determined.
  • Polyamides are so-called polycondensates, ie polymers which are produced by condensation from monomers with elimination of low molecular weight compounds. 5 Such methods are known to the person skilled in the art and have been described many times in the literature, so that detailed information is unnecessary.
  • the molecular weight (and thus the viscosity) can be controlled in various ways in such production processes.
  • molecular weight regulators are generally monofunctional compounds which bring the polycondensation reaction to an end by virtue of the fact that after their incorporation there is no longer any functional group at the chain end which is amenable to further condensation.
  • molecular weight regulators are, for example, monocarboxylic acids or monoalcohols or monoamines, which are usually used in the production of polyamides.
  • the possibility of regulating the molecular weight in the case of polycondensation should also be mentioned by controlling the molar ratio of the starting monomers.
  • the maximum molecular weight to be achieved in a polycondensation depends on the molar ratio of the groups which react with one another in the condensation with elimination of low molecular weight compounds.
  • EP-A 129 195 and EP-A 129 196 are particularly advantageous for the production of such polyamides.
  • Preferred polyamides are poly- ⁇ -caprolactam (polyamide 6), poly-hexamethylene adipic acid amide (polyamide 6,6), their copolymers and partly aromatic copolyamides based on terephthalic acid, optionally isophthalic acid, adipic acid, hexamethylene diamine and ⁇ -caprolactam, like you are described in EP-A 299 444.
  • Polyamides with an approximately equimolar ratio of the respective two end groups are preferred.
  • thermoplastic molding compositions according to the invention contain 0.1 to 50% by weight, preferably 0.2 to 40% by weight, in particular 0.5 to 20% by weight, of a polyphenylene ether modified with polar groups.
  • polyphenylene ethers modified with polar groups and processes for their preparation are known per se and are described, for example, in DE-A 41 29 499.
  • Polyphenylene ethers which are modified with polar groups and are composed of are preferably used as component C)
  • c 3 0.05 to 5% by weight of at least one compound which contains at least one double or triple bond and at least one functional group selected from the group of carboxylic acids, carboxylic esters, carboxylic anhydrides, carboxamides, epoxides, oxazolines or urethanes .
  • polyphenylene ethers ci) examples are
  • Polyphenylene ethers are preferably used in which the
  • Substituents are alkyl radicals with 1 to 4 carbon atoms, such as
  • Poly (2-ethyl-6-propyl-1,4-phenylene) ether examples of preferred vinylaromatic polymers c 2 ) can be found in the monograph by Olabisi, pp. 224 to 230 and 245. N for representative be mentioned here vinylaromatic polymers of styrene, chlorostyrene, ⁇ -methylstyrene and p-methylstyrene; In minor proportions (preferably not more than 20%, in particular not more than 8% by weight), comonomers such as (meth) acrylonitrile or (meth) acrylic acid esters can also be involved in the structure. Particularly preferred vinylaromatic polymers are polystyrene and impact modified polystyrene It is understood that mixtures of these polymers can also be used
  • Production is preferably carried out by the method described in EP-A 302 485.
  • Suitable modifiers c 3 are, for example, maleic acid, methyl maleic acid, itaconic acid, tetrahydrophthalic acid, their anhydrides and imides, fumaric acid, the mono- and diesters of these acids, for example Ci- and C 2 -C 8 -alkanols, the mono- or diamides thereof Acids such as N-phenyl maleimide, maleic hydrazide. N-vinylpyrrolidone and (meth) acryloylcaprolactam may also be mentioned, for example.
  • modifiers comprises, for example, the acid chloride of trimellitic anhydride, benzene-1,2-dicarbonic acid anhydride-4-carboxylic acid acetic anhydride, pyromellitic acid dianhydride, chloroethanoylsuccinaldehyde, chloroformylsuccinic aldehyde, citric acid and hydroxysuccinic acid.
  • Particularly preferred polyphenylene ethers C) modified with polar groups in the molding compositions according to the invention are obtained by modification with maleic acid, maleic anhydride or fumaric acid.
  • Such polyphenylene ethers preferably have a molecular weight (weight average M w ) in the range from 10,000 to 80,000, preferably from 20,000 to 60,000.
  • thermoplastic molding compositions according to the invention can contain 0 to 50% by weight, preferably 0 to 15% by weight, in particular 0 to 12% by weight, of additives or processing aids or mixtures thereof.
  • nucleating agents such as salts of carboxylic, organic sulfonic or phosphoric acids, preferably sodium benzoate, aluminum tris (p-tert-butyl benzoate), aluminum trisbenzoate, aluminum tris (p-carboxymethylbenzoate) and aluminum triscaproat;
  • Antioxidants such as phenolic antioxidants, phosphites or phosphonites, especially trisnornylphenyl phosphite; Stabilizers such as sterically hindered phenols and hydroquinones.
  • Lubricants and mold release agents, dyes, pigments and plasticizers can also be used.
  • thermoplastic molding compositions according to the invention can contain 0 to 20% by weight, preferably 0 to 18% by weight, in particular 0 to 15% by weight, of a flame retardant.
  • Organophosphorus compounds such as phosphates or phosphine oxides, can be used as flame retardants.
  • phosphine oxides are triphenylphosphine oxide, tritolylphosphine oxide, trisnonylphenylphosphine oxide, tricyclohexylphosphine oxide, tris (n-butyl) phosphine oxide, tris (n-hexyl) phosphine oxide, tris (n-octyl) phosphine oxide, tris (cyanoethyl) ) -phosphine oxide, benzylbis (cyclohexyl) -phosphine oxide, benzylbisphenylphosphine oxide, phenylbis (n-hexyl) -phosphine oxide. Triphenylphosphine oxide, tricyclohexylphosphine oxide, tris (n-octyl) phosphine oxide or tris (cyanoethyl) phosphine oxide are particularly preferably used.
  • Particularly suitable phosphates are alkyl and aryl-substituted phosphates.
  • Examples are phenylbisdodecylphosphate, phenylbisneopentylphosphate, phenylethyl hydrogen phosphate, phenyl bis (3,5,5-trimethylhexyl phosphate), ethyl diphenyl phosphate, bis (2-ethylhexyl) p-tolyl phosphate, tritolyl phosphate, trixylyl phosphate, trixylyl phosphate -ethylhexyl) phenyl phosphate, tris (nonylphenyl) phosphate, bis (dodecyl) p- (tolyl) phosphate, tricresyl phosphate, triphenyl phosphate, di-butylphenyl phosphate, p-tolyl-bis- (2, 5,5-trimethylhexy
  • Phosphorus compounds in which each R is an aryl radical are particularly suitable. Triphenyl phosphate, trixylyl phosphate and trimesityl phosphate are particularly suitable. Cyclic phosphates can also be used. Diphenylpentaerythritol diphosphate is particularly suitable. Resorcinol diphosphate is also preferred.
  • Mixtures of different phosphorus compounds can also be used.
  • thermoplastic molding compositions according to the invention can contain 0 to 50% by weight, preferably 0 to 30% by weight, in particular 0 to 20% by weight, of rubber-elastic polymers.
  • rubber-elastic polymers and processes for their preparation are known per se and are described, for example, in DE-A 41 29 499.
  • Graft rubbers with a crosslinked, elastomeric core and a graft cover made of polystyrene, EP and EPDM rubbers, block copolymers and thermoplastic polyester elastomers are only examples here.
  • a polyoctylene the name Vestenamer ® (Hüls AG), and a variety of suitable block copolymers with at least one vinylaromatic and an elastomeric block.
  • suitable block copolymers with at least one vinylaromatic and an elastomeric block.
  • Examples include the Cariflex ® TR types (Shell), the Kraton ® G types (Shell), the Finaprene ® types (Fina) and the Europrene ® SOL types (Enichem).
  • Block copolymers are preferably used.
  • thermoplastic molding compositions according to the invention can contain 0 to 50% by weight, preferably 0 to 40% by weight, in particular 0 to 35% by weight, of fibrous or particulate fillers or mixtures thereof.
  • Glass fibers can be equipped with a size and an adhesion promoter. These glass fibers can be incorporated both in the form of short glass fibers and in the form of endless strands (rovings). Preferred glass fibers contain an aminosilane size.
  • Amorphous silica, magnesium carbonate, powdered quartz, mica, talc, feldspar or calcium silicates can also be used.
  • the sum of the% by weight of the components used is always 100.
  • thermoplastic molding compositions according to the invention can be obtained by mixing the individual components at temperatures from 270 to 350 ° C. in customary mixing devices, such as kneaders, Banbury mixers and single-screw extruders, but preferably using a twin-screw extruder.
  • customary mixing devices such as kneaders, Banbury mixers and single-screw extruders, but preferably using a twin-screw extruder.
  • intensive mixing is necessary.
  • the mixing order of the components can be varied, so two or optionally three components can be premixed all components can also be mixed together.
  • thermoplastic molding compositions according to the invention are notable for improved flowability, reduced water absorption and thus improved resistance to hydrolysis and better dimensional stability. They are suitable for the production of fibers, films or moldings.
  • the polymer obtained was washed with methanol and dried at 50 ° C. in vacuo.
  • the molecular weight distribution was determined by high-temperature GPC (drop-mea- sion chromatography) with 1, 2, 4-trichlorobenzene as solvent at 135 ° C. The calibration was carried out using narrowly distributed polystyrene standards.
  • the molecular weight M w was determined by GPC in 1,2,4-trichlorobenzene as solvent at 120 ° C.
  • PA 66 polyhexamethylene adipamide with a viscosity number VZ of 150 ml / g
  • VZ viscosity number
  • Viscosity number VZ of 75 ml / g (Ultramid ® A15) from BA S F Aktiengesellschaft).
  • the viscosity numbers VZ of components B1), B2) and B3) were in each case 0.5. -% solution in 96% sulfuric acid at 25 ° C determined.
  • a modified polyphenylene ether produced at 300 ° C in a twin-screw extruder by reacting
  • the melt was degassed, extruded, passed through a water bath and granulated.
  • Components A), B) and C) were mixed in a twin-screw extruder (ZSK 30 from Werner & Pfleiderer) at a temperature of 285 ° C., discharged as a strand, cooled in a water bath and granulated.
  • ZSK 30 from Werner & Pfleiderer
  • the dried granules were then turned into round disks (thickness 2 mm, diameter 60 mm), flat bars (127 mm x 12.7 mm x 1.6 mm) and standard small bars (50 mm x 6 mm x 4 mm) at 290 ° C. processed and examined.
  • composition of the molding compositions and their properties can be found in the table below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Thermoplastische Formmassen, enthaltend A) 5 bis 97,9 Gew.-% eines vinylaromatischen Polymeren mit syndiotaktischer Struktur, B) 2 bis 90 Gew.-% eines niederviskosen Polyamids mit einer Viskositätszahl VZ im Bereich von 50 bis 150 ml/g und C) 0,1 bis 50 Gew.-% eines mit polaren Gruppen modifizierten Polyphenylenethers.

Description

Thermoplastische Formmassen auf der Basis von vinylaromatischen Polymeren mit syndiotaktischer Struktur, niederviskosen Poly¬ amiden und mit polaren Gruppen modifizierten Polyphenylenethern
Beschreibung
Die vorliegende Erfindung betrifft thermoplastische Formmassen, enthaltend
A) 5 bis 97,9 Gew. -% eines vinylaromatischen Polymeren mit syndio¬ taktischer Struktur,
B) 2 bis 90 Gew.-% eines niederviskosen Polyamids mit einer Viskositätszahl VZ im Bereich von 50 bis
150 ml/g
und
C) 0,1 bis 50 Gew. -% eines mit polaren Gruppen modifizierten Poly- phenylenethers.
Weiterhin betrifft die vorliegende Erfindung die Verwendung der thermoplastischen Formmassen zur Herstellung von Fasern, Folien und Formkörpern sowie die daraus erhältlichen Fasern, Folien und Formkörper.
Aus der EP-A 314 146 sind Zusammensetzungen bekannt, die aus syndiotaktischem Polystyrol (s-PS) und Polyphenylenethern (PPE) bestehen. Hierbei werden mehrphasige PolymerSysteme erhalten, die zwar eine gute Wärmeformbeständigkeit aufweisen, aber sehr spröde sind und eine mangelnde Fließfähigkeit haben.
Die EP-A 546 497 beschreibt Zusammensetzung aus s-PS, anorga- nischen Füllstoffen und modifiziertem PPE. Hierbei ist jedoch das Material ebenfalls spröde.
Aufgabe der vorliegenden Erfindung war es daher, den genannten Nachteilen abzuhelfen und thermoplastische Formmassen zur Verfü- gung zu stellen, die eine verbesserte Fließfähigkeit, eine ver¬ ringerte Wasseraufnahme, bessere Dimensionsstabilität und verbes¬ serte Hydrolysebeständigkeit aufweisen.
Demgemäß wurden die eingangs definierten thermoplastischen Form- massen gefunden. Weiterhin wurde die Verwendung der thermoplastischen Formmassen zur Herstellung von Fasern, Folien und Formkörpern gefunden sowie die daraus erhältlichen Fasern, Folien und Formkörper.
Die erfindungsgemäßen thermoplastischen Formmassen enthalten als Komponente A) 5 bis 97,9 Gew.-%, vorzugsweise 15 bis 89,8 Gew.-%, insbesondere 30 bis 79,5 Gew. -% eines vinylaromatischen Polymeren mit syndiotaktischer Struktur. Der Begriff "mit syndiotaktischer Struktur" bedeutet hier, daß die Polymeren im wesentlichen syndiotaktisch sind, d.h. der syndiotaktische Anteil bestimmt nach 13C-NMR ist größer als 50 %, bevorzugt größer als 60 %.
Vorzugsweise ist die Komponente A) aufgebaut aus Verbindungen der allgemeinen Formel I
R< in der die Substituenten folgende Bedeutung haben:
R1 Wasserstoff oder Ci- bis C4-Alkyl,
R2 bis R6 unabhängig voneinander Wasserstoff, Ci* bis Ci2-Alkylr C.6- bis Ciβ-Aryl, Halogen oder wobei zwei benachbarte Reste gemeinsam für 4 bis 15 C-Atome aufweisende cy¬ clische Gruppen stehen.
Bevorzugt werden vinylaromatische Verbindungen der Formel I ein¬ gesetzt, in denen
R1 Wasserstoff bedeutet
und
R2 bis R6 für Wasserstoff, Ci- bis C4-Alkyl, Chlor, Phenyl,
Biphenyl, Naphthalin oder Anthracen stehen oder wobei zwei benachbarte Reste gemeinsam für 4 bis 12 C-Atome aufweisende cyclische Gruppen stehen, so daß sich als Verbindung der allgemeinen Formel I beispielsweise Naphthalinderivate oder Anthracenderivate ergeben.
Beispiele für solche bevorzugte Verbindungen sind: Styrol, p-Methylstyrol, p-Chlorstyrol, 2,4-Dimethylstyrol, m,p- Divinylbenzol, 4-Vinylbiphenyl, Vinylnaphthalin oder Vinyl- anthracen.
5 Es können auch Mischungen verschiedener vinylaromatischer
Verbindungen eingesetzt werden, vorzugsweise wird jedoch nur eine vinylaromatische Verbindung verwendet.
Besonders bevorzugte vinylaromatische Verbindungen sind Styrol, 10 p-Methylstyrol und m,p-Divinylbenzol.
Als Komponente A) können auch Mischungen verschiedener vinyl¬ aromatischer Polymere mit syndiotaktischer Struktur eingesetzt werden, bevorzugt wird jedoch nur ein vinylaromatisches Polymer 15 verwendet, insbesondere s-PS.
Vinylaromatische Polymere mit syndiotaktischer Struktur sowie Verfahren zu ihrer Herstellung sind an sich bekannt und beispielsweise in der EP-A 535 582 beschrieben. Bei der Herstel-
20 lung geht man vorzugsweise so vor, daß man Verbindungen der allgemeinen Formel I in Gegenwart eines Metallocenkomplexes und eines Cokatalysators umsetzt. Als Metallocenkomplexe werden ins¬ besondere Pentamethylcyclopentadienyltitantrichlorid, Penta- methylcyclopentadienyltitantrimethyl und Pentamethylcyclopenta-
25 dienyltitantrimethylat verwendet.
Die vinylaromatischen Polymere mit syndiotaktischer Struktur haben i.a. ein Molekulargewicht Mw (Gewichtsmittelwert) von 5000 bis 10 000 000, insbesondere von 10 000 bis 2 000 000. Die 30 Molekulargewichtsverteilungen Mw/Mn (Mn = Zahlenmittelwert) lie¬ gen i.a. im Bereich von 1,1 bis 30, vorzugsweise von 1,4 bis 10.
Als Komponente B) enthalten die thermoplastischen Formmassen 2 bis 90 Gew.-%, vorzugsweise 10 bis 80 Gew. -%, insbesondere 20 bis 35 65 Gew.-% eines niederviskosen Polyamids mit einer Viskositäts¬ zahl VZ im Bereich von 50 bis 150 ml/g, vorzugsweise 60 bis 150 ml/g, insbesondere 70 bis 150 ml/g.
Die Viskositätszahl VZ wird als 0,5 gew. -%ige Lösung in 96 %iger 0 Schwefelsäure bei 25°C bestimmt.
Polyamide sind sogenannte Polykondensate, d.h. Polymere, die durch Kondensation aus Monomeren unter Abspaltung niedermolekula¬ rer Verbindungen hergestellt werden. 5 Solche Verfahren sind dem Fachmann bekannt und vielfach in der Literatur beschrieben, so daß sich hierzu detaillierte Angaben erübrigen.
Ganz allgemein läßt sich bei derartigen Herstellungsverfahren das Molekulargewicht (und damit die Viskosität) auf verschiedene Wei¬ se steuern.
Eine Möglichkeit ist das Abbrechen der Polykondensation nach ei- ner relativ kurzen Reaktionszeit, was am einfachsten durch Abküh¬ len der Reaktionsmischung erfolgen kann.
Eine andere Möglichkeit liegt in der Zugabe von sogenannten "Mo- lekulargewichtsreglern"; in der Regel sind dies monofunktionelle Verbindungen, die die Polykondensationsreaktion dadurch zum Ab¬ bruch bringen, daß nach ihrem Einbau keine funktioneile Gruppe mehr am Kettenende vorhanden ist, die der weiteren Kondensation zugänglich ist. Bekannte Beispiele für Molekulargewichtsregler sind beispielsweise Monocarbonsäuren oder Monoalkohole bzw. Mono- amine, die üblicherweise bei der Herstellung von Polyamiden eingesetzt werden.
Schließlich ist als Möglichkeit der Molekulargewichtsregelung bei Polykondensationen noch die Steuerung über das Molverhältnis der Ausgangsmonomeren zu nennen. Bekanntlich hängt das maximal zu er¬ reichende Molekulargewicht bei einer Polykondensation vom molaren Verhältnis der bei der Kondensation unter Abspaltung von nieder¬ molekularen Verbindungen miteinander reagierenden Gruppen ab.
Aus dem Vorstehenden wird ersichtlich, daß dem Fachmann Verfahren zur Herstellung von niederviskosen Polyamiden bekannt sind.
Für die Herstellung von derartigen Polyamiden eignet sich beson¬ ders vorteilhaft das in der EP-A 129 195 und EP-A 129 196 be- schriebene Verfahren.
Bevorzugte Polyamide sind Poly- ε -caprolactam (Polyamid 6), Poly- hexamethylenadipinsäureamid (Polyamid 6,6), deren Copolymere so¬ wie teilaromatische Copolyamide auf der Basis von Terephthalsäu- re, ggf. Isophthalsäure, Adipinsäure, Hexamethylendiamin und ε -Caprolactam, wie sie z.B. in der EP-A 299 444 beschrieben sind.
Bevorzugt werden Polyamide mit etwa äquimolarem Verhältnis der jeweiligen beiden Endgruppen.
Es können auch Mischungen der o.g. Polyamiden eingesetzt werden. Als Komponente C) enthalten die erfindungsgemäßen thermoplastischen Formmassen 0,1 bis 50 Gew.-%, vorzugsweise 0,2 bis 40 Gew. -%, insbesondere 0,5 bis 20 Gew. -% eines mit pola¬ ren Gruppen modifizierten Polyphenylenethers.
Solche mit polaren Gruppen modifizierten Polyphenylenether sowie Verfahren zu ihrer Herstellung sind an sich bekannt und beispielsweise in der DE-A 41 29 499 beschrieben.
Bevorzugt werden als Komponente C) mit polaren Gruppen modifi¬ zierte Polyphenylenether eingesetzt, die aufgebaut sind aus
ci) 70 bis 99,95 Gew. -% eines Polyphenylenethers,
c2) 0 bis 25 Gew.-% eines vinylaromatischen Polymeren,
c3) 0,05 bis 5 Gew.-% mindestens einer Verbindung, die mindestens eine Doppel- oder Dreifachbindung und mindestens eine funk¬ tioneile Gruppe, ausgewählt aus der Gruppe der Carbonsäuren, Carbonsäureester, Carbonsäureanhydride, Carbonsäureamide, Epoxide, Oxazoline oder Urethane enthält.
Beispiele für Polyphenylenether ci) sind
Poly(2,6-dilauryl-1,4-phenylen)ether, Poly(2,6-diphenyl-1,4-phenylen)ether,
Poly(2,6-dimethoxi-1,4-phenylen) -ether,
Poly(2,6-diethoxi-1,4-phenylen)ether,
Poly(2-methoxi-6-ethoxi-1,4-phenylen)ether,
Poly(2-ethyl-6-stearyloxi-1,4-phenylen)ether, Poly(2,6-dichlor-1,4-phenylen)ether,
Poly(2-methy1-6-phenyl-1,4-phenylenether,
Poly(2,6-dibenzyl-1,4-phenylen)ether,
Poly(2-ethoxi-1,4-phenylen)ether,
Poly(2-chlor-1,4-phenylen)ether, Poly(2,5-dibrom-1,4-phenylen)ether.
Bevorzugt werden Polyphenylenether eingesetzt, bei denen die
Substituenten Alkylreste mit 1 bis 4 Kohlenstoffatomen sind, wie
Poly(2,6-dimethyl-1,4-phenylen)ether, Poly(2,6-diethyl-1,4-phenylen)ether,
Poly(2-methy1-6-ethyl-1,4-phenylen)ether,
Poly(2-methyl-6-propyl-1,4-phenylen) ether,
Poly(2,6-dipropyl-1,4-phenylen)ether und
Poly(2-ethyl-6-propyl-1,4-phenylen)ether. Beispiele für bevorzugte vinylaromatische Polymere c2) sind der Monographie von Olabisi, S. 224 bis 230 und 245 zu entnehmen. Nur stellvertretend seien hier vinylaromatische Polymere aus Styrol, Chlorstyrol, α-Methylstyrol und p-Methylstyrol genannt; in unter- geordneten Anteilen (vorzugsweise nicht mehr als 20, insbesondere nicht mehr als 8 Gew. -% können auch Comonomere wie (Meth)acryl- nitril oder (Meth)acrylsäureester am Aufbau beteiligt sein. Be¬ sonders bevorzugte vinylaromatische Polymere sind Polystyrol und schlagzäh modifiziertes Polystyrol. Es versteht sich, daß auch Mischungen dieser Polymeren eingesetzt werden können. Die
Herstellung erfolgt vorzugsweise nach dem in der EP-A 302 485 be¬ schriebenen Verfahren.
Geeignete Modifiziermittel c3) sind beispielsweise Maleinsäure, Methylmaleinsäure, Itaconsäure, Tetrahydrophthalsäure, deren Anhydride und Imide, Fumarsäure, die Mono- und Diester dieser Säuren, z.B. von Ci- und C2- bis C8-Alkanolen, die Mono- oder Diamide dieser Säuren wie N-Phenylmaleinimid, Maleinhydrazid. Weiterhin seien beispielsweise N-Vinylpyrrolidon und (Meth)acryloylcaprolactam genannt.
Eine andere Gruppe von Modifiziermitteln umfaßt beispielsweise das Säurechlorid des Trimellitsäureanhydrids, Benzol-1,2-dicar¬ bonsäure-anhydrid-4-carbonsäure-essigsäureanhydrid, Pyromellit- säuredianhydrid, Chlorethanoylsuccinaldehyd, Chlorformylsuccin- aldehyd, Zitronensäure und Hydroxysuccinsäure.
Besonders bevorzugte mit polaren Gruppen modifizierte Poly¬ phenylenether C) in den erfindungsgemäßen Formmassen werden durch Modifizierung mit Maleinsäure, Maleinsäureanhydrid oder Fumar¬ säure erhalten. Derartige Polyphenylenether weisen vorzugsweise ein Molekulargewicht (Gewichtsmittelwert Mw) im Bereich von 10 000 bis 80 000, vorzugsweise von 20 000 bis 60 000 auf.
Dies entspricht einer reduzierten spezifischen Viskosität ηrecι von 0,2 bis 0,9 dl/g, vorzugsweise von 0,35 bis 0,8 und insbesondere 0,45 bis 0,6, gemessen in einer 1 gew.-%igen Lösung in Chloroform bei 25°C nach DIN 53 726.
Zusätzlich können die erfindungsgemäßen thermoplastischen Form¬ massen 0 bis 50 Gew.-%, vorzugsweise 0 bis 15 Gew. -%, ins¬ besondere 0 bis 12 Gew. -% Zusatzstoffe oder Verarbeitungshilfs¬ mittel oder deren Mischungen enthalten.
Dies sind beispielsweise Nukleierungsmittel wie Salze von Carbon-, organischen Sulfon- oder Phosphorsäuren, bevorzugt Natriumbenzoat, Aluminiumtris (p-tert. -butylbenzoat) , Aluminium- trisbenzoat, Aluminiumtris (p-carboxymethylbenzoat) und Aluminium- triscaproat; Antioxidantien wie phenolische Antioxidantien, Phosphite oder Phoshonite, insbesondere Trisnornylphenylphosphit; Stabilisatoren wie sterisch gehinderte Phenole und Hydrochinone. Weiterhin können noch Gleit- und Entformungsmittel, Farbstoffe, Pigmente und Weichmacher eingesetzt werden.
Weiterhin können die erfindungsgemäßen thermoplastischen Form¬ massen 0 bis 20 Gew.-%, bevorzugt 0 bis 18 Gew. -%, insbesondere 0 bis 15 Gew.-% eines Flammschutzmittels enthalten.
Als Flammschutzmittel können phosphororganische Verbindungen, wie Phosphate oder Phosphinoxide eingesetzt werden.
Beispiele für Phosphinoxide sind Triphenylphosphinoxid, Tritolyl- phosphinoxid, Trisnonylphenylphosphinoxid, Tricyclohexylphosphin- oxid, Tris- (n-butyl)-phosphinoxid, Tris- (n-hexyl) -phosphinoxid, Tris- (n-octyl)-phosphinoxid, Tris- (cyanoethyl) -phosphinoxid, Benzylbis(cyclohexyl)-phosphinoxid, Benzylbisphenylphosphinoxid, Phenylbis- (n-hexyl)-phosphinoxid. Besonders bevorzugt eingesetzt werden Triphenylphosphinoxid, Tricyclohexylphosphinoxid, Tris-(n- octyl)-phosphinoxid oder Tris-(cyanoethyl)-phosphinoxid.
Als Phosphate kommen vor allem alkyl- und arylsubstituierte Phosphate in Betracht. Beispiele sind Phenylbisdodecylphosphat, Phenylbisneopentylphosphat, Phenylethylhydrogenphosphat, Phenyl¬ bis- (3, 5,5-trimethylhexylphosphat) , Ethyldiphenylphosphat, Bis- (2-ethylhexyl)-p-tolyl-phosphat, Tritolylphosphat, Trixylyl- phosphat, Trimesitylphosphat, Bis- (2-ethylhexyl)-phenylphosphat, Tris- (nonylphenyl)-phosphat, Bis- (dodecyl)-p-(tolyl)-phosphat, Tricresylphosphat, Triphenylphosphat, Di-butylphenylphosphat, p- Tolyl-bis- (2, 5,5-trimethylhexyl) -phosphat, 2-Ethylhexyldiphenyl- phosphat. Besonders geeignet sind Phosphorverbindungen, bei denen jedes R ein Aryl-Rest ist. Ganz besonders geeignet ist dabei Tri- phenylphosphat, Trixylylphosphat sowie Trimesitylphosphat. Des weiteren können auch cyclische Phosphate eingesetzt werden. Be¬ sonders geeignet ist hierbei Diphenylpentaerythritol-diphosphat. Bevorzugt ist auch Resorcinoldiphosphat.
Darüber hinaus können Mischungen unterschiedlicher Phosphor- Verbindungen verwendet werden.
Weiterhin können die erfindungsgemäßen thermoplastischen Form¬ massen 0 bis 50 Gew.-%, bevorzugt 0 bis 30 Gew. -%, insbesondere 0 bis 20 Gew.-% kautschukelastische Polymerisate enthalten. Diese kautschukelastischen Polymerisate sowie Verfahren zu ihrer Herstellung sind an sich bekannt und beispielsweise in der DE-A 41 29 499 beschrieben.
Nur beispielhaft seien hier Pfropfkautschuke mit einem vernetz¬ ten, elastomeren Kern und einer Pfropfhülle aus Polystyrol ge¬ nannt, EP- und EPDM-Kautschuke, Blockcopolymere und thermoplasti¬ sche Polyester-Elastomere.
Auch im Handel sind entsprechende Produkte erhältlich, z.B. ein Polyoctylen der Bezeichnung Vestenamer® (Hüls AG) , sowie eine Vielzahl geeigneter Blockcopolymere mit mindestens einem vinyl¬ aromatischen und einem elastomeren Block. Beispielhaft seien die Cariflex®-TR-Typen (Shell), die Kraton®-G-Typen (Shell), die Finaprene®-Typen (Fina) und die Europrene®-SOL-Typen (Enichem) genannt.
Bevorzugt werden Blockcopolymere verwendet.
Außerdem können die erfindungsgemäßen thermoplastischen Form¬ massen 0 bis 50 Gew.-%, bevorzugt 0 bis 40 Gew. -%, insbesondere 0 bis 35 Gew. -% faser- oder teilchenförmige Füllstoffe oder deren Mischungen enthalten.
Dies sind zum Beispiel Kohlenstoff- oder Glasfasern, Glasmatten, Glasseidenrovings oder Glaskugeln sowie Kaliumtitanatwhisker oder Aramidfasern, bevorzugt Glasfasern. Glasfasern können mit einer Schlichte und einem Haftvermittler ausgerüstet sein. Die Einar¬ beitung dieser Glasfasern kann sowohl in Form von Kurzglasfasern als auch in Form von Endlossträngen (Rovings) erfolgen. Bevor¬ zugte Glasfasern enthalten eine Aminosilanschlichte.
Weiterhin können noch amorphe Kieselsäure, Magnesiumcarbonat, ge¬ pulverter Quarz, Glimmer, Talkum, Feldspat oder Calciumsilicate eingesetzt werden.
Die Summe der Gew.-% der eingesetzten Komponenten beträgt stets 100.
Die erfindungsgemäßen thermoplastischen Formmassen können durch Mischen der Einzelkomponenten bei Temperaturen von 270 bis 350°C in üblichen Mischvorrichtungen, wie Knetern, Banbury-Mischern und Einschneckenextruder, vorzugsweise jedoch mit einem Zwei¬ schneckenextruder erhalten werden. Um eine möglichst homogene Formmasse zu erhalten, ist eine intensive Durchmischung notwen¬ dig. Die Abmischreihenfolge der Komponenten kann variiert werden, so können zwei oder gegebenenfalls drei Komponenten vorgemischt werden, es können aber auch alle Komponenten gemeinsam gemischt werden.
Die erfindungsgemäßen thermoplastischen Formmassen zeichnen sich durch eine verbesserte Fließfähigkeit, eine verringerte Wasser- aufnähme und damit eine verbesserte Hydrolysebeständigkeit sowie eine bessere Dimentionsstabilität aus. Sie eignen sich zur Her¬ stellung von Fasern, Folien oder Formkörpern.
Beispiele
Es wurden folgende Komponenten eingesetzt:
Komponente A)
Ein s-PS mit Mw = 240 200, Mw/Mn = 1,41 und einem syndiotaktischen Anteil nach 13C-NMR von > 96 %, das folgendermaßen hergestellt wurde:
In einem mit Stickstoff inertisieren Rundkolben wurden 2,0 mol Styrol (208,3 g) vorgelegt, auf 70°C erwärmt und mit 1,1 ml Methylaluminoxan (MAO) -Lösung der Firma Witco (1,53 molar in Toluol) versetzt. Anschließend versetzte man die Mischung mit 46,04 mg (16,67 • IO*5 mol) an Pentamethylcyclopentadienyltitan- trimethylat. Nun wurden weitere 9,8 ml der obengenannten MAO-Lö- sung hinzugegeben. Die Innentemperatur wurde auf 70°C einreguliert und man ließ 1 Stunde polymerisieren. Anschließend wurde die Polymerisation durch Zugabe von Methanol abgebrochen. Das erhaltene Polymere wurde mit Methanol gewaschen und bei 50°C im Vakuum getrocknet. Die Molmassenverteilung wurde durch Hochtempe- ratur-GPC (fielßermeations≤hromatographie) mit 1, 2, 4-Trichlor- benzol als Lösungsmittel bei 135°C bestimmt. Die Kalibrierung er¬ folgte mit engverteilten Polystyrolstandards.
Das Molekulargewicht Mw wurde durch GPC in 1,2, 4-Trichlorbenzol als Lösungsmittel bei 120°C bestimmt.
Komponenten B)
Bl) Ein Polyhexamethylenadipinsäureamid (PA 66) mit einer Viskositätszahl VZ von 150 ml/g (Ultramid® A3 der BASF Aktiengesellschaft) .
B2) Ein Poly-ε-caprolactam (PA 6) mit einer Viskositätszahl VZ von 125 ml/g (Ultramid® B25 der BASF Aktiengesellschaft) . B3) Ein Polyhexamethylenadipinsäureamid (PA 66) mit einer
Viskositätszahl VZ von 75 ml/g (Ultramid® A15) der BASF Aktiengesellschaft) .
Die Viskositätszahlen VZ der Komponenten Bl) , B2) und B3) wurden jeweils als 0,5 gew. -%ige Lösung in 96 %iger Schwefelsäure bei 25°C bestimmt.
Komponente C)
Ein modifizierter Polyphenylenether, hergestellt bei 300°C in einem Zweischneckenextruder durch Umsetzung von
ci) 99 Gew. -% Poly(2, 6-dimethyl-l,4-phenylen)ether mit η reä = 0,48 dl/g (bestimmt als 1 gew.-%ige Lösung in Chloroform bei 25°C) und
c3) 1 Gew.-% Fumarsäure
Die Schmelze wurde entgast, extrudiert, durch ein Wasserbad geleitet und granuliert.
Beispiele 1 bis 3: Herstellung der thermoplastischen Formmassen
Die Komponenten A),B) und C) wurden auf einem Zweischnecken- extruder (ZSK 30 der Firma Werner & Pfleiderer) bei einer Temperatur von 285°C gemischt, als Strang ausgetragen, im Wasser- bad abgekühlt und granuliert.
Anschließend wurde das getrocknete Granulat bei 290°C zu Rund¬ scheiben (Dicke 2 mm, Durchmesser 60 mm), Flachstäben (127 mm x 12,7 mm x 1,6 mm) und Normkleinstäben (50 mm x 6 mm x 4 mm) verarbeitet und untersucht.
Vergleichsbeispiele VI bis V4:
Es wurde wie in den Beispielen 1 bis 3 gearbeitet.
Für die Bestimmung der Wasseraufnahme wurden quadratische Probe- körper (10 mm x 10 mm x 1 mm) in destilliertes Wasser gelegt, nach einer definierten Zeit herausgenommen, abgetrocknet und aus¬ gewogen. Die relative Gewichtszunahme [%] bezieht sich auf das Gewicht des unbehandelten Probekörpers. Die Viskosität [Pas] wurde bei einer Temperatur von 290°C für ein L/D-Kapillarverhältnis (L = 30 mm, D = 1 mm) von 30/1 und einer Schergeschwindigkeit von 58 1/s bestimmt.
Die Zusammensetzung der Formmassen und ihre Eigenschaften sind der nachfolgen Tabelle zu entnehmen.

Claims

Patentansprüche
1. Thermoplastische Formmassen, enthaltend
A) 5 bis 97,9 Gew. -% eines vinylaromatischen Polymeren mit syndiotaktischer Struktur,
B) 2 bis 90 Gew.-% eines niederviskosen Polyamids mit einer Viskositätszahl VZ im Bereich von
50 bis 150 ml/g
und
C) 0,1 bis 50 Gew. -% eines mit polaren Gruppen modifizierten
Polyphenylenethers.
2. Thermoplastische Formmassen nach Anspruch 1, dadurch gekenn¬ zeichnet, daß sie
die Komponente A) in einer Menge von 15 bis 89,8 Gew. -%, die Komponente B) in einer Menge von 10 bis 80 Gew.-% und die Komponente C) in einer Menge von 0,2 bis 40 Gew. -%
enthalten.
3. Thermoplastische Formmassen nach den Ansprüchen 1 bis 2, da¬ durch gekennzeichnet, daß die Komponente A) aufgebaut ist aus Verbindungen der allgemeinen Formel I
R« in der die Substituenten folgende Bedeutung haben:
R1 Wasserstoff oder Ci- bis C4-Alkyl,
R2 bis R6 unabhängig voneinander Wasserstoff, Ci- bis
C12-Alkyl, C-6- bis Ciβ-Aryl, Halogen oder wobei zwei benachbarte Reste gemeinsam für 4 bis 15 C-Atome aufweisende cyclische Gruppen stehen.
4. Thermoplastische Formmassen nach den Ansprüchen 1 bis 3, da¬ durch gekennzeichnet, daß die Komponente C) aufgebaut ist aus
ci) 70 bis 99,95 Gew. -% eines Polyphenylenethers, c2) 0 bis 25 Gew.-% eines vinylaromatischen Polymeren, c3) 0,05 bis 5 Gew. -% mindestens einer Verbindung, die min¬ destens eine Doppel- oder Dreifachbindung und mindestens eine funktioneile Gruppe, ausgewählt aus der Gruppe der Carbonsäuren, Carbonsäureester, Carbonsäureanhydride, Carbonsäureamide, Epoxide, Oxazoline oder Urethane ent¬ hält.
5. Verwendung der thermoplastischen Formmassen gemäß den An¬ sprüchen 1 bis 4 zur Herstellung von Fasern, Folien und Form- körpern.
6. Fasern, Folien und Formkörper, erhältlich aus den thermo¬ plastischen Formmassen gemäß den Ansprüchen 1 bis 4 als wesentliche Komponente.
EP97916431A 1996-04-23 1997-04-03 Thermoplastische formmassen auf der basis von vinylaromatischen polymeren mit syndiotaktischer struktur, niederviskosen polyamiden und mit polaren gruppen modifizierten polyphenylenethern Withdrawn EP0895525A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19616075A DE19616075A1 (de) 1996-04-23 1996-04-23 Thermoplastische Formmassen auf der Basis von vinylaromatischen Polymeren mit syndiotaktischer Struktur, niederviskosen Polyamiden und mit polaren Gruppen modifizierten Polyphenylenethern
DE19616075 1996-04-23
PCT/EP1997/001671 WO1997040097A1 (de) 1996-04-23 1997-04-03 Thermoplastische formmassen auf der basis von vinylaromatischen polymeren mit syndiotaktischer struktur, niederviskosen polyamiden und mit polaren gruppen modifizierten polyphenylenethern

Publications (1)

Publication Number Publication Date
EP0895525A1 true EP0895525A1 (de) 1999-02-10

Family

ID=7792140

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97916431A Withdrawn EP0895525A1 (de) 1996-04-23 1997-04-03 Thermoplastische formmassen auf der basis von vinylaromatischen polymeren mit syndiotaktischer struktur, niederviskosen polyamiden und mit polaren gruppen modifizierten polyphenylenethern

Country Status (6)

Country Link
US (1) US6093771A (de)
EP (1) EP0895525A1 (de)
JP (1) JP2000508697A (de)
CN (1) CN1216560A (de)
DE (1) DE19616075A1 (de)
WO (1) WO1997040097A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19933279A1 (de) 1999-07-14 2001-03-01 Biotronik Mess & Therapieg Polymerwerkstoff
US20040054082A1 (en) * 2001-12-03 2004-03-18 Bank David H Toughened polymer blends with improved surface properties
US6894102B2 (en) * 2002-05-20 2005-05-17 General Electric Syndiotactic polystyrene blends
EP2031004A1 (de) * 2007-09-03 2009-03-04 Cytec Surface Specialties Austria GmbH Polyesterhybridharze
BRPI0911051A2 (pt) * 2008-04-15 2015-12-29 Denki Kagaku Kogyo Kk composição de resina termoplástica.
CN102639638A (zh) * 2008-12-24 2012-08-15 第一毛织株式会社 尼龙类合金树脂组合物及其led(发光二极管)反射器
US20110152420A1 (en) * 2009-12-22 2011-06-23 Mark Elkovitch Poly(arylene ether)/polyamide compositions, methods, and articles
US8450412B2 (en) * 2009-12-22 2013-05-28 Sabic Innovative Plastics Ip B.V. Flame retardant polyamide composition, method, and article
US8669332B2 (en) 2011-06-27 2014-03-11 Sabic Innovative Plastics Ip B.V. Poly(arylene ether)-polysiloxane composition and method
US9090999B2 (en) 2011-09-28 2015-07-28 Sabic Global Technologies B.V. Polyamide/polyphenylene ether fibers and fiber-forming method
US8722837B2 (en) 2012-01-31 2014-05-13 Sabic Innovative Plastics Ip B.V. Poly(phenylene ether)-polysiloxane composition and method

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4661922A (en) * 1982-12-08 1987-04-28 American Telephone And Telegraph Company Programmed logic array with two-level control timing
DE3321579A1 (de) * 1983-06-15 1984-12-20 Basf Ag, 6700 Ludwigshafen Verfahren zur kontinuierlichen herstellung von polyamiden
DE3889787D1 (de) * 1987-07-17 1994-07-07 Basf Ag Teilaromatische Copolyamide mit verringertem Triamingehalt.
DE3726283A1 (de) * 1987-08-07 1989-02-16 Basf Ag Thermoplastische formmassen
IT1223326B (it) * 1987-10-28 1990-09-19 Montedipe Spa Composizioni termoplastiche a base di polimeri sindiotattici dello stirene e polifenileneteri
AU628651B2 (en) * 1989-10-13 1992-09-17 Idemitsu Kosan Co. Ltd Styrene polymer composition
JP2923383B2 (ja) * 1991-10-01 1999-07-26 出光石油化学株式会社 スチレン系重合体の製造方法
DE4129499A1 (de) * 1991-09-05 1993-03-11 Basf Ag Thermoplastische polyphenylenether/polyamidformmassen mit duktilem bruchverhalten bei tiefen temperaturen
EP0546497A3 (en) * 1991-12-10 1993-11-18 Idemitsu Kosan Co Thermoplastic resin composition
JP3533534B2 (ja) * 1993-06-04 2004-05-31 出光興産株式会社 ポリスチレン系樹脂組成物
JP3531683B2 (ja) * 1993-06-04 2004-05-31 出光興産株式会社 ポリスチレン系樹脂組成物
JP3264462B2 (ja) * 1993-06-04 2002-03-11 出光興産株式会社 ポリスチレン系樹脂組成物
JPH08143729A (ja) * 1994-11-25 1996-06-04 Idemitsu Kosan Co Ltd ポリスチレン系樹脂組成物
JPH08302120A (ja) * 1995-04-28 1996-11-19 Idemitsu Kosan Co Ltd 難燃性樹脂組成物
JPH08319385A (ja) * 1995-05-26 1996-12-03 Idemitsu Petrochem Co Ltd ポリスチレン系樹脂組成物及びその成形品
JP3516364B2 (ja) * 1995-05-26 2004-04-05 出光石油化学株式会社 ポリスチレン系樹脂組成物及びその成形品
DE19535400A1 (de) * 1995-09-23 1997-03-27 Basf Ag Thermoplastische Formmassen auf der Basis von vinylaromatischen Polymeren mit syndiotaktischer Struktur, thermoplastischen Polyamiden und mit polaren Gruppen modifizierten Polyphenylenethern
DE19535417A1 (de) * 1995-09-23 1997-03-27 Basf Ag Thermoplastische Formmassen auf der Basis von vinylaromatischen Polymeren mit syndiotaktischer Struktur, thermoplastischen Polyamiden und mit polaren Gruppen modifiziierten Polyphenylenethern

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9740097A1 *

Also Published As

Publication number Publication date
JP2000508697A (ja) 2000-07-11
DE19616075A1 (de) 1997-10-30
US6093771A (en) 2000-07-25
WO1997040097A1 (de) 1997-10-30
CN1216560A (zh) 1999-05-12

Similar Documents

Publication Publication Date Title
EP0309907B1 (de) Selbstverlöschende thermoplastische Polyphenylenether-Polyamid-Formmassen
EP0678555B1 (de) Polyphenylenether/Polyamid-Formmassen
EP0654505A1 (de) PPE/PA-Formmassen zur Herstellung von Formkörpern mittels Blasformen, Profilextrusion und Rohrextrusion
DE4129500A1 (de) Hochschlagzaehe, flammgeschuetzte polyphenylenether/polyamidformmassen
WO1997040097A1 (de) Thermoplastische formmassen auf der basis von vinylaromatischen polymeren mit syndiotaktischer struktur, niederviskosen polyamiden und mit polaren gruppen modifizierten polyphenylenethern
EP0253123A1 (de) Thermoplastische Formmassen
DE3641497A1 (de) Thermoplastische formmassen auf der basis von polyamiden und polyaryletherketonen
EP0276768A2 (de) Kontinuierliches Verfahren zur Herstellung von Formmassen auf der Basis von Polyphenylenethern und Polyamiden
DE3707796A1 (de) Thermoplastische formmassen auf der basis von polyphenylenethern und polyamiden
EP0501175A1 (de) Faserverstärkte thermoplastische Formmassen
WO1997011123A1 (de) Thermoplastische formmassen auf der basis von vinylaromatischen polymeren mit syndiotaktischer struktur, thermoplastischen polyamiden und mit polaren gruppen modifizierten polyphenylenethern
EP0529378B1 (de) Thermoplastische Formmasse auf Basis von Polyamiden und Polyphenylenethern
WO1997011124A1 (de) Thermoplastische formmassen auf der basis von vinylaromatischen polymeren mit syndiotaktischer struktur, thermoplastischen polyamiden und mit polaren gruppen modifizierten polyphenylenethern
EP0586985B1 (de) Stabilisierte Polyamid/Polyphenylenetherformmassen
EP0237710A2 (de) Thermoplastische Formmassen
WO1998030630A1 (de) Thermoplastische formmassen
EP0510383A2 (de) Hochschlagzähe Formmassen
EP0222250A1 (de) Thermoplastische Formmassen
EP0194423A2 (de) Thermoplastische Formmassen
DE3929686A1 (de) Stabilisierte thermoplastische formmassen auf der basis von polyphenylenethern und polyamiden
DE19805586A1 (de) Glasfaserverstärkte Styrol/Diphenylethen-Copolymere
EP0372321A1 (de) Mischungen aus Polyphenylenether und hochschlagfestem Polystyrol
WO1999011714A1 (de) Thermoplastische formmassen auf basis von polyamid und styrol/diphenylethylen-copolymeren
EP0534196A1 (de) Thermoplastische Formmassen auf Basis von Polyamiden und Polyphenylenethern
DE4129499A1 (de) Thermoplastische polyphenylenether/polyamidformmassen mit duktilem bruchverhalten bei tiefen temperaturen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980904

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT NL

17Q First examination report despatched

Effective date: 19990129

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 20020109