EP0853995A1 - Metalloxide enthaltende Spritzgiessmassen zur Herstellung von Metallformkörpern - Google Patents

Metalloxide enthaltende Spritzgiessmassen zur Herstellung von Metallformkörpern Download PDF

Info

Publication number
EP0853995A1
EP0853995A1 EP98100066A EP98100066A EP0853995A1 EP 0853995 A1 EP0853995 A1 EP 0853995A1 EP 98100066 A EP98100066 A EP 98100066A EP 98100066 A EP98100066 A EP 98100066A EP 0853995 A1 EP0853995 A1 EP 0853995A1
Authority
EP
European Patent Office
Prior art keywords
metal
molding
powder
hydrogen
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98100066A
Other languages
English (en)
French (fr)
Other versions
EP0853995B1 (de
Inventor
Hans-Josef Dr. Sterzel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP0853995A1 publication Critical patent/EP0853995A1/de
Application granted granted Critical
Publication of EP0853995B1 publication Critical patent/EP0853995B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/001Starting from powder comprising reducible metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Abstract

Die Formmasse enthält in einem fließfähigen Bindemittel 20 bis 50 Vol.-%, bezogen auf das Gesamtvolumen der Formmasse, eines Pulvers aus einem oder mehreren Metalloxiden und gegebenenfalls nicht mit Wasserstoff reduzierbaren Metallcarbiden und/oder Metallnitriden, wobei mindestens 65 Vol.-% des Pulvers eine Teilchengröße von maximal 0,5 µm und der Rest des Pulvers eine Teilchengröße von maximal 1 µm aufweisen, und mindestens 90 Vol.-% des Pulvers aus mit Wasserstoff reduzierbaren Metalloxiden bestehen. Als mit Wasserstoff reduzierbare Metalloxide werden Fe2O3, FeO, Fe3O4, NiO, CoO, Co3O4, CuO, Cu2O, Ag2O, Bi2O3, WO3, MoO3, SnO, SnO2, CdO, PbO, Pb3O4, PbO2, Cr2O3 oder Gemische davon eingesetzt.

Description

Die Erfindung betrifft Metalloxide enthaltende Formmassen, insbesondere Spritzgießmassen, die zur Herstellung von Metallformkörpern geeignet sind, sowie Verfahren zur Herstellung von Metallformköpern.
Bei der Herstellung von kleinen komplexen Metallformkörpern nach dem Pulverspritzgießverfahren werden Metallpulver mit Pulverdurchmessern von 2 bis 40 µm mit einem fließfähigen Bindemittel vermischt und dieses Gemisch, wie bei der Verarbeitung von Kunststoffen üblich, mittels Spritzgießmaschinen unter Drücken bis 2000 bar in eine Form gespritzt. In der Form erstarrt die Spritzgießmasse, üblicherweise, weil die Form eine niedrigere Oberflächentemperatur als die eingespritzte Masse aufweist und das Bindemittel in der Form auf eine Temperatur unterhalb der Glastemperatur oder Schmelztemperatur abgekühlt wird.
Sodann wird die Form geöffnet und das geformte Teil entnommen. Aus dem so gebildeten Formling wird danach das Bindemittel entfernt, wobei der Formling nicht deformiert werden sollte. Die Entfernung des Bindemittels kann auf verschiedene Arten erfolgen. Es ist möglich, das zumeist organische Bindemittel durch vorsichtige Temperaturerhöhung über einen längeren Zeitraum thermisch zu zersetzen und so zu entfernen. Das Bindemittel kann auch so aufgebaut sein, daß es teilweise in einem Lösungsmittel löslich ist, und dieser Anteil mit dem Lösungsmittel extrahiert werden kann. Den weiteren Binderanteil zersetzt man dann thermisch, was schneller erfolgen kann als in der ersten Variante, weil nach der Extraktion des löslichen Bindemittelanteils bereits ein offenporöser Körper vorliegt und durch die thermische Zersetzung somit kein Innendruck aufgebaut wird, der den Formling zerstören könnte. Am elegantesten wird das Bindemittel mit einem katalytischen Verfahren entfernt, wobei als Bindemittel z.B. ein Polyacetal verwendet wird, welches unterhalb seiner Schmelztemperatur unter dem Einfluß gasförmiger Säuren ohne Ausbildung einer flüssigen Phase direkt zu gasförmigem Formaldehyd depolymerisiert wird. Dieser Prozess verläuft in den Formlingwänden von außen nach innen, wodurch der gesamte Gasaustausch ebenfalls nur in den bereits porösen Volumenanteilen erfolgen kann, und ebenfalls kein nachteiliger Innendruck aufgebaut werden kann. Dieses Verfahren weist den weiteren Vorteil auf, daß der Entbinderungsprozess unterhalb des Schmelzpunktes des Bindemittels erfolgt und der Formling damit seine Dimensionen nicht in nachteiliger Weise ändert. Damit werden sehr dimensionstreue Formkörper erhalten. Die Abweichung der linearen Dimensionen vom Sollmaß beträgt maximal +/-0,3 %, oft weniger. Allerdings werden die Rauhtiefen der Formteile im wesentlichen von der verwendeten Pulvergröße bestimmt, so daß Rauhtiefen RZ von 1 µm nicht unterschritten werden. Zur Herstellung von Teilen mit kleineren Rauhtiefen wären Metallpulver mit geringerem Durchmesser als 2 µm notwendig. Die Herstellung derartiger Metallpulver ist aber extrem teuer bzw. es treten erhebliche Schwierigkeiten beim Umgang mit derartig feinen Metallpulvern auf. Mit absteigender Teilchengröße steigt das Verhältinis von Oberfläche Zu Volumen an, wodurch die Metallpulver chemisch immer reaktiver werden. Unedle Metalle, wie Eisen, Kobalt, Zink oder Nickel werden dabei pyrophor und sind an Luft nicht mehr verarbeitbar.
Zudem werden bei der Herstellung von Metallpulvern durch Versprühen von Metallschmelzen Teilchengrößen von 5 µm kaum unterschritten. Oft lassen sich die Metallpulver dabei auch durch Mahlen nicht weiter zerkleineren, weil sie zu duktil sind.
Es besteht jedoch eine Nachfrage nach feineren Formmassen zur Herstellung von Metallformkörpern, seitdem es mit neueren Techniken gelingt, immer feinere Formeinsätze für das Spritzgießverfahren herzustellen. Mit dem LIGA-Verfahren werden beispielsweise Werkzeugeinsätze hergestellt, mit denen Teile im Spritzgießverfahren hergestellt werden, die Ausdehnungen im µm-Bereich und Rauhigkeiten im Nanometerbereich aufweisen.
Im LIGA-Verfahren wird auf eine Grundplatte eine lichtempfindliche Polymerschicht, ein sogenannter Photoresist, aufgebracht und durch eine Maske, welche die zu erzeugenden Strukturen im Querschnitt enthält, belichtet. Die durch die Maske belichteten Anteile der Polymerschicht werden löslich und können deshalb ausgewaschen werden. Die entstandenen Gräben werden galvanisch durch eine Metallschicht aufgefüllt, wonach der übriggebliebene Photoresist aufgelöst wird. Die so erhaltene Metallstruktur kann als Formeinsatz für eine Spritzgießform verwendet werden.
Aufgabe der Erfindung ist die Bereitstellung von Formmassen bzw. Spritzgießmassen zur Herstellung von Metallformkörpern, die ein Eigenschaftsprofil aufweisen, das ihre Verwendung in sehr feinen Formeinsätzen, beispielsweise aus dem LIGA-Verfahren erlaubt. Die so erhaltenen Formkörper sollen in Feinheit und Oberflächengüte den nach dem LIGA-Verfahren hergestellten Formen entsprechen.
Die Aufgabe wird gelöst durch Formmassen, enthaltend in einem fließfähigen Bindemittel 20 bis 50 Vol.-%, bezogen auf das Gesamtvolumen der Formmasse, eines Pulvers aus einem oder mehreren Metalloxiden und gegebenenfalls nicht mit Wasserstoff reduzierbaren Metallcarbiden und/oder Metallnitriden, wobei mindestens 65 Vol.-% des Pulvers eine Teilchengröße von maximal 0,5 µm und der Rest des Pulvers eine Teilchengröße von maximal 1 µm aufweisen, und mindestens 90 Vol.-% des Pulvers aus mit Wasserstoff reduzierbaren Metalloxiden bestehen.
Erfindungsgemäß wurde gefunden, daß man anstelle der großkörnigen, schlecht zugänglichen und schwer handhabbaren Metallpulver, Metalloxidpulver mit Teilchengrößen unterhalb von 1 µm zur Herstellung der Formmassen verwenden kann. Dabei verformt man die Formmasse oder Spritzgießmasse zu einem Formkörper, entbindert den Formkörper und sintert ihn unter Reduktion der Metalloxide in einer wasserstoffhaltigen, reduzierenden Atmosphäre.
Dabei verwendet man ein Pulver, das zu mindestens 65 Vol.-% eine Teilchengröße von maximal 0,5 µm aufweist, wobei der Rest des Pulvers eine Teilchengröße von maximal 1 µm aufweist. Besonders bevorzugt weisen mindestens 80 Vol.-% des Pulvers eine Teilchengröße von maximal 0,5 µm auf. Mindestens 90 Vol.-% des Pulvers bestehen aus mit Wasserstoff reduzierbaren Metalloxiden, wobei der verbleibende Anteil des Pulvers aus nicht mit Wasserstoff reduzierbaren Metalloxiden, Metallcarbiden und/oder Metallnitriden besteht.
Geeignete Metalloxide sind solche, die mit Wasserstoff reduzierbar und sinterfähig sind, so daß aus innen durch Erhitzen unter Wasserstoffatmosphäre bzw. in Gegenwart von Wasserstoff Metallformkörper herstellbar sind. Beispiele von Metallen, deren Oxide verwendet werden können, finden sich in den Gruppen VIB, VIII, IB, IIB, IVA des Periodensystems. Beispiele geeigner Metalloxide sind Fe2O3, FeO, Fe3O4, NiO, CoO, Co3O4, CuO, Cu2O, Ag2O, WO3, MoO3, SnO, SnO2, CdO, PbO, Pb3O4, PbO2, Cr2O3. Bevorzugt werden die niederen Oxide eingesetzt, wie Cu2O anstelle von CuO und PbO anstelle von PbO2, da die höheren Oxide Oxidationsmittel darstellen, die unter bestimmten Bedingungen beispielsweise mit organischen Bindemitteln reagieren können. Die Oxide können einzeln oder als Gemische eingesetzt werden. So können beispielsweise Reineisenformkörper oder Reinkupferformkörper erhalten werden. Beim Einsatz von Gemischen der Oxide sind beispielsweise Legierungen und dotierte Metalle zugänglich. Beispielsweise werden aus Eisenoxid/Nickeloxid/Molybdänoxid-Gemischen Stahlteile und aus Kupferoxid/Zinnoxid-Gemischen, die noch Zink-, Nickel- oder Bleioxid enthalten können, Bronzen hergestellt. Besonders bevorzugte Metalloxide sind Eisenoxid, Nickeloxid und/oder Molybdänoxid.
Die erfindungsgemäß verwendeten Metalloxide mit einer Teilchengröße von maximal 1 µm, vorzugweise maximal 0,5 µm, lassen sich nach unterschiedlichen Verfahren, vorzugsweise durch chemische Umsetzungen herstellen. Aus Lösungen von Metallsalzen können beispielsweise die Hydroxide, Oxidhydrate, Carbonate oder Oxalate gefällt werden, wobei die Teilchen gegebenenfalls in Gegenwart von Dispergatoren sehr feinteilig anfallen. Die Niederschläge werden abgetrennt und durch Waschen auf eine möglichst hohe Reinheit gebracht. Durch Erhitzen werden die gefällten Teilchen getrocknet und bei erhöhten Temperaturen zu den Metalloxiden umgesetzt.
Es ist auch möglich, direkt in einem Schritt zu sehr feinteiligen Metalloxiden zu kommen. So werden beispielsweise durch Verbrennen von Eisenpentacarbonyl mit Sauerstoff extrem feine, kugelförmige Eisenoxidteilchen mit spezifischen Oberflächen von bis zu 200 m2/g erhalten.
Die erfindungsgemäß eingesetzten Metalloxide bzw. mindestens 65 Vol.-% des Pulvers weisen vorzugsweise eine BET-Oberfläche von mindestens 5, vorzugsweise mindestens 7 m2/g auf.
Neben den mit Wasserstoff reduzierbaren Metalloxiden können auch weitere beim Sintern nicht reduzierbare Metallverbindungen, wie nicht mit Wasserstoff reduzierbare Metalloxide, Metallcarbide oder Metallnitride vorliegen. Beispiele für Oxide sind dabei ZrO2, Al2O3 und TiO2. Beispiele für Carbide sind SiC, WC oder TiC. Ein Beispiel eines Nitrids ist TiN.
Vorzugsweise weist das erfindungsgemäß in den Formmassen eingesetzte Pulver mindestens 90 Vol.-%, besonders bevorzugt mindestens 95 Vol.-%, bezogen auf das Pulver, an mit Wasserstoff reduzierbaren Metalloxiden auf. Wenn nicht mit Wasserstoff reduzierbare Metalloxide, Metallcarbide und/oder Metallnitride verwendet werden, so liegen sie vorzugsweise in Mengen von 1 bis 10, besonders bevorzugt 2 bis 5 Vol.-%, bezogen auf das Pulver, vor.
Das erfindungsgemäß eingesetzte Pulver liegt in den Formmassen in Mengen von 20 bis 50 Vol.-%, vorzugsweise 25 bis 45 Vol.-%, besonders bevorzugt 30 bis 40 Vol.-%, bezogen auf das Gesamtvolumen der Formmasse vor.
Das erfindungsgemäß in den Formmassen eingesetzte Pulver liegt verteilt in einem fließfähigen Bindemittel vor. Dabei kann gegebenenfalls zusätzlich ein Dispergator eingesetzt werden. Gemäß einer bevorzugten Ausführungsform der Erfindung besteht die Formmasse aus dem vorstehend beschriebenen Pulver, einem fließfähigen Bindemittel und gegebenenfalls einem Dispergator.
Gemäß einer weiteren Ausführungsform der Erfindung weist die Formmasse neben diesen Komponenten noch weitere Komponenten auf, wie sie nachstehend beschrieben sind.
Das Gesamtvolumen aller Inhaltsstoffe der Formmasse ergibt dabei in jedem Fall 100 Vol.-%.
Als fließfähige Bindemittel können alle Bindemittel eingesetzt werden, die zur Verwendung im Pulverspritzgießverfahren geeignet sind. Sie sind dabei vorzugsweise bei der Verarbeitungstemperatur fließfähig, so daß sie in Formen spritzgegossen werden können. Dabei können z.B. die Bindemittel verwendet werden, wie sie vorstehend im Stand der Technik beschrieben wurden. Es kommen somit Bindemittel in Betracht, die thermisch zersetzt und so entfernt werden, Bindemittelgemische, von denen ein Anteil mit Lösungsmitteln extrahiert und der andere Anteil thermisch zersetzt werden kann, oder Bindemittel, die z.B. in Form eines Polyacetals verwendet werden, das unterhalb seiner Schmelztemperatur unter dem Einfluß gasförmiger Säuren ohne Ausbildung einer flüssigen Phase direkt zu gasförmigen Produkten depolymerisiert werden kann. Geeignete Bindemittel sind dem Fachmann bekannt. Das fließfähige Bindemittel enthält vorzugsweise ein organisches Polymer. Vorzugsweise wird ein Polyoximethylencopolymer verwendet, wie es beispielsweise in EP-A-0 444 475, EP-A-0 446 708 bzw. EP-A-0 444 475 beschrieben ist. Es handelt sich vorzugsweise um ein Polyoximethylencopolymer, das 0,5 bis 10, vorzugsweise 1 bis 5 Mol.-% Butandiolformal als Comonomer enthält. Dabei kann als zusätzliches Bindemittel Polybutandiolformal eingesetzt werden.
Besonders bevorzugt wird ein Gemisch aus 75 bis 89 Gew.-% Polyoximethylencopolymer, das 2 Mol.-% Butandiolformal als Comonomer enthält und einen Schmelzindex von etwa 45 g/10 min bei 190°C und 2,16 kg Auflagegewicht aufweist, und 11 bis 25 Gew.-% Polybutandiolformal mit einem Molekulargewicht Mn von etwa 20.000 eingesetzt.
Als Dispergator können alle Dispergatoren verwendet werden, die zur Dispergierung von Metalloxidteilchen der angegebenen Teilchengröße im Bindemittel geeignet sind. Eine geeignete Stoffklasse für die Dispergatoren sind alkoxilierte Fettalkohole oder alkoxilierte Fettsäureamide.
Weitere geeignete Inhaltsstoffe der Formmassen sind die bei der Verarbeitung von Polyoximethylen verwendeten Verarbeitungsstabilisatoren.
Die erfindungsgemäßen Formmassen sind als Spritzgießmassen zur Herstellung von Metallformkörpern verwendbar. Dabei werden zur Herstellung der Formmassen die organischen und anorganischen Komponenten in geeigneten Mischvorrichtungen vermischt. Vorzugsweise erfolgt dies in einer Knetvorrichtung unter Aufschmelzen des fließfähigen Bindemittels. Nach dem Verfestigen der Formmassen werden diese vorzugsweise granuliert. Sie können nach bekannten Verfahren spritzgegossen werden, vorzugsweise bei Massetemperaturen von 170 bis 200°C. Die verwendete Form hat dabei vorzugsweise eine Temperatur von 120 bis 140°C.
Aus den so erhaltenen Formlingen wird sodann das Bindemittel entfernt. Dies kann je nach verwendetem Bindemittel durch langsames Erhitzen, Behandeln mit einem Lösungsmittel und darauffolgendes Erhitzen oder Behandeln mit einer Säure und Erhitzen erfolgen. Vorzugsweise erfolgt das Entbindern gleichzeitig mit dem Aufheizen zum Reduzieren und Sintern des Formlings. Dabei wird der Formling in Gegenwart von Wasserstoff, vorzugsweise unter Wasserstoffatmosphäre, mit einer Geschwindigkeit von 1 bis 20°C/min, vorzugsweise 2 bis 10°C/min bis zur materialspezifischen Sintertemperatur hochgeheizt, 1 bis 20, vorzugsweise 2 bis 10 Stunden bei der Sintertemperatur belassen und sodann abgekült. Während des langsamen Hochheizens wird dabei das Bindemittel entfernt. Der zur Reduktion eingesetzte Wasserstoff weist vorzugsweise einen Taupunkt von maximal -10°C, besonders bevorzugt von weniger als -40°C auf. Der Taupunkt wird dabei so gewählt, daß für das eingesetzte Metalloxid eine Reduktion unter den Reaktionsbedingungen möglich ist.
Zur Reduktion von Cr2O3 wird beispielsweise ein extrem trockener Wasserstoff mit einem Taupunkt von weniger als -40°C benötigt. Die Reduktion wird bei Temperaturen oberhalb 1500°C, besonders bevorzugt oberhalb 1600°C durchgeführt. Beim Sintern von chromhaltigen Legierungen sintern die Legierungsbestandteile oft bei 1200 bis 1300°C, während bei Verwendung von Cr2O3 dieses noch unreduziert im Formling verbleiben kann. Bei der Herstellung von beispielsweise Edelstahlen mit einem Chromanteil von etwa 13 bis 20 Gew.-% wird deshalb vorzugsweise der Chromanteil als Ferrochrom mit einer Korngröße der Teilchen von maximal 1 µm eingesetzt. Der Volumenanteil des Ferrochroms beträgt vorzugsweise weniger als 35 Vol.-%. So ist es möglich, mit Chrom und gegebenenfalls Nickel und Molybdän legierte Edelstähle herzustellen, ohne daß befürchtet werden muß, daß nicht reduziertes Cr2O3 im ansonsten schon gesinterten Formling verbleibt.
Die Erfindung betrifft auch ein Verfahren zur Herstellung von Metallformkörpern durch Spritzgießen einer Formmasse, wie sie vorstehend beschrieben ist, in eine Form, Entfernung des Bindemittels aus dem so erhaltenen Formling und Reduzieren und Sintern des entbinderten Formlings zu einem Metallformkörper in Gegenwart von Wasserstoff. Dabei erfolgt das Entfernen des Bindemittels vorzugsweise thermisch in einem Schritt mit dem Reduzieren und Sintern durch Aufheizen des Formlings auf die Sintertemperatur in Gegenwart von Wasserstoff.
Bei reduzierendem Sintern schrumpfen die Formlinge bis zum 5-fachen, bezogen auf das Volumen oder bis zur Hälfte, bezogen auf die linearen Dimensionen. Dieser hohe Schrumpf ist gerade für die Herstellung von sehr kleinen Strukturen von Vorteil, da das Spritzgießwerkzeug um etwa den Faktor 2 in jeder Dimension größer gestaltet werden kann und somit sehr feine Details ausgebildet werden können. Die Maßtoleranzen der gesinterten Formkörper betragen trotz des hohen absoluten Schrumpfes vorzugsweise maximal +/-0,3 %, besonders bevorzugt +/-0,15 %.
Vorzugsweise beträgt die Oberflächenrauhigkeit RZ weniger als 1 µm, Ra weniger als 0,2 µm, gemessen nach DIN 4768 bzw. DIN 4768/1.
Die Erfindung wird nachstehend anhand von Beispielen näher erläutert.
Beispiele
Die in den nachfolgenden Beispielen aufgeführten Spritzgießmassen wurden nach einheitlichem Vorgehen hergestellt, thermisch entbindert und bei materialadäquaten Temperaturen reduzierend unter Wasserstoff gesintert.
Als fließfähiges Bindemittel wurde ein thermoplastisches Polyoximethylencopolymer verwendet, das 2 Mol.-% Butandiolformal als Comonomer enthielt und einen Schmelzindex von etwa 45 g/10 min bei 190°C und 2,16 kg Auflagegewicht aufwies. Als zusätzliches Bindemittel wurde Polybutandiolformal mit einem Molekulargewicht Mn von etwa 20.000 eingesetzt. Als Dispergiermittel zur Dispergierung der anorganischen Pulver wurde Solsperse® 17000 der ICI verwendet. Die Mengen sind in der nachstehenden Tabelle angegeben.
Die organischen und anorganischen Komponenten der Formmasse wurden in einem Schaufelkneter von 1 l Nutzinhalt bei 190°C aufgeschmolzen und für 90 min geknetet. Sodann wurde der Schaufelkneter abgekült und die Masse verfestigt und in dem sich drehenden Kneter granuliert. Die so erhaltenen Spritzgießmassen wurden bei 180°C Massetemperatur in eine auf 130°C temperierte Form für einen Biegestab mit den Abmessungen 1,5 x 6 x 50 mm eingespritzt.
Die derart hergestellten Biegestäbe wurden in einem Rohrofen unter Wasserstoffatmosphäre (Wasserstoff mit einem Taupunkt um -10°C) mit einer Geschwindigkeit von 2°C/min bis zur angegebenen materialspezifischen Sintertemperatur hoehgeheizt und für 2 Stunden bei der Sintertemperatur belassen. Sodann wurde der Ofen abgekühlt. Während des langsamen Hochheizens depolymerisierten das Polyoximethylen und das Polybutandiolformal im Temperaturbereich von 220 bis 300°C ohne Ausbildung von Rissen im dünnwandigen Biegestab. Die Biegestäbe wurden auf einem Pulverbett aus Aluminiumoxidpulver mit etwa 5 µm Korngröße gelagert, um das Schrumpfen zu erleichtern.
Alle in den Beispielen aufgeführten Formmassen führten zu einwandfreien, rißfreien Formkörpern, obwohl der Volumenschrumpf teilweise um 80% betrug.
Die Werte für die Oberflächenrauhigkeit, die mit einem polierten Spritzgießwerkzeug erhalten wurden, lagen in jedem Fall für RZ bei weniger als 1 µm und Ra bei weniger als 0,2 µm.
(Zusammensetzung in Gramm)
Beispiel Nr.
Eingesetze Oxide 1 2 3 4 5 6 7 8 9 10
Fe2O3 9m2/g 2257
Fe2O3 20m2/g 1890 2000 197
Fe2O3 40m2/g 1050
NiO 7 m2/g 155 2264 679
Cu2O 9m2/g 2700 2112 1974
MoO3 11m2/g 1890
WO3 10m2/g 2721
SnO2 13m2/g 423 968
Organische Komponenten
Polyoximethylen 653 681 848 567 625 584 560 592 507 684
Polybutandiolformal 53 85 106 106 53 85 101 85 106 90
Solsperse 17.000 51 71 92 92 51 82 87 82 92 77
Sintertemp. in °C, linearer 700 700 600 850 980 1450 1450 820 1090 1170
Schrumpf in % 41,3 44,3 54,2 42,3 42,5 49,8 49,3 42,2 32,9 41,4

Claims (10)

  1. Formmasse, enthaltend in einem fließfähigen Bindemittel 20 bis 50 Vol.-%, bezogen auf das Gesamtvolumen der Formmasse, eines Pulvers aus einem oder mehreren Metalloxiden und gegebenenfalls nicht mit Wasserstoff reduzierbaren Metallcarbiden und/oder Metallnitriden, wobei mindestens 65 Vol.-% des Pulvers eine Teilchengröße von maximal 0,5 µm und der Rest des Pulvers eine Teilchengröße von maximal 1 µm aufweisen, und mindestens 90 Vol.-% des Pulvers aus mit Wasserstoff reduzierbaren Metalloxiden bestehen.
  2. Formmasse nach Anspruch 1, dadurch gekennzeichnet, daß mindestens 65 Vol.-% des Pulvers eine BET-Oberfläche von mindestens 5 m2/g aufweisen.
  3. Formmassse nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das fließfähige Bindemittel ein organisches Polymer enthalt.
  4. Formmasse nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß sie ein Dispergiermittel für das Pulver enthält.
  5. Formmasse nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß als mit Wasserstoff reduzierbare Metalloxide Fe2O3, FeO, Fe3O4, NiO, CoO, Co3O4, CuO, Cu2O, Ag2O, Bi2O3, WO3, MoO3, SnO, SnO2, CdO, PbO, Pb3O4, PbO2, Cr2O3 oder Gemische davon eingesetzt werden.
  6. Formmasse nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Pulver 1 bis 10 Vol.-% nicht mit Wasserstoff reduzierbare Metalloxide, Metallcarbide, Metallnitride oder deren Gemische mit einer Teilchengröße von maximal 0,5 µm enthält.
  7. Verwendung von Formmassen nach einem der Ansprüche 1 bis 6 als Spritzgießmassen zur Herstellung von Metallformkörpern.
  8. Verwendung von mit Wasserstoff reduzierbaren Metalloxiden mit einer Teilchengröße von maximal 0,5 µm zur Herstellung von Spritzgießmassen.
  9. Verfahren zur Herstellung von Metallformkörpern durch Spritzgießen einer Formmasse nach einem der Ansprüche 1 bis 6 in eine Form, Entfernung des Bindemittels aus dem so erhaltenen Formling und Reduzieren und Sintern des entbinderten Formlings zu einem Metallformkörper in Gegenwart von Wasserstoff.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß das Entfernen des Bindemittels thermisch in einem Schritt mit dem Reduzieren und Sintern durch Aufheizen des Formlings auf die Sintertemperatur in Gegenwart von Wasserstoff erfolgt.
EP98100066A 1997-01-07 1998-01-05 Metalloxide enthaltende Spritzgiessmassen zur Herstellung von Metallformkörpern Expired - Lifetime EP0853995B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19700277A DE19700277A1 (de) 1997-01-07 1997-01-07 Metalloxide enthaltende Spritzgießmassen zur Herstellung von Metallformkörpern
DE19700277 1997-01-07

Publications (2)

Publication Number Publication Date
EP0853995A1 true EP0853995A1 (de) 1998-07-22
EP0853995B1 EP0853995B1 (de) 2001-11-21

Family

ID=7816902

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98100066A Expired - Lifetime EP0853995B1 (de) 1997-01-07 1998-01-05 Metalloxide enthaltende Spritzgiessmassen zur Herstellung von Metallformkörpern

Country Status (8)

Country Link
US (1) US6080808A (de)
EP (1) EP0853995B1 (de)
JP (1) JPH10298606A (de)
KR (1) KR100516081B1 (de)
AT (1) ATE209076T1 (de)
DE (2) DE19700277A1 (de)
ES (1) ES2168690T3 (de)
TW (1) TW495532B (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013113880A1 (de) 2012-02-02 2013-08-08 Basf Se Thermoplastische pom-masse
WO2014170242A1 (en) 2013-04-18 2014-10-23 Basf Se Polyoxymethylene copolymers and thermoplastic pom composition
US10961384B2 (en) 2014-05-21 2021-03-30 Basf Se Process for improving the flexural toughness of moldings
WO2021132854A1 (ko) 2019-12-24 2021-07-01 코오롱플라스틱 주식회사 금속분말 사출 성형용 결합제 조성물

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10014403A1 (de) * 2000-03-24 2001-09-27 Wolfgang Kochanek Verfahren zur Fertigung von Metallteilen
US6641776B1 (en) * 2000-11-15 2003-11-04 Scimed Life Systems, Inc. Method for preparing radiopaque surgical implement
WO2004089563A1 (ja) * 2003-04-03 2004-10-21 Taisei Kogyo Co., Ltd. 粉体焼結成形体の製造方法、粉体焼結成形体、粉体射出成形体の製造方法、粉体射出成形体及び粉体射出成形用金型
KR100966754B1 (ko) * 2008-01-31 2010-06-29 한양대학교 산학협력단 환원-소결 일체형 공정을 통한 나노 금속 소결체 제조 방법
JP6848521B2 (ja) 2017-02-24 2021-03-24 セイコーエプソン株式会社 金属粉末射出成形用コンパウンド、焼結体の製造方法および焼結体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4415528A (en) * 1981-03-20 1983-11-15 Witec Cayman Patents, Limited Method of forming shaped metal alloy parts from metal or compound particles of the metal alloy components and compositions
US4604259A (en) * 1983-10-11 1986-08-05 Scm Corporation Process for making copper-rich metal shapes by powder metallurgy
US5190898A (en) * 1990-08-25 1993-03-02 Basf Aktiengesellschaft Pourable molding compound containing sinterable powders
JPH05254945A (ja) * 1992-03-13 1993-10-05 Hitachi Ltd 反応焼結セラミックスの製造法
US5417917A (en) * 1991-09-04 1995-05-23 Nihon Millipore Kabushiki Kaisha Metallic porous membrane and method of manufacture
US5686676A (en) * 1996-05-07 1997-11-11 Brush Wellman Inc. Process for making improved copper/tungsten composites

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4421660A (en) * 1980-12-15 1983-12-20 The Dow Chemical Company Colloidal size hydrophobic polymers particulate having discrete particles of an inorganic material dispersed therein
JP2842536B2 (ja) * 1988-08-31 1999-01-06 三菱化学株式会社 樹脂組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4415528A (en) * 1981-03-20 1983-11-15 Witec Cayman Patents, Limited Method of forming shaped metal alloy parts from metal or compound particles of the metal alloy components and compositions
US4604259A (en) * 1983-10-11 1986-08-05 Scm Corporation Process for making copper-rich metal shapes by powder metallurgy
US5190898A (en) * 1990-08-25 1993-03-02 Basf Aktiengesellschaft Pourable molding compound containing sinterable powders
US5417917A (en) * 1991-09-04 1995-05-23 Nihon Millipore Kabushiki Kaisha Metallic porous membrane and method of manufacture
JPH05254945A (ja) * 1992-03-13 1993-10-05 Hitachi Ltd 反応焼結セラミックスの製造法
US5686676A (en) * 1996-05-07 1997-11-11 Brush Wellman Inc. Process for making improved copper/tungsten composites

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 018, no. 015 (C - 1151) 12 January 1994 (1994-01-12) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013113880A1 (de) 2012-02-02 2013-08-08 Basf Se Thermoplastische pom-masse
WO2014170242A1 (en) 2013-04-18 2014-10-23 Basf Se Polyoxymethylene copolymers and thermoplastic pom composition
US10961384B2 (en) 2014-05-21 2021-03-30 Basf Se Process for improving the flexural toughness of moldings
WO2021132854A1 (ko) 2019-12-24 2021-07-01 코오롱플라스틱 주식회사 금속분말 사출 성형용 결합제 조성물

Also Published As

Publication number Publication date
ES2168690T3 (es) 2002-06-16
JPH10298606A (ja) 1998-11-10
KR100516081B1 (ko) 2005-12-06
US6080808A (en) 2000-06-27
KR19980070378A (ko) 1998-10-26
TW495532B (en) 2002-07-21
DE59802182D1 (de) 2002-01-03
DE19700277A1 (de) 1998-07-09
EP0853995B1 (de) 2001-11-21
ATE209076T1 (de) 2001-12-15

Similar Documents

Publication Publication Date Title
EP1523390B1 (de) Verfahren zur endkonturnahen herstellung von hochporösen met allischen formkörpern
EP1242642B1 (de) Verfahren zur herstellung von pulvermischungen bzw. verbundpulver
DE10084853B3 (de) Verfahren zur Herstellung mikroporöser Metallteile
EP1625101B1 (de) Verfahren zur herstellung endkonturnaher, metallischer und/oder keramischer bauteile
DE19544107C1 (de) Metallpulver-Granulat, Verfahren zu seiner Herstellung sowie dessen Verwendung
EP1268105B1 (de) Verfahren zur fertigung von metallteilen
DE10041194A1 (de) Verfahren zur Herstellung von Verbundbauteilen durch Pulver-Spritzgießen und dazu geeignete Verbundpulver
DE19756608C2 (de) Flüssigphasengesinterte Metallformteile und Verfahren zu ihrer Herstellung
EP1268868B1 (de) Pulvermetallurgisches verfahren zur herstellung hochdichter formteile
DE2833015A1 (de) Molybdaen und wolfram enthaltende legierung in pulverform und verwendung dieser legierung
EP0853995B1 (de) Metalloxide enthaltende Spritzgiessmassen zur Herstellung von Metallformkörpern
DE69927475T2 (de) Verfahren zur herstellung gesinterter körper
DE1935676A1 (de) Gesinterte austenitisch-ferritische Chromnickelstahllegierung
EP2709967B1 (de) Verfahren zur herstellung von bauteilen im pulverspritzgussverfahren
DE3909384A1 (de) Halbzeug fuer elektrische kontakte aus einem verbundwerkstoff auf silber-zinnoxid-basis und pulvermetallurgisches verfahren zu seiner herstellung
DE3231100C2 (de)
DE3630369C2 (de)
WO2019155078A1 (de) Verfahren zur herstellung eines porösen formkörpers sowie poröser formkörper
DE10120172C1 (de) Herstellung von Bauteilen durch Metallformspritzen (MIM)
DE102019217654A1 (de) Sphärisches Pulver zur Fertigung von dreidimensionalen Objekten
EP0217807B1 (de) Sinterverfahren
DE2001341A1 (de) Legierung bzw. Mischmetall auf der Basis von Molybdaen
DE4435904A1 (de) Verfahren und Spritzgußmasse für die Herstellung metallischer Formkörper
EP0338401B1 (de) Pulvermetallurgisches Verfahren zum Herstellen eines Halbzeugs für elektrische Kontakte aus einem Verbundwerkstoff auf Silberbasis mit Eisen
DE3043321A1 (de) Sinterprodukt aus metall-legierung und dessen herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19980903

AKX Designation fees paid

Free format text: AT BE CH DE ES FR GB IT LI NL

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE ES FR GB IT LI NL

17Q First examination report despatched

Effective date: 20000710

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL

REF Corresponds to:

Ref document number: 209076

Country of ref document: AT

Date of ref document: 20011215

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER & PARTNER AG PATENTANWALTSBUERO

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REF Corresponds to:

Ref document number: 59802182

Country of ref document: DE

Date of ref document: 20020103

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020121

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2168690

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SCHMAUDER & PARTNER AG PATENT- UND MARKENANWAELTE VSP;ZWAENGIWEG 7;8038 ZUERICH (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20170125

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170127

Year of fee payment: 20

Ref country code: CH

Payment date: 20170125

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170131

Year of fee payment: 20

Ref country code: AT

Payment date: 20170126

Year of fee payment: 20

Ref country code: BE

Payment date: 20170125

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170123

Year of fee payment: 20

Ref country code: ES

Payment date: 20170221

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170331

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59802182

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20180104

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20180104

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 209076

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180105

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20180105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20180104

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20180106