WO1997011123A1 - Thermoplastische formmassen auf der basis von vinylaromatischen polymeren mit syndiotaktischer struktur, thermoplastischen polyamiden und mit polaren gruppen modifizierten polyphenylenethern - Google Patents

Thermoplastische formmassen auf der basis von vinylaromatischen polymeren mit syndiotaktischer struktur, thermoplastischen polyamiden und mit polaren gruppen modifizierten polyphenylenethern Download PDF

Info

Publication number
WO1997011123A1
WO1997011123A1 PCT/EP1996/004032 EP9604032W WO9711123A1 WO 1997011123 A1 WO1997011123 A1 WO 1997011123A1 EP 9604032 W EP9604032 W EP 9604032W WO 9711123 A1 WO9711123 A1 WO 9711123A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
molding compositions
thermoplastic
component
thermoplastic molding
Prior art date
Application number
PCT/EP1996/004032
Other languages
English (en)
French (fr)
Inventor
Josef WÜNSCH
Axel Gottschalk
Martin Weber
Volker ALTSTÄDT
Jörg KRESSLER
Ralf Thomann
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Publication of WO1997011123A1 publication Critical patent/WO1997011123A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • C08L71/126Polyphenylene oxides modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides

Definitions

  • thermoplastic molding compositions based on vinyl aromatic polymers with a syndiotactic structure, thermoplastic polyamides and polyphenylene ethers modified with polar groups
  • the present invention relates to
  • thermoplastic polyamide B) 2 to 90% by weight of a thermoplastic polyamide
  • the present invention relates to the use of the thermoplastic molding compositions for the production of fibers, films and moldings and the fibers, films and moldings obtainable therefrom.
  • compositions consist of syndiotactic polystyrene (s-PS) and polyphenylene ethers (PPE).
  • s-PS syndiotactic polystyrene
  • PPE polyphenylene ethers
  • EP-A 546 497 describes a composition of s-PS, inorganic fillers and modified PPE. Here, however, the material is also brittle.
  • the object of the present invention was therefore to remedy the disadvantages mentioned and to provide thermoplastic molding compositions which are resistant to high temperatures, are dimensionally stable, have high rigidity and toughness and have low electrical conductivity.
  • thermoplastic molding compositions defined at the outset. Furthermore, the use of the thermoplastic molding compositions for the production of fibers, films and moldings was found, and the fibers, films and moldings obtainable therefrom.
  • thermoplastic foritis compounds according to the invention contain, as component A), 5 to 97.9% by weight, preferably 15 to 89.8% by weight, in particular 30 to 79.5% by weight, of a vinylaromatic polymer with a syndiotactic structure.
  • the term "with syndiotactic structure” means here that the polymers are essentially syndiotactic, ie the syndiotactic fraction determined according to 13 C-NMR is greater than 50%, preferably greater than 60%.
  • Component A) is preferably composed of compounds of the general formula I.
  • R 1 is hydrogen or C 1 -C 4 -alkyl
  • R 2 to R 6 independently of one another are hydrogen, C 1 to C 2 alkyl, C 1 to Cis aryl, halogen or two adjacent radicals together represent cyclic groups having 4 to 15 C atoms.
  • Vinylaromatic compounds of the formula I are preferably used in which
  • R 1 means hydrogen
  • R 2 to R 6 are hydrogen, Ci to C 4 alkyl, chlorine, phenyl,
  • Examples of such preferred compounds are: Styrene, p-methylstyrene, p-chlorostyrene, 2, 4-dimethylstyrene, 4-vinylbiphenyl, vinylnaphthalene or vinylanthracene.
  • Mixtures of different vinyl aromatic compounds can also be used, but preferably only one vinyl aromatic compound is used.
  • Particularly preferred vinyl aromatic compounds are styrene and p-methylstyrene.
  • Mixtures of various vinylaromatic polymers with a syndiotactic structure can also be used as component A), but preferably only one vinylaromatic polymer is used, in particular s-PS.
  • Vinyl aromatic polymers with a syndiotactic structure and processes for their preparation are known per se and are described, for example, in EP-A 535 582.
  • the preparation is preferably carried out by reacting compounds of the general formula I in the presence of a metallocene complex and a cocatalyst.
  • Pentamethylcyclopentadienyltitanium trichloride, pentamethylcyclopentadienyltitanium trimethyl and pentamethylcyclopentadienyltitanium trimethylate are used in particular as metallocene complexes.
  • the vinyl aromatic polymers with a syndiotactic structure generally have a molecular weight M w (weight average) of 5,000 to 10,000,000, in particular 10,000 to 2,000,000.
  • the molecular weight distributions M w / M n (M n ... number average) are generally in the range from 1.1 to 30, preferably from 1.4 to 10.
  • thermoplastic molding compositions contain 2 to 90% by weight, preferably 10 to 80% by weight, in particular 20 to 65% by weight, of a thermoplastic polyamide.
  • polyamides are known per se and comprise the partially crystalline and amorphous resins with molecular weights (weight average) of at least 5000, which are usually referred to as nylon.
  • Such polyamides are e.g. in U.S. Patents 2,071,250, 2,071,251, 2,130,523, 2,130,948, 2,241,322, 2,312,966, 2,512,606, and 3,393,210.
  • the polyamides can, for example, by condensation of equimolar amounts of a saturated or an aromatic dicarboxylic acid having 4 to 12 carbon atoms, with a saturated or aromatic diamine which has up to 14 carbon atoms or by Condensation of ⁇ -aminocarboxylic acids or polymerization of lactams can be produced.
  • polyamides examples include polyhexamethylene adipic acid amide (nylon 66), polyhexamethylene azelaic acid amide (nylon 69), poly hexamethylene sebacic acid amide (nylon 610), polyhexamethylene dodecanedisura amide (nylon 612), the polyamides obtained by ring opening of lactams, such as polycaprolactam (nylon 6), also polyamide -11-aminoundecanoic acid and a polyamide of di (p-aminocyclohexyl) methane and dodecanedioic acid.
  • polyamides which have been prepared by copolycondensation of two or more of the monomers mentioned above or their components, e.g. Copolymers of adipic acid, isophthalic acid or terephthalic acid and hexamethylene diamine (polyamide 66 / 6T) or copolymers of caprolactam, terephthalic acid and hexymethylene diamine (polyamide 6 / 6T).
  • Such partially aromatic copolyamides contain 40 to 90 wt .-% units derived from terephthalic acid and hexamethylandiamine.
  • a small proportion of the terephthalic acid preferably not more than 20% by weight of the total aromatic dicarboxylic acids used, can be used by isophthalic acid or other aromatic dicarboxylic acids, preferably those in which the carboxyl groups are in the para position.
  • the partially aromatic copolyamides contain units which are derived from e-caprolactam and / or units which are derived from adipic acid and hexamethylene diamine.
  • the proportion of units derived from e-caprolactam is up to 50% by weight, preferably 20 to 50% by weight, in particular 25 to 40% by weight, while the proportion of units which are derived from adipic acid and hexymethylene diamine, are up to 60% by weight, preferably 30 to 60% by weight and in particular 35 to 55% by weight.
  • the copolyamides can also contain units of e-caprolactam as well as units of adipic acid and hexamethylenediamine; in this case it should be ensured that the proportion of units which are free from aromatic groups is at least 10% by weight, preferably at least 20% by weight.
  • the ratio of the units that differ from e-caprolactam and from adipic acid and hexa- Deriving methylenediamine is not subject to any particular restriction.
  • compositions of 50 to 70% by weight of units derived from terephthalic acid and hexamethylenediamine and 10 to 20% by weight units derived from adipic acid and hexamethylenediamine and 20 to 30 have proven particularly advantageous for ternary copolyamides %
  • By weight of units derived from isophthalic acid and hexamethylenediamine have been found.
  • the production of the partially aromatic copolyamides can e.g. by the method described in EP-A 129 195 and EP-A 129 196.
  • Linear polyamides with a melting point above 200 ° C. are preferred.
  • Preferred polyamides are polyhexamethylene adipic acid amide, polyhexamethylene sebacic acid amide and polycaprolactam as well as polyamide 6 / 6T and polyamide 66 / 6T.
  • the polyamides generally have a relative viscosity of 2.0 to 5, determined on a 1% strength by weight solution in 96% strength by weight sulfuric acid at 25 ° C., which corresponds to a molecular weight of about 15,000 to 45,000 .
  • Polyamides with a relative viscosity of 2.4 to 3.5, in particular 2.5 to 3.4, are preferably used.
  • Polyamides may also be mentioned, e.g. can be obtained by condensing 1,4-diaminobutane with adipic acid at elevated temperature (polyamide-4, 6). Manufacturing processes for polyamides of this structure are e.g. in EP-A 38 094, EP-A 38 582 and EP-A 39 524.
  • thermoplastic molding compositions according to the invention contain, as component C), 0.1 to 50% by weight, preferably 0.2 to 40% by weight, in particular 0.5 to 20% by weight, of a polyphenylene ether modified with polar groups.
  • a polyphenylene ether modified with polar groups Such polyphenylene ethers modified with polar groups and processes for their preparation are known per se and are described, for example, in DE-A 41 29 499.
  • Polyphenylene ethers which are modified with polar groups and are composed of are preferably used as component C)
  • c 3 0.05 to 5% by weight of at least one compound which contains at least one double or triple bond and at least one functional group selected from the group of carboxylic acids, carboxylic esters, carboxylic anhydrides, carboxamides, epoxides, oxazolines or urethanes .
  • polyphenylene ethers ci) examples are
  • Polyphenylene ethers are preferably used in which the
  • Substituents are alkyl radicals with 1 to 4 carbon atoms, such as
  • Examples of preferred vinylaromatic polymers c 2 ) can be found in the monograph by Olabisi, pp. 224 to 230 and 245. Vinyl aromatic polymers made from styrene, chlorostyrene, ⁇ -methylstyrene and p-methylstyrene are only representative here; Comonomers such as (meth) acrylonitrile or (meth) acrylic acid esters can also be involved in the structure in minor proportions (preferably not more than 20, in particular not more than 8% by weight). Particularly preferred vinylaromatic polymers are polystyrene and impact modified polystyrene. It is understood that mixtures of these polymers can also be used. Production is preferably carried out using the method described in EP-A 302 485.
  • Suitable modifiers c 3) are for example maleic acid, methylmaleic acid, itaconic acid, tetrahydrophthalic acid, their anhydrides and imides, fumaric acid, the mono- and diesters of these acids, for example of Ci and C 2 - to Cg alkanols, the mono- or diamides of these acids such as N-phenyl maleimide, maleic hydrazide. N-vinylpyrrolidone and (meth) acryloylcaprolactam may also be mentioned, for example.
  • modifiers includes, for example, the acid chloride of trimellitic anhydride, benzene-l, 2-dicarboxylic acid anhydride-4-carboxylic acid acetic anhydride, pyromellitic acid dianhydride, chloroethanoylsuccinaldehyde, chloroformylsuccinic aldehyde, citric acid and hydroxysuccinic acid.
  • Particularly preferred polyphenylene ethers C) modified with polar groups in the molding compositions according to the invention are obtained by modification with maleic acid, maleic anhydride or fumaric acid.
  • Such polyphenylene ethers preferably have a molecular weight (weight average M w ) in the range from 10,000 to 80,000, preferably from 20,000 to 60,000.
  • thermoplastic molding compositions according to the invention may also contain 0 to 40% by weight, preferably 0 to 20% by weight, of fibrous or particulate fillers.
  • the sum of the% by weight of components A), B), C) and optionally D) used is always 100.
  • fillers are carbon or glass fibers, glass mats or glass balls and amorphous silica, magnesium carbonate, quartz, mica, talc, feldspar or calcium silicates such as wollastonite or kaolin.
  • thermoplastic molding compositions according to the invention can be obtained by mixing the individual components at temperatures from 270 to 350 ° C. in customary mixing devices, such as kneaders, Banbury mixers and single-screw extruders, but preferably using a twin-screw extruder. To be as homogeneous as possible To obtain molding compound, intensive mixing is necessary. The mixing order of the components can be varied, so two or, if necessary, three components can be premixed, but all components can also be mixed together.
  • thermoplastic molding compositions according to the invention are notable for high heat resistance, high rigidity and toughness. They are suitable for the production of fibers, foils or molded articles.
  • the polymer obtained was washed with methanol and dried at 50 ° C. in vacuo.
  • the molecular weight distribution was determined by high-temperature benzene-temperature GPC (G. EljD.ermeationsChromatographie) with 1,2,4-trichloro as solvent at 135 ° C.
  • the calibration was carried out using narrowly distributed polystyrene standards.
  • the molecular weight M w was determined by GPC in 1,2,4-trichlorobenzene as a solvent at 120 ° C.
  • PA 66 polyhexamethylene adipamide
  • 2.6 measured as a 1 wt .-% solution in 96 wt .-% H 2 S0 4 at 25 ° C
  • Ultramid ® A3 from BASF Aktiengesellschaft.
  • a modified polyphenylene ether produced at 300 ° C in a twin-screw extruder by reacting
  • the melt was degassed, extruded, passed through a water bath and granulated.
  • Components A), B) and C) were mixed in a twin-screw extruder (ZSK 30 from Werner & Pfleiderer) at a temperature of 285 ° C., discharged as a strand, cooled in a water bath and granulated.
  • ZSK 30 from Werner & Pfleiderer
  • the dried granules were then at 290 ° C. into round disks (thickness 2 mm, diameter 60 mm), flat bars (127 mm x 12.7 mm x 1.6 mm) and standard small bars (50 mm x 6 mm x 4 mm) processed and examined.
  • the heat resistance was determined by Vicat softening temperatures according to ISO 75/2, method A.
  • composition of the molding compositions and their properties can be found in the table below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Thermoplastische Formmassen, enthaltend A) 5 bis 97,9 Gew.-% eines vinylaromatischen Polymeren mit syndiotaktischer Struktur; B) 2 bis 90 Gew.-% eines thermoplastischen Polyamids; und C) 0,1 bis 50 Gew.-% eines mit polaren Gruppen modifizierten Polyphenylenethers.

Description

Thermoplastische Formmassen auf der Basis von vinylaromatischen Polymeren mit syndiotaktischer Struktur, thermoplastischen Poly¬ amiden und mit polaren Gruppen modifizierten Polyphenylenethern
Beschreibung
Die vorliegende Erfindung betrifft
Thermoplastische Formmassen, enthaltend
A) 5 bis 97,9 Gew.-% eines vinylaromatischen Polymeren mit syndio¬ taktischer Struktur,
B) 2 bis 90 Gew.-% eines thermoplastischen Polyamids
und
C) 0,1 bis 50 Gew.-% eines mit polaren Gruppen modifizierten Poly- phenylenethers.
Weiterhin betrifft die vorliegende Erfindung die Verwendung der thermoplastischen Formmassen zur Herstellung von Fasern, Folien und Formkorpern sowie die daraus erhältlichen Fasern, Folien und Formkorper.
Aus der EP-A 314 146 sind Zusammensetzungen bekannt, die aus syndiotaktischem Polystyrol (s-PS) und Polyphenylenethern (PPE) bestehen. Hierbei werden mehrphasige Polymersysteme erhalten, die zwar eine gute Warmeformbestandigkeit aufweisen, aber sehr spröde sind und eine mangelnde Fließfahigkeit haben.
Die EP-A 546 497 beschreibt Zusammensetzung aus s-PS, anorga¬ nischen Füllstoffen und modifiziertem PPE. Hierbei ist jedoch das Material ebenfalls spröde.
Aufgabe der vorliegenden Erfindung war es daher, den genannten Nachteilen abzuhelfen und thermoplastische Formmassen zur Verfu¬ gung zu stellen, die hochtemperaturbeständig sind, dimensions- stabil, eine hohe Steifigkeit und Zähigkeit sowie eine geringe elektrische Leitfähigkeit aufweisen.
Demgemäß wurden die eingangs definierten thermoplastischen Form¬ massen gefunden. Weiterhin wurde die Verwendung der thermoplastischen Formmassen zur Herstellung von Fasern, Folien und Formkörpern gefunden sowie die daraus erhältlichen Fasern, Folien und Formkorper.
Die erfindungsgemäßen thermoplastischen Foritimassen enthalten als Komponente A) 5 bis 97,9 Gew.-%, vorzugsweise 15 bis 89,8 Gew.-%, insbesondere 30 bis 79,5 Gew.-% eines vinylaromatischen Polymeren mit syndiotaktischer Struktur. Der Begriff "mit syndiotaktischer Struktur" bedeutet hier, daß die Polymeren im wesentlichen syndiotaktisch sind, d.h. der syndiotaktische Anteil bestimmt nach 13C-NMR ist großer als 50 %, bevorzugt großer als 60 %.
Vorzugsweise ist die Komponente A) aufgebaut aus Verbindungen der allgemeinen Formel I
Figure imgf000004_0001
R4 in der die Substituenten folgende Bedeutung haben:
R1 Wasserstoff oder Ci- bis C4-Alkyl,
R2 bis R6 unabhängig voneinander Wasserstoff, Ci- bis Cι2-Alkyl, Ce- bis Cis-Aryl, Halogen oder wobei zwei benachbarte Reste gemeinsam für 4 bis 15 C-Atome aufweisende cy¬ clische Gruppen stehen.
Bevorzugt werden vinylaromatische Verbindungen der Formel I ein¬ gesetzt, in denen
R1 Wasserstoff bedeutet
und
R2 bis R6 für Wasserstoff, Ci- bis C4-Alkyl, Chlor, Phenyl,
Biphenyl, Naphthalin oder Anthracen stehen oder wobei zwei benachbarte Reste gemeinsam für 4 bis 12 C-Atome aufweisende cyclische Gruppen stehen, so daß sich als Verbindung der allgemeinen Formel I beispielsweise Naphthalinderivate oder Anthracenderivate ergeben.
Beispiele für solche bevorzugte Verbindungen sind: Styrol, p-Methylstyrol, p-Chlorstyrol, 2, 4-Dimethylstyrol, 4-Vinylbiphenyl, Vinylnaphthalin oder Vinylanthracen.
Es können auch Mischungen verschiedener vinylaromatischer Verbindungen eingesetzt werden, vorzugsweise wird jedoch nur eine vinylaromatische Verbindung verwendet.
Besonders bevorzugte vinylaromatische Verbindungen sind Styrol und p-Methylstyrol.
Als Komponente A) können auch Mischungen verschiedener vinyl¬ aromatischer Polymere mit syndiotaktischer Struktur eingesetzt werden, bevorzugt wird jedoch nur ein vinylaromatisches Polymer verwendet, insbesondere s-PS.
Vinylaromatische Polymere mit syndiotaktischer Struktur sowie Verfahren zu ihrer Herstellung sind an sich bekannt und beispielsweise in der EP-A 535 582 beschrieben. Bei der Herstel¬ lung geht man vorzugsweise so vor, daß man Verbindungen der allgemeinen Formel I in Gegenwart eines Metallocenkomplexes und eines Cokatalysators umsetzt. Als Metallocenkomplexe werden ins¬ besondere Pentamethylcyclopentadienyltitantrichlorid, Penta- methylcyclopentadienyltitantrimethyl und Pentamethylcyclopenta- dienyltitantrimethylat verwendet.
Die vinylaromatischen Polymere mit syndiotaktischer Struktur haben i.a. ein Molekulargewicht Mw (Gewichtsmittelwert) von 5000 bis 10 000 000, insbesondere von 10 000 bis 2 000 000. Die Molekulargewichtsverteilungen Mw/Mn (Mn ... Zahlenmittelwert) lie- gen i.a. im Bereich von 1,1 bis 30, vorzugsweise von 1,4 bis 10.
Als Komponente B) enthalten die thermoplastischen Formmassen 2 bis 90 Gew.-%, vorzugsweise 10 bis 80 Gew.-%, insbesondere 20 bis 65 Gew.-% eines thermoplastischen Polyamids.
Diese Polyamide sind an sich bekannt und umfassen die teil¬ kristallinen und amorphen Harze mit Molekulargewichten (Gewichts¬ mittelwerten) von mindestens 5000, die gewöhnlich als Nylon be¬ zeichnet werden. Solche Polyamide sind z.B. in den amerikanischen Patentschriften 2 071 250, 2 071 251, 2 130 523, 2 130 948, 2 241 322, 2 312 966, 2 512 606 und 3 393 210 beschrieben.
Die Polyamide können z.B. durch Kondensation äquimolarer Mengen einer gesättigten oder einer aromatischen Dicarbonsaure mit 4 bis 12 Kohlenstoffatomen, mit einem gesättigten oder aromatischen Diamin, welches bis 14 Kohlenstoffatome aufweist oder durch Kondensation von ω-Aminocarbonsauren oder Polymerisation von Lactamen hergestellt werden.
Beispiele für Polyamide sind Polyhexamethylenadipinsäureamid (Nylon 66) , Polyhexamethylenazelainsaureamid (Nylon 69) , Poly- hexamethylensebacinsaureamid (Nylon 610), Polyhexamethylen- dodecandisaureamid (Nylon 612), die durch Ringoffnung von Lactamen erhaltenen Polyamide wie Polycaprolactam (Nylon 6) , Polylaurinsaurelactam, ferner Poly-11-aminoundecansaure und ein Polyamid aus Di (p-aminocyclohexyl) -methan und Dodecandisaure.
Es ist auch möglich, gemäß der Erfindung Polyamide zu verwenden, die durch Copolykondensation von zwei oder mehr der oben ge¬ nannten Monomeren oder ihrer Komponenten hergestellt worden sind, z.B. Copolymere aus Adipinsäure, Isophthalsäure oder Terephthal¬ säure und Hexamethylendiamin (Polyamid 66/6T) oder Copolymere aus Caprolactam, Terephthalsäure und Hexymethylendiamin (Polyamid 6/6T) . Derartige teilaromatische Copolyamide enthalten 40 bis 90 Gew.-% Einheiten, die sich von Terephthalsäure und Hexamethylandiamin ableiten. Ein geringer Anteil der Terephthal¬ säure, vorzugsweise nicht mehr als 20 Gew.-% der gesamten einge¬ setzten aromatischen Dicarbonsäuren können durch Isophthalsäure oder andere aromatische Dicarbonsäuren, vorzugsweise solche, in denen die Carboxylgruppen in para-Stellung stehen, eingesetzt werden.
Neben den Einheiten, die sich von Terephthalsäure und Hexa¬ methylendiamin ableiten, enthalten die teilaromatischen Copolyamide Einheiten, die sich von e-Caprolactam ableiten und/oder Einheiten, die sich von Adipinsäure und Hexamethylen¬ diamin ableiten.
Der Anteil an Einheiten, die sich von e-Caprolactam ableiten, be¬ tragt bis zu 50 Gew.-%, vorzugsweise 20 bis 50 Gew.-%, insbe- sondere 25 bis 40 Gew.-%, während der Anteil der Einheiten, die sich von Adipinsäure und Hexymethylendiamin ableiten, bis zu 60 Gew.-%, vorzugsweise 30 bis 60 Gew.-% und insbesondere 35 bis 55 Gew.-% betragt.
Die Copolyamide können auch sowohl Einheiten von e-Caprolactam als auch Einheiten von Adipinsäure und Hexamethylendiamin enthalten; in diesem Fall ist darauf zu achten, daß der Anteil an Einheiten, die frei von aromatischen Gruppen sind, mindestens 10 Gew.-% be¬ trägt, vorzugsweise mindestens 20 Gew.-%. Das Verhältnis der Ein- heiten, die sich von e-Caprolactam und von Adipinsäure und Hexa- methylendiamin ableiten, unterliegt dabei keiner besonderen Be¬ schränkung.
Als besonders vorteilhaft für viele Anwendungszwecke haben sich Polyamide mit 50 bis 80, insbesondere 60 bis 75 Gew.-% Einheiten, die sich von Terephthalsäure und Hexamethylandiamin ableiten und 20 bis 50, vorzugsweise 25 bis 40 Gew.-% Einheiten, die sich von e-Caprolactam ableiten, erwiesen.
Als besonders vorteilhaft für ternäre Copolyamide haben sich Zu¬ sammensetzungen aus 50 bis 70 Gew.-% Einheiten, die sich von Terephthalsäure und Hexamethylendiamin und 10 bis 20 Gew.-% Ein¬ heiten, die sich von Adipinsäure und Hexamethylendiamin ableiten sowie 20 bis 30 Gew.-% Einheiten, die sich von Isophthalsäure und Hexamethylendiamin ableiten, erwiesen.
Die Herstellung der teilaromatischen Copolyamide kann z.B. nach dem in den EP-A 129 195 und EP-A 129 196 beschriebenen Verfahren erfolgen.
Bevorzugt werden lineare Polyamide mit einem Schmelzpunkt über 200°C.
Bevorzugte Polyamide sind Polyhexamethylenadipinsäureamid, Poly- hexamethylensebacinsäureamid und Polycaprolactam sowie Poly¬ amid 6/6T und Polyamid 66/6T. Die Polyamide weisen im allgemeinen eine relative Viskosität von 2,0 bis 5 auf, bestimmt an einer 1 gew.-%igen Lösung in 96 gew.-%iger Schwefelsäure bei 25°C, was einem Molekulargewicht von etwa 15 000 bis 45 000 entspricht. Polyamide mit einer relativen Viskosität von 2,4 bis 3,5, ins¬ besondere 2,5 bis 3,4 werden bevorzugt verwendet.
Außerdem seien noch Polyamide erwähnt, die z.B. durch Konden¬ sation von 1,4-Diaminobutan mit Adipinsäure unter erhöhter Temperatur erhältlich sind (Polyamid-4 ,6) . Herstellungsverfahren für Polyamide dieser Struktur sind z.B. in den EP-A 38 094, EP-A 38 582 und EP-A 39 524 beschrieben.
Es können auch Mischungen von o.g. Polyamiden eingesetzt werden.
Als Komponente C) enthalten die erfindungsgemäßen thermoplastischen Formmassen 0,1 bis 50 Gew.-%, vorzugsweise 0,2 bis 40 Gew.-%, insbesondere 0,5 bis 20 Gew.-% eines mit pola¬ ren Gruppen modifizierten Polyphenylenethers. Solche mit polaren Gruppen modifizierten Polyphenylenether sowie Verfahren zu ihrer Herstellung sind an sich bekannt und beispielsweise in der DE-A 41 29 499 beschrieben.
Bevorzugt werden als Komponente C) mit polaren Gruppen modifi¬ zierte Polyphenylenether eingesetzt, die aufgebaut sind aus
ci) 70 bis 99,95 Gew. -% eines Polyphenylenethers,
c2) 0 bis 25 Gew.-% eines vinylaromatischen Polymeren,
c3) 0,05 bis 5 Gew.-% mindestens einer Verbindung, die mindestens eine Doppel- oder Dreifachbindung und mindestens eine funk¬ tionelle Gruppe, ausgewählt aus der Gruppe der Carbonsäuren, Carbonsäureester, Carbonsäureanhydride, Carbonsäureamide, Epoxide, Oxazoline oder Urethane enthält.
Beispiele für Polyphenylenether ci) sind
Poly(2, 6-dilauryl-l, 4-phenylen)ether, Poly(2, 6-diphenyl-l,4-phenylen)ether,
Poly(2, 6-dimethoxi-l,4-phenylen)-ether,
Poly(2,6-diethoxi-l,4-phenylen)ether,
Poly(2-methoxi-6-ethoxi-l,4-phenylen)ether,
Poly(2-ethyl-6-stearyloxi-l,4-phenylen)ether, Poly(2,6-dichlor-l,4-phenylen)ether,
Poly(2-methyl-6-phenyl-l,4-phenylenether,
Poly(2, 6-dibenzyl-l,4-phenylen)ether,
Poly(2-ethoxi-l,4-phenylen)ether,
Poly(2-chlor-1,4-phenylen)ether, Poly(2,5-dibrom-l,4-phenylen)ether.
Bevorzugt werden Polyphenylenether eingesetzt, bei denen die
Substituenten Alkylreste mit 1 bis 4 Kohlenstoffatomen sind, wie
Poly (2,6-dimethyl-1,4-phenylen)ether,
Poly(2,6-diethyl-l,4-phenylen)ether, Poly(2-methyl-6-ethyl-l,4-phenylen)ether,
Poly(2-methyl-6-propyl-l,4-phenylen)ether,
Poly (2,6-dipropyl-l,4-phenylen)ether und
Poly(2-ethyl-6-propyl-l,4-phenylen)ether.
Beispiele für bevorzugte vinylaromatische Polymere c2) sind der Monographie von Olabisi, S. 224 bis 230 und 245 zu entnehmen. Nur stellvertretend seien hier vinylaromatische Polymere aus Styrol, Chlorstyrol, α-Methylstyrol und p-Methylstyrol genannt; in unter¬ geordneten Anteilen (vorzugsweise nicht mehr als 20, insbesondere nicht mehr als 8 Gew.-% können auch Comonomere wie (Meth)acryl¬ nitril oder (Meth)acrylsäureester am Aufbau beteiligt sein. Be¬ sonders bevorzugte vinylaromatische Polymere sind Polystyrol und schlagzäh modifiziertes Polystyrol. Es versteht sich, daß auch Mischungen dieser Polymeren eingesetzt werden können. Die Herstellung erfolgt vorzugsweise nach dem in der EP-A 302 485 be¬ schriebenen Verfahren.
Geeignete Modifiziermittel c3) sind beispielsweise Maleinsäure, Methylmaleinsäure, Itaconsäure, Tetrahydrophthalsäure, deren Anhydride und Imide, Fumarsaure, die Mono- und Diester dieser Säuren, z.B. von Ci- und C2- bis Cg-Alkanolen, die Mono- oder Diamide dieser Säuren wie N-Phenylmaleinimid, Maleinhydrazid. Weiterhin seien beispielsweise N-Vinylpyrrolidon und (Meth)acryloylcaprolactam genannt.
Eine andere Gruppe von Modifiziermitteln umfaßt beispielsweise das Säurechlorid des TrimellitSäureanhydrids, Benzol-l,2-dicar- bonsaure-anhydrid-4-carbonsäure-essigsaureanhydrid, Pyromellit- säuredianhydrid, Chlorethanoylsuccinaldehyd, Chlorformylsuccin- aldehyd, Zitronensäure und Hydroxysuccinsäure.
Besonders bevorzugte mit polaren Gruppen modifizierte Poly¬ phenylenether C) in den erfindungsgemäßen Formmassen werden durch Modifizierung mit Maleinsäure, Maleinsäureanhydrid oder Fumar¬ saure erhalten. Derartige Polyphenylenether weisen vorzugsweise ein Molakulargewicht (Gewichtsmittelwert Mw) im Bereich von 10 000 bis 80 000, vorzugsweise von 20 000 bis 60 000 auf.
Dies entspricht einer reduzierten spezifischen Viskosität ηred von 0,2 bis 0,9 dl/g, vorzugsweise von 0,35 bis 0,8 und insbesondere 0,45 bis 0,6, gemessen in einer 1 gew.-%igen Lösung in Chloroform bei 25°C nach DIN 53 726.
Zusätzlich zu den Komponenten A) bis C) können die erfindungs¬ gemäßen thermoplastischen Formmassen noch 0 bis 40 Gew.-%, vor¬ zugsweise 0 bis 20 Gew.-% faser- oder teilchenformige Füllstoffe enthalten. Die Summe der Gew.-% der eingesetzten Komponenten A),B),C) und ggf. D) beträgt stets 100.
Als Beispiele für Füllstoffe seien Kohlenstoff- oder Glasfasern, Glasmatten oder Glaskugeln sowie amorphe Kieselsäure, Magnesium- carbonat, Quarz, Glimmer, Talkum, Feldspat oder Calciumsilikate wie Wollastonit oder Kaolin genannt.
Die erfindungsgemäßen thermoplastischen Formmassen können durch Mischen der Einzelkomponenten bei Temperaturen von 270 bis 350°C in üblichen Mischvorrichtungen, wie Knetern, Banbury-Mischern und Einschneckenextruder, vorzugsweise jedoch mit einem Zwei¬ schneckenextruder erhalten werden. Um eine möglichst homogene Formmasse zu erhalten, ist eine intensive Durchmischung notwen¬ dig. Die Abmischreihenfolge der Komponenten kann variiert werden, so können zwei oder gegebenenfalls drei Komponenten vorgemischt werden, es können aber auch alle Komponenten gemeinsam gemischt werden.
Die erfindungsgemäßen thermoplastischen Formmassen zeichnen sich durch eine hohe Wärmeformbeständigkeit, eine hohe Steifigkeit und Zähigkeit aus. Sie eignen sich zur Herstellung von Fasern, Folien oder Formkörpern.
Beispiele
Es wurden folgende Komponenten eingesetzt
Komponente A)
Ein s-PS mit Mw = 240 200, Mw/Mn = 1,41 und einem syndiotaktischen Anteil nach 13C-NMR von > 96 %, das folgendermaßen hergestellt wurde:
In einem mit Stickstoff inertisieren Rundkolben wurden 2,0 mol Styrol (208,3 g) vorgelegt, auf 70°C erwärmt und mit 1,1 ml Methylaluminoxan (MAO) -Lösung der Firma Witco (1,53 molar in Toluol) versetzt. Anschließend versetzte man die Mischung mit 46,04 mg (16,67 • IO-5 mol) an Pentamethylcyclopentadienyltitan- trimethylat. Nun wurden weitere 9,8 ml der obengenannten MAO-Lö- sung hinzugegeben. Die Innentemperatur wurde auf 70°C einreguliert und man ließ 1 Stunde polymerisieren. Anschließend wurde die Polymerisation durch Zugabe von Methanol abgebrochen. Das erhaltene Polymere wurde mit Methanol gewaschen und bei 50°C im Vakuum getrocknet. Die Molmassenverteilung wurde durch Hochtempe- ratur-GPC (G.eljD.ermeationsChromatographie) mit 1,2,4-Trichlor- benzol als Lösungsmittel bei 135°C bestimmt. Die Kalibrierung er- folgte mit engverteilten Polystyrolstandards.
Das Molekulargewicht Mw wurde durch GPC in 1,2,4-Trichlorbenzol als Lösungsmittel bei 120°C bestimmt.
Komponente B)
Ein Polyhexamethylenadipinsäureamid (PA 66) mit einer relativen Viskosität von 2,6 (gemessen als 1 gew.-%ige Lösung in 96 gew.-%iger H2S04 bei 25°C) (Ultramid® A3 der BASF Aktiengesellschaft) . Komponente C)
Ein modifizierter Polyphenylenether, hergestellt bei 300°C in einem ZweiSchneckenextruder durch Umsetzung von
ci) 99 Gew.-% Poly(2,6-dimethy1-1,4-phenylen)ether mit η red = 0,48 dl/g (bestimmt als 1 gew.-%ige Lösung in Chloroform bei 25°C) und
c3) 1 Gew.-% Fumarsaure
Die Schmelze wurde entgast, extrudiert, durch ein Wasserbad geleitet und granuliert.
Beispiele 1 bis 3: Herstellung der thermoplastischen Formmassen
Die Komponenten A),B) und C) wurden auf einem Zweischnecken- extruder (ZSK 30 der Firma Werner & Pfleiderer) bei einer Temperatur von 285°C gemischt, als Strang ausgetragen, im Wasser- bad abgekühlt und granuliert.
Anschließend wurde das getrocknete Granulat bei 290°C zu Rund¬ scheiben (Dicke 2 mm, Durchmesser 60 mm) , Flachstäben (127 mm x 12,7 mm x 1,6 mm) und Normkleinstäben (50 mm x 6 mm x 4 mm) verarbeitet und untersucht.
Vergleichsbeispiel Vl:
Es wurde wie in den Beispielen 1 bis 3 gearbeitet, jedoch ohne Zusatz der Komponente C)
Die Schlagbiegeversuche (Charpy) zur Bestimmung der Schlagzähig¬ keit an wurden nach ISO 179/2 ungekerbt durchgeführt. Der Aufla¬ geabstand betrug 60 mm, der Pendelhammer hatte eine Energie von 0,5 bis 15 J.
Die Wärmeformbeständigkeit wurde durch Vicat-Erweichungstempera- turen nach ISO 75/2, Verfahren A bestimmt.
Die Zusammensetzung der Formmassen und ihre Eigenschaften sind der nachfolgen Tabelle zu entnehmen.
Figure imgf000012_0001

Claims

Patentansprüche
1. Thermoplastische Formmassen, enthaltend
A) 5 bis 97,9 Gew.-% eines vinylaromatischen Polymeren mit syndiotaktischer Struktur,
B) 2 bis 90 Gew.-% eines thermoplastischen Polyamids
und
C) 0,1 bis 50 Gew.-% eines mit polaren Gruppen modifizierten
Polyphenylenethers.
Thermoplastische Formmassen nach Anspruch 1, dadurch gekenn¬ zeichnet, daß sie
die Komponente A) in einer Menge von 15 bis 89,8 Gew.-%, die Komponente B) in einer Menge von 10 bis 80 Gew.-% und die Komponente C) in einer Menge von 0,
2 bis 40 Gew.-%
enthalten.
3. Thermoplastische Formmassen nach den Ansprüchen 1 bis 2, da¬ durch gekennzeichnet, daß die Komponente A) aufgebaut ist aus Verbindungen der allgemeinen Formel I
Figure imgf000013_0001
R4 in der die Substituenten folgende Bedeutung haben:
R1 Wasserstoff oder Ci- bis C4-Alkyl, R2 bis R6 unabhängig voneinander Wasserstoff, Ci- bis Ci2-Alkylr Cε- bis Ciβ-Aryl, Halogen oder wobei zwei benachbarte Reste gemeinsam für 4 bis 15 C-Atome aufweisende cyclische Gruppen stehen.
4. Thermoplastische Formmassen nach den Ansprüchen 1 bis 3, da¬ durch gekennzeichnet, daß als Komponente B) ein thermo¬ plastisches Polyamid mit einer relativen Viskosität von 2,0 bis 5,0 eingesetzt wird.
5. Thermoplastische Formmassen nach den Ansprüchen 1 bis 4, da¬ durch gekennzeichnet, daß die Komponente C) aufgebaut ist aus
ci) 70 bis 99,95 Gew.-% eines Polyphenylenethers, c2) 0 bis 25 Gew.-% eines vinylaromatischen Polymeren, c3) 0,05 bis 5 Gew.-% mindestens einer Verbindung, die min¬ destens eine Doppel- oder Dreifachbindung und mindestens eine funktionelle Gruppe, ausgewählt aus der Gruppe der Carbonsauren, Carbonsaureester, Carbonsaureanhydride, Carbonsaureamide, Epoxide, Oxazoline oder Urethane ent¬ hält.
6. Verwendung der thermoplastischen Formmassen gemäß den An¬ sprüchen 1 bis 5 zur Herstellung von Fasern, Folien und Form- korpern.
7. Fasern, Folien und Formkorper, erhaltlich aus den thermo¬ plastischen Formmassen gemäß den Ansprüchen 1 bis 5 als wesentliche Komponente.
PCT/EP1996/004032 1995-09-23 1996-09-13 Thermoplastische formmassen auf der basis von vinylaromatischen polymeren mit syndiotaktischer struktur, thermoplastischen polyamiden und mit polaren gruppen modifizierten polyphenylenethern WO1997011123A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1995135417 DE19535417A1 (de) 1995-09-23 1995-09-23 Thermoplastische Formmassen auf der Basis von vinylaromatischen Polymeren mit syndiotaktischer Struktur, thermoplastischen Polyamiden und mit polaren Gruppen modifiziierten Polyphenylenethern
DE19535417.6 1995-09-23

Publications (1)

Publication Number Publication Date
WO1997011123A1 true WO1997011123A1 (de) 1997-03-27

Family

ID=7772988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/004032 WO1997011123A1 (de) 1995-09-23 1996-09-13 Thermoplastische formmassen auf der basis von vinylaromatischen polymeren mit syndiotaktischer struktur, thermoplastischen polyamiden und mit polaren gruppen modifizierten polyphenylenethern

Country Status (2)

Country Link
DE (1) DE19535417A1 (de)
WO (1) WO1997011123A1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997040097A1 (de) * 1996-04-23 1997-10-30 Basf Aktiengesellschaft Thermoplastische formmassen auf der basis von vinylaromatischen polymeren mit syndiotaktischer struktur, niederviskosen polyamiden und mit polaren gruppen modifizierten polyphenylenethern
WO1999011714A1 (de) * 1997-08-30 1999-03-11 Basf Aktiengesellschaft Thermoplastische formmassen auf basis von polyamid und styrol/diphenylethylen-copolymeren
WO1999014273A1 (en) * 1997-09-12 1999-03-25 The Dow Chemical Company Toughened polymer blends
WO2002055768A1 (en) * 2001-01-12 2002-07-18 Dow Global Technologies Inc. Thermoplastic compositions for the preparation of fibers and films
US6894102B2 (en) 2002-05-20 2005-05-17 General Electric Syndiotactic polystyrene blends
US8450412B2 (en) 2009-12-22 2013-05-28 Sabic Innovative Plastics Ip B.V. Flame retardant polyamide composition, method, and article
US8669332B2 (en) 2011-06-27 2014-03-11 Sabic Innovative Plastics Ip B.V. Poly(arylene ether)-polysiloxane composition and method
US8722837B2 (en) 2012-01-31 2014-05-13 Sabic Innovative Plastics Ip B.V. Poly(phenylene ether)-polysiloxane composition and method
US9090999B2 (en) 2011-09-28 2015-07-28 Sabic Global Technologies B.V. Polyamide/polyphenylene ether fibers and fiber-forming method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0422495A1 (de) * 1989-10-13 1991-04-17 Idemitsu Kosan Company Limited Styrolpolymerisate enthaltende Zusammensetzung
EP0546497A2 (de) * 1991-12-10 1993-06-16 Idemitsu Kosan Company Limited Thermoplastische Harzzusammensetzung
JPH08143729A (ja) * 1994-11-25 1996-06-04 Idemitsu Kosan Co Ltd ポリスチレン系樹脂組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0422495A1 (de) * 1989-10-13 1991-04-17 Idemitsu Kosan Company Limited Styrolpolymerisate enthaltende Zusammensetzung
EP0608007A2 (de) * 1989-10-13 1994-07-27 Idemitsu Kosan Company Limited Styrolpolymerisate enthaltende Zusammensetzung
EP0546497A2 (de) * 1991-12-10 1993-06-16 Idemitsu Kosan Company Limited Thermoplastische Harzzusammensetzung
JPH08143729A (ja) * 1994-11-25 1996-06-04 Idemitsu Kosan Co Ltd ポリスチレン系樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 125, no. 14, 30 September 1996, Columbus, Ohio, US; abstract no. 169685 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997040097A1 (de) * 1996-04-23 1997-10-30 Basf Aktiengesellschaft Thermoplastische formmassen auf der basis von vinylaromatischen polymeren mit syndiotaktischer struktur, niederviskosen polyamiden und mit polaren gruppen modifizierten polyphenylenethern
US6093771A (en) * 1996-04-23 2000-07-25 Basf Aktiengesellschaft Thermoplastic moulding compounds based on vinyl aromatic polymers with syndiotactic structure, low-viscosity polyamides and polyphenylene ethers modified with polar groups
WO1999011714A1 (de) * 1997-08-30 1999-03-11 Basf Aktiengesellschaft Thermoplastische formmassen auf basis von polyamid und styrol/diphenylethylen-copolymeren
WO1999014273A1 (en) * 1997-09-12 1999-03-25 The Dow Chemical Company Toughened polymer blends
US5990244A (en) * 1997-09-12 1999-11-23 The Dow Chemical Company Toughened polymer blends
WO2002055768A1 (en) * 2001-01-12 2002-07-18 Dow Global Technologies Inc. Thermoplastic compositions for the preparation of fibers and films
US6894102B2 (en) 2002-05-20 2005-05-17 General Electric Syndiotactic polystyrene blends
US8450412B2 (en) 2009-12-22 2013-05-28 Sabic Innovative Plastics Ip B.V. Flame retardant polyamide composition, method, and article
US8669332B2 (en) 2011-06-27 2014-03-11 Sabic Innovative Plastics Ip B.V. Poly(arylene ether)-polysiloxane composition and method
US9090999B2 (en) 2011-09-28 2015-07-28 Sabic Global Technologies B.V. Polyamide/polyphenylene ether fibers and fiber-forming method
US8722837B2 (en) 2012-01-31 2014-05-13 Sabic Innovative Plastics Ip B.V. Poly(phenylene ether)-polysiloxane composition and method

Also Published As

Publication number Publication date
DE19535417A1 (de) 1997-03-27

Similar Documents

Publication Publication Date Title
DE4321247C2 (de) Polyamid-Harzmasse und deren Verwendung zur Herstellung von Formkörpern
EP0678555B1 (de) Polyphenylenether/Polyamid-Formmassen
EP1242538B1 (de) Thermoplastische formmassen mit verbessertem verarbeitungsverhalten auf basis von polyarylenethersulfonen und polyamiden
DE3726283A1 (de) Thermoplastische formmassen
DE4129500A1 (de) Hochschlagzaehe, flammgeschuetzte polyphenylenether/polyamidformmassen
JPS63113069A (ja) 熱可塑性樹脂組成物
DE3641497A1 (de) Thermoplastische formmassen auf der basis von polyamiden und polyaryletherketonen
WO1997011123A1 (de) Thermoplastische formmassen auf der basis von vinylaromatischen polymeren mit syndiotaktischer struktur, thermoplastischen polyamiden und mit polaren gruppen modifizierten polyphenylenethern
EP0320725A1 (de) Thermoplastische Formmassen, Verfahren zu ihrer Herstellung und ihre Verwendung
DE3617501A1 (de) Thermoplastische formmassen
EP0253123A1 (de) Thermoplastische Formmassen
WO1997040097A1 (de) Thermoplastische formmassen auf der basis von vinylaromatischen polymeren mit syndiotaktischer struktur, niederviskosen polyamiden und mit polaren gruppen modifizierten polyphenylenethern
JPS63235364A (ja) ポリフェニレンエーテル及びポリアミドをベースとする熱可塑性成形材料
JP2724867B2 (ja) 難燃性ポリアミド組成物及び難燃剤
EP0886657B1 (de) Funktionalisierte polymere
WO1997011124A1 (de) Thermoplastische formmassen auf der basis von vinylaromatischen polymeren mit syndiotaktischer struktur, thermoplastischen polyamiden und mit polaren gruppen modifizierten polyphenylenethern
EP0590392B1 (de) Formmassen auf der Basis von Polyarylethern und schlagzähmodifizierten teilaromatischen Copolyamiden
DE4114455A1 (de) Thermoplastische formmasse auf der basis von polyarylethern, polyamiden und modifizierten polyarylethern als haftvermittler
WO2000012601A1 (de) Formmassen auf der basis von polyarylenethersulfonen und aliphatischen polyamiden
JPH0570682A (ja) 熱可塑性樹脂組成物
WO1998030630A1 (de) Thermoplastische formmassen
EP0796879B1 (de) Pfropfcopolymerisate aus Polyarylenethern, Polyamiden und Copolymeren, die cyclische, alpha,beta-ungesättigte Dicarbonsäureanhydride einpolymerisiert enthalten
EP0418609A2 (de) Thermoplastische Formmassen auf Basis modifizierter Polyphenylenether
DE4113162A1 (de) Hochschlagzaehe formmassen
JPS6147870B2 (de)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase