WO1998030630A1 - Thermoplastische formmassen - Google Patents

Thermoplastische formmassen Download PDF

Info

Publication number
WO1998030630A1
WO1998030630A1 PCT/EP1997/007167 EP9707167W WO9830630A1 WO 1998030630 A1 WO1998030630 A1 WO 1998030630A1 EP 9707167 W EP9707167 W EP 9707167W WO 9830630 A1 WO9830630 A1 WO 9830630A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic molding
component
molding compositions
compositions according
diphenylethylene
Prior art date
Application number
PCT/EP1997/007167
Other languages
English (en)
French (fr)
Inventor
Michael Schneider
Josef WÜNSCH
Hermann Gausepohl
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to AU57615/98A priority Critical patent/AU5761598A/en
Priority to JP53050198A priority patent/JP2001507747A/ja
Priority to CA002277851A priority patent/CA2277851A1/en
Priority to EP97953874A priority patent/EP0951506A1/de
Priority to US09/341,320 priority patent/US6225413B1/en
Publication of WO1998030630A1 publication Critical patent/WO1998030630A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group

Definitions

  • the invention relates to thermoplastic molding compositions containing
  • the invention further relates to the use of the thermoplastic molding compositions for the production of fibers, films and moldings, and to the fibers, films and moldings obtainable therefrom.
  • syndiotactic polystyrene Due to its crystallinity, syndiotactic polystyrene has a very high melting point of approx. 270 ° C, high rigidity and tensile strength, dimensional stability, a low dielectric constant and a high chemical resistance. The mechanical property profile is maintained even at temperatures above the glass temperature.
  • the production of syndiotactic polystyrene in the presence of metallocene catalyst systems is known and z. B. described in detail in EP-A 0 535 582.
  • the glass temperature is only about 100 ° C.
  • thermoplastic molding compositions made from copolymers of vinylaromatic monomers and 1,1-diphenylethylene and other polymers such as polyphenylene ether or crystal-clear and impact-resistant polystyrene with glass transition temperatures above 130 ° C.
  • these molding compositions do not achieve the high heat resistance of molding compositions which contain syndiotactic polystyrene and tend to yellowing in the case of blends with polyphenylene ether.
  • the object of the invention was therefore to remedy the disadvantages mentioned and to provide thermoplastic molding compositions which have a high glass transition temperature and are resistant to high temperatures, are dimensionally stable and have a high rigidity and have low electrical conductivity and do not tend to yellowing.
  • thermoplastic molding compositions defined at the outset were found.
  • thermoplastic molding compositions for the production of fibers, films and moldings and the fibers, films and moldings obtainable therefrom were found.
  • thermoplastic molding compositions according to the invention contain, as component A), 5 to 95% by weight, preferably 10 to 75% by weight, in particular 25 to 75% by weight, of a vinylaromatic polymer with a syndiotactic structure.
  • component A a vinylaromatic polymer with a syndiotactic structure.
  • with syndiotactic structure means here that the polymers are essentially syndiotactic, ie the syndiotactic fraction determined according to 13 C-NMR is greater than 50%, preferably greater than 60%.
  • Component A) is preferably composed of compounds of the general formula I.
  • R 2 to R 6 independently of one another are hydrogen, Ci- to C ⁇ -alkyl , C ⁇ - to Ci ß- aryl, halogen or two adjacent radicals together for cyclic groups having 4 to 15 C atoms, for example C 4 -Cs -Cycloalkyl or fused ring systems.
  • Vinylaromatic compounds of the formula I are preferably used, in which
  • R 1 means hydrogen
  • C] _- come to C 4 alkyl, chlorine, phenyl, biphenyl, naphthalene or anthracene into consideration.
  • Two adjacent radicals can also together represent cyclic groups having 4 to 12 carbon atoms, so that as a compound of the general formula I, for example naphthalene derivatives or anthracene derivatives.
  • Styrene p-methylstyrene, p-chlorostyrene, 2, 4-dimethylstyrene, 4 -vinylbiphenyl, vinylnaphthalene or vinylanthracene.
  • Mixtures of different vinyl aromatic compounds can also be used, but preferably only one vinyl aromatic compound is used.
  • Particularly preferred vinyl aromatic compounds are styrene and p-methylstyrene.
  • s-PS syndiotactic polystyrene
  • Vinyl aromatic polymers with a syndiotactic structure and processes for their preparation are known per se and are described, for example, in EP-A 535 582.
  • the preparation is preferably carried out by reacting compounds of the general formula I in the presence of a metallocene complex and a cocatalyst.
  • a metallocene complex and a cocatalyst.
  • pentamethylcyclopentadienyltitanium trichloride, pentamethylcyclopentadienyltitanium trimethyl and pentamethylcyclopentadienyltitanium trimethylate are used as metallocene complexes.
  • the vinyl aromatic polymers with a syndiotactic structure generally have a molecular weight M w (weight average) of 5,000 to 10,000,000, in particular of 10,000 to 2,000,000 g / mol.
  • the molecular weight distributions M w / M n are generally in the range from 1.1 to 30, preferably from 1.4 to 10.
  • the thermoplastic molding compositions contain 5 to 95% by weight, preferably 25 to 90% by weight, in particular 25 to 75% by weight, of a copolymer of a vinylaromatic monomer and 1,1-diphenylethylene or its aromatic rings derivatives optionally substituted with alkyl groups with up to 22 carbon atoms.
  • Particularly suitable are copolymers with a proportion of 1, 1-diphenylethylene or its derivatives which is chosen so that the copolymer is well compatible with component A).
  • This is e.g. B. recognizable by the fact that the mixture with component A) has a single glass transition temperature and easily with thermal analysis methods such.
  • B. DSC differential scanning calorimetry
  • the content of 1,1-diphenylethylene in the copolymer is advantageously from 5 to 65% by weight, preferably from 10 to 45% by weight and very particularly preferably from 15 to 25% by weight, or the corresponding molar amount of 1, 1- Diphenylethylene derived derivative.
  • the weight average molecular weight M w of component A is 10,000 to 2,000,000 g / mol, preferably 20,000 to 1,000,000 and very particularly preferably 50,000 to 500,000 g / mol.
  • the sum of components A) and B) is 100% by weight.
  • Additives or processing aids or mixtures thereof can be added to the thermoplastic molding compositions according to the invention in customary amounts.
  • nucleating agents such as salts of carboxylic, organic sulfonic or phosphoric acids, preferably sodium benzoate, aluminum tris (p-tert-butyl benzoate), aluminum trisbenzoate, aluminum tris (p-carboxymethyl benzoate) and aluminum triscaproate;
  • Antioxidants such as phenolic antioxidants, phosphites or phosphonites, especially trisnonylphenyl phosphite; Stabilizers such as sterically hindered phenols and hydroquinones.
  • Lubricants and mold release agents, dyes, pigments and plasticizers can also be used.
  • Organophosphorus compounds such as phosphates or phosphine oxides, can be used as flame retardants.
  • phosphine oxides are triphenylphosphine oxide, tritolylphosphine oxide, trisnonylphenylphosphine oxide, tricyclohexylphosphine oxide, tris (n-butyl) phosphine oxide, tris (n-hexyl) phosphine oxide, tris- (n-octyl) phosphine oxide, tris (cyanoethyl) ) -phosphine oxide, benzylbis (cyclohexyl) -phosphine oxide, benzylbisphenylphosphine oxide, phenylbis (n-hexyl) -phosphine oxide. Triphenylphosphine oxide, tricyclohexylphosphine oxide, tris (n-octyl) phosphine oxide or tris (cyanoethyl) phosphine oxide are particularly preferably used.
  • Particularly suitable phosphates are alkyl and aryl-substituted phosphates.
  • Examples are phenylbisdodecylphosphate, phenylbisneopentylphosphate, phenylethyl hydrogen phosphate, phenyl bis- (3, 5, 5-trimethylhexyl) phosphate, ethyl diphenyl phosphate,
  • Phosphorus compounds in which each R is an aryl radical are particularly suitable. Triphenyl phosphate, trixylyl phosphate and trimesityl phosphate are very particularly suitable. Cyclic phosphates can also be used. Diphenylpentaerythritol diphosphate is particularly suitable. Resorcinol diphosphate is also preferred.
  • Mixtures of different phosphorus compounds can also be used.
  • rubber-elastic polymers can be added to the thermoplastic molding compositions according to the invention.
  • Graft rubbers with a crosslinked, elastomeric core and a graft cover made of polystyrene, EP and EPDM rubbers, block copolymers and thermoplastic polyester elastomers are only examples here.
  • a polyoctylene the name Vestenamer ® (Hüls AG), and a variety of suitable block copolymers having at least one vinyl aromatic and an elastomeric block.
  • suitable block copolymers having at least one vinyl aromatic and an elastomeric block.
  • Examples include the Cariflex ® TR types (Shell), the Kraton ® G types (Shell), the Finaprene ® types (Fina) and the Europrene ® SOL types (Enichem).
  • Block copolymers are preferably used.
  • thermoplastic molding compositions according to the invention can contain fibrous or particulate fillers or mixtures thereof.
  • Glass fibers can be equipped with a size and an adhesion promoter. The incorporation of these glass fibers can take the form of both short glass fibers as well as in the form of endless strands (rovings). Preferred glass fibers contain an aminosilane size.
  • Amorphous silica, magnesium carbonate, powdered quartz, mica, talc, feldspar or calcium silicates can also be used.
  • thermoplastic molding compositions according to the invention can be obtained by mixing the individual components at temperatures of 270 to 320 ° C. in conventional mixing devices, such as kneaders, Banbury mixers and single-screw extruders, but preferably using a twin-screw extruder. Intensive mixing is necessary to obtain the most homogeneous molding compound possible.
  • the mixing order of the components can be varied, so two or, if necessary, several components can be premixed, but all components can also be mixed together.
  • thermoplastic molding compositions according to the invention are notable for high heat resistance and high rigidity. They are suitable for the production of fibers, foils or molded articles.
  • styrene 104.2 g was placed in a round-bottom flask inertized with nitrogen, heated to 60 ° C. and mixed with 8.16 ml of methylaluminoxane (MAO) solution from Witco (1.53 molar in toluene) and 2 , 08 ml of diisobutylaluminum hydride (DIBAH) (1.0 molar in cyclohexane) from Aldrich. The mixture was then mixed with 9.5 mg (4.16 • 10 " 5 mol) of pentamethylcyclopentadienyltitanium trimethyl. The internal temperature was adjusted to 60 ° C. and the mixture was allowed to polymerize for 2 hours.
  • MAO methylaluminoxane
  • DIBAH diisobutylaluminum hydride
  • the polymerization was then terminated by adding methanol.
  • the polymer obtained was washed with methanol and dried in vacuo at 50 ° C.
  • Molar masses and molar mass distribution were determined by high-temperature GPC (gel chromatography) 1, 2, -Trichlorbenzol determined as a solvent at 135 ° C. The calibration was carried out using narrowly distributed polystyrene standards.
  • the product thus obtained is completely colorless and can be used directly in the anionic polymerization.
  • a 10 1 stirred kettle was pretreated with a solution of DPE / sec-butyllithium in cyclohexane under reflux for several hours before filling.
  • Component B2 10 (S / DPE copolymer with 30% DPE)
  • Components B2 were prepared as described for component B1, using 3086 ml (2800 g; 26.88 mol) of styrene and 1173 ml (1200 g; 6.66 mol) of 1,1-diphenylethene. It started with 50 ml of 0.32 molar sec-butyllithium solution in cyclohexane.
  • Components B3 were prepared as described for component B1, using 2425 ml (2 200 g; 21.12 mol) of styrene and 1759 ml (1800 g; 9.99 mol) of 1,1-diphenylethene. It started with 39.6 ml of 0.295 molar sec-butyllithium
  • the heat resistance was carried out by Vicat softening temperatures according to DIN 53 460.
  • the injection temperature was 10,290 ° and the mold temperature was 150 ° C.
  • the glass transition temperature Tg was determined by means of DSC.
  • thermoplastic molding compositions are summarized in the table.
  • Examples 1 to 4 according to the invention each show a marked increase in the heat resistance, compared to the pure components B1, B2 and B3, expressed in the Vicat A softening temperature.
  • test specimens from comparative experiment V4 show a slight yellowing, which intensifies when exposed to UV radiation and changes to a brown color.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Artificial Filaments (AREA)

Abstract

Die Erfindung betrifft thermoplastische Formassen enthaltend A) 5 bis 95 Gew.-% eines vinylaromatischen Polymeren mit syndiotaktischer Struktur und B) 5 bis 95 Gew.-% eines Copolymeren eines vinylaromatischen Monomeren und 1,1-Diphenylethylen oder dessen an den aromatischen Ringen ggf. mit Alkylgruppen mit bis zu 22 C-Atomen substituierten Derivaten.

Description

Thermoplastische Formmassen
Beschreibung
Die Erfindung betrifft thermoplastische Formmassen enthaltend
A) 5 bis 95 Gew.-% eines vinylaromatischen Polymeren mit syndiotaktischer Struktur und
B) 5 bis 95 Gew.-% eines Copolymeren eines vinylaromatischen Monomeren und 1, 1-Diphenylethylen oder dessen an den aromatischen Ringen ggf. mit Alkylgruppen mit bis zu 22 C-Atomen substituierten Derivaten.
Weiterhin betrifft die Erfindung die Verwendung der thermoplastischen Formmassen zur Herstellung von Fasern, Folien und Formkörpern, sowie die daraus erhältlichen Fasern, Folien und Formkörper .
Syndiotaktisches Polystyrol besitzt aufgrund seiner Kristallinität einen sehr hohen Schmelzpunkt von ca 270°C, hohe Steifigkeit und Zugfestigkeit, Dimensionsstabilität, eine niedrige Dielektrizitätskonstante und eine hohe Chemikalien- beständigkeit. Das mechanische Eigenschaftsprofil wird selbst bei Temperaturen über der Glastemperatur beibehalten. Die Herstellung von syndiotaktischem Polystyrol in Gegenwart von Metallocen- katalysatorsystemen ist bekannt und z. B. ausführlich beschrieben in EP-A 0 535 582.
Aufgrund des verbleibenden amorphen Anteils im syndiotaktischen Polystyrol beträgt die Glastemperatur allerdings nur etwa 100°C.
Die DE-A 44 36 499 (≤ WO 95/34586) beschreibt thermoplastische Formmassen aus Copolymeren von vinylaromatischen Monomeren und 1, 1-Diphenylethylen und weiteren Polymeren wie Polyphenylenether oder glasklares und schlagzähes Polystyrol mit Glastemperaturen über 130°C. Diese Formmassen erreichen aber nicht die hohe Wärme - formbeständigkeit von Formmassen die syndiotaktisches Polystyrol enthalten und neigen im Falle von Abmischungen mit Polyphenylenether zu Vergilbung.
Aufgabe der Erfindung war es daher, den genannten Nachteilen abzuhelfen und thermoplastische Formmassen zur Verfügung zu stellen, die eine hohe Glastemperatur besitzen und hoch- temperaturbeständig sind, dimensionsstabil , eine hohe Steifigkeit und eine geringe elektrische Leitfähigkeit aufweisen und nicht zu Vergilbung neigen.
Demgemäß wurden die eingangs definierten thermoplastischen Form- massen gefunden.
Weiterhin wurde die Verwendung der thermoplastischen Formmassen zur Herstellung von Fasern, Folien und Formkörpern gefunden sowie die daraus erhältlichen Fasern, Folien und Formkörper.
Die erfindungsgemäßen thermoplastischen Formmassen enthalten als Komponente A) 5 bis 95 Gew. -%, vorzugsweise 10 bis 75 Gew.-%, insbesondere 25 bis 75 Gew. -% eines vinylaromatischen Polymeren mit syndiotaktischer Struktur. Der Begriff "mit syndiotaktischer Struktur" bedeutet hier, daß die Polymeren im wesentlichen syndiotaktisch sind, d.h. der syndiotaktische Anteil bestimmt nach 13C-NMR ist größer als 50 %, bevorzugt größer als 60 %.
Vorzugsweise ist die Komponente A) aufgebaut aus Verbindungen der allgemeinen Formel I
Figure imgf000004_0001
in der die Substituenten folgende Bedeutung haben:
Wasserstoff oder Ci- bis C4-Alkyl,
R2 bis R6 unabhängig voneinander Wasserstoff, Ci- bis C^-Alkyl, Cξ - bis Ciß-Aryl, Halogen oder wobei zwei benachbarte Reste gemeinsam für 4 bis 15 C-Atome aufweisende cy- clische Gruppen, beispielsweise C4-Cs-Cycloalkyl oder anellierte Ringsysteme, stehen.
Bevorzugt werden vinylaromatische Verbindungen der Formel I ein- gesetzt, in denen
R1 Wasserstoff bedeutet.
Als Substituenten R2 bis R6 kommen insbesondere Wasserstoff, C]_- bis C4-Alkyl, Chlor, Phenyl, Biphenyl, Naphthalin oder Anthracen in Betracht. Zwei benachbarte Reste können auch gemeinsam für 4 bis 12 C-Atome aufweisende cyclische Gruppen stehen, so daß sich als Verbindung der allgemeinen Formel I beispielsweise Naphthalinderivate oder Anthracenderivate ergeben.
Beispiele für solche bevorzugte Verbindungen sind:
Styrol, p-Methylstyrol, p-Chlorstyrol, 2 , 4 -Dimethylstyrol , 4 -Vinylbiphenyl, Vinylnaphthalin oder Vinylanthracen.
Es können auch Mischungen verschiedener vinylaromatischer Verbindungen eingesetzt werden, vorzugsweise wird jedoch nur eine vinylaromatische Verbindung verwendet.
Besonders bevorzugte vinylaromatische Verbindungen sind Styrol und p-Methylstyrol.
Als Komponente A) können auch Mischungen verschiedener vinylaromatischer Polymere mit syndiotaktischer Struktur eingesetzt werden, bevorzugt wird jedoch nur ein vinylaromatisches Polymer verwendet, insbesondere syndiotaktisches Polystyrol (s-PS).
Vinylaromatische Polymere mit syndiotaktischer Struktur sowie Verfahren zu ihrer Herstellung sind an sich bekannt und beispielsweise in der EP-A 535 582 beschrieben. Bei der Herstellung geht man vorzugsweise so vor, daß man Verbindungen der allgemeinen Formel I in Gegenwart eines Metallocenkomplexes und eines Cokatalysators umsetzt. Als Metallocenkomplexe werden insbesondere Pentamethylcyclopentadienyltitantrichlorid, Penta- methylcyclopentadienyltitantrimethyl und Pentamethylcyclopenta- dienyltitantrimethylat verwendet .
Die vinylaromatischen Polymere mit syndiotaktischer Struktur haben i.a. ein Molekulargewicht Mw (Gewichtsmittelwert) von 5000 bis 10 000 000, insbesondere von 10 000 bis 2 000 000 g/mol. Die Molekulargewichtεverteilungen Mw/Mn liegen i.a. im Bereich von 1,1 bis 30, vorzugsweise von 1,4 bis 10.
Als Komponente B) enthalten die thermoplastischen Formmassen 5 bis 95 Gew.-%, bevorzugt 25 bis 90 Gew.-%, insbesondere 25 bis 75 Gew. -% eines Copolymeren eines vinylaromatischen Monomeren und 1, 1-Diphenylethylen oder dessen an den aromatischen Ringen ggf. mit Alkylgruppen mit bis zu 22 C-Atomen substituierten Derivaten. Insbesondere eignen sich Copolymere mit einem Anteil an 1, 1-Diphenylethylen oder dessen Derivaten der so gewählt wird, daß das Copolymer gut verträglich mit der Komponente A) ist. Dies ist z. B. daran erkennbar, daß die Abmischung mit der Komponente A) eine einzige Glasübergangstemperatur aufweist und leicht mit thermischen Analysenmethoden wie z. B. DSC (Differential scanning calorimetry) ermittelt werden kann. ZwecKmaßigerweise betragt der Gehalt an 1 , 1-Diphenylethylen im Copolymeren von 5 bis 65 Gew.%, bevorzugt von 10 bis 45 Gew.% und ganz besonders bevorzugt von 15 bis 25 Gew.% oder die entsprecnend molare Menge eines vom 1, 1-Diphenylethylen abgeleiteten Derivates. Das gewichtsmittlere Molekulargewicht Mw der Komponente A beträgt 10 000 bis 2 000 000 g/mol, vorzugsweise 20 000 bis 1 000 000 und ganz besonders bevorzugt 50 000 bis 500 000 g/mol.
Die als Komponente B) verwendbaren Copolymeren sind an sich bekannt. Ihre Herstellung ist in DE-A 44 36 499 ( = WO 95/34586) ausfuhrlich beschrieben.
Die Summe der Komponente A) und B) beträgt 100 Gew.-%.
Den erfindungsgemäßen thermoplastischen Formmassen können ggf. Zusatzstoffe oder Verarbeitungshilfsmittel oder deren Mischungen in üblichen Mengen zugesetzt werden.
Dies sind beispielsweise Nukleierungsmittel wie Salze von Carbon-, organischen Sulfon- oder Phosphorsäuren, bevorzugt Natriumbenzoat , Alu iniumtris (p- tert . -butylbenzoat) , Aluminium- trisbenzoat, Aluminiumtris (p-carboxymethylbenzoat) und Aluminium- triscaproat; Antioxidantien wie phenolische Antioxidantien, Phosphite oder Phoshonite, insbesondere Trisnonylphenylphosphit; Stabilisatoren wie sterisch gehinderte Phenole und Hydrochinone. Weiterhin können noch Gleit- und Entformungsmittel , Farbstoffe, Pigmente und Weichmacher eingesetzt werden.
Als Flammschutzmittel können phosphororganische Verbindungen, wie Phosphate oder Phosphinoxide eingesetzt werden.
Beispiele f r Phosphinoxide sind Triphenylphosphinoxid, Tritolyl- phosphinoxid, Trisnonylphenylphosphinoxid, Tricyclohexylphosphin- oxid, Tris- (n-butyl) -phosphinoxid, Tris- (n-hexyl) -phosphinoxid, Tris- (n-octyl) -phosphinoxid, Tris- (cyanoethyl) -phosphinoxid, Benzylbis (cyclohexyl) -phosphinoxid, Benzylbisphenylphosphinoxid, PhenyIbis- (n-hexyl) -phosphinoxid. Besonders bevorzugt eingesetzt werden Triphenylphosphinoxid, Tricyclohexylphosphinoxid, Tris-(n- octyl) -phosphinoxid oder Tris- (cyanoethyl) -phosphinoxid.
Als Phosphate kommen vor allem alkyl- und arylsubstituierte Phosphate in Betracht. Beispiele sind Phenylbisdodecylphosphat , Phenylbisneopentylphosphat, Phenylethylhydrogenphosphat, Phenyl- bis- (3 , 5 , 5-trimethylhexyl) hospha , Ethyldiphenylphosphat ,
Bis- (2-ethylhexyl) -p-tolyl-phosphat, Tπtolylphosphat, Trixylyl- phosphat, Trimesitylphosphat, Bis- (2-etnylhexyl) -phenylphosphat , Tris- (nonylphenyl) -phosphat, Bis- (dodecyl) -p- (tolyl) -phosphat, Tricresylphosphat, Triphenylphosphat , Di-butylphenylphosphat , p- Tolyl-bis- (2,5, 5-trimethylhexyl) -phosphat, 2-Ethylhexyldiphenyl - phosphat. Besonders geeignet sind Phosphorverbindungen, bei denen jedes R ein Aryl-Rest ist. Ganz besonders geeignet ist dabei Triphenylphosphat, Trixylylphosphat sowie Trimesitylphosphat . Des weiteren können auch cyclische Phosphate eingesetzt werden. Besonders geeignet ist hierbei Diphenylpentaerythritol-diphosphat . Bevorzugt ist auch Resorcinoldiphosphat .
Darüber hinaus können Mischungen unterschiedlicher Phosphor - Verbindungen verwendet werden.
Zur Zähmodifizierung können der erfindungsgemäßen thermoplastischen Formmassen kautschukelastische Polymerisate zugesetzt werden.
Diese kautschukelastischen Polymerisate sowie Verfahren zu ihrer Herstellung sind an sich bekannt und beispielsweise in der DE-A 41 29 499 beschrieben.
Nur beispielhaft seien hier Pfropfkautschuke mit einem vernetzten, elastomeren Kern und einer Pfropfhülle aus Polystyrol genannt, EP- und EPDM-Kautschuke, Blockcopolymere und thermoplasti - sehe Polyester-Elastomere.
Auch im Handel sind entsprechende Produkte erhältlich, z.B. ein Polyoctylen der Bezeichnung Vestenamer® (Hüls AG) , sowie eine Vielzahl geeigneter Blockcopolymere mit mindestens einem vinyl- aromatischen und einem elastomeren Block. Beispielhaft seien die Cariflex®-TR-Typen (Shell) , die Kraton®-G-Typen (Shell) , die Finaprene®-Typen (Fina) und die Europrene®- SOL- ypen (Enichem) genannt .
Bevorzugt werden Blockcopolymere verwendet.
Des weiteren können die erfindungsgemäßen thermoplastischen Formmassen faser- oder teilchenförmige Füllstoffe oder deren Mischungen enthalten.
Dies sind zum Beispiel Kohlenstoff- oder Glasfasern, Glasmatten, Glasseidenrovings oder Glaskugeln sowie Kaliumtitanatwhisker oder Aramidfasern, bevorzugt Glasfasern. Glasfasern können mit einer Schlichte und einem Haftvermittler ausgerüstet sein. Die Einar- beitung dieser Glasfasern kann sowohl in Form von Kurzglasfasern als auch in Form von Endlossträngen (Rovings) erfolgen. Bevorzugte Glasfasern enthalten eine Aminosilanschlichte.
Weiterhin können noch amorphe Kieselsäure, Magnesiumcarbonat , ge- pulverter Quarz, Glimmer, Talkum, Feldspat oder Calciumsilicate eingesetzt werden.
Die erfindungsgemäßen thermoplastischen Formmassen können durch Mischen der Einzelkomponenten bei Temperaturen von 270 bis 320°C in üblichen Mischvorrichtungen, wie Knetern, Banbury-Mischern und Einschneckenextruder, vorzugsweise jedoch mit einem Zwei - Schneckenextruder erhalten werden. Um eine möglichst homogene Formmasse zu erhalten, ist eine intensive Durchmischung notwendig. Die Abmischreihenfolge der Komponenten kann variiert werden, so können zwei oder gegebenenfalls auch mehrere Komponenten vorgemischt werden, es können aber auch alle Komponenten gemeinsam gemischt werden.
Die erfindungsgemäßen thermoplastischen Formmassen zeichnen sich durch eine hohe Wärmeformbeständigkeit und eine hohe Steifigkeit aus. Sie eignen sich zur Herstellung von Fasern, Folien oder Formkörpern.
Beispiele
Es wurden folgende Komponenten eingesetzt
Komponente A)
Ein s-PS mit Mw = 320 800, Mw/Mn = 2,1 und einem syndiotaktischen Anteil nach 13C-NMR von > 90 %, das folgendermaßen hergestellt wurde:
In einem mit Stickstoff inertisieren Rundkolben wurden 1,0 mol Styrol (104,2 g) vorgelegt, auf 60°C erwärmt und mit 8,16 ml Methylaluminoxan (MAO) -Lösung der Firma Witco (1,53 molar in Toluol) und 2,08 ml Diisobutylaluminiu hydrid (DIBAH) (1,0 molar in Cyclohexan) der Firma Aldrich versetzt. Anschließend versetzte man die Mischung mit 9 , 5 mg (4,16 • 10"5 mol) an Pentamethylcyclo- pentadienyltitantrimethyl. Die Innentemperatur wurde auf 60°C einreguliert und man ließ 2 Stunden polymerisieren. Anschließend wurde die Polymerisation durch Zugabe von Methanol abgebrochen. Das erhaltene Polymere wurde mit Methanol gewaschen und bei 50°C im Vakuum getrocknet. Molmassen und Molmassenverteilung wurde durch Hochtemperatur-GPC (Gelper eationschromatographie) mit 1, 2 , -Trichlorbenzol als Lösungsmittel bei 135°C bestimmt. Die Kalibrierung erfolgte mit engverteilten Polystyrolstandards .
Der Umsatz bezogen auf das eingesetzte Styrol betrug 73 %. 5
Komponenten B)
Reinigung von 1 , 1-Diphenylethylen (DPE)
10 Rohes DPE (Aldrich bzw. Herstellung durch Umsetzung von Phenyl - magnesiumbromid mit Acetophenon, Acetylierung mit Essigsäureanhydrid und thermischer Eliminierung von Essigsäure) wird über eine Kolonne mit mindestens 50 theoretischen Böden (Drehbandkolonne; für größere Mengen Kolonne mit Sulzer- ackungen) auf
15 99,8 % Reinheit aufdestilliert . Das meistschwach gelbe Destillat wird über eine 20 cm-Alox-Säule (Woelm-Alumina für die Chromatographie, wasserfrei) filtriert, mit 1,5 n sec-Butyllithium bis zur kräftigen Rotfärbung titriert und über eine einfache Brücke im Vakuum (1 mbar) abdestilliert und unter inerten Bedingungen
20 gelagert. Das so erhaltene Produkt ist vollkommen farblos und kann direkt in die anionische Polymerisation eingesetzt werden.
Polymerisation
25 Lösungen mit lebenden Anionen wurden grundsätzlich unter Reinst - Stickstoff gehandhabt. Die Lösungsmittel wurden über wasserfreiem Aluminiumoxid getrocknet.
In den folgenden Beispielen steht S für Styrol und DPE für 30 1, 1-Diphenylethylen und die Angaben in % beziehen sich auf das Gewicht, soweit nicht anders angegeben.
Komponente Bl
(S/DPE-Copolymer mit 15 % DPE) 35
Ein 10 -1 -Rührkessel wurde vor der Befüllung über mehrere Stunden mit einer Lösung von DPE/sec-Butyllithium in Cyclohexan unter Rückfluß vorbehandelt.
40 3760 ml Cyclohexan und 586 ml (600 g; 3,33 mol) 1 , 1 -Diphenylethen wurden vorgelegt und mit sec-Butyllithium bis zur Rotfärbung aus- titriert. Nun wurden 72,4 ml einer 0,27 M sec-Butyllithium- ösung in Cyclohexan zugegeben und auf 70°C erhitzt. Anschließend wurden 3748 ml (3400 g; 32,7 mol) Styrol in 200 ml Schritten alle 10 min
45 zugegeben. Nach 180 min Nachreaktionszeit wurde mit Ethanol bis zur Farblosigkeit titriert, das Polymer durch Eintropfen der Polymerlösung in Ethanol gefällt und das abfiltrierte und mehr- mals mit Ethanol gewaschene weiße Pulver 2 h bei 200°C im Vakuum (1 mbar) getrocknet.
Ausbeute: 3948 g (98,7 %) ; Styrolgehalt (FTIR) : 85,1 % (85 % 5 theor.); DPE-Gehalt (FTIR): 14,9 % (15 % theor.); TG (DSC):
121, 5°C (Breite der Glasstufe: 9°C) ; Molmassen (GPC, Polystyrol- Eichung, g/mol): Mn 177 000, Mw 245 000.
Komponente B2 10 (S/DPE -Copolymer mit 30 % DPE)
Die Herstellung der Komponenten B2 erfolgte wie für die Komponente Bl beschrieben, wobei 3086 ml (2800 g; 26,88 mol) Styrol und 1 173 ml (1200 g; 6,66 mol) 1, 1-Diphenylethen eingesetzt wur- 15 den. Gestartet wurde mit 50 ml 0,32 molarer sec-Buthyllithium- Lösung in Cyclohexan.
Ausbeute: 3940 g (98,5 %) ; Styrolgehalt (FTIR): 70,2 % (70 % theor.); DPE-Gehalt (FTIR): 29 , 8 % (30 % theor.); TG (DSC): 20 141, 7°C (Breite der Glasstufe: 10°C) ; Molmassen (GPC, Polystyrol- Eichung, g/mol): Mn 104 000, Mw 193 000.
Komponente B3
(S/DPE-Copolymer mit 45 % DPE)
25
Die Herstellung der Komponenten B3 erfolgte wie für die Komponente Bl beschrieben, wobei 2425 ml (2 200 g; 21,12 mol) Styrol und 1759 ml (1800 g; 9,99 mol) 1, 1 -Diphenylethen eingesetzt wurden. Gestartet wurde mit 39,6 ml 0,295 molarer sec-Butyllithium-
30 Lösung in Cyclohexan.
Ausbeute: 3936 g (98,4 %) ; Styrolgehalt (FTIR): 55,2 % (55 % theor.); DPE-Gehalt (FTIR): 44,8 % (45 % theor.); TG (DSC): 159°C (Breite der Glasstufe: 9°C) ; Molmassen (GPC, Polystyrol -Eichung, 35 g/mol): Mn 99 300, Mw 188 000.
Beispiele 1 bis 4
Herstellung der thermoplastischen Formmassen
40
Die in der Tabelle angegebenen Komponenten wurden auf einem Zwei- Schneckenextruder (ZSK 30 der Firma Werner & Pfleiderer) bei einer Temperatur von 290°C konfektioniert. Die Polymerschmelze wurde als Strang ausgetragen, im Wasserbad abgekühlt und granu- 45 liert. Vergleichsbeispiele VI bis V4 :
Es wurde wie in den Beispielen 1 bis 4 gearbeitet, wobei die reinen Komponenten Bl, B2, B3 (VI -V3) bzw. eine Mischung aus 50 5 B2 und 50 % Polyphenylenether (PPE) im Falle von V4 verwendet wurden .
Die Wärmeforrabestandigkeit wurde durch Vicat-Erweichungstempera- turen nach DIN 53 460 durchgeführt. Die Spritztemperatur betrug 10 290° und die Formtemperatur 150°C.
Die Glastemperatur Tg wurde mittels DSC bestimmt.
Die Zusammensetzungen und Eigenschaften der thermoplastischen 15 Formmassen sind in der Tabelle zusammengestellt.
Die erfindungsgemäßen Beispiele 1 bis 4 zeigen jeweils gegenüber den reinen Komponenten Bl, B2 und B3 ein deutliche Erhöhung in der Wärmeformbeständigkeit, ausgedrückt in der Vicat- A-Erwei- 20 chungstemperatur.
Die Probekörper aus Vergleichsversuch V4 zeigen eine leichte Gelbfärbung, die sich bei UV-Bestrahlung intensiviert und in einen braunen Farbton übergeht.
25
Tabelle
30
35
Figure imgf000011_0001
40
45

Claims

Patentansprüche
1. Thermoplastische Formmassen enthaltend
A) 5 bis 95 Gew.-% eines vinylaromatischen Polymeren mit syndiotaktischer Struktur und
B) 5 bis 95 Gew.-% eines Copolymeren eines vinylaromatischen Monomeren und 1, 1-Diphenylethylen oder dessen an den aromatischen Ringen ggf. mit Alkylgruppen mit bis zu
22 C- tomen substituierten Derivaten.
2. Thermoplastische Formmassen nach Anspruch 1, enthaltend
die Komponente A) in einer Menge von 10 bis 75 Gew.-% und
die Komponente B) in einer Menge von 25 bis 90 Gew.-%.
3. Thermoplastische Formmassen nach den Ansprüchen 1 oder 2, in denen der Anteil an 1, 1-Diphenylethylen oder dessen Derivaten in der Komponenten B) so gewählt wird, daß die Komponente B) gut verträglich mit der Komponente A) ist, erkennbar an einer einzigen Glasübergangstemperatur der thermoplastischen Form- masse.
4. Thermoplastische Formmassen nach den Ansprüchen 1 bis 3, in denen die Komponente A) aus syndiotaktischem Polystyrol besteht.
5. Thermoplastische Formmassen nach den Ansprüchen 1 bis 4, in denen die Komponente B) ein Copolymer aus Styrol und
1, 1-Diphenylethylen ist.
6. Verwendung der thermoplastischen Formmassen gemäß den
Ansprüchen 1 bis 5 zur Herstellung von Fasern, Folien und Formkörpern.
7. Fasern, Folien und Formkörpern, erhältlich aus den thermo- plastischen Formmassen gemäß den Ansprüchen 1 bis 5 als wesentliche Komponente.
PCT/EP1997/007167 1997-01-09 1997-12-19 Thermoplastische formmassen WO1998030630A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU57615/98A AU5761598A (en) 1997-01-09 1997-12-19 Thermoplastic moulding compounds
JP53050198A JP2001507747A (ja) 1997-01-09 1997-12-19 熱可塑性成形用材料
CA002277851A CA2277851A1 (en) 1997-01-09 1997-12-19 Thermoplastic moulding compounds
EP97953874A EP0951506A1 (de) 1997-01-09 1997-12-19 Thermoplastische formmassen
US09/341,320 US6225413B1 (en) 1997-01-09 1997-12-19 Thermoplastic moulding compounds

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19700306A DE19700306A1 (de) 1997-01-09 1997-01-09 Thermoplastische Formmassen
DE19700306.0 1997-01-09

Publications (1)

Publication Number Publication Date
WO1998030630A1 true WO1998030630A1 (de) 1998-07-16

Family

ID=7816918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/007167 WO1998030630A1 (de) 1997-01-09 1997-12-19 Thermoplastische formmassen

Country Status (10)

Country Link
US (1) US6225413B1 (de)
EP (1) EP0951506A1 (de)
JP (1) JP2001507747A (de)
KR (1) KR20000069975A (de)
CN (1) CN1244883A (de)
AU (1) AU5761598A (de)
CA (1) CA2277851A1 (de)
DE (1) DE19700306A1 (de)
TW (1) TW528778B (de)
WO (1) WO1998030630A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999041312A1 (de) * 1998-02-12 1999-08-19 Basf Aktiengesellschaft Transparente thermoplastische formmassen auf basis von styrol/diphenylethylen-copolymeren

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19836410A1 (de) * 1998-08-13 2000-02-17 Basf Ag Thermoplastische Formmassen auf der Basis von Sternpolymeren, thermoplastischen Elastomeren und Polyarylenethern
DE10126650B4 (de) * 2001-06-01 2005-08-18 Basf Coatings Ag Funktionale organische Pulver, Verfahren zu ihrer Herstellung und ihre Verwendung
US20100010147A1 (en) * 2008-07-08 2010-01-14 Kraton Polymer U.S. Llc Adhesives prepared from diphenylethylene containing block copolymers
US20100010154A1 (en) * 2008-07-08 2010-01-14 Kraton Polymers U.S. Llc Gels prepared from dpe containing block copolymers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995034586A2 (de) * 1994-06-16 1995-12-21 Basf Aktiengesellschaft Thermoplastische formmasse
EP0732359A1 (de) * 1995-03-13 1996-09-18 Basf Aktiengesellschaft Flammgeschützte thermoplastische Formmassen

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2923383B2 (ja) 1991-10-01 1999-07-26 出光石油化学株式会社 スチレン系重合体の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995034586A2 (de) * 1994-06-16 1995-12-21 Basf Aktiengesellschaft Thermoplastische formmasse
EP0732359A1 (de) * 1995-03-13 1996-09-18 Basf Aktiengesellschaft Flammgeschützte thermoplastische Formmassen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999041312A1 (de) * 1998-02-12 1999-08-19 Basf Aktiengesellschaft Transparente thermoplastische formmassen auf basis von styrol/diphenylethylen-copolymeren

Also Published As

Publication number Publication date
TW528778B (en) 2003-04-21
AU5761598A (en) 1998-08-03
EP0951506A1 (de) 1999-10-27
KR20000069975A (ko) 2000-11-25
DE19700306A1 (de) 1998-07-16
CN1244883A (zh) 2000-02-16
CA2277851A1 (en) 1998-07-16
JP2001507747A (ja) 2001-06-12
US6225413B1 (en) 2001-05-01

Similar Documents

Publication Publication Date Title
DE69327754T2 (de) Styrolharzzusammensetzung
WO2003033565A1 (de) Thermoplastische formmassen mit verbesserter schmelzestabilität auf basis von polyarylenethersulfonen
WO2001074942A1 (de) Schlagzähe thermoplastische formmassen aus syndiotaktischem polystyrol, glasfasern und tpe-schlagzähmodifier
DE60015403T2 (de) Syndiotaktische Polystyrolharzzusammensetzung mit guter Schlagfestigkeit
EP0895525A1 (de) Thermoplastische formmassen auf der basis von vinylaromatischen polymeren mit syndiotaktischer struktur, niederviskosen polyamiden und mit polaren gruppen modifizierten polyphenylenethern
WO1998030630A1 (de) Thermoplastische formmassen
DE3006743A1 (de) Pfropfcopolymerisate, verfahren zu ihrer herstellung und ihre verwendung
DE3730886A1 (de) Transparente, schlagfeste thermoplastische formmasse, verfahren zur herstellung derselben und ihre verwendung
WO2001074943A1 (de) Schlagzähe thermoplastische formmassen aus syndiotaktischem polystyrol, glasfasern und acrylat-schlagzähmodifier
DE69101921T2 (de) Phosphortrilactame und verfahren zu deren herstellung.
EP0457138A2 (de) Thermoplastische Formmassen auf der Basis von Polyestern und Polyphenylenethern
EP0194423B1 (de) Thermoplastische Formmassen
DE19535400A1 (de) Thermoplastische Formmassen auf der Basis von vinylaromatischen Polymeren mit syndiotaktischer Struktur, thermoplastischen Polyamiden und mit polaren Gruppen modifizierten Polyphenylenethern
DE2136837B2 (de) Verfahren zur Herstellung von amorphen Polyphenylenoxiden
DE2730345A1 (de) Flammhemmende polyphenylenaethermassen
DE3540120A1 (de) Thermoplastische formmassen
DE3315802A1 (de) Verfahren zur herstellung von kunststoffadditive enthaltenden polyphenylenethern und deren verwendung als mischungskomponente mit anderen polymeren
JPH04370134A (ja) 非ハロゲン系難燃性樹脂組成物
DE3815254A1 (de) Hochtemperaturbestaendige mischungen aus einem thermoplastischen elastomeren und einem thermoplasten
EP0234390A1 (de) Thermoplastische formmassen auf der Basis von Polyamiden und Styrolcopolymeren
DE2439349C2 (de) Verfahren zur Herstellung einer Zusammensetzung aus einer Vinyladditionspolymerkomponente und einer Polyphenylenätherharzkomponente
EP1117737A1 (de) Schlagzähe thermoplastische formmassen aus syndiotaktischem polystyrol und acrylatmodifier
DE19737959A1 (de) Thermoplastische Formmassen auf Basis von Polyamid und Styrol/Diphenylethylen-Copolymeren
JPH0428744A (ja) 樹脂組成物
WO1999041311A1 (de) Glasfaserverstärkte styrol/diphenylethen-copolymere

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97181338.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AU BG BR BY CA CN CZ GE HU ID IL JP KR KZ LT LV MX NO NZ PL RO RU SG SI SK TR UA US AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997953874

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2277851

Country of ref document: CA

Ref document number: 2277851

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/a/1999/006317

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 09341320

Country of ref document: US

Ref document number: 1019997006190

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 1998 530501

Country of ref document: JP

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1997953874

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997006190

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1997953874

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1019997006190

Country of ref document: KR