EP0879293A1 - Kassetten zur expression von lagerstabilen proteinen in pflanzen - Google Patents

Kassetten zur expression von lagerstabilen proteinen in pflanzen

Info

Publication number
EP0879293A1
EP0879293A1 EP97914150A EP97914150A EP0879293A1 EP 0879293 A1 EP0879293 A1 EP 0879293A1 EP 97914150 A EP97914150 A EP 97914150A EP 97914150 A EP97914150 A EP 97914150A EP 0879293 A1 EP0879293 A1 EP 0879293A1
Authority
EP
European Patent Office
Prior art keywords
gene
promoter
expression cassette
plants
cassette according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97914150A
Other languages
English (en)
French (fr)
Inventor
Udo Conrad
Ulrike Fiedler
Julian Phillips
Olga Artsaenko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institut fuer Pflanzengenetik und Kulturpflanzenforschung
Original Assignee
Institut fuer Pflanzengenetik und Kulturpflanzenforschung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE1996104588 external-priority patent/DE19604588A1/de
Priority claimed from DE1996120804 external-priority patent/DE19620804A1/de
Application filed by Institut fuer Pflanzengenetik und Kulturpflanzenforschung filed Critical Institut fuer Pflanzengenetik und Kulturpflanzenforschung
Publication of EP0879293A1 publication Critical patent/EP0879293A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/16Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from plants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8221Transit peptides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8257Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8257Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon
    • C12N15/8258Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon for the production of oral vaccines (antigens) or immunoglobulins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Definitions

  • the invention relates to cassettes for the expression of storage-stable proteins in plants, in particular single-chain antibody fragments in transgenic tobacco or pea plants.
  • the aim of the invention was to put seed-specific expression in transgenic plants on a basis suitable for substance production. Another aim is to create a biological basis for the use of simple and manageable harvesting and processing technology, above all to ensure that the gene product formed in the plant in the period between the immediate harvest and the subsequent extraction and purification steps in quantity and desired activity remains stable at normal temperatures without cooling.
  • the expression cassettes according to the invention contain a promoter (preferably a constitutive promoter such as the CaMV 35S promoter or a seed-specific promoter), the LeB4 signal peptide, the gene to be expressed and an ER retention signal.
  • a promoter preferably a constitutive promoter such as the CaMV 35S promoter or a seed-specific promoter
  • the LeB4 signal peptide the gene to be expressed and an ER retention signal.
  • cassettes The structure of the cassettes is shown schematically in Figures 1 and 2 using the example of a single-chain antibody gene (scFv gene).
  • scFv gene a single-chain antibody gene
  • the expression cassette according to Fig. 1 is preferably used for the expression of genes of single-chain antibody fragments. It is also advantageous to use genes from recombinant antibody fragments as a translation fusion
  • REPLACEMENT BUIP (RULE 26) other functional proteins such as a second recombinant antibody, enzymes, toxins, chromophores and binding proteins.
  • SEKDEL specific ER retention signal
  • Other retention signals which occur naturally in plant and animal proteins located in the ER, can also be used to construct the cassette.
  • the seed-specific expression is approximately 1.9% of the total soluble protein, the single-chain antibody expression starting from day 16 of the seed development.
  • the use of the USP promoter to construct the expression cassette is particularly advantageous. It becomes active earlier during seed development, increasing the time available to enrich the expressed product. The expression rate is therefore higher than for cassettes with the LeB4 promoter.
  • the expression cassettes are transferred into bacterial strains by electroporation.
  • the resulting recombinant clones are used to transform dicotyledonous plants.
  • Plants that express gene products are selected and grown as genetically stable lines.
  • the gene products (including single-chain antibody fragments) are extracted after the harvest, if necessary after the plant tissue has dried. Tobacco and pea plants are particularly suitable as dicotyledonous plants.
  • the invention enables substances that are otherwise difficult to access, e.g. B. immunoglobulins to express at a high expression rate in plants and thereby to make them available for biotechnological use. Surprisingly, it has been found that single-chain antibody fragments during storage, for. B. in tobacco seeds remain stable for a long time (at least one year).
  • the hybridoma cell line NQ 10 / 12.5 is characterized in that the secreted, directed against the antigen phenyloxazolone monoclonal antibody having a high affinity (dissociation constant lxl0 - ⁇ M) and the specific sequences of the immunoglobulin genes are available (Berek et al., 1985). This monoclonal antibody was the starting point for the construction of the single-chain antibody fragment -scFv-ox. First, mRNA was isolated from the hybridoma cells and rewritten into cDNA.
  • variable immunoglobulin genes VH and VK served as a template for the amplification of the variable immunoglobulin genes VH and VK with the specific primers VH1 BACK and VH FOR-2 for the heavy chain and VK2 BACK and MJK5 FON X for the light chain (Clackson et al., 1991).
  • the isolated variable immunoglobulin genes were the starting point for the construction of a single-chain antibody fragment (scFv).
  • scFv single-chain antibody fragment
  • three components VH, VK and a linker fragment were combined in a PCR reaction mixture and the scFv-ox was amplified (Fig. 3).
  • the constructed scFv-ox gene had a size of 735 bp.
  • the variable domains were fused together in the order VH-L-VL.
  • the functional characterization (antigen binding activity) of the constructed scFv-ox gene was carried out after expression in a bacterial system.
  • the scFv-ox was synthesized as a soluble antibody fragment (Hoogenboom et al., 1991).
  • the activity and the specificity of the antibody fragment constructed was checked in ELISA tests (Fig. 4).
  • the scFv gene was cloned downstream of the LeB4 promoter.
  • the LeB4 promoter isolated from Vicia faba shows a strictly seed-specific expression of various foreign genes in tobacco (Bäumlein et al., 1987, 1991).
  • the scFv gene was fused with a signal peptide sequence which ensures entry into the endoplasmic reticulum and the ER retention signal SEKDEL, which ensures that it remains in the ER (Wandelt et al., 1992). (Fig. 5).
  • the constructed expression cassette (construct 11) was cloned into the binary vector pGSGLUCl (Saito et al., 1990) and transferred into the Agrobacterium strain EHA 101 by electroporation. Recombinant agrobacterial clones were used for the subsequent transformation of Nicotiana tabacum. 70-140 tobacco plants were regenerated per construct. After self-fertilization, both mature and seeds from various stages of development were harvested from the regenerated transgenic tobacco plants. The soluble proteins were obtained from these seeds after extraction in an aqueous buffer system. The analysis of the transgenic plants of series 11 shows that the fusion of the scFv gene with the DNA sequence of the ER retention signal SEKDEL achieved a maximum accumulation of 1.9% scFv proteins in the mature seed (Table 1 ).
  • Tab. 1 Summary representation of the seed-specific construct used, the number of tested and transgenic plants, their average scFv protein expression in mature seeds and the antigen binding activity of the antibody fragments. The expression levels were determined by Western blot analysis, the specific binding activity by means of direct ELISA.
  • the scFv gene was cloned downstream of the USP promoter.
  • the USP promoter isolated from Vicia faba shows a strictly seed-specific expression of various foreign genes in tobacco (Fiedler et al., 1993).
  • a stable accumulation of large amounts of antibody fragments was achieved by transporting the scFv protein into the endoplasmic reticulum.
  • the scFv gene was merged with a signal peptide sequence which fuses entry into the endoplasmic reticulum and the ER retention signal SEKDEL, which ensures that it remains in the ER (Wandelt et al., 1992) (Fig. 6).
  • the constructed expression cassette was cloned into the binary vector pGSGLUCl (Saito et al., 1990) and transferred by electroporation into the agrobacterial strain EHA 101. Recombinant agrobacterial clones were used for the subsequent transformation of Nicotiana tabacum. After self-fertilization, both mature and seeds from various stages of development were harvested from the regenerated transgenic tobacco plants. The soluble proteins were obtained from these seeds after extraction in an aqueous buffer system. Analysis of the transgenic plants shows that single-chain antibody fragments were synthesized from day 10 of seed development by the fusion of the scFv gene with the DNA sequence of the ER retention signal SEKDEL under the control of the USP promoter.
  • the scFv gene was first fused with a signal peptide sequence that entry into the endoplasmic reticulum and the ER retention signal KDEL, which ensures that it remains in the ER (Wandelt et al., Plant J. 2, 181-192 (1992)) (Fig. 1).
  • the constructed expression cassette (construct 9) was cloned into the binary vector pGSGLUC1 (Saito et al., Plant Cell Rep. 8, 718-721 (1990)) and transferred into the Agroba / cterium strain EHA 101 by electroporation. Recombinant agrobacterial clones were used for the subsequent transformation of Nicotiana tabacum. About 100 tobacco plants were regenerated. Leaf material from various stages of development was removed from the regenerated transgenic tobacco plants. The soluble proteins were obtained from this sheet material after extraction in an aqueous buffer system. Subsequent analyzes (Western blot
  • Table 2 Summary representation of the construct used, which mediates ubiquitous expression of the scFv gene, the number of tested and transgenic plants, their average scFv protein expression in the leaf and the antigen binding activity of the antibody fragments in the leaf extracts. The expression levels were determined by Western blot analysis and the antigen binding activity using a direct ELISA.
  • REPLACEMENT BLADE (RULE 26) provided and incubated for 1 to 4 h at room temperature without the addition of protease inhibitors. It was shown that there was no detectable degradation of the antibody fragments in the leaf extracts within the period tested.
  • the cause of the stability can be the compartment-specific occurrence of the antibody fragments, which means that after homogenization of the tissue these are not in the soluble supernatant together with the proteases.
  • Example 1 In addition to the stability in the buffer system used for the extraction, the possibility of storing the scFv protein also plays an important role, since the harvested material can often not be processed directly.
  • Example 1 it has already been described that, when expressed in the semen, it can be stored at RT for at least one year without a measurable loss of the accumulated antibody or its activity.
  • the storage of green tissue while maintaining the amount and activity of antibodies is not to be expected without further ado. Nevertheless, this was checked in a series of drying tests. For this purpose, fully grown leaves were harvested from 5 plants in the 9 series. Part of the
  • Leaf was immediately frozen (storage at -20 ° C) and another dried at RT and stored under the same conditions for one week. In parallel, leaves were dried at 50 ° C and stored for three weeks at room temperature. The result of these investigations is shown in Fig. 7. It was found that the antibody fragments of the leaves dried at room temperature are still present even after storage for one week. In a subsequent ELISA with extracts of the dried leaves, the antigen binding activity of the antibody fragment could also be demonstrated. No differences were found between the sheet material stored at -20 ° C. and the sheet material dried and stored at room temperature. In contrast, no scFv protein could be detected in leaves dried at 50 ° C in a Western blot (Fig. 7). Plant growth was not affected by the production of the recombinant proteins.
  • the starting point of the investigations was a single-chain antibody fragment against the phytohormone abscisic acid expressed in tobacco plants (Artsaenko et al., Plant J. 8, 745-750 (1995)).
  • the amount and activity of the synthesized scFv potein were determined in Western blot analyzes and ELISA tests.
  • the foreign gene was expressed under the control of the CaMV 35S promoter as a translation fusion with the LeB4 sinus peptide (N-terminal) and the ER retention signal KDEL (C-terminal).
  • a stable accumulation of high amounts of active antibody fragment was achieved by transporting the scFv protein into the endoplasmic reticulum. After harvesting the leaf material, pieces of a leaf were frozen at -20 ° C, lyophilized or dried at room temperature. The soluble proteins were obtained from the respective leaf materials by extraction in an aqueous buffer and the scFv protein was purified by affinity chromatography. Equal amounts (Fig. 8B) of purified scFv protein (frozen, lyophilized and dried) were used to determine the activity of the antibody fragment (Fig. ⁇ A). The same antigen binding activities were found. Legend for the pictures:
  • Fig. 1 Schematic representation of the cassette for the storage-stable expression of the scFv gene in leaves of transgenic tobacco plants
  • Fig. 2 Schematic representation of the cassette for seed-specific expression of the scFv gene
  • Fig. 3 Schematic representation of the construction of the scFv-ox (V gene for V (variable) region, L linker).
  • Fig. 4 Functional characterization of the scFv-ox 9 in a direct ELISA.
  • Fig. 5 Schematic representation of the cassette for seed-specific expression of the scFv-ox gene.
  • Fig. 6 Schematic representation of the cassette for seed-specific expression of the scFv-aABA.
  • Fig. 7 Studies on the stability of the scFv protein after drying the leaves of the transgenic plants 9/21 and 9/22 at RT and at 50 ° C. The scFv fragment was detected by Western blot analysis. 40 ⁇ g of total soluble protein was applied. Lane 1: control plant SNN, lane 2: 100 ng scFv protein, lane 3: 9/21 RT before drying, lane 4: 9/21 RT
  • track 5 9/21 50 ° C before drying
  • track 6 9/21 50 ° C after drying
  • track 7
  • Fig. 8 Evidence of the preservation of the antigen binding activity of the antibody fragment scFv-ABA in leaves after drying or lyophilization using ELISA tests.
  • Fig. 3A shows the antigen binding activity of the ⁇ cFv protein purified from fresh (1), lyophilized (2) and dried leaves.
  • Fig. 3B the respective amounts of scFv protein (about 100 ng) that were used for the ELISA analyzes are determined by means of Western blot analyzes. The sizes of the protein molecular weight standards are shown on the left.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Botany (AREA)
  • Peptides Or Proteins (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Die Erfindung betrifft Kassetten für die Expression von lagerstabilen Genprodukten in Blättern und spezifisch in Samen, insbesondere von Einketten-Antikörperfragmenten in Blättern und Samen transgener Tabak- und Erbsenpflanzen. Anwendungsgebiete der Erfindung sind die Biotechnologie, die Medizin (Diagnostik und Therapie), die Lebensmittel- und Pflanzenkontrolle sowie die Landwirtschaft. Die erfindungsgemässe Expressionskassette umfasst: konstitutive bzw. samenspezifische Promotoren; das LeB4-Signalpeptid; ein zu exprimierendes Gen und ein ER-Retentionssignal. Bevorzugt ist eine Expressionskassette, die als konstitutiven Promoter den CaMV 35S-Promoter, als Gen das Gen für ein Einketten-Antikörperfragment und als ER-Retentionssignal die Aminosäuresequenz KDEL enthält.

Description

Kassetten zur Expression von lagerstabilen Proteinen in Pflanzen
Beschreibung
Die Erfindung betrifft Kassetten für die Expression von lagerstabilen Proteinen in Pflanzen, insbesondere von Einketten-Antikörperfragmenten in transgenen Tabak- oder Erbsenpflanzen.
Anwendungsgebiete der Erfindung sind die Biotechnologie, die
Medizin (Diagnostik und Therapie), die Lebensmittel- und Pflanzenkontrolle sowie die Landwirtschaft.
Etablierte und zuverlässige Methoden der Genklonierung und der Gentechnik und jüngste Entwicklungen der Technologie transgener Pflanzen ermöglichen weitere Fortschritte in der Pflanzenbiotechnologie. Pflanzenteile können mehr und mehr als Produktionsstätten für Stoffe, die sonst schwer zugänglich sind, dienen. So ist es gelungen, Immunglobuline in Blättern transgener Tabakpflanzen zur Expression zu bringen. Die dabei erzielten Ergebnisse liegen zwischen 0.1 und 1.3 % des gesamten löslichen Proteins des Blattes. Die Expression erfolgte entweder cytoplasmatisch oder in Apoplasten pflanzlicher Zellen.
Durch Anhängen eines Signals zur Retention im endoplasmatischen Retikulum (ER) an ein Einketten- Antikörpergen (εcFv-Gen) kann der Antikörper in diesem speziellen Kompartiment von Blattzellen transgener Pflanzen fixiert werden. Diese Fixierung führt zu einer Steigerung der Expressionsrate von Einketten-Antikörperfragmenten in Blättern transgener Pflanzen auf 4.8% des gesamten löslichen Proteins (Artsaenko et al., Plant J. 8, 745-750 (1995)). Diese Befunde wurden prinzipiell von anderen bestätigt, wenn auch die absoluten Expressionswerte nicht erreicht wurden.
Weitere Arbeiten betreffen die spezifische Expression von Genprodukten in pflanzlichen Speicherorganen, vor allem in Samen. Mit Hilfe eines samenspezifischen Promoters konnten Einketten-Antikörperfragmente stabil bis zu 0,67% des gesamten löslichen Samenproteins in den Samen transgener Tabakpflanzen exprimiert werden (Fiedler und Conrad, Bio/Technology 10, 1090- 1094 (1995)).
Trotz dieser Fortschritte waren die erreichten Expressionsraten in Pflanzen bisher zu gering, um eine pflanzenbiotechnologische Produktion der gewünschten Stoffe darauf zu begründen.
Ziel der Erfindung war es, die samenspezifische Expression in transgenen Pflanzen auf eine für eine StoffProduktion geeignete Basis zu stellen. Ein weiteres Ziel besteht darin, eine biologische Basis für den Einsatz einer einfachen und handhabbaren Ernte- und Verarbeitungstechnologie zu schaffen, vor allem zu sichern, daß das in der Pflanze gebildete Genprodukt im Zeitraum zwischen der unmittelbaren Ernte und den nachfolgenden Extraktions- und Reinigungsschritten in Menge und gewünschter Aktivität bei normalen Temperaturen ohne Kühlung stabil erhalten bleibt.
Die Zielstellung der Erfindung wird mit den in den Ansprüchen l-ll beschriebenen Expressionskassetten erreicht.
Die erfindungsgemäßen Expressionskassetten enthalten einen Promoter (bevorzugt einen konstitutiven Promoter wie den CaMV 35S-Promoter oder einen samenspezifischen Promoter), das LeB4-Signalpeptid, das zu exprimierende Gen und ein ER- Retentionssignal.
Der Aufbau der Kassetten ist in den Abbildungen 1 und 2 am Beispiel eines Einketten-Antikörpergens (scFv-Gen) schematisch dargestellt.
Die Expressionskassette gemäß Abb. 1 wird bevorzugt zur Expression von Genen von Einketten-Antikörperfragmenten eingesetzt. Vorteilhaft ist auch die Verwendung von Genen rekombinanter Antikörperfragmente als Translationsfusion mit
ERSATZBUπ(REGEL26) anderen funktionellen Proteinen wie zum Beispiel einem zwei¬ ten rekombinanten Antikörper, Enzymen, Toxinen, Chromophoren und Bindungsproteinen. Als ER-Rententionssignal wird bevorzugt die Aminosäuresequenz KDEL (= Lysin, Asparaginsäure, Glutaminsäure, Leucin) verwendet. Von besonderer Bedeutung für den erfindungsgemäßen Erfolg der Kassette gemäß Abb. 2 ist das Anhängen des spezifischen ER- Retentionssignals SEKDEL, die durchschnittliche Expressionshöhe wird damit verdreifacht biε vervierfacht. Es können auch andere Retentionssignale, die natürlicherweise bei im ER lokalisierten pflanzlichen und tierischen Proteinen vorkommen, für den Aufbau der Kassette eingesetzt werden.
Im Falle des Einsatzes des LeB4-Promoters beträgt die samenspezifische Expression ca 1,9% des gesamten löslichen Proteins, wobei die Einketten-Antikörperexpression ab Tag 16 der Samenentwicklung beginnt. Besonders vorteilhaft ist der Einsatz des USP-Promoters zum Aufbau der Expressionskassette. Er wird während der Samenentwicklung früher aktiv, wodurch der zur Anreicherung des exprimierten Produkts zur Verfügung stehende Zeitraum verlängert wird. Die Expressionsrate liegt daher höher als bei Kassetten mit dem LeB4-Promoter.
Die Expressionskassetten werden erfindungsgemäß durch Elektroporation in Bakterienstämme transferiert. Die entstandenen rekombinanten Klone werden zur Transformation von dicotylen Pflanzen verwendet. Pflanzen, die Genprodukte exprimieren, werden selektiert und als genetisch stabile Linien gezüchtet. Die Genprodukte (u. a. Einketten- Antikörperfragmente) werden nach der Ernte, ggf. nach einer Trocknung des Pflanzengewebes, extrahiert. Als dicotyle Pflanzen sind Tabak- und Erbsen-pflanzen besonders geeignet.
Die Wirkung der erfindungsgemäßen Kassetten war überraschend, weil aus eigenen elektronenmikroskopischen Untersuchungen bekannt ist, daß stabil exprimierte Antikörper z. B. im Samen auch ohne ER-Retentionssignal im ER oder in ER-abgeleiteten Vesikeln liegen. Deshalb war nicht zu erwarten, daß die erfindungsgemäße Fusion mit einem Retentionssignal eine deutliche Steigerung der Expressionshöhe bewirkt.
Durch die Erfindung wird ermöglicht, sonst schwer zugängliche Stoffe, z. B. Immunglobuline, mit hoher Expressionsrate in Pflanzen zu exprimieren und dadurch für eine biotechnologische Nutzung zur Verfügung zu stellen. Überraschenderweise hat sich herausgestellt, daß Einketten-Antikörperfragmante bei der Lagerung z. B. in Tabaksamen längere Zeit (mindestens ein Jahr)stabil bleiben.
Ebenso überraschend war, daß Einketten-Antikörperfragmente, die in Blättern exprimiert wurden, nach Trockung dieser Blätter bei Raumtemperatur ebenfalls für mehrere Tage stabil bleiben.
Damit ist ausreichend Zeit gegeben, den Transport vom Feld in die verarbeitende Einrichtung durchzuführen bzw. sogar eine gewisse Zeit zu lagern, ohne daß Ausbeuteverluste eintreten. Ursache dieser Stabilität ist das durch die Erfindung bewirkte kompartimentspezifische Vorkommen der Genprodukte, was bedingt, daß sie vor proteolytischem Abbau geschützt sind.
Die Erfindung soll nachfolgend durch Ausführungsbeispiele näher erläutert werden.
Beispiel 1
Expression und Anreicherung des Einketten-Antikörper fragraentes scFv-ox im endoplasmatischen Retikulum von transgenen Tabaksamen
Ausgangspunkt der Untersuchungen war ein monoklonaler Antikörper (NQ10.-12.5, Berek and Milstein, 1988), dessen Epitope gegen ein nicht in Pflanzen vorkommendes Antigen (Phenyloxazolon) gerichtet sind, um eventuelle Einflüsse auf
ERSATZBUTT(REGEL26) den pflanzlichen Metabolismus auszuschließen und der außerdem eine hohe Bindungsaffinität aufweist. Die Hybridomazellinie NQ 10/12.5 ist dadurch charakterisiert, daß die sekretierten, gegen das Antigen Phenyloxazolon gerichteten monoklonalen Antikörper eine hohen Affinität aufweisen (Dissoziationskonstante lxl0 M) und die spezifischen Sequenzen der Immunglobulingene verfügbar sind (Berek et al., 1985). Dieser monoklonale Antikörper war Ausgangpunkt für die Konstruktion des Einketten-Antikörperfragmentes -scFv-ox. Zunächst wurde mRNA aus den Hybridomzellen isoliert und in cDNA umgeschrieben. Diese cDNA diente als Matrize für die Amplifikation der variablen Immunglobulingene VH und VK mit den spezifischen Primern VH1 BACK und VH FOR-2 für die schwere Kette sowie VK2 BACK und MJK5 FON X für die leichte Kette (Clackson et al., 1991). Die isolierten variablen Immunglobulingene waren Ausgangspunkt für die Konstruktion eines Einketten-Antikörperfragmentes (scFv). Bei der nachfolgenden Fusions-PCR wurden drei Komponenten VH, VK und ein Linkerfragment in einem PCR-Reaktionsansatz vereinigt und das scFv-ox amplifiziert (Abb. 3). Das konstruierte scFv-ox- Gen hatte eine Größe von 735 bp. Die variablen Domänen wurden in der Reihenfolge VH-L-VL miteinander fusioniert.
Die funktionelle Charakterisierung (Antigenbindungsaktivität) des konstruierten scFv-ox-Gens erfolgte nach Expression in einem bakteriellen System. Das scFv-ox wurde dazu als lösliches Antikörperfragment synthetisiert (Hoogenboom et al., 1991). Die Aktivität und die Spezifität des konstruierten Antikörperfragmentes wurde in ELISA-Tests überprüft (Abb.4) .
Um eine samenspezifische Expression des Antikörperfragmentes in Tabak zu ermöglichen, wurde das scFv-Gen stromabwärts vom LeB4-Promoter kloniert. Der aus Vicia faba isolierte LeB4- Promoter zeigt eine streng samenspezifische Expression von verschiedenen Fremdgenen in Tabak (Bäumlein et al., 1987, 1991). Durch Transport des scFv-Proteins in das endoplasmatische Retikulum wurde eine stabile Akkumulation hoher Antikörperfragmentmengen erreicht. Das scFv-Gen wurde dafür mit einer Signalpeptidsequenz, die den Eintritt in das endoplasmatische Retikulum und dem ER-Retentionssignal SEKDEL, das ein Verbleiben im ER gewährleist (Wandelt et al., 1992), fusioniert. (Abb. 5).
Die konstruierte Expressionskassette (Konstrukt 11) wurde in den binären Vektor pGSGLUCl (Saito et al., 1990) kloniert und durch Elektroporation in den Agrobakterium-Stamm EHA 101 transferiert. Rekombinante Agrobakterienklone wurden für die nachfolgende Transformation von Nicotiana tabacum verwendet. Pro Konstrukt wurden 70-140 Tabakpflanzen regeneriert. Von den regenerierten transgenen Tabakpflanzen wurden nach Selbstbefruchtung sowohl reife als auch Samen verschiedener Entwicklungsstadien geerntet. Von diesen Samen wurden die löslichen Proteine nach Extraktion in einem wassrigen Puffersyεtem erhalten. Die Analyse der transgener» Pflanzen der Serie 11 zeigt, daß durch die Fusion des scFv-Gens mit der DNA-Sequenz des ER-Retentionssignals SEKDEL eine maximale Akkumulation von 1,9 % scFv-Proteine im reifen Samen erzielt werden konnte (Tab. 1) .
Tab. 1: Zusammenfassende Darstellung des verwendeten samenspezifischen Konstruktes, der Anzahl getesteter und transgener Pflanzen, deren durchschnittliche scFv-Proteinexpression im reifen Samen sowie die Antigenbindungsaktivität der Antikörperfragmente. Die Expressionsniveaus wurden durch Western-Blot Analysen, die spezifische Bindungsaktivität mittels direktem ELISA bestimmt.
Neben Untersuchungen zur Akkumulation sollte der Frage nachgegangen werden, ob die im reifen Samen abgelagerten Antikörperfragmente noch ihre biologische Aktivität besitzen, d. h. das entsprechende Antigen Oxazolon noch spezifisch binden. Die spezifische Aktivität wurde in den Extrakten der reifen Tabaksamen mit einem direkten ELISA bestimmt. Die dabei erhaltenen Werte, die in Tab. 1 aufgeführt sind, zeigen deutlich, daß die aus trockenem Tabaksamen hergestellten Proteinextrakte funktioneil aktive Antikörperfragmente enthalten. In weiteren Experimenten wurde die Stabilität der im reifen Samen akkumulierten Antikörperfragmente nach Lagerung untersucht. Dazu wurden die Tabaksamen ca. 1 Jahr bei Raumtemperatur aufbewahrt. Die Untersuchungen ergaben, daß die Menge und die Aktivität der akkumulierten Antikörper¬ fragmente auch nach einjähriger Lagerung erhalten bleibt. Das pflanzliche Wachstum und die Samenentwicklung bzw. - Produktion wurden durch die Synthese der rekombinanten Proteine nicht beeinflußt.
Beispiel 2
Samenspezifische Expression und Anreicherung von Einketten- Antikörperfragmenten im endoplasmatischen Retikulum von Zellen transgener Tabaksamen kontrolliert durch den USP- Promotor
Ausgangspunkt der Untersuchungen war ein ein Einzelketten- Antikörperfragment gegen das Phytohormon Abscisinsäure (Artsaenko et al., 1994).
Die funktionelle Charakterisierung (Antigenbindungsaktivität) dieses konstruierten scFv-aABA-Genes erfolgte nach Expression in einem bakteriellen System und nach Expression in Tabakblättern (Artsaenko et al. , 1994, 1995). Die Aktivität und die Spezifität des konstruierten Antikörperfragmentes wurde in ELISA-Testen überprüft.
Um eine samenspezifische Expression des Antikörperfragmentes in Tabak zu ermöglichen, wurde das scFv-Gen stromabwärts vom USP-Promoter kloniert. Der aus Vicia faba isolierte USP- Promoter zeigt eine streng samenspezifische Expression von verschiedenen Fremdgenen in Tabak (Fiedler et al., 1993). Durch Transport des scFv-Proteins in das endoplasmatische Retikulum wurde eine stabile Akkumulation hoher Antikörperfragmentmengen erreicht. Das scFv-Gen wurde dafür mit einer Signalpeptidsequenz, die den Eintritt in das endo¬ plasmatische Retikulum und dem ER-Retentionssignal SEKDEL, das ein Verbleiben im ER gewährleistet (Wandelt et al., 1992), fusioniert (Abb. 6).
Die konstruierte Expressionskassette wurde in den binären Vektor pGSGLUCl (Saito et al., 1990) kloniert und durch Elektroporation in den Agro bakteriujn-Stamm EHA 101 transferiert. Rekombinante Agrobakterienklone wurden für die nachfolgende Transformation von Nicotiana tabacum verwendet. Von den regenerierten transgenen Tabakpflanzen wurden nach Selbstbefruchtung sowohl reife als auch Samen verschiedener Entwicklungsstadien geerntet. Von diesen Samen wurden die löslichen Proteine nach Extraktion in einem wassrigen Puffersystem erhalten. Die Analyse der transgenen Pflanzen zeigt, daß durch die Fusion des scFv-Gens mit der DNA-Sequenz des ER-Retentionssignals SEKDEL unter Kontrolle des USP- Promotors bereits ab Tag 10 der Samenentwicklung Einketten- Antikörperfragmente synthetisiert wurden.
Im Verlaufe der Samenentwicklung kam es zu einer deutlich stärkeren Anreicherung des Einketten-Antikörperfragmentes im Vergleich zur LeB4-Promotor-kontrollierten Expression. Beispiel 3
Expression und stabile Akkumulation des Einketten-Antikör¬ perfragmentes scFv-ox im Blatt transgener Tabakpflanzen und Erhalt der biologischen Aktivität nach Ernte bzw. Trocknung des Blattmaterials
Die Konstruktion des Einketten-Antikörperfragmentes scFv-ox aus dem monoklonalen Antikörper NQ 10-12.5 (Berek und Milstein, Immunol. Rev. 105, 5 - 26 (1988)) und dessen funktionelle Charakterisierung nach Expression im bakteriellen System siehe Beispiele 1 und 2. Um eine ubiquitäre Expression des Antikörperfragmentes in der Pflanze, speziell in Blättern, zu erreichen, wurde das scFv- ox-Gen stromabwärts vom CaMV 35S-Promoter kloniert. Dieser starke virale, konstitutive Promoter vermittelt eine Expression von Fremdgenen in nahezu allen pflanzlichen Geweben (Benfey und Chua, Science 250, 956- 966 (1990)). Durch Transport des scFv-Proteins in das endoplasmatische Retikulum wurde eine stabile Akkumulation hoher Antikörperfragmentmengen im Blattmaterial erreicht. Das scFv- Gen wurde zunächst mit einer Signalpeptidsequenz, die den Eintritt in das endoplasmatische Retikulum und dem ER- Retentionssignal KDEL, das ein Verbleiben im ER gewährleistet (Wandelt et al., Plant J. 2, 181 - 192 (1992)), fusioniert (Abb. 1).
Die konstruierte Expresεionskassette (Konstrukt 9) wurde in den binären Vektor pGSGLUCl (Saito et al., Plant Cell Rep. 8, 718 - 721 (1990)) kloniert und durch Elektroporation in den Agroba/cterium-Stamm EHA 101 transferiert. Rekombinante Agrobakterienklone wurden für die nachfolgende Transformation von Nicotiana tabacum verwendet. Es wurden ungefähr 100 Tabakpflanzen regeneriert. Von den regenerierten transgenen Tabakpflanzen wurde Blattmaterial verschiedener Entwicklungs¬ stufen entnommen. Von diesem Blattmaterial wurden die löslichen Proteine nach Extraktion in einem wassrigen Puffersystem erhalten. Nachfolgende Analysen (Western-Blot-
ERSATZBLÄTT(REGEL26) O 97/29200 PCIYDE97/00285
10
Analysen und ELISA-Tests) zeigten, daß in Blättern der Serie 9 eine maximale Akkumulation von etwa 4% an biologisch aktivem, antigenbindendem scFv-Protein erzielt werden konnte (Tab. 2). Die hohen Expressionswerte wurden in ausgewachsenen grünen Blättern ermittelt, aber selbst in senszentem Blattmaterial konnte das Antikörperfragment noch nachgewiesen werden.
Tab. 2: Zusammenfassende Darstellung des verwendeten Konstruktes, das eine ubiquitäre Expression des scFv-Gens vermittelt, der Anzahl getesteter und transgener Pflanzen, deren durchschnittliche scFv-Protein Expression im Blatt und die Antigenbindungsaktivität der Antikörperfragmente in den Blattextrakten. Die Expressionsniveaus wurden durch Western- Blot-Analyεen und die Antigenbindungεaktivität mit einem direkten ELISA bestimmt.
Da bei der Isolierung von Antikörperfragmenten im größeren, auch industriellen Maßstab, längere Inkubationszeiten unvermeidlich sein können, sollte getestet werden, ob das scFv-Protein nach Extraktion aus dem jeweiligen Gewebe in dem verwendeten Puffersystem stabil ist. Dazu wurden von scFv- Fragment exprimierenden Pflanzen Extrakte aus Blättern her-
ERSAT2BLATT(REGEL26) gestellt und für 1 bis 4 h bei Raumtemperatur ohne Zusatz von Proteaseinhibitoren inkubiert. Es zeigte sich, daß es innerhalb des getesteten Zeitraumes zu keinem nachweisbaren Abbau der Antikörperfragmente in den Extrakten von Blättern kam. Ursache der Stabilität kann das kompartimentspezifische Vorkommen der Antikörperfragmente sein, was dazu führt, daß diese sich nach Homogenisierung des Gewebes nicht zusammen mit den Proteasen im löslichen Überstand befinden.
Neben der Stabilität in dem für die Extraktion verwendeten Puffersystem spielt die Möglichkeit der Lagerung des scFv- Proteins eine ebenso große Rolle, da oftmals keine direkte Verarbeitung des geernteten Materials erfolgen kann. In Beispiel 1 ist bereits beschrieben worden, daß bei Expression im Samen eine Lagerung für mindestens ein Jahr bei RT, ohne einen meßbaren Verlust des akkumulierten Antikörpers oder dessen Aktivität, erfolgen kann. Die Lagerung von grünem Gewebe unter Erhalt der Antikörpermenge und -aktivität ist jedoch nicht ohne weiters zu erwarten. Trotzdem wurde dies in Trocknungsversuchsreihen überprüft. Dazu wurden ausgewachsene Blätter von 5 Pflanzen der Serie 9 geerntet. Ein Teil des
Blattes wurde sofort eingefroren (Lagerung bei -20°C) und ein anderer bei RT getrocknet und eine Woche unter den gleichen Bedingungen gelagert. Parallel dazu wurden Blätter bei 50°C getrocknet und drei Wochen bei Raumtemperatur gelagert. Das Ergebnis dieser Untersuchungen ist in Abb. 7 dargestellt. Es zeigte sich, daß die Antikörperfragmente der bei Raumtemperatur getrockneten Blätter selbεt nach einwöchiger Lagerung noch vorhanden sind. In einem anschließenden ELISA mit Extrakten der getrockneten Blätter konnte ebenfalls die Antigenbindungsaktivität des Antikörperfragmentes nachgewiesen werden. Dabei waren keine Unterschiede zwischen dem bei -20°C gelagerten und dem bei Raumtemperatur ge¬ trockneten und gelagerten Blattmaterial feststellbar. Im Gegensatz dazu konnte in bei 50°C getrockneten Blättern im Western-Blot kein scFv-Protein nachgewiesen werden (Abb. 7). Das pflanzliche Wachstum wurde durch die Produktion der rekombinanten Proteine nicht beeinflußt.
Beispiel 4
Stabile Akkumulation des Einketten-Antikörperfragmentes gegen das Phytohormon Abscisinsäure im endoplasmatischen Retikulum und Erhalt der biologischen Aktivität nach Ernte bzw. Trocknung des Blattmaterials transgener Tabakpflanzen
Ausgangspunkt der Untersuchungen war ein in Tabakpflanzen exprimiertes Einketten-Antikörperfragment gegen das Phytohormon Abscisinsäure (Artsaenko et al., Plant J. 8, 745 - 750 (1995)). Menge und Aktivität des synthetisierten scFv- Poteins wurden in Western-Blot-Analysen und ELISA-Tests bestimmt.
Um eine Expression des scFv-Gens im endoplasmatischen Retikulum zu ermöglichen, wurde daε Fremdgen unter Kontrolle des CaMV 35S-Promoters als eine Translationsfusion mit dem LeB4-Sinalpeptid (N-terminal) und der ER-Retentionsεignal KDEL (C-terminal) exprimiert. Durch Transport des scFv- Proteins in das endoplasmatische Retikulum wurde eine stabile Akkumulation hoher Mengen an aktivem Antikörperfragment erreicht. Nach Ernte es Blattmaterials wurden Stücke eines Blattes bei -20° C eingefroren, lyophilisiert oder bei Raumtemperatur getrocknet. Die löslichen Proteine wurden aus den jeweiligen Blattmaterialien durch Extraktion in einem wassrigen Puffer erhalten und das scFv-Protein affinitätschromatographisch gereigt. Gleiche Mengen (Abb. 8B) an gereinigtem scFv-Protein (eingefroren, lyophilisiert und getrocknet) wurden für die Bestimmung der Aktivität des Antikörperfragmentes eingesetzt (Abb.δA). Dabei wurden etwa gleiche Antigenbindungsaktivitäten festgestellt. Legende zu den Abbildungen:
Abb. 1: Schematische Darstellung der Kassette zur lagerstabilen Expression des scFv-Gens in Blättern transgener Tabakpflanzen
Abb. 2: Schematische Darstellung der Kassette zur samenspezifischen Expression des scFv-Gens
Abb. 3: Schematische Darεtellung der Konstruktion des scFv-ox (V-Gen für V (variable) Region, L-Linker).
Abb. 4: Funktionelle Charakterisierung des scFv-ox 9 im direkten ELISA.
Abb. 5: Schematische Darstellung der Kassette zur samenεpezifischen Expression des scFv-ox-Gens.
Abb. 6: Schematische Darstellung der Kasεette zur samenspezifischen Expression des scFv-aABA.
Abb. 7: Untersuchungen zur Stabilität des scFv-Proteins nach Trocknung der Blätter der transgenen Pflanzen 9/21 und 9/22 bei RT und bei 50°C. Der Nachweis des scFv- Fragmentes erfolgte durch Western-Blot-Analyse. 40 μg geεamtlösliches Protein wurde aufgetragen. Spur 1: Kontrollpflanze SNN, Spur 2: 100 ng scFv-Protein, Spur 3: 9/21 RT vor Trocknung, Spur 4: 9/21 RT
Trocknung und 1 Woche Lagerung, Spur 5: 9/21 50°C vor Trocknung, Spur 6: 9/21 50°C nach Trocknung, Spur 7:
9/21 50°C nach Trocknung und 3 Wochen Lagerung, Spur 8: 9/22 RT vor Trocknung, Spur 9: 9/22 RT Trocknung und 1 Woche Lagerung, Spur 10: 9/22 50°C vor Trocknung, Spur 11: 9/22 50°C nach Trocknung, Spur 12: 9/22 50°C nach Trocknung und 3 Wochen Lagerung. Die Größen der Proteinmolekulargewichtsstandards sind links dargestellt.
Abb. 8: Nachweis des Erhaltes der Antigenbindungsaktivität des Antikörperfragmentes scFv-ABA in Blättern nach Trocknung oder Lyophilisierung mittels ELISA-Tests. In Abb. 3A ist die Antigenbindungsaktivität des aus frischen (1), lyophiliεierten (2) und getrockneten Blättern gereinigten εcFv-Proteins dargestellt. In Abb. 3B sind die jeweiligen Mengen an scFv-Protein (etwa 100 ng), die für die ELISA-Analyεen eingeεetzt wurden, mittels Western-Blot-Analysen bestimmt. Die Größen der Proteinmolekulargewichtsstandards sind links dargestellt.
ERSATZBUTT(REG! 16)

Claims

Patentansprüche
1. Kassetten zur Expression von lagerstabilen Proteinen in Pflanzen, bestehend aus
- einem Promoter
- dem LeB4-Signalpeptid
- einem zu exprimierenden Gen und
- einem ER-Retentionssignal.
2. Expressionskassetten nach Anspruch 1, dadurch gekennzeichnet, daß der Promoter ein konstitutiver Promoter ist.
3. Expressionskassetten nach Anspruch 1, dadurch gekennzeichnet, daß der Promoter ein samenspezifischer Promoter ist.
4. Expressionskassette nach Anspruch 1 und 2, dadurch gekennzeichnet, daß als konstitutiver Promoter der CaMV 35S- Promoter eingesetzt wird.
5. Expressionskassette nach Anspruch 1 und 3, dadurch gekennzeichnet, daß als samenspezifischer Promoter der USP- Promoter eingesetzt wird.
6. Expressionskassette nach Anspruch 1 und 3, dadurch gekennzeichnet, daß als samenspezifischer Promoter der LEB4- Proraoter eingesetzt wird.
7. Expressionskassette nach Anspruch 1 bis 6, dadurch gekennzeichnet, daß als zu exprimierendes Gen das Gen eines Einketten-Antikörperfragmentes eingesetzt wird.
8. Expressionskassette nach Anspruch 1 bis 6, dadurch gekennzeichnet, daß als zu exprimierendes Gen das Gen eines rekombinanten Antikörperfragmentes als Translationsfusion mit
ERSATZBUTT(REGEL26) anderen funktionellen Proteinen, wie zum Beispiel einem zwei¬ ten rekombinanten Antikörper, Enzymen, Toxinen, Chromophoren und Bindungsproteinen, eingesetzt wird.
9. Expressionskassette nach Anspruch 1-6, dadurch gekennzeichnet, daß sie
- den CaMV 35S-Promoter
- das LeB4-Signalpeptid
- das Gen für ein Einketten-Antikörperfragment und
- als ER-Retentionεsignal die Aminosäuresequenz KDEL enthält.
10. Expressionskassette nach Anspruch 1-6, dadurch gekennzeichnet, daß sie
- den USP-Promoter
- das LeB4-signalpeptid
- das Gen für ein Einketten-Antikörperfragment und
- als ER-Retentionssignal die Aminosäuresequenz KDEL enthält.
11. Expressionskaεεette nach Anεpruch 1-6, dadurch gekennzeichnet, daß sie
- den LEB4-Promoter
- das LeB4-Signalpeptid
- das Gen für ein Einketten-Antikörperfragment und
- als ER-Retentionssignal die Aminosäuresequenz KDEL enthält.
12. Verwendung der Expressionskassette nach Anspruch 1-6, dadurch gekennzeichnet, daß die Kassette durch Elektroporation in Bakterienstämme transferiert wird und die entstandenen rekombinanten Klone zur Tranεformation von dicotylen Pflanzen verwendet, Pflanzen, die Genprodukte exprimieren, selektiert, genetisch stabile Linien gezüchtet und die Genprodukte ohne Kühlung nach der Ernte, ggf. nach einer Trocknung des Pflanzengewebes, extrahiert werden.
ERSATZBUTT(REGEL26)
13. Verwendung der Expressionskasεette nach Anspruch 1-6, dadurch gekennzeichnet, daß die Kassette durch Elektroporation in Bakterienstämme transferiert wird und die entstandenen rekombinanten Klone zur Transformation von dicotylen Pflanzen verwendet, transgene Einketten- Antikörperfragmente exprimierende Pflanzen selektiert, genetisch stabile Linien gezüchtet und die Einketten- Antikörperfragmente aus getrockneten Blättern extrahiert werden.
14. Verwendung nach Anspruch 12 und 13, dadurch gekennzeichnet, daß als dicotyle Pflanzen Tabakpflanzen ausgewählt werden.
15. Verwendung nach Anspruch 12 und 13, dadurch gekennzeichnet, daß als dicotyle Pflanzen Erbsen ausgewählt werden.
16. Verwendung der Expressionskaεεette nach Anspruch 1-6, dadurch gekennzeichnet, daß die Kasεette durch Elektroporation in Bakterienεtämme tranεferiert wird die entstandenen rekombinanten Klone zur Tranεformation von dicotylen Pflanzen verwendet, Pflanzen, die Genprodukte exprimieren, εelektiert, genetisch stabile Linien gezüchtet und die in den Organen, vorzugsweiεe Blättern und Samen, enthaltenen Genprodukte nach der Ernte, ggf. nach einer Trocknung und Lagerung an Nutztiere verfüttert oder direkt alε Therapeutikum in der Humanmedizin eingesetzt werden.
ERSATZBUTT(REGEL26)
EP97914150A 1996-02-08 1997-02-07 Kassetten zur expression von lagerstabilen proteinen in pflanzen Withdrawn EP0879293A1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19604588 1996-02-08
DE1996104588 DE19604588A1 (de) 1996-02-08 1996-02-08 Expressionskassette für die samenspezifische Expression
DE1996120804 DE19620804A1 (de) 1996-05-23 1996-05-23 Kassette zur Expression von lagerstabilen Genprodukten in Blättern
DE19620804 1996-05-23
PCT/DE1997/000285 WO1997029200A1 (de) 1996-02-08 1997-02-07 Kassetten zur expression von lagerstabilen proteinen in pflanzen

Publications (1)

Publication Number Publication Date
EP0879293A1 true EP0879293A1 (de) 1998-11-25

Family

ID=26022734

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97914150A Withdrawn EP0879293A1 (de) 1996-02-08 1997-02-07 Kassetten zur expression von lagerstabilen proteinen in pflanzen

Country Status (5)

Country Link
US (1) US6403371B1 (de)
EP (1) EP0879293A1 (de)
JP (1) JP2000504567A (de)
CA (1) CA2246242A1 (de)
WO (1) WO1997029200A1 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL155588A0 (en) * 2003-04-27 2003-11-23 Metabogal Ltd Methods for expression of enzymatically active recombinant lysosomal enzymes in transgenic plant root cells and vectors used thereby
WO1999016890A2 (en) * 1997-09-30 1999-04-08 The Regents Of The University Of California Production of proteins in plant seeds
US20030044417A1 (en) * 1999-09-24 2003-03-06 Mccormick Alison A. Self antigen vaccines for treating B cell lymphomas and other cancers
US7084256B2 (en) * 1999-09-24 2006-08-01 Large Scale Biology Corporation Self antigen vaccines for treating B cell lymphomas and other cancers
US7297478B1 (en) 2000-09-22 2007-11-20 Large Scale Biology Corporation Creation of variable length and sequence linker regions for dual-domain or multi-domain molecules
US20030044420A1 (en) * 1999-09-24 2003-03-06 Mccormick Alison A. Self antigen vaccines for treating B cell lymphomas and other cancers
EP1130104A1 (de) * 2000-02-16 2001-09-05 Stichting Dienst Landbouwkundig Onderzoek Verminderung des Abbaus von rekombinanten Planzenprodukten in der Pflanze
CA2404961A1 (en) * 2000-04-03 2001-10-11 Monsanto Technology Llc Method for producing authentic cytokines in plants
DE10033750A1 (de) * 2000-07-12 2002-01-31 Mpb Cologne Gmbh Molecular Pla Pathogenresistenz in Organismen
US20050287647A9 (en) * 2001-05-30 2005-12-29 Carl Perez Plant artificial chromosomes, uses thereof and methods of preparing plant artificial chromosomes
DE10155862A1 (de) * 2001-11-14 2003-05-28 Ipk Inst Fuer Pflanzengenetik Produktion von rekombinanten Antikörpern mittels Fusion mit Elastin-ähnlichen Peptiden
WO2004024926A2 (de) * 2002-09-10 2004-03-25 Sungene Gmbh & Co. Kgaa Transgene expressionskassetten zur expression von nukleinsäuren in kohlenhydrat-speichernden sink-geweben von pflanzen
AU2003282667A1 (en) * 2002-10-03 2004-04-23 Large Scale Biology Corporation Multimeric protein engineering
KR20060013369A (ko) 2003-03-28 2006-02-09 독립행정법인농업생물자원연구소 재조합 단백질이 다량 생산되는 식물 저장 기관의 생산방법 및 신규 재조합 단백질
US7951557B2 (en) 2003-04-27 2011-05-31 Protalix Ltd. Human lysosomal proteins from plant cell culture
BRPI0411479A (pt) * 2003-06-17 2006-07-25 Sembiosys Genetics Inc métodos para a produção de insulina em plantas
AU2012242991B2 (en) 2011-04-11 2017-03-02 Targeted Growth, Inc. Identification and the use of KRP mutants in plants

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE275479C (de)
DE263031C (de)
DD263081A1 (de) * 1987-07-20 1988-12-21 Akad Wissenschaften Ddr Verfahren zum einfuehren von dns-sequenzen in das genom von hoeheren pflanzen
DE3920034C3 (de) * 1988-09-19 1999-09-23 Inst Pflanzengenetik & Kultur Verfahren zum Einführen von DNS - Sequenzen in das Genom von höheren Pflanzen
US5202422A (en) * 1989-10-27 1993-04-13 The Scripps Research Institute Compositions containing plant-produced glycopolypeptide multimers, multimeric proteins and method of their use
PL310524A1 (en) * 1993-03-02 1995-12-27 Du Pont Improved fodder plants enriched with sulphuric amino acids and method of improving fodder plants
IT1264083B1 (it) * 1993-12-10 1996-09-10 Enea Ente Nuove Tec Procedimento per la produzione in piante di anticorpi ingegnerizzati, anticorpi prodotti e loro uso in diagnosi e terapia.
US5686600A (en) * 1994-06-28 1997-11-11 Novartis Finance Corporation Antibodies which bind to insect gut proteins and their use

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9729200A1 *

Also Published As

Publication number Publication date
WO1997029200A1 (de) 1997-08-14
US6403371B1 (en) 2002-06-11
JP2000504567A (ja) 2000-04-18
CA2246242A1 (en) 1997-08-14

Similar Documents

Publication Publication Date Title
EP0879293A1 (de) Kassetten zur expression von lagerstabilen proteinen in pflanzen
DE60221051T2 (de) Herstellung von peptiden und proteinen durch anhäufung in vom endoplasmatischen reticulum abgeleiteten proteinkörpern
DE3687705T2 (de) Molekulare zuechtung.
DE69535557T2 (de) Verfahren zur herstellung von schutzproteine enthaltende immunoglobuline und ihre verwendung
DE69033957T2 (de) Herstellung von hybridem saatgut
DE69333801T2 (de) Verfahren zur Herstellung von hybridem Saatgut
DE4420782C1 (de) DNA-Sequenz, kodierend einen 2-Oxoglutarat/Malat-Translokator, Plasmide, Bakterien, Hefen und Pflanzen enthaltend diesen Transporter
DE19503359C1 (de) Streßtolerante Pflanzen und Verfahren zu deren Herstellung
DE69932868T2 (de) Nukleinsäuremolekül mit einer Nukleotidsequenz für einen Promotor
DE69109306T2 (de) Stabile transformation von monokotylen pflanzenzellen durch elektoporation.
DE68918533T2 (de) Überexpression von Phytochrom in transgenen Pflanzen.
DD285922A5 (de) Von bakterienzellbestandteilen praktisch freie zusammensetzung fuer den pflanzenschutz und verfahren zur gewinnung des wirkstoffes fuer diese
DE69232005T2 (de) Biozide proteine
EP0375091A1 (de) Wundinduzierbare und kartoffelknollenspezifische transkriptionale Regulation
EP0442592A2 (de) Plasmide zur Herstellung von in Habitus und Ertrag Veränderten Transgenen Pflanzen
DE102010013166B4 (de) Verfahren zur Erhöhung des Samenertrages sowie Förderung des Wachstums von Pflanzen
DE60028053T2 (de) Samenspezifischer promoter aus flachs (linum usitatissimum)
DE69333476T2 (de) Verfahren zur Herstellung von Proteinen in Pflanzenflüssigkeiten
DE69233416T2 (de) Öl-körper proteine als träger von hochwertigen peptiden in pflanzen
DE3650692T2 (de) Rekombinantes Ricin-Toxin
DE10049267B4 (de) Verfahren zur Erzeugung oder Erhöhung einer Resistenz in Organismen gegenüber biotischen Streßfaktoren
DE19620804A1 (de) Kassette zur Expression von lagerstabilen Genprodukten in Blättern
DE19604588A1 (de) Expressionskassette für die samenspezifische Expression
EP1458230A1 (de) Produktion von rekombinanten antikörpern mittels fusion mit elastin-ähnlichen peptiden
DE69834570T2 (de) Proteinherstellung in transgenen luzernepflanzen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980824

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB IE IT LI LU MC NL SE

17Q First examination report despatched

Effective date: 20030428

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040318