WO1999041311A1 - Glasfaserverstärkte styrol/diphenylethen-copolymere - Google Patents

Glasfaserverstärkte styrol/diphenylethen-copolymere Download PDF

Info

Publication number
WO1999041311A1
WO1999041311A1 PCT/EP1999/000617 EP9900617W WO9941311A1 WO 1999041311 A1 WO1999041311 A1 WO 1999041311A1 EP 9900617 W EP9900617 W EP 9900617W WO 9941311 A1 WO9941311 A1 WO 9941311A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
molding compositions
thermoplastic molding
diphenylethene
polymer
Prior art date
Application number
PCT/EP1999/000617
Other languages
English (en)
French (fr)
Inventor
Michael Schneider
Axel Gottschalk
Hermann Gausepohl
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to AU27215/99A priority Critical patent/AU2721599A/en
Publication of WO1999041311A1 publication Critical patent/WO1999041311A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds

Definitions

  • the invention relates to thermoplastic molding compositions containing
  • the invention relates to the use of the thermoplastic molding compositions for the production of fibers, films and moldings and also fibers, films and moldings therefrom.
  • Thermoplastic molding compositions based on styrene / 1,1-diphenylethene copolymers are known, for example, from WO 95/34586. They have high glass transition temperatures and stiffness, but are inadequate toughness for some applications. Various attempts have therefore been made to modify the styrene / 1,1-diphenylethene copolymers with rubbers. However, the high stiffness is reduced by the toughness modification.
  • the object of the present invention was therefore to provide thermoplastic molding compositions with good heat resistance and rigidity with high toughness at the same time.
  • thermoplastic molding compositions described at the outset are achieved by the thermoplastic molding compositions described at the outset.
  • the molding compositions contain 30 to 98% by weight, preferably 40 to 90% by weight and very particularly preferably 50 to 80% by weight of a copolymer of vinylaromatic monomers and 1, 1-diphenylethene or its other aromatic rings derivatives substituted with alkyl groups with up to 22 carbon atoms.
  • a random copolymer of styrene and 1,1-diphenylethylene is preferably used.
  • the content of 1,1-diphenylethene in the copolymer is expediently from 15 to 63% by weight, preferably from 15 to 45% by weight, or the corresponding molar amount of a derivative derived from 1,1-diphenylethylene.
  • the weight average molecular weight Mw of component A is 10,000 to 2,000,000 g / mol, preferably 20,000 to 1,000,000 and very particularly preferably 50,000 to 500,000 g / mol.
  • copolymers which can be used as component A) are known per se. Their manufacture is described in detail in WO 95/34586.
  • the molding compositions according to the invention contain 1 to 50% by weight, preferably 5 to 45% by weight and particularly preferably 10 to 40% by weight of fibrous or particulate fillers or their mixtures.
  • Preferred fibrous fillers and reinforcing agents are carbon fibers, potassium titanate whiskers, aramid fibers and particularly preferably glass fibers. If glass fibers are used, they can be equipped with a size and an adhesive agent for better compatibility. In general, the glass fibers used have a diameter in the range from 6 to 20 ⁇ .
  • glass fibers can be incorporated both in the form of short glass fibers and in the form of endless strands (rovings).
  • the average length of the glass fibers is preferably in the range from 0.08 to 0.5 mm.
  • Amorphous silica, magnesium carbonate, chalk, powdered quartz, mica, talc, feldspar and in particular calcium silicates such as wollastonite and kaolin (in particular calcined kaolin) are suitable as particulate fillers.
  • the fibrous or particulate fillers are preferably provided with a reactive size, for example with an aminosilane.
  • the molding compositions according to the invention contain 1 to 20% by weight, preferably 1 to 10% by weight, of a polymer or polymer mixture modified with polar groups.
  • Polymers modified with polar groups are preferably polyphenylene ethers and styrene polymers.
  • the polymers or polymer mixtures preferably contain at least one carbonyl, carboxylic acid, acid anhydride, acid imide, carboxylic ester, carboxylate, amino, hydroxyl, epoxy, oxazoline, isocyanate, urethane, urea, Lactam or halobenzyl group.
  • the polar group used is one which reacts with the size of component C).
  • polyphenylene ethers modified with polar groups and processes for their preparation are known per se and are described, for example, in DE-A 41 29 499.
  • Polyphenylene ethers modified with polar groups and composed of are preferably used as component C)
  • Ci 70 to 99.95% by weight of a polyphenylene ether
  • c 3 0.05 to 5% by weight of at least one compound which contains at least one double or triple bond and at least one functional group selected from the group of carboxylic acids, carboxylic acid esters, carboxylic acid anhydrides, carboxylic acid amides, epoxides, oxazolines or urethanes .
  • polyphenylene ethers ci) are poly (2,6-dilauryl-1,4-phenylene) ether,
  • Polyphenylene ethers in which the substituents are alkyl radicals having 1 to 4 carbon atoms such as poly (2,6-dimethyl-1,4-phenylene) ether, poly (2,6-diethyl-1,4-phenylene) ether, are preferably used, Poly (2-methyl-6-ethyl-1,4-phenylene) ether, Poly (2-methyl-6-propyl-l, 4-phenylene) ether, poly (2, 6-dipropyl-l, 4-phenylene) ether and poly (2-ethyl-6-propyl-l, 4-phenylene) ether.
  • vinyl aromatic polymers c 2 can be found in the monograph by Olabisi, pp. 224 to 230 and 245. Vinyl aromatic polymers made from styrene, chlorostyrene, ⁇ -methylstyrene and p-methylstyrene are only representative here; in minor proportions (preferably not more than 20, in particular
  • comonomers such as (meth) acrylonitrile or (meth) acrylic acid esters can also be involved in the structure.
  • Particularly preferred vinyl aromatic polymers are polystyrene and impact modified polystyrene. It is understood that mixtures of these polymers can also be used.
  • Production is preferably carried out according to the method described in EP-A 302 485.
  • Suitable modifiers c 3 are, for example, maleic acid, methyl maleic acid, itaconic acid, tetrahydrophthalic acid, their
  • N-vinylpyrrolidone and (meth) acryloylcaprolactam may also be mentioned, for example.
  • modifiers includes, for example, the acid chloride of trimellitic anhydride, benzene-1,2-dicarboxylic acid anhydride-4-carboxylic acid acetic anhydride, pyromellitic acid dianhydride, chloroethanoylsuccinaldehyde, chloroformylsuccinic acid
  • Particularly preferred polyphenylene ethers C) modified with polar groups in the molding compositions according to the invention are obtained by modification with maleic acid, maleic anhydride or fumaric acid.
  • Such polyphenylene ethers preferably have a molecular weight (weight average M w ) in the range from 10,000 to 80,000, preferably from 20,000 to 60,000.
  • the molding compositions according to the invention can contain 0 to 45 68% by weight of further additives as component D).
  • additives include, for example, impact-modifying polymers, flame retardants, Stabilizers, lubricants, antiblocking agents, release agents, antistatic agents and colorants.
  • the impact-modifying polymers used to improve the toughness are used in amounts of 0 to 30, preferably 3 to 20 and in particular 5 to 15% by weight.
  • Polyoctenylenes graft rubbers with a cross-linked, elastomeric core, which is derived, for example, from butadiene, isoprene or alkyl acrylates and a graft shell made from polystyrene, further copolymers from ethylene and acrylates or methacrylates, and the so-called ethylene propylene (EP) - And ethylene-propylene-diene (EPDM) rubbers, furthermore the EP or EPDM rubbers grafted with styrene.
  • EP ethylene propylene
  • EPDM ethylene-propylene-diene
  • block copolymers with up to six, preferably with up to four identical or different blocks, which can be connected both linearly and in a star shape (so-called radial block copolymers), can be used.
  • Block copolymers are preferred which have at least one block of vinyl aromatic monomers, which is preferably located at the end of the polymer chain.
  • Mixtures of block copolymers of various structures e.g. Mixtures of two- and three-block copolymers or of wholly or partly hydrogenated and unhydrogenated block copolymers can also be used.
  • a polyoctylene the name Vestenamer ® (Hüls AG), metallocenka- talytician polyethylenes such Affinity ® (DOW) or Luflexen ® (BASF), and a variety of suitable block copolymers with at least one vinyl aromatic and an elastomeric block.
  • suitable block copolymers with at least one vinyl aromatic and an elastomeric block.
  • Examples include the Cariflex ® TR types (Shell), the Kraton ® G types (Shell), the Finaprene ® types (Fina), the Europrene ® SOL TR types (Eniche) and Styroflex ® and Styrolux ® (BASF) called.
  • the molding compositions according to the invention can furthermore contain flame retardants in a concentration of 0 to 20% by weight, preferably 1 to 15% by weight, in particular 3 to 10% by weight, based on the total weight of the molding composition.
  • Suitable flame retardants are e.g. Polyhalodiphenyl, polyhalodiphenyl ether, polyhalophthalic acid and its derivatives, polyhalogen oligo- and polycarbonates, the corresponding bromine compounds being particularly effective.
  • Examples include polymers of 2, 6, 2 ', 6'-tetrabromobisphenol A, tetrabromophthalic acid, 2, 6-dibromophenol and 2,4,6-tribromophenol and their derivatives.
  • the preferred flame retardant is elemental phosphorus.
  • the elementary phosphorus can e.g. Polyurethanes or aminoplasts are desensitized or coated.
  • concentrates of red phosphorus are e.g. in a polyamide, elastomer or polyolefin.
  • Combinations of elemental phosphorus with 1, 2, 3, 4, 7, 8, 9, 10, 13, 13, 14, 14-dodecachloro-1, 4, 4a, 5, 6, 6a, 7, - 10 are particularly preferred , 10a, 11, 12, 12a-dodecahydro-l, 4: 7, 10-dimethanodibenzo (a, e) -Cy- clooctan (Dechlorane Plus ®, Occidental Chemical Corp.) and, optionally, a synergist such as antimony trioxide.
  • Phosphorus compounds such as organic phosphates, phosphonates, phosphinates, phosphine oxides, phosphines or phosphites are also preferred.
  • Triphenylphosphine oxide and triphenylphosphate may be mentioned as examples. This can be used alone or mixed with hexabromobenzene or a chlorinated biphenyl and, optionally, antimony oxide.
  • Typical of the preferred phosphorus compounds that can be used in accordance with the present invention are those of the following general formula
  • Q represents the same or different hydrocarbon radicals, such as alkyl, cycloalkyl, aryl, alkyl-substituted aryl and aryl-substituted alkyl, furthermore halogen, hydrogen and their combinations, provided that at least one of the radicals representing Q is an aryl radical.
  • Suitable phosphates are e.g. the following: phenyl bisdodecyl phosphate, phenyl bis neopentyl phosphate, phenyl ethylene hydrogen phosphate, phenyl bis (3-5, 5'-trimethyl hexyl phosphate), ethyl diphenyl phosphate, 2-ethyl hexyl di (p-tolyl) phosphate, bis (2-ethyl hexyl) phenyl phosphate (nonylphenyl) phosphate, phenylmethyl hydrogen phosphate, di (dodecyl) p-tolyl phosphate, tri-cresyl phosphate, triphenyl phosphate, dibutylphenyl phosphate and diphenyl hydrogen phosphate.
  • the preferred phosphates are those where each Q is aryl.
  • the most preferred phosphate is triphenyl phosphate.
  • Compounds which contain phosphorus-nitrogen bonds such as phosphoronitrile chloride, phosphoric acid ester amides, phosphoric acid ester amines, phosphoric acid amides, phosphonic acid amides, phosphinic acid amides, tris (azidinyl) phosphine oxide or tetrakis (hydroxymethyl) phosphonium chloride, are also suitable as flame retardants. Most of these flame retardant additives are commercially available.
  • halogen-containing flame retardants are tetrabromobenzene, hexachlorobenzene and hexabromobenzene as well as halogenated polystyrenes and polyphenylene ethers.
  • halogenated phthalimides described in DE-A-19 46 924 can also be used. Of these, N, N'-ethylene bistetrabromophthalimide in particular has gained importance.
  • additives are, for example, stabilizers and oxidation inhibitors, agents against heat decomposition and decomposition by ultraviolet light, lubricants and mold release agents, dyes, pigments and plasticizers.
  • Oxidation retarders and heat stabilizers which can be added to the thermoplastic compositions according to the invention are, for example, halides of metals of group I of the periodic table, for example sodium, potassium, lithium halides, if appropriate in combination with copper (I) Haiogenides, e.g. chlorides, bromides or iodides. Zinc fluoride and zinc chloride can also be used. Sterically hindered phenols, hydroquinones, substituted representatives of this group and mixtures of these compounds, preferably in concentrations of up to 1% by weight, based on the weight of the mixture, can be used. Examples of UV stabilizers are various substituted resorcinols, salicylates, benzotriazoles and benzophenones, which are generally used in amounts of up to 2% by weight.
  • Materials for increasing the shielding against electromagnetic waves such as metal flakes, powders, fibers, metal-coated fillers can also be used.
  • Lubricants and mold release agents which are generally added in amounts of up to 1% by weight to the thermoplastic composition, are stearic acid, stearyl alcohol, alkyl stearates and amides, and esters of pentaerythritol with long-chain fatty acids.
  • the additives also include stabilizers that prevent the decomposition of the red phosphorus in the presence of moisture and atmospheric oxygen.
  • stabilizers that prevent the decomposition of the red phosphorus in the presence of moisture and atmospheric oxygen.
  • Compounds of cadmium, zinc, aluminum, silver, iron, copper, antimony, tin, magnesium, manganese, vanadium, boron, aluminum and titanium may be mentioned as examples.
  • Particularly suitable connections are e.g. Oxides of the metals mentioned, furthermore carbonates or oxicarbonates,
  • Hydroxides and salts of organic or inorganic acids such as acetates or phosphates or hydrogen phosphates and sulfates.
  • thermoplastic molding compositions according to the invention can be prepared by processes known per se, by mixing the starting components A), B) and C) and, if appropriate, further additives and processing aids D) in conventional mixing devices such as screw extruders, preferably twin-screw extruders, Brabender mills or Banbury mills, and then extruded. After the extrusion, the extrudate is cooled and crushed.
  • compositions according to the invention can also be produced by a pultrusion process as described in EP-A-56 703.
  • the glass fiber strand is impregnated with the polymer mass and then cooled and crushed.
  • the glass fiber length is identical to the granulate length and is between 3 and 20 mm.
  • the thermoplastic molding compositions according to the invention are notable for high heat resistance, high rigidity and toughness. They are suitable for the production of fibers, foils or molded articles. 5
  • a styrene / 1,1-diphenylethene copolymer with 30% by weight 1,1-diphenylethene and a weight average molecular weight M w of 210,000 g / mol was produced according to the examples in WO 95/34586:
  • a 10-1 metal kettle with a double jacket for cooling and heating and stirrer was inertized for several hours with a refluxing solution of DPE / sec-butyllithium in cyclohexane.
  • Continuous glass fibers with a diameter of 10 mm and an aminosilane size (glass fiber CS 3540 from PPG)
  • Wollastonite having an aminosilane, bulk density of 0.58 g / ml (DIN 53468), particle size d 95%: 13, d 5 o%: 3.5 microns (. Tremin 283/600 AST Fa Quarzwerke)
  • the degassed melt was extruded as a strand in a water bath.
  • the granules obtained were then dried.
  • Components A), B), C) and D) were melted in the proportions by weight given in Table 1 in a twin-screw extruder (ZSK 30 from Werner & Pfleiderer) at a temperature of 280 ° C., homogenized and extruded as a strand into a water bath . The dried granules were then sprayed into standard test pieces.
  • ZSK 30 from Werner & Pfleiderer
  • the modulus of elasticity and the yield stress were determined on standard test specimens in accordance with ISO 527.
  • the notched impact strength (Charpy) was determined notched (ak) and notched (on) from the impact bending test according to ISO 179.
  • the molding compounds with glass fiber (example 1) or wollastonite (example 2) show a significantly higher stiffness and surprisingly a higher toughness compared to the pure styrene-1, 1-diphenylethene copolymer (comparative experiment VI), which is increased by addition of a rubber (Examples 2 and 4) can be further increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Thermoplastische Formmassen, enthaltend A) 30 bis 98 Gew.-% eines Copolymeren aus vinylaromatischen Monomeren und 1,1-Diphenylethen oder dessen an den aromatischen Ringen gegebenenfalls mit Alkylgruppen mit bis zu 22 C-Atomen substituierten Derivaten, B) 1 bis 50 Gew.-% faser- oder teilchenförmige Füllstoffe oder deren Mischungen, C) 1 bis 20 Gew.-% eines mit polaren Gruppen modifizierten Polymeren oder Polymermischungen und D) 0 bis 68 Gew.-% weitere Zusatzstoffe, wobei die Summe aus A), B) und C) 100 Gew.-% beträgt.

Description

Glasfaserverstärkte Styrol/Diphenylethen-Copolymere
Beschreibung
Die Erfindung betrifft thermoplastische Formmassen, enthaltend
A) 30 bis 98 Gew.-% eines Copolymeren aus vinylaromatischen Monomeren und 1 , 1-Diphenylethen oder dessen an den aromatischen Ringen gegebenenfalls mit Alkylgruppen mit bis zu 22 C-Atomen substituieren Derivaten,
B) 1 bis 50 Gew.-% faser- oder teilchenförmiger Füllstoffe oder deren Mischungen,
C) 1 bis 20 Gew.-% eines mit polaren Gruppen modifizierten Polymeren oder Polymermischungen und
D) 0 bis 68 Gew.-% weitere Zusatzstoffe,
wobei die Summe aus A) , B) und C) 100 Gew.-% beträgt.
Des Weiteren betrifft die Erfindung die Verwendung der thermoplastischen Formmassen zur Herstellung von Fasern, Folien und Form- körpern sowie Fasern, Folien und Formkörpern daraus.
Thermoplastische Formmassen auf Basis von Styrol/1, 1-Diphenyl- ethen-Copolymeren sind beispielsweise aus WO 95/34586 bekannt. Sie besitzen hohe Glasübergangstemperaturen und Steifigkeiten, weisen für einige Anwendungen jedoch eine unzureichende Zähigkeit auf. Es wurde daher verschiedentlich versucht, die Styrol/1, 1-Di- phenylethen-Copolymere mit Kautschuken zu modifizieren. Durch die Zähmodifizierung wird jedoch die hohe Steifigkeit herabgesetzt.
Aufgabe der vorliegenden Erfindung war es daher, thermoplastische Formmassen mit guter Wärmeformbeständigkeit und Steifigkeit bei gleichzeitig hoher Zähigkeit bereitzustellen.
Demgemäß wurden die eingangs beschriebenen thermoplastischen Formmassen gefunden.
Als Komponente A) enthalten die Formmassen 30 bis 98 Gew.-%, bevorzugt 40 bis 90 Gew.-% und ganz besonders bevorzugt 50 bis 80 Gew.-% eines Copolymeren aus vinylaromatischen Monomeren und ,1, 1-Diphenylethen oder dessen an den aromatischen Ringen gegebe- nenfalls mit Alkylgruppen mit bis zu 22 C-Atomen substituieren Derivaten.
Bevorzugt wird ein statistisches Copolymer aus Styrol und 1, 1-Diphenylethylen eingesetzt. Zweckmäßigerweise beträgt der Gehalt an 1, 1-Diphenylethen von 15 bis 63 Gew.%, bevorzugt von 15 bis 45 Gew.% im Copolymerisat oder die entsprechende molare Menge eines vom 1, 1-Diphenylethylen abgeleiteten Derivates. Das gewichtsmittlere Molekulargewicht Mw der Komponente A beträgt 10 000 bis 2 000 000 g/mol, vorzugsweise 20 000 bis 1 000 000 und ganz besonders bevorzugt 50 000 bis 500 000 g/mol.
Die als Komponente A) verwendbaren Copolymeren sind an sich bekannt. Ihre Herstellung ist in WO 95/34586 ausführlich be- schrieben.
Als Komponente B) enthalten die* erfindungsgemäßen Formmassen 1 bis 50 Gew.-%, bevorzugt 5 bis 45 Gew.-% und besonders bevorzugt 10 bis 40 Gew.-% faser- oder teilchenförmiger Füllstoffe oder de- ren Mischungen.
Bevorzugte faserförmige Füllstoffe und Verstärkungsmittel sind Kohlenstoffasern, Kaliumtitanatwhisker, Aramidfasern und besonders bevorzugt Glasfasern. Bei der Verwendung von Glasfasern kön- nen diese zur besseren Verträglichkeit mit einer Schlichte und einem Haf vermittler ausgerüstet sein. Im allgemeinen haben die verwendeten Glasfasern einen Durchmesser im Bereich von 6 bis 20 μ .
Die Einarbeitung dieser Glasfasern kann sowohl in Form von Kurzglasfasern als auch in Form von Endlossträngen (Rovings) erfolgen. Im fertigen Spritzgußteil liegt die mittlere Länge der Glasfasern vorzugsweise im Bereich von 0,08 bis 0,5 mm.
Als teilchenförmige Füllstoffe eignen sich amorphe Kieselsäure, Magnesiumcarbonat, Kreide, gepulverter Quarz, Glimmer, Talkum, Feldspat und insbesondere Calciu silikate wie Wollastonit und Kaolin (insbesondere kalzinierter Kaolin) .
Bevorzugt sind die faser- oder teilchenförmigen Füllstoffe mit einer reaktiven Schlichte versehen, beispielsweise mit einem Aminosilan.
Als Komponente C) enthalten die erfindungsgemäßen Formmassen 1 bis 20 Gew.-%, bevorzugt 1 bis 10 Gew.-% eines mit polaren Gruppen modifizierten Polymeren oder Polymermischungen. Als Polymere, die mit polaren Gruppen modifiziert sind, werden bevorzugt Polyphenylenether und Styrolpolymere eingesetzt.
Die Polymeren oder Polymermischungen enthalten vorzugsweise als polare Gruppen mindestens eine Carbonyl-, Carbonsäure-, Säureanhydrid-, Säureimid-, Carbonsäureester-, Carboxylat-, Amino-, Hydroxyl-, Epoxi-, Oxazolin-, Isocyanat-, Urethan-, Harnstoff-, Lactam- oder Halogenbenzylgruppe. Zweckmäßigerweise werden als polare Grupe solche verwendet, die mit der Schlichte der Kompo- nente C) reagieren.
Solche mit polaren Gruppen modifizierten Polyphenylenether sowie Verfahren zu ihrer Herstellung sind an sich bekannt und beispielsweise in der DE-A 41 29 499 beschrieben.
Bevorzugt werden als Komponente C) mit polaren Gruppen modifizierte Polyphenylenether eingesetzt, die aufgebaut sind aus
Ci) 70 bis 99,95 Gew. -% eines Polyphenylenethers,
c2) 0 bis 25 Gew. -% eines vinylaromatischen Polymeren,
c3) 0,05 bis 5 Gew.-% mindestens einer Verbindung, die mindestens eine Doppel- oder Dreifachbindung und mindestens eine funk- tionelle Gruppe, ausgewählt aus der Gruppe der Carbonsäuren, Carbonsäureester, Carbonsäureanhydride, Carbonsäureamide, Epoxide, Oxazoline oder Urethane enthält.
Beispiele für Polyphenylenether ci) sind Poly(2, 6-dilauryl-l, 4-phenylen) ether,
Poly(2, 6-diphenyl-l, 4-phenylen)ether,
Poly(2, 6-dimethoxi-l, 4-phenylen) -ether,
Poly(2, 6-diethoxi-l, 4-phenylen) ether,
Poly(2-methoxi-6-ethoxi-l, 4-phenylen) ether, Poly (2-ethyl-6-stearyloxi-l, 4-phenylen) ether,
Poly (2, 6-dichlor-l, 4-phenylen) ether,
Poly (2-methyl-6-phenyl-l, 4-phenylen) ether,
Poly(2, 6-dibenzyl-l, 4-phenylen)ether,
Poly (2-ethoxi-1, 4-phenylen) ether, Poly(2-chlor-l, 4-phenylen) ether,
Poly (2, 5-dibrom-l, 4-phenylen) ether.
Bevorzugt werden Polyphenylenether eingesetzt, bei denen die Substituenten Alkylreste mit 1 bis 4 Kohlenstoffatomen sind, wie Poly (2, 6-dimethyl-l, 4-phenylen) ether, Poly (2 , 6-diethyl-l , 4-phenylen) ether, Poly(2-methyl-6-ethyl-l, 4-phenylen) ether, Poly(2-methyl-6-propyl-l, 4-phenylen) ether, Poly(2, 6-dipropyl-l, 4-phenylen) ether und Poly (2-ethyl-6-propyl-l, 4-phenylen) ether.
5 Beispiele für bevorzugte vinylaromatische Polymere c2) sind der Monographie von Olabisi, S. 224 bis 230 und 245 zu entnehmen. Nur stellvertretend seien hier vinylaromatische Polymere aus Styrol, Chlorstyrol, α-Methylstyrol und p-Methylstyrol genannt; in untergeordneten Anteilen (vorzugsweise nicht mehr als 20, insbesondere
10 nicht mehr als 8 Gew. -% können auch Comonomere wie (Meth)acryl- nitril oder (Meth)acrylsäureester am Aufbau beteiligt sein. Besonders bevorzugte vinylaromatische Polymere sind Polystyrol und schlagzäh modifiziertes Polystyrol. Es versteht sich, daß auch Mischungen dieser Polymeren eingesetzt werden können. Die
15 Herstellung erfolgt vorzugsweise nach dem in der EP-A 302 485 beschriebenen Verfahren.
Geeignete Modifiziermittel c3) sind beispielsweise Maleinsäure, Methylmaleinsäure, Itaconsäure, Tetrahydrophthalsäure, deren
20 Anhydride und Imide, Fumarsäure, die Mono- und Diester dieser Säuren, z.B. von Cχ~ und C2- bis Cs-Alkanolen, die Mono- oder Diamide dieser Säuren wie N-Phenylmaleinimid, Maleinhydrazid. Weiterhin seien beispielsweise N-Vinylpyrrolidon und (Meth) acryloylcaprolactam genannt .
25
Eine andere Gruppe von Modifiziermitteln umfaßt beispielsweise das Säurechlorid des Trimellitsäureanhydrids, Benzol-1, 2-dicar- bonsäure-anhydrid-4-carbonsäure-essigsäureanhydrid, Pyromellit- säuredianhydrid, Chlorethanoylsuccinaldehyd, Chlorformylsuccin-
30 aldehyd, Zitronensäure und Hydroxysuccinsäure .
Besonders bevorzugte mit polaren Gruppen modifizierte Polyphenylenether C) in den erfindungsgemäßen Formmassen werden durch Modifizierung mit Maleinsäure, Maleinsäureanhydrid oder Fumar- 35 säure erhalten. Derartige Polyphenylenether weisen vorzugsweise ein Molekulargewicht (Gewichtsmittelwert Mw) im Bereich von 10 000 bis 80 000, vorzugsweise von 20 000 bis 60 000 auf.
Dies entspricht einer reduzierten spezifischen Viskosität ηrea von 40 0,2 bis 0,9 dl/g, vorzugsweise von 0,35 bis 0,8 und insbesondere 0,45 bis 0,6, gemessen in einer 1 gew.%igen Lösung in Chloroform bei 25°C nach DIN 53 726.
Als Komponente D) können die erfindungsgemäßen Formmassen 0 bis 45 68 Gew.-% weitere Zusatzstoffe enthalten. Hierunter zählen beispielsweise schlagzähmodifizierende Polymere, Flammschutzmittel, Stabilisatoren, Gleitmittel, Antiblockmittel, Trennmittel, Anti- statika und Farbmittel.
Die zur Verbesserung der Zähigkeit eingesetzten schlagzäh modifi- zierenden Polymeren (auch Schlagzähmodifier, Elastomere oder Kautschuke genannt) werden in Mengen von 0 bis 30, bevorzugt 3 bis 20 und insbesondere 5 bis 15 Gew.% verwendet.
Als Kautschuke, die die Zähigkeit der Copolymeren A) erhöhen, seien z.B. folgende genannt:
Polyoctenylene, Pfropfkautschuke mit einem vernetzten, elasto- meren Kern, der beispielsweise von Butadien, Isopren oder Alkyl- acrylaten abgeleitet ist und einer Pfropfhülle aus Polystyrol, weiterhin Copolymere aus Ethylen und Acrylaten bzw. Methacry- laten sowie die sogenannten Ethylen-Propylen (EP)- und Ethylen- Propylen-Dien (EPDM) -Kautschuke, ferner die mit Styrol gepfropften EP- bzw. EPDM-Kautschuke .
Ferner können Blockcopolymere mit bis zu sechs, vorzugsweise mit bis zu vier gleichen oder unterschiedlichen Blöcken, die sowohl linear als auch sternförmig (sogenannte Radialblockcopolymere) verbunden sein können, eingesetzt werden. Bevorzugt werden Blockcopolymere, die mindestens einen Block aus vinylaromatischen Monomeren, der sich vorzugsweise am Ende der Polymerkette befindet, besitzen.
Mischungen aus Blockcopolymeren verschiedener Strukturen, z.B. Mischungen aus Zwei- und Dreiblockcopolymeren oder aus ganz oder teilweise hydrierten und unhydrierten Blockcopolymeren, können ebenfalls eingesetzt werden.
Derart schlagzäh modifizierende Polymere sind an sich bekannt und in der Literatur beschrieben. Nur beispielsweise sei hier auf US-A 4 085 163, US-A 4 041 103, US-A 3 149 182, US-A 3 231 635 und US-A 3 462 162 verwiesen.
Auch im Handel sind entsprechende Produkte erhältlich, z.B. ein Polyoctylen der Bezeichnung Vestenamer® (Hüls AG), metallocenka- talytische Polyethylene wie Affinity® (DOW) oder Luflexen® (BASF) sowie eine Vielzahl geeigneter Blockcopolymere mit mindestens einem vinylaromatischen und einem elastomeren Block. Beispielhaft seien die Cariflex®-TR-Typen (Shell), die Kraton®-G-Typen (Shell), die Finaprene®-Typen (Fina) , die Europrene®-SOL-TR-Typen (Eniche ) und Styroflex® sowie Styrolux® (BASF) genannt. Die erfindungsgemäßen Formmassen können weiterhin Flammschutzmittel in einer Konzentration von 0 bis 20 Gew.-%, bevorzugt von 1 bis 15 Gew.-%, insbesondere 3 bis 10 Gew.-%, bezogen auf das Gesamtgewicht der Formmasse, enthalten.
Geeignete Flammschutzmittel sind z.B. Polyhalogendiphenyl, Poly- halogendiphenylether, Polyhalogenphthalsäure und ihre Derivate, Polyhalogenoligo- und -polycarbonate, wobei die entsprechenden Bromverbindungen besonders wirksam sind.
Beispiele hierfür sind Polymere des 2 , 6, 2 ' , 6'-Tetrabrombisphenols A, der Tetrabromphthalsäure, des 2, 6-Dibromphenols und 2,4,6-Tri- bromphenols und deren Derivate.
Bevorzugtes Flammschutzmittel ist elementarer Phosphor. In der Regel kann der elementare Phosphor mit z.B. Polyurethanen oder Aminoplasten phlegmatisiert oder gecoatet werden. Außerdem sind Konzentrate von rotem Phosphor z.B. in einem Polyamid, Elastomeren oder Polyolefin geeignet.
Besonders bevorzugt sind Kombinationen von elementarem Phosphor mit 1,2, 3, 4, 7, 8, 9, 10, 13, 13 , 14, 14-Dodecachloro-l, 4, 4a, 5, 6, 6a, 7, - 10, 10a, 11, 12 , 12a-dodecahydro-l, 4:7, 10-dimethanodibenzo (a, e)-cy- clooctan (Dechlorane®Plus, Occidental Chemical Corp.) und gegebenenfalls einem Synergisten z.B. Antimontrioxid.
Phosphorverbindungen wie organische Phosphate, Phosphonate, Phosphinate, Phosphinoxide, Phosphine oder Phosphite sind ebenfalls bevorzugt. Als Beispiel seien Triphenylphosphinoxid und Triphenylphosphat genannt. Dieses kann allein oder vermischt mit Hexabrombenzol oder einem chlorierten Biphenyl und, wahlweise, Antimonoxid verwendet werden.
Typisch für die bevorzugten Phosphorverbindungen, die gemäß der vorliegenden Erfindung verwendet werden können, sind solche der folgenden allgemeinen Formel
0 O P OQ
OQ
worin Q für gleiche oder verschiedene Kohlenwasserstoffreste, wie Alkyl, Cycloalkyl, Aryl, alkylsubstituiertes Aryl und arylsubstituiertes Alkyl steht, ferner Halogen, Wasserstoff und deren Kombinationen, vorausgesetzt, daß mindestens einer der für Q stehenden Reste ein Arylrest ist.
Beispiele solcher geeigneter Phosphate sind z.B. die folgenden: Phenylbisdodecylphosphat, Phenylbisneopentylphosphat, Phenyl- ethylenhydrogenphosphat, Phenyl-bis-(3-5, 5'-trimethylhexyl- phosphat), Ethyldiphenylphosphat, 2-Ethylhexyldi (p-tolyl)Phosphat, Bis- (2-ethylhexyl)phenylphosphat, Tri (nonylphenyl)phosphat, Phenylmethylhydrogenphosphat, Di (dodecyl)-p-tolylphosphat, Tri- cresylphospha , Triphenylphosphat, Dibutylphenylphosphat und Diphenylhydrogenphosphat . Die bevorzugten Phosphate sind solche, bei denen jedes Q Aryl ist. Das am meisten bevorzugte Phosphat ist Triphenylphosphat. Weiter ist die Kombination von Triphenylphosphat mit Hexabrombenzol und Antimontrioxid bevorzugt.
Als Flammschutzmittel sind auch solche Verbindungen geeignet, die Phosphor-Stickstoff-Bindungen enthalten, wie Phosphornitril- chlorid, Phosphorsäureesteramide, Phosphorsäureesteramine, Phosphorsäureamide, Phosphonsäureamide, Phosphinsäureamide, Tris(Azi- ridinyl ) -phosphinoxid oder Tetrakis (hydroxymethyl)phosphonium- chlorid. Diese entflammungshemmenden Additive sind größtenteils im Handel erhältlich.
Weitere halogenhaltige Flammschutzmittel sind Tetrabrombenzol, Hexachlorbenzol und Hexabrombenzol sowie halogenierte Polystyrole und Polyphenylenether.
Auch die in der DE-A-19 46 924 beschriebenen halogenierten Phthalimide können verwendet werden. Von diesen hat insbesondere N,N'-Ethylenbistetrabromphthalimid Bedeutung erlangt.
Weitere Zusatzstoffe sind beispielsweise Stabilisatoren und Oxidationsinhibitoren, Mittel gegen Wärmezersetzung und Zersetzung durch ultraviolettes Licht, Gleit- und Entformungsmittel, Farbstoffe, Pigmente und Weichmacher.
Oxidationsverzögerer und Wärmestabilisatoren, die den thermoplastischen Massen gemäß der Erfindung zugesetzt werden können, sind z.B. Halogenide von Metallen der Gruppe I des Perioden- Systems, z.B. Natrium-, Kalium-, Lithium-Halogenide, ggf. in Verbindung mit Kupfer- (I) -Haiogeniden, z.B. Chloriden, Bromiden oder Iodiden. Weiterhin können Zinkfluorid und Zinkchlorid verwendet werden. Ferner sind sterisch gehinderte Phenole, Hydro- chinone, substituierte Vertreter dieser Gruppe und Mischungen dieser Verbindungen, vorzugsweise in Konzentrationen bis zu 1 Gew.-%, bezogen auf das Gewicht der Mischung, einsetzbar. Beispiele für UV-Stabilisatoren sind verschiedene substituierte Resorcine, Salicylate, Benzotriazole und Benzophenone, die im allgemeinen in Mengen bis zu 2 Gew.-% eingesetzt werden.
Materialien zur Erhöhung der Abschirmung gegen elektromagnetische Wellen wie Metallflocken, -pulver, -fasern, metallbeschichtete Füllstoffe können ebenfalls mitverwendet werden.
Gleit- und Entformungsmittel, die in der Regel in Mengen bis zu 1 Gew.-% der thermoplastischen Masse zugesetzt werden, sind Stearinsäure, Stearylalkohol, Stearinsäurealkylester und -amide sowie Ester des Pentaerythrits mit langkettigen Fettsäuren.
Unter den Zusatzstoffen sind auch Stabilisatoren, die die Zer- Setzung des roten Phosphors in Gegenwart von Feuchtigkeit und Luftsauerstoff verhindern. Als Beispiele seien Verbindungen des Cadmiums, Zinks, Aluminiums, Silbers, Eisens, Kupfers, Antimons, Zinns, Magnesiums, Mangans, Vanadiums, Bors, Aluminiums und Titans genannt. Besonders geeignete Verbindungen sind z.B. Oxide der genannten Metalle, ferner Carbonate oder Oxicarbonate,
Hydroxide sowie Salze organischer oder anorganischer Säuren wie Acetate oder Phosphate bzw. Hydrogenphosphate und Sulfate.
Die erfindungsgemäßen thermoplastischen Formmassen können nach an sich bekannten Verfahren hergestellt werden, indem man die Ausgangskomponenten A) , B) und C) und gegebenenfalls weiteren Zusatzstoffen und Verarbeitungshilfsmittel D) in üblichen Mischvorrichtungen wie Schneckenextruder vorzugsweise Zweischneckenextruder, Brabender-Mühlen oder Banbury-Mühlen mischt und anschlie- ßend extrudiert. Nach der Extrusion wird das Extrudat abgekühlt und zerkleinert.
Um eine möglichst homogene Formmasse zu erhalten, ist eine intensive Durchmischung vorteilhaft. Dazu sind im allgemeinen mittlere Mischzeiten von 0,2 bis 30 Minuten bei Temperaturen von 230 bis 280°C erforderlich. Die Abmischreihenfolge der Komponenten kann variiert werden, so können zwei oder ggf. drei Komponenten vorgemischt werden, es können aber auch alle Komponenten gemeinsam gemischt werden.
Erfindungsgemäße Massen können auch durch einen Pultrusionsvor- gang hergestellt werden, wie er in der EP-A-56 703 beschrieben ist. Dabei wird der Glasfaserstrang mit der Polymermasse durchtränkt und anschließend abgekühlt und zerkleinert. Die Glasfaser- länge ist in diesem Fall identisch mit der Granulatlänge und liegt zwischen 3 und 20 mm. Die erfindungsgemäßen thermoplastischen Formmassen zeichnen sich durch eine hohe Wärmeformbeständigkeit, eine hohe Steifigkeit und Zähigkeit aus. Sie eignen sich zur Herstellung von Fasern, Folien oder Formkörpern. 5
Beispiele:
Es wurden folgende Komponenten eingesetzt:
10 Komponente A)
Ein Styrol/l, 1-Diphenylethen-Copolymer mit 30 Gew.-% 1,1-Diphe- nylethen und einem gewichtsmittleren Molekulargewicht Mw von 210 000 g/mol wurde gemäß den Beispielen in WO 95/34586 herge- 15 stellt:
Ein 10-1-Metallkessel mit Doppelmantel für Kühlung und Heizung und Rührer wurde über mehrere Stunden mit einer refluxierenden Lösung von DPE/sec-Butyllithium in Cyclohexan inertisiert.
20
Nach Ablassen der Reinigungslösung wurden 5139 ml Cyclohexan und 1173 ml (1200 g; 6,66 ol) 1, 1-Diphenylethen wurden vorgelegt und mit sec-Butyllithium bis zur Rotfärbung austitriert. Nun wurden 50 ml einer 0,32 M sec-Butyllithium-Lösung in Cyclohexan zugege-
25 ben und der Reaktorinhalt auf 70°C thermostatisiert. Anschließend wurden 3086 ml (2800 g; 26,89 mol) Styrol in 200 ml Schritten alle 10 min zugegeben. Nach 180 min Nachreaktionszeit wurde mit Ethanol bis zur Farblosigkeit titriert, das Polymer durch Eintropfen der Polymerlösung in Ethanol gefällt und das abfiltrierte
30 und mehrmals mit Ethanol gewaschene weiße Pulver 2 h bei 200°C im Vakuum (1 bar) getrocknet.
Ausbeute: 3880 g (97 %) ; Styrolgehalt (FTIR) : 69,6 % (69,8 % theor.); DPE-Gehalt (FTIR): 30,4 % (30,2 % theor.); Tg (DSC): 35 142°C (Breite der Glasstufe: 8°C) ; Molmassen (GPC, Polystyrol-Eichung, g/mol): Mn 115 000, Mw 210 000.
Komponente B)
40 Komponente Bl) :
Endlosglasfasern mit einem Durchmesser von 10 |lιrι und einer Amino- silanschlichte (Glasfaser CS 3540 der Fa. PPG)
45 Komponente B2 ) :
Wollastonit mit einer Aminosilanschlichte, Schüttdichte von 0,58 g/ml (nach DIN 53468), Korngröße d95%: 13 um, d5o%: 3,5 μm (Tremin 283/600 AST der Fa. Quarzwerke)
Komponente C)
Fumarsäuregepfropftes Poly(2, 6-dimethyl-l, 4-phenylenether)
In einem Zweischneckenextruder (ZSK 30 der Fa. Werner & Pfleiderer) wurden bei einer Massetemperatur von 320°C und einer mittleren Verweilzeit von 3 Minuten folgende Komponenten innig vermischt:
98,5 Gew.-% Poly(2, 6-dimethyl-l, 4-phenylenether) mit einer reduzierten Viskosität ηrea von 0,65 (1 %ig in Chloroform bei 25°C) ,
1,45 Gew.-% Fumarsäure,
0,05 Gew.-% 3, 4-Dimethyl-3 , 4-diphenylhexan.
Die entgaste Schmelze wurde als Strang in ein Wasserbad extrudiert. Das erhaltenen Granulat wurde anschließend getrocknet.
Komponente D)
Hydriertes Styrol-Butadien-Styrol-Dreiblockcopolymer mit einem Styrolgehalt von 32 Gew.-% und einem gewichtsmittleren Molekular- gewicht Mw von 180 000 g/mol, wie es unter der Handelsbezeichnung Kraton® G 1651 der Fa. Shell erhältlich ist.
Herstellung der Formmassen:
Die Komponenten A) , B), C) und D) wurden in den in Tabelle 1 angegebenen Gewichtsanteilen in einem ZweiSchneckenextruder (ZSK 30 der Fa Werner & Pfleiderer) bei einer Temperatur von 280°C aufgeschmolzen, homogenisiert und als Strang in ein Wasserbad extrudiert. Das getrocknete Granulat wurde anschließend zu Normprüf- körpern verspritzt.
Meßmethoden:
E-Modul und Streckspannung wurden an Normprüfkörpern nach ISO 527 bestimmt. Die Kerbschlagzähigkeit (Charpy) wurde gekerbt (ak) und ungekerbt (an) aus dem Schlagbiegeversuch nach ISO 179 bestimmt.
Die Formmassen mit Glasfaser (Beispiel 1) bzw. Wollastonit (Bei- spiel 2) zeigen gegenüber dem reinen Styrol-1, 1-Diphenylethen-Co- polymeren (Vergleichsversuch VI) eine deutlich höhere Steifigkeit und überraschenderweise eine höhere Zähigkeit, die sich durch Zugabe eines Kautschukes (Beispiele 2 und 4) noch weiter steigern läßt.
Tabelle 1:
Figure imgf000013_0001

Claims

Patentansprüche :
1. Thermoplastische Formmassen, enthaltend
A) 30 bis 98 Gew.-% eines Copolymeren aus vinylaromatischen Monomeren und 1, 1-Diphenylethen oder dessen an den aromatischen Ringen gegebenenfalls mit Alkylgruppen mit bis zu 22 C-Atomen substituieren Derivaten,
B) 1 bis 50 Gew.-% faser- oder teilchenförmiger Füllstoffe oder deren Mischungen,
C) 1 bis 20 Gew.-% eines mit polaren Gruppen modifizierten Polymeren oder Polymermischungen und
D) 0 bis 68 Gew.-% weitere Zusatzstoffe,
wobei die Summe aus A) , B) und C) 100 Gew.-% beträgt.
2. Thermoplastische Formmassen nach Anspruch 1, dadurch gekennzeichnet, daß die Komponente C) einen modifizierten Polyphenylenether enthält.
3. Thermoplastische Formmassen nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß als Komponente A) ein Copolymer aus Styrol und 1, 1-Diphenylethen verwendet wird.
4. Verwendung der thermoplastischen Formmassen gemäß den Ansprü- chen 1 bis 3 zur Herstellung von Folien, Fasern und Formkörpern.
5. Folien, Fasern und Formkörper, erhältlich aus den thermoplastischen Formmassen gemäß den Ansprüchen 1 bis 3.
Glasfaserverstärkte Styrol/Diphenylethen-Copolymere
Zusammenfassung
Thermoplastische Formmassen, enthaltend
A) 30 bis 98 Gew.-% eines Copolymeren aus vinylaromatischen Monomeren und 1, 1-Diphenylethen oder dessen an den aromatischen Ringen gegebenenfalls mit Alkylgruppen mit bis zu 22 C-Atomen substituieren Derivaten,
B) 1 bis 50 Gew.-% faser- oder teilchenfόrmiger Füllstoffe oder deren Mischungen,
C) 1 bis 20 Gew.-% eines mit polaren Gruppen modifizierten Polymeren oder Polymermischungen und
D) 0 bis 68 Gew.-% weitere Zusatzstoffe,
wobei die Summe aus A) , B) und C) 100 Gew.-% beträgt.
PCT/EP1999/000617 1998-02-12 1999-01-30 Glasfaserverstärkte styrol/diphenylethen-copolymere WO1999041311A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU27215/99A AU2721599A (en) 1998-02-12 1999-01-30 Glass fibre reinforced styrene/diphenylethylene copolymers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19805586.2 1998-02-12
DE1998105586 DE19805586A1 (de) 1998-02-12 1998-02-12 Glasfaserverstärkte Styrol/Diphenylethen-Copolymere

Publications (1)

Publication Number Publication Date
WO1999041311A1 true WO1999041311A1 (de) 1999-08-19

Family

ID=7857403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/000617 WO1999041311A1 (de) 1998-02-12 1999-01-30 Glasfaserverstärkte styrol/diphenylethen-copolymere

Country Status (3)

Country Link
AU (1) AU2721599A (de)
DE (1) DE19805586A1 (de)
WO (1) WO1999041311A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4227449A1 (de) * 2022-02-14 2023-08-16 SHPP Global Technologies B.V. Fasern, die verstärkungsadditive und rezyklierte bestandteile umfassen

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10106543A1 (de) * 2001-02-13 2002-08-22 Basf Ag Beschichtungsmittelzusammensetzungen
US8722839B2 (en) 2012-06-04 2014-05-13 Sabic Innovative Plastics Ip B.V. Poly(phenylene ether) fiber and method of making

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06345926A (ja) * 1993-06-11 1994-12-20 Idemitsu Petrochem Co Ltd ガラス繊維強化ポリスチレン樹脂組成物
WO1995034586A2 (de) * 1994-06-16 1995-12-21 Basf Aktiengesellschaft Thermoplastische formmasse
WO1997034936A1 (de) * 1996-03-15 1997-09-25 Basf Aktiengesellschaft Funktionalisierte polymere
WO1999011714A1 (de) * 1997-08-30 1999-03-11 Basf Aktiengesellschaft Thermoplastische formmassen auf basis von polyamid und styrol/diphenylethylen-copolymeren

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06345926A (ja) * 1993-06-11 1994-12-20 Idemitsu Petrochem Co Ltd ガラス繊維強化ポリスチレン樹脂組成物
WO1995034586A2 (de) * 1994-06-16 1995-12-21 Basf Aktiengesellschaft Thermoplastische formmasse
WO1997034936A1 (de) * 1996-03-15 1997-09-25 Basf Aktiengesellschaft Funktionalisierte polymere
WO1999011714A1 (de) * 1997-08-30 1999-03-11 Basf Aktiengesellschaft Thermoplastische formmassen auf basis von polyamid und styrol/diphenylethylen-copolymeren

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 122, no. 26, 26 June 1995, Columbus, Ohio, US; abstract no. 316135, XP002105646 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4227449A1 (de) * 2022-02-14 2023-08-16 SHPP Global Technologies B.V. Fasern, die verstärkungsadditive und rezyklierte bestandteile umfassen
WO2023152726A1 (en) * 2022-02-14 2023-08-17 Shpp Global Technologies B.V. Fibers comprising reinforcement additives and recycled contents

Also Published As

Publication number Publication date
DE19805586A1 (de) 1999-08-19
AU2721599A (en) 1999-08-30

Similar Documents

Publication Publication Date Title
EP0654505B1 (de) PPE/PA-Formmassen zur Herstellung von Formkörpern mittels Blasformen, Profilextrusion und Rohrextrusion
EP0416436B1 (de) Füllstoffhaltige thermoplastische Formmassen
DE3922739A1 (de) Verstaerkte farbige thermoplastische formmassen auf der basis von polyphenylenethern und polyamiden
EP0678555B1 (de) Polyphenylenether/Polyamid-Formmassen
EP0530693A1 (de) Hochschlagzähe, flammgeschützte Polyphenylenether/Polyamidformmassen
EP0501175A1 (de) Faserverstärkte thermoplastische Formmassen
EP0828773B1 (de) Funktionalisierte copolymere, verfahren zu ihrer herstellung, diese enthaltende formmassen und formkörper
DE3834912A1 (de) Thermoplastische formmassen auf basis von polyphenylenethern und polyamiden und ihre herstellung
EP0529378B1 (de) Thermoplastische Formmasse auf Basis von Polyamiden und Polyphenylenethern
WO1999045069A1 (de) Polyamid/polyphenylenether-formmassen mit mineralischen füllstoffen
EP0886657B1 (de) Funktionalisierte polymere
EP0586985B1 (de) Stabilisierte Polyamid/Polyphenylenetherformmassen
WO1999041311A1 (de) Glasfaserverstärkte styrol/diphenylethen-copolymere
EP0416435B1 (de) Stabilisierte thermoplastische Formmassen auf der Basis von Polyphenylenethern und Polyamiden
DE69101921T2 (de) Phosphortrilactame und verfahren zu deren herstellung.
EP0416430B1 (de) Thermoplastische Formmasse mit erhöhter Wärmeformsbeständigkeit
EP0510383A2 (de) Hochschlagzähe Formmassen
EP0457138A2 (de) Thermoplastische Formmassen auf der Basis von Polyestern und Polyphenylenethern
WO1999011714A1 (de) Thermoplastische formmassen auf basis von polyamid und styrol/diphenylethylen-copolymeren
EP0534196A1 (de) Thermoplastische Formmassen auf Basis von Polyamiden und Polyphenylenethern
EP0400418A1 (de) Thermoplastische Formmassen auf der Basis von Polyamiden und Polyphenylenethern
EP0851895A1 (de) Thermoplastische formmassen auf der basis von vinylaromatischen polymeren mit syndiotaktischer struktur, thermoplastischen polyamiden und mit polaren gruppen modifizierten polyphenylenethern
DE3831992A1 (de) Flammfeste thermoplastische formmassen auf basis von polyphenylenether und polyamid
DE4129499A1 (de) Thermoplastische polyphenylenether/polyamidformmassen mit duktilem bruchverhalten bei tiefen temperaturen
EP0452783B1 (de) Thermoplastische Formmassen auf Basis von Polyphenylenethern und Polyamiden

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AU BG BR BY CA CN CZ GE HU ID IL IN JP KR KZ LT LV MK MX NO NZ PL RO RU SG SI SK TR UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: KR

NENP Non-entry into the national phase

Ref country code: CA

122 Ep: pct application non-entry in european phase