EP0850212A1 - Verfahren zur herstellung von methanol und katalysator dafür - Google Patents
Verfahren zur herstellung von methanol und katalysator dafürInfo
- Publication number
- EP0850212A1 EP0850212A1 EP96907504A EP96907504A EP0850212A1 EP 0850212 A1 EP0850212 A1 EP 0850212A1 EP 96907504 A EP96907504 A EP 96907504A EP 96907504 A EP96907504 A EP 96907504A EP 0850212 A1 EP0850212 A1 EP 0850212A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- zinc
- catalyst
- zirconium
- solution
- copper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/80—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/15—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
- C07C29/151—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
- C07C29/153—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
- C07C29/154—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing copper, silver, gold, or compounds thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Definitions
- the present invention relates to a method for producing methanol by reacting a gas mixture which contains hydrogen and carbon monoxide and / or carbon dioxide over a catalyst.
- methanol can be produced from H 2 and CO and / or CO 2 on copper-containing catalysts. It is also known for this purpose to use catalysts which, in addition to copper, also contain zinc oxide, zirconium oxide and optionally further oxides (GB-A 2 151 498, US Pat. No. 5,254,520, Y. Nitta et al., Catal. Lett. 1994, 26, 345-354).
- the known catalysts often contain additives which make it difficult to dispose of or reprocess the spent catalyst.
- the object of the present invention to provide a process for the production of methanol with a higher space-time yield by using an improved catalyst, the catalyst preferably not containing any toxic or otherwise questionable components.
- the object is achieved by the method according to claim 1. It has surprisingly been found that excellent results can be achieved even with a catalyst having a simple composition of 10-70% Cu, 10-50% Zn and 20-80% Zr if the latter is essentially X-ray-amorphous. The percentages indicate the relative proportion of the metallic elements Cu, Zn and Zr, ie the sum of the three values is always 100%, regardless of whether there are any other elements.
- catalyst is understood to mean only the catalytically active substance in all the information relating to the composition. This can, of course, be applied to a carrier or assembled in some other way.
- a catalyst is referred to as “essentially X-ray amphib”, the X-ray diffraction pattern of which, like that of a liquid or a glass, has no discrete diffraction lines.
- the catalyst used according to the invention preferably contains 20-50% Cu, 10-40% Zn and 30-60% Zr.
- the catalyst is preferably prepared by coprecipitating a precursor from a solution of water-soluble copper, zinc and zirconium salts. This is washed and dried. and then calcined at 300-500 ° C. In this temperature range there is no appreciable crystallization of the amophene Catalyst precursor instead.
- the catalyst is expediently activated before use for the synthesis of methanol. This is achieved by heating in a hydrogen-containing atmosphere to a final temperature of 200 to 350 ° C.
- the catalyst is preferably first kept at a lower temperature in an inert atmosphere, for example under nitrogen or argon, and then gradually or continuously exposed to slowly increasing temperatures and hydrogen concentrations until the final temperature is reached.
- the chlorides or nitrates are preferably used as water-soluble copper, zinc and zirconium salts.
- the coprecipitation is preferably effected by adding an alkali metal hydroxide solution to the solution of the water-soluble copper, zinc and zirconium salts. The co-precipitation can take place continuously or discontinuously, whereby in any case an intensive mixing of the reactants must be ensured.
- the methanol synthesis itself can be carried out under the usual temperature and pressure conditions.
- the temperature is advantageously 200 to 320 ° C, preferably 220 to 280 ° C.
- the pressure is advantageously in the range from 1 to 10 MPa, preferably from 3 to 7 MPa.
- the methanol synthesis is preferably carried out at a space velocity (Gas Hourly Space Velocity, GHSV) of 3200 to 40,000 ml / (g-h) (based on normal conditions), particularly preferably at 5000 to 20,000 ml / (g-h).
- space velocity Gas Hourly Space Velocity, GHSV
- Example 1 contains the X-ray diffractograms of the catalyst before / after, ie before calcination, from Example 1 (curve 1) and comparative example (2), and the diffraction lines of the crystalline comparative substance (CU Q 2 Zno g ) 5 (CO 3 ) 2 (OH) 6 from the database of the "Joint Committee on Powder Diffraction Standards" (International Center for Diffraction Data, 1601 Park Lane, Swarthmore PA 19081, USA) [JCPDS 380154] (3).
- 2 contains the X-ray diffractograms of the catalysts from Example 1 (1) and Comparative Example (2) after the calcination and the diffraction lines of synthetic zincite (ZnO) [JCPDS 361451].
- the following examples illustrate the implementation of the method according to the invention:
- the catalyst had the following properties: BET surface area: 75 m 2 / g Cu surface area: 10.9 m 2 / g (determined by N 2 O chemiso ⁇ tion) Crystallite size: ⁇ 2 nm (x-ray amorphous), see X-ray diffractogram Fig. 2 (1).
- Example 2 Analogously to Example 1, a catalyst with the composition 40% Cu, 20% Zn, 40% Zr was produced, the corresponding nitrates being used as starting materials instead of the chlorides.
- the catalyst thus obtained had a BET surface area of 177 m 2 / g before the calcination and was completely radiopaque.
- the calcined sample was also completely X-ray and had a BET surface area of 62 m 2 / g Comparative example
- Example 1 a Cu / Zn / Zr catalyst with the composition 29% Cu, 23% Zn, 48% Zr, but without the addition of chromium, was produced: to a solution of 631 g of ammonium hydrogen carbonate in 30 l of water a solution of 317.4 g of copper (II) nitrate trihydrate, 294.5 g of zinc nitrate hexahydrate and 400.9 g of zirconyl nitrate dihydrate in 10 l of water was added at 60 ° C. while stirring vigorously to 60 ° C. . The mixture was stirred at 60 ° C for 1 h. The temperature was then kept at 80 ° C.
- the catalysts described in Examples 1 and 2 and Comparative Examples 1 and 2 were tested for their suitability for methanol synthesis.
- the reaction was carried out in fixed bed microreactors (18 mm 0).
- the CO + CO 2 conversion, the yield of methanol, the methanol selectivity and the space-time yield were determined.
- the analysis of the reaction products was carried out by o «- / me gas chromatography.
- the catalysts were activated in situ as follows: The reactor was slowly heated to 130 ° C. under nitrogen (0.8 MPa). Then 2% hydrogen was added to the nitrogen and the temperature was raised to 200 ° C. at 20 K / h. After 16 hours, the hydrogen content was increased to 12%, the temperature was raised to 240 ° C. and held at this level for 2 hours.
- the methanol synthesis was carried out at 250 ° C and 5 MPa.
- a synthesis gas mixture of 32 vol.% Carbon monoxide, 5 vol.% Carbon dioxide and 63 vol.% Hydrogen was used as the starting material.
- the space velocity was 8000 ml / (gh).
- the results (conversion, yield, selectivity and space-time yield) are summarized in Table 1 below. These are the current values after a reaction time of 49 hours, i.e. after reaching a steady state.
- Example 2 Analogously to Example 2, further catalysts of different compositions were produced.
- the model Polytron® PT45-80 was used as a stirrer for the continuous coprecipitation.
- the composition in% by weight and the precipitation conditions (temperature ⁇ , pH, concentration c, stirring frequency v and metering speed ⁇ ) are summarized in Table 2 below.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Beschrieben wird ein Verfahren zur Methanolsynthese an röntgenamorphen Katalysatoren mit einem Gehalt an Kupfer-, Zink- und Zirconiumoxid mit relativen Anteilen von 10-70 Gew.-% Kupfer, 10-50 Gew.-% Zink und 20-80 Gew.-% Zirconium sowie dazu geeignete Katalysatoren und ein Verfahren zu deren Herstellung. Das Verfahren zur Methanolsynthese zeichnet sich durch hohe Raum-Zeit-Ausbeuten aus.
Description
VERFAHREN ZUR HERSTELLUNG VON METHANOL UND KATALYSATOR DAFÜR
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Methanol durch Um¬ setzung eines Gasgemischs, das Wasserstoff und Kohlenmonoxid und/oder Kohlendioxid ent- hält, an einem Katalysator.
Es ist bekannt, dass Methanol aus H2 und CO und/oder CO2 an kupferhaltigen Katalysatoren hergestellt werden kann. Es ist weiterhin bekannt, zu diesem Zweck Katalysatoren zu verwen¬ den, die ausser Kupfer noch Zinkoxid, Zirconiumoxid sowie gegebenenfalls weitere Oxide enthalten (GB-A 2 151 498, US-A 5 254 520, Y. Nitta et al., Catal. Lett. 1994, 26, 345-354). Die bisher bekannten Katalysatoren liefern zwar bereits brauchbare Raum-Zeit- Ausbeuten bei der Methanolsynthese, es war jedoch wünschenswert, diese weiter zu steigern. Ausserdem enthalten die bekannten Katalysatoren häufig Zusätze, die eine Entsorgung oder Wiederauf¬ bereitung des verbrauchten Katalysators erschweren. Aufgabe der vorliegenden Erfindung war daher, durch Verwendung eines verbesserten Katalysators ein Verfahren zur Methanolherstel- lung mit höherer Raum-Zeit- Ausbeute bereitzustellen, wobei der Katalysator möglichst keine toxischen oder anderweitig bedenklichen Komponenten enthalten sollte. Erfindungsgemäss wird die Aufgabe durch das Verfahren nach Patentanspruch 1 gelöst. Es wurde überraschend gefunden, dass bereits mit einem Katalysator der einfachen Zu¬ sammensetzung von 10-70% Cu, 10-50% Zn und 20-80% Zr ausgezeichnete Ergebnisse erzielt werden können, wenn dieser im wesentlichen röntgenamoφh ist. Die Prozentangaben geben den relativen Anteil der metallischen Elemente Cu, Zn und Zr an, d. h. die Summe der drei Werte beträgt immer 100%, unabhängig davon, ob noch weitere Elemente vorhanden sind. Die Angabe der Zusammensetzung in Gewichtsprozenten der Metalle (und nicht der Metalloxide) ist hierbei zweckmässig, weil Änderungen der Oxidationsstufe im Verlauf der Herstellung, der Aktivierung oder des Gebrauchs des Katalysators darauf keinen Einfiuss haben. Unter Katalysator ist hier und im folgenden bei allen die Zusammensetzung betref¬ fenden Angaben nur die katalytisch wirksame Substanz zu verstehen. Diese kann selbstver¬ ständlich auf einen Träger aufgebracht oder in einer sonstigen Weise konfektioniert sein. Als «im wesentlichen röntgenamoφh» wird ein Katalysator bezeichnet, dessen Röntgendiffrakto- gramm ähnlich wie das einer Flüssigkeit oder eines Glases keine diskreten Beugungslinien aufweist.
Vorzugsweise enthält der erfindungsgemäss verwendete Katalysator 20-50% Cu, 10—40% Zn und 30-60% Zr. Der Katalysator wird vorzugsweise dadurch hergestellt, dass aus einer Lösung von wasserlös- liehen Kupfer-, Zink- und Zirconiumsalzen durch Kopräzipitation ein Vorläufer gefällt wird. Dieser wird gewaschen und getrocknet. und anschliessend bei 300-500 °C kalziniert. In diesem Temperaturbereich findet noch keine nennenswerte Kristallisation des amoφhen
Katalysatorvorläufers statt. Vor dem Einsatz zur Methanolsynthese wird der Katalysator zweckmässig aktiviert. Dies wird durch Erhitzen in wasserstoffhaltiger Atmosphäre auf eine Endtemperatur von 200 bis 350 °C erreicht. Vorzugsweise wird der Katalysator zunächst bei einer niedrigeren Temperatur in einer inerten Atmosphäre, beispielsweise unter Stickstoff oder Argon, gehalten und dann schrittweise oder kontinuierlich langsam steigenden Tempera¬ turen und Wasserstoffkonzentrationen ausgesetzt, bis die Endtemperatur erreicht ist. Als wasserlösliche Kupfer-, Zink- und Zirconiumsalze werden vorzugsweise die Chloride oder Nitrate eingesetzt. Die Kopräzipitation wird vorzugsweise dadurch bewirkt, dass zu der Lösung der wasserlös- liehen Kupfer-, Zink- und Zirconiumsalze eine Alkalihydroxidlösung gegeben wird. Die Ko¬ präzipitation kann kontinuierlich oder diskontinuierlich erfolgen, wobei in jedem Fall eine intensive Vermischung der Reaktanden gewährleistet sein muss.
Die Methanolsynthese an sich kann unter den üblichen Temperatur- und Druckbedingungen durchgeführt werden. Die Temperatur beträgt vorteilhaft 200 bis 320 °C, vorzugsweise 220 bis 280 °C. Der Druck liegt vorteilhaft im Bereich von 1 bis 10 MPa, vorzugsweise bei 3 bis 7 MPa.
Mit den erfindungsgemässen Katalysatoren wird die Methanolsynthese vorzugsweise bei einer Raumgeschwindigkeit (Gas Hourly Space Velocity, GHSV) von 3200 bis 40000 ml/(g-h) (bezogen auf Normalbedingungen) durchgeführt, besonders bevorzugt bei 5000 bis 20000 ml/(g-h).
Beschreibung der Abbildungen
Fig. 1 enthält die Röntgendiffraktogramme der Katalysatorvor/äu/er, also jeweils vor der Kalzinierung, aus Beispiel 1 (Kurve 1) und Vergleichsbeispiel (2), sowie die Beugungs¬ linien der kristallinen Vergleichssubstanz (CUQ 2Zno g)5(CO3)2(OH)6 aus der Datenbank des "Joint Committee on Powder Diffraction Standards" (International Center for Diffraction Data, 1601 Park Lane, Swarthmore PA 19081, USA) [JCPDS 380154] (3). Fig. 2 enthält die Röntgendiffraktogramme der Katalysatoren aus Beispiel 1 (1) und Ver- gleichsbeispiel (2) nach der Kalzinierung sowie die Beugungslinien von synthetischen Zincit (ZnO) [JCPDS 361451]. (3).
Die folgenden Beispiele verdeutlichen die Durchführung des erfindungsgemässen Verfahrens:
Beispiel 1
Herstellung des Katalysators aus den Chloriden:
Zur Herstellung eines Katalysators mit 25% Cu, 25% Zn und 50% Zr wurden 625,3 g Zink¬ chlorid und 804,8 g Kupfer(II)chlorid-Dihydrat in jeweils 1,4 1 entsalztem Wasser gelöst. An¬ schliessend wurden die beiden Lösungen vereinigt und mit 4,242 kg einer Zirconylchlorid- lösung, die 1,172 kg ZrOCl2 enthielt, versetzt. Die Lösungen wurden gut vermischt und mit weiteren 1,8 1 Wasser verdünnt. Anschliessend wurde unter intensivem Rühren (Ultra-
Turrax®) innerhalb von 1-2 h mit 30%iger Natronlauge bei einem pH- Wert von 8,5 gefallt. Dann wurde der Rest der nach der Stöchiometrie erforderlichen Menge Natriumhydroxid zugesetzt. Das Präzipitat wurde in einer Kammerfilteφresse bei 1,8 bar filtriert und solange mit entsalztem Wasser gewaschen, bis der pH des Waschwassers unter 8,0 und der Chlorid- gehalt des Filterkuchens unter 0,01% lag. Der Filterkuchen wurde bei 100 °C getrocknet, nochmals mit Wasser behandelt und erneut bei 100°C getrocknet. Von einer Probe des ge¬ trockneten Materials wurde ein Röntgendiffraktogramm aufgenommen (Fig. 1 , Kurve 1 ), welches zeigte, dass das Material völlig amoφh war. Anschliessend wurde der getrocknete Katalysator-Vorläufer in 50 K-Schritten von 100 °C auf 300 °C erhitzt und auf jeder Tempe- raturstufe 30 min gehalten. Schliesslich wurde die Temperatur auf 350 °C erhöht und 3 h auf diesem Wert gehalten. Nach dieser Kalzinierung hatte der Katalysator die folgenden Eigenschaften: BET-Oberfläche: 75 m2/g Cu-Oberfläche: 10,9 m2/g (bestimmt durch N2O-Chemisoφtion) Kristallitgrösse: <2 nm (röntgenamoφh), Röntgendiffraktogramm siehe Fig. 2 (1).
Beispiel 2
Analog zu Beispiel 1 wurde ein Katalysator der Zusammensetzung 40% Cu, 20% Zn, 40% Zr hergestellt, wobei anstelle der Chloride die entsprechenden Nitrate als Ausgangsmaterialien verwendet wurden. Der so erhaltene Katalysator hatte vor der Kalzinierung eine BET-Ober¬ fläche von 177 m2/g und war völlig röntgenamoφh. Die kalzinierte Probe war ebenfalls völlig röntgenamoφh und hatte eine BET-Oberfläche von 62 m2/g
Vergieichsbeispiel
Gemäss GB-A 2 151 498, Example 1 wurde ein Cu/Zn/Zr-Katalysator der Zusammensetzung 29% Cu, 23% Zn, 48% Zr, jedoch ohne Chromzusatz, hergestellt: Zu einer Lösung von 631 g Ammoniumhydrogencarbonat in 30 1 Wasser wurde bei 60 °C un¬ ter kräftigem Rühren eine auf 60 °C erwärmte Lösung von 317,4 g Kupfer(II)nitrat-Trihydrat, 294,5 g Zinknitrat-Hexahydrat und 400,9 g Zirconylnitrat-Dihydrat in 10 1 Wasser gegeben. Das Gemisch wurde noch 1 h bei 60 °C gerührt. Dann wurde die Temperatur 30 min auf 80 °C gehalten und schliesslich bei dieser Temperatur weitere 30 min gerührt. Nach dem Ab- kühlen wurde der Niederschlag abfiltriert, viermal mit je 10 1 Wasser gewaschen und an¬ schliessend in einem Kneter 2 h geknetet. Dann wurde durch Zugabe von 1 ,25 1 Wasser eine Suspension mit 16% Feststoffgehalt hergestellt, welche in einem Sprühtrockner (Lufteintritts¬ temperatur 220 °C) getrocknet wurde. Von dem getrockneten Material wurde ein Röntgen¬ diffraktogramm aufgenommen, welches auf einem kontinuierlichen Untergrund eine deutliche Struktur aufwies, die den Beugungslinien von (Cu,Zn)5(CO3)2(OH)6 zugeordnet werden konnte (Fig. 1 , Kurve 2). Das Material war demnach teilkristallin. Schliesslich wurde das Material 2 h bei 380 °C kalziniert. Auch von dem so erhaltenen Katalysator wurde ein Röntgendiffraktogramm angefertigt (Fig. 2, Kurve 2). Dieses zeigte auf einem unstruk¬ turierten Untergrund Reflexe, die dem Mineral Zincit (ZnO) zugeordnet werden konnten. Somit war auch das kalzinierte Material teilkristallin.
Beispiel 3
Die in den Beispielen 1 und 2 sowie den Vergleichsbeispielen 1 und 2 beschriebenen Kata¬ lysatoren wurden auf ihre Eignung für die Methanolsynthese getestet. Die Reaktion wurde in Festbett-Mikroreaktoren (18 mm 0) durchgeführt. Der CO+CO2-Umsatz, die Ausbeute an Methanol, die Methanol-Selektivität und die Raum-Zeit- Ausbeute wurden bestimmt. Die Analyse der Reaktionsprodukte erfolgte durch o«-/me-Gaschromatographie. Die Katalysator¬ aktivität ergibt sich aus dem Umsatz von CO + CO2, der Methanolausbeute, der Selektivität (jeweils in mol-%, bezogen auf den Kohlenstoffanteil des Synthesegases), sowie der Raum- Zeit-Ausbeute in kg/(kg-h) (= kg pro kg Katalysator und Stunde).
Die Katalysatoren wurden in situ folgendermassen aktiviert: Unter Stickstoff (0,8 MPa) wurde der Reaktor langsam auf 130 °C aufgeheizt. Dann wurden dem Stickstoff 2% Wasserstoff zugemischt und die Temperatur mit 20 K/h auf 200 °C erhöht. Nach 16 h wurde der Wasser¬ stoffanteil auf 12% erhöht, die Temperatur auf 240 °C angehoben und 2 h auf dieser Höhe gehalten.
Die Methanolsynthese wurde bei 250 °C und 5 MPa durchgeführt. Als Ausgangsmaterial diente ein Synthesegasgemisch aus 32 Vol.-% Kohlenmonoxid, 5 Vol.-% Kohlendioxid und 63 Vol.-% Wasserstoff. Die Raumgeschwindigkeit betrug 8000 ml/(g-h). Die Ergebnisse (Umsatz, Ausbeute, Selektivität und Raum-Zeit-Ausbeute) sind in der folgenden Tabelle 1 zusammengestellt. Es handelt sich jeweils um die aktuellen Werte nach 49 h Reaktionszeit, also nach Erreichen eines stationären Zustands.
Tabelle 1
Beispiele 4- 6
Analog zu Beispiel 2 wurden weitere Katalysatoren verschiedener Zusammensetzungen hergestellt. Als Rührer bei der kontinuierlich durchgeführten Kopräzipitation wurde hierbei das Modell Polytron® PT45-80 eingesetzt. Die Zusammensetzung in Gew.-% und die Fällungsbedingungen (Temperatur θ, pH, Konzentration c, Rührfrequenz v und Dosier¬ geschwindigkeit ή ) sind in der folgenden Tabelle 2 zusammengestellt.
Tabelle 2
Zur Charakterisierung wurden die spezifischen Oberflächen nach BET bestimmt und jeweils vor und nach der Kalzinierung Röntgendiffraktogramme (XRD) angefertigt. Die Ergebnisse sind in der folgenden Tabelle 3 zusammengestellt.
Tabelle 3
O vor der Kalzinierung (2) nach der Kalzinierung
Nach einer Reaktionszeit von 55 h unter den in Beispiel 3 angegebenen Bedingungen wurden die in der folgenden Tabelle 4 zusammengestellten Ergebnisse in der Methanolsynthese erzielt:
Tabelle 4
Claims
1. Verfahren zur Herstellung von Methanol aus einem Wasserstoff und Kohlenmonoxid und/oder Kohlendioxid enthaltenden Gasgemisch in Gegenwarfeines Kupferoxid, Zink- oxid und Zirconiumoxid enthaltenden Katalysators, dadurch gekennzeichnet, dass der
Katalysator die Elemente Kupfer, Zink und Zirconium in relativen Anteilen von 10 bis 70 Gew.-% Cu, 10 bis 50 Gew.-% Zn und 20 bis 80 Gew.-% Zr enthält und im wesentlichen röntgenamoφh ist.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der Katalysator die Elemente Kupfer, Zink und Zirconium in relativen Anteilen von 20 bis 50 Gew.-% Cu, 10 bis 40 Gew.-% Zn und 30 bis 60 Gew.-% Zr enthält.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Katalysator durch Kopräzipitation eines Vorläufers aus einer Lösung von wasserlöslichen Kupfer-, Zink- und Zirconiumsalzen und gegebenenfalls weiteren Zusätzen, Waschen, Trocknen, Kalzinieren des getrockneten Vorläufers bei 300 bis 500 °C, und Aktivieren bei 200 bis 350 °C in wasserstoffhaltiger Atmosphäre hergestellt ist.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass als Lösung wasserlöslicher
Kupfer-, Zink- und Zirconiumsalze eine Lösung der Chloride und/oder Nitrate eingesetzt wird.
5. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die Kopräzipitation durch Zugabe einer Alkalihydroxidlösung zu der Lösung der wasserlöslichen Kupfer-,
Zink- und Zirconiumsalze durchgeführt wird.
6. Kupferoxid, Zinkoxid und Zirconiumoxid enthaltender Katalysator, insbesondere für die Methanolsynthese, dadurch gekennzeichnet, dass er die Elemente Kupfer, Zink und Zirconium in relativen Anteilen von 10 bis 70 Gew.-% Cu, 10 bis 50 Gew.-% Zn und 20 bis 80 Gew.-% Zr enthält und im wesentlichen röntgenamoφh ist.
7. Katalysator nach Anspruch 6, dadurch kekennzeichnet, dass er die Elemente Kupfer, Zink und Zirconium in relativen Anteilen von 20 bis 50 Gew.-% Cu, 10 bis 40 Gew.-% Zn und 30 bis 60 Gew.-% Zr enthält.
8. Verfahren zur Herstellung des Katalysators gemäss Anspruch 6, dadurch gekennzeichnet, dass durch Kopräzipitation aus einer Lösung von wasserlöslichen Kupfer-, Zink- und Zirconiumsalzen und gegebenenfalls weiteren Zusätzen ein Katalysator- Vorläufer gefällt, gewaschen, getrocknet, bei 300 bis 500 °C kalziniert und bei 200 bis 350 °C in wasserstoffhaltiger Atmosphäre aktiviert wird.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass als Lösung wasserlöslicher Kupfer-, Zink- und Zirconiumsalze eine Lösung der Chloride und/oder Nitrate eingesetzt wird.
10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die Kopräzipitation durch Zugabe einer Alkalihydroxidlösung zu der Lösung der wasserlöslichen Kupfer-, Zink- und Zirconiumsalze durchgeführt wird.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH2146/95 | 1995-07-21 | ||
CH214695 | 1995-07-21 | ||
PCT/EP1996/001180 WO1997003937A1 (de) | 1995-07-21 | 1996-03-19 | Verfahren zur herstellung von methanol und katalysator dafür |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0850212A1 true EP0850212A1 (de) | 1998-07-01 |
Family
ID=4226947
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96907504A Ceased EP0850212A1 (de) | 1995-07-21 | 1996-03-19 | Verfahren zur herstellung von methanol und katalysator dafür |
Country Status (7)
Country | Link |
---|---|
US (1) | US6054497A (de) |
EP (1) | EP0850212A1 (de) |
JP (1) | JP2000512261A (de) |
AU (1) | AU5110696A (de) |
CA (1) | CA2225449A1 (de) |
WO (1) | WO1997003937A1 (de) |
ZA (1) | ZA966164B (de) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6514289B1 (en) | 2000-01-30 | 2003-02-04 | Diamicron, Inc. | Diamond articulation surface for use in a prosthetic joint |
DE19809418A1 (de) * | 1998-03-05 | 1999-09-09 | Basf Ag | Verfahren zur Hydrierung von Carbonylverbindungen |
DE69933184T2 (de) * | 1998-11-16 | 2007-08-30 | Fushun Research Institute of Petroleum and Petrochemicals, Sinopec, Fushun | Kupferhaltiger Katalysator, dessen Verfahren zur Herstellung und seine Verwendung |
DE10124962A1 (de) * | 2001-05-21 | 2002-12-05 | Basf Ag | Katalysatoren für die Reinigung von Ethylen |
US6906000B1 (en) * | 2001-12-11 | 2005-06-14 | Hydrocarbon Technologies, Inc. | Stable carbonous catalyst particles and method for making and utilizing same |
EP1737569B1 (de) * | 2004-01-21 | 2007-12-26 | Avantium International B.V. | Chromfreie kupfermetall-katalysator mit wenigstens einem weiteren metall |
US7683227B2 (en) * | 2004-12-22 | 2010-03-23 | Exxonmobil Chemical Patents Inc. | Production of aromatic hydrocarbons from methane |
US7977519B2 (en) * | 2006-04-21 | 2011-07-12 | Exxonmobil Chemical Patents Inc. | Production of aromatic hydrocarbons from methane |
CN101945703B (zh) | 2008-02-21 | 2013-05-08 | 埃克森美孚化学专利公司 | 由甲烷生产芳烃的方法 |
KR101085038B1 (ko) * | 2008-07-24 | 2011-11-21 | 현대중공업 주식회사 | 합성가스로부터 메탄올 합성용 촉매 및 이의 제조방법 |
EP2499219A2 (de) | 2009-11-10 | 2012-09-19 | Shell Internationale Research Maatschappij B.V. | Verfahren zur herstellung von olefinen |
BR112012010865A2 (pt) * | 2009-11-10 | 2019-09-24 | Shell International Res Maatshappij B V | "processo para a produção de óxido de etileno". |
CN102666794B (zh) * | 2009-11-10 | 2015-12-02 | 国际壳牌研究有限公司 | 用于制备低级烯烃产品的方法 |
EP2499220A2 (de) * | 2009-11-10 | 2012-09-19 | Shell Internationale Research Maatschappij B.V. | Verfahren und integriertes system zur herstellung eines niederen olefinprodukts |
RU2554511C2 (ru) * | 2009-11-10 | 2015-06-27 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Способ получения олефинов |
AU2011244368B2 (en) | 2010-04-23 | 2014-04-24 | Shell Internationale Research Maatschappij B.V. | Process for producing aromatic hydrocarbons and ethylene |
DE102018105643B3 (de) | 2018-03-12 | 2019-05-16 | Edgar Harzfeld | Verfahren zur unterbrechungsfreien Stromversorgung mittels einer Schnellbereitschaftsanlage sowie Schnellbereitschaftsanlage |
DE202023100827U1 (de) | 2023-02-22 | 2023-07-10 | Edgar Harzfeld | Schnellbereitschaftsanlage zur unterbrechungsfreien Stromversorgung einer Elektrotankstelle mit beliebig vielen Ladesäulen |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5371008A (en) * | 1976-12-02 | 1978-06-24 | Mitsubishi Gas Chem Co Inc | Preparation of methyl formate |
FR2529098B1 (fr) * | 1982-06-23 | 1986-12-05 | Azote & Prod Chim | Procede d'activation des catalyseurs metalliques |
JPS60106534A (ja) * | 1983-11-14 | 1985-06-12 | Mitsubishi Gas Chem Co Inc | メタノ−ル合成用流動触媒 |
FR2595689B1 (fr) * | 1986-03-17 | 1988-11-04 | Inst Francais Du Petrole | Procede de fabrication d'un melange d'alcools primaires a partir de gaz de synthese en presence d'un catalyseur contenant du cuivre, du cobalt, du zinc et au moins un metal alcalin et/ou alcalino-terreux |
JPH0763624B2 (ja) * | 1986-07-24 | 1995-07-12 | 三菱瓦斯化学株式会社 | メタノ−ル合成用流動触媒の製造法 |
DE69123432D1 (de) * | 1990-09-18 | 1997-01-16 | Csir | Katalysator für die Methanolsynthese |
-
1996
- 1996-03-19 AU AU51106/96A patent/AU5110696A/en not_active Abandoned
- 1996-03-19 WO PCT/EP1996/001180 patent/WO1997003937A1/de not_active Application Discontinuation
- 1996-03-19 US US08/983,137 patent/US6054497A/en not_active Expired - Fee Related
- 1996-03-19 EP EP96907504A patent/EP0850212A1/de not_active Ceased
- 1996-03-19 CA CA002225449A patent/CA2225449A1/en not_active Abandoned
- 1996-03-19 JP JP09506199A patent/JP2000512261A/ja active Pending
- 1996-07-19 ZA ZA9606164A patent/ZA966164B/xx unknown
Non-Patent Citations (1)
Title |
---|
See references of WO9703937A1 * |
Also Published As
Publication number | Publication date |
---|---|
CA2225449A1 (en) | 1997-02-06 |
JP2000512261A (ja) | 2000-09-19 |
WO1997003937A1 (de) | 1997-02-06 |
ZA966164B (en) | 1997-02-10 |
US6054497A (en) | 2000-04-25 |
AU5110696A (en) | 1997-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1997003937A1 (de) | Verfahren zur herstellung von methanol und katalysator dafür | |
EP0152809B1 (de) | Katalysator zur Synthese von Methanol und höhere Alkohole enthaltenden Alkoholgemischen | |
DE69721944T2 (de) | Katalysator für Dimethylether, Verfahren zur Katalysatorherstellung und Verfahren zur Herstellung von Dimethylether | |
EP0849224B1 (de) | Verfahren zur Herstellung monoklinem Zirconiumdioxid mit hoher Oberfläche | |
DE69808983T2 (de) | Methanolsynthese- und Reformierungskatalysator bestehend aus Kupfer, Zink und Aluminium | |
DE69029331T3 (de) | Hydrierungsverfahren | |
DE69920379T2 (de) | Palladium-Ceroxid-Trägerkatalysator und Verfahren zur Herstellung von Methanol | |
DE69004628T2 (de) | Kohlenwasserstoffdampfreformierungskatalysator. | |
EP0528305B1 (de) | Kupfer-Zinkoxid-Aluminiumoxid enthaltende Katalysatoren | |
DE2302658C3 (de) | Verfahren zur Herstellung eines Kupfer-Trägerkatalysators | |
EP0300347B1 (de) | Verfahren zur Hydrierung von Fettsäuremethylestergemischen | |
DD157669A5 (de) | Katalysator und verfahren zur herstellung desselben | |
EP0901982A1 (de) | Verfahren und Katalysator zur Dampfreformierung von Methanol | |
DE3004514C2 (de) | Kupferoxid, Zinkoxid, Aluminiumoxid und gegebenenfalls Boroxid enthaltender Katalysator und seine Verwendung zur Herstellung von Methanol | |
DE102005020630A1 (de) | Herstellung von Cu/Zn/Al-Katalysatoren über den Formiatweg | |
DE3042686C2 (de) | Verfahren zur Herstellung eines Kupferoxid, Zinkoxid und Aluminiumoxid sowie gegebenenfalls Boroxid enthaltenden Katalysators | |
DE69513792T2 (de) | Aktivierter und stabilisierter Kupferoxid- und Zinkoxidkatalysator und Verfahren zu seiner Herstellung | |
DE69712811T2 (de) | Hydrierungskatalysatorvorläufer, Hydrierungskatalysator und Verfahren zur Herstellung von Alkoholen | |
DE69325919T2 (de) | Fischer-Tropsch Reaktion unter Verwendung von Katalysatoren, welche eine Zinkoxydzusammensetzung enthalten | |
DE2449493A1 (de) | Katalysator fuer die methanolherstellung, verfahren zu seiner herstellung und seine verwendung | |
DE10160487A1 (de) | Katalysator für die Methanolsynthese und andere Reaktionen | |
WO2000009259A2 (de) | Au/Fe2O3-KATALYSATORMATERIALIEN, VERFAHREN ZU DEREN HERSTELLUNG UND DEREN VERWENDUNG | |
DE2806505A1 (de) | Katalytische dampfreformierung von kohlenwasserstoffen | |
DE60221443T2 (de) | Mit hochreinem eisenvorläufer hergestellter fischer-tropsch-katalysator und herstellungsverfahren | |
DE69308938T2 (de) | Methode zur Herstellung von Methylchlorid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19971219 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB IE IT LI NL PT SE |
|
17Q | First examination report despatched |
Effective date: 19990426 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 20010107 |