EP0850107A1 - Verfahren zur zerkleinerung und zertrümmerung von aus nichtmetallischen oder teilweise metallischen bestandteilen konglomerierten festkörpern und zur zerkleinerung homogener nichtmetallischer festkörper - Google Patents

Verfahren zur zerkleinerung und zertrümmerung von aus nichtmetallischen oder teilweise metallischen bestandteilen konglomerierten festkörpern und zur zerkleinerung homogener nichtmetallischer festkörper

Info

Publication number
EP0850107A1
EP0850107A1 EP96930040A EP96930040A EP0850107A1 EP 0850107 A1 EP0850107 A1 EP 0850107A1 EP 96930040 A EP96930040 A EP 96930040A EP 96930040 A EP96930040 A EP 96930040A EP 0850107 A1 EP0850107 A1 EP 0850107A1
Authority
EP
European Patent Office
Prior art keywords
liquid
solid
metallic
voltage
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96930040A
Other languages
German (de)
English (en)
French (fr)
Inventor
Christoph Schultheiss
Georg Müller
Volker Neubert
Valeri Isaakovich Kuretz
Eduard Tarakanovski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Karlsruhe GmbH
Original Assignee
Forschungszentrum Karlsruhe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Karlsruhe GmbH filed Critical Forschungszentrum Karlsruhe GmbH
Publication of EP0850107A1 publication Critical patent/EP0850107A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/18Use of auxiliary physical effects, e.g. ultrasonics, irradiation, for disintegrating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/18Use of auxiliary physical effects, e.g. ultrasonics, irradiation, for disintegrating
    • B02C2019/183Crushing by discharge of high electrical energy

Definitions

  • the invention relates to a method for comminuting and crushing solids conglomerated from nonmetallic or partially metallic constituents and for comminuting homogeneous nonmetallic solids by rapidly discharging an electrical energy store with a high voltage amplitude.
  • the invention relates to uses of the method to break down different types of substances by type.
  • the solid materials are immersed in a liquid which is held in a suitable vessel.
  • the electrode system consisting of high-voltage electrodes and grounded electrodes of the electrical discharge circuit protrudes into the mixture of liquid and solid.
  • the discharges take place individually or at periodic intervals, the latter being limited in their repetitive frequency by the dimensioning of the components of the system, essentially by the charging constant of the energy store and necessary relaxation processes such as the breakdown of bubbles in the process liquid.
  • Fragmentation of solid bodies by shock waves is known per se and is often mentioned under the term electrohydraulic comminution or crushing of solid or brittle bodies. Usually these are pulse discharges from capacitor banks in water by means of an electrode system immersed in them. The shock wave generated during the discharge is directed either by a focussing element (parabolic mirror in a lithium transponder) or without such means onto the material to be broken up and crushed. The decrease in the intensity of the shock wave with distance and the reflection and transmission at interfaces are limiting physics.
  • a method for crushing ores with explosive energy which is released in a liquid and an apparatus for carrying out the method is specified in US Pat. No. 3,207,447.
  • ore is mixed with the liquid to form a sludge and filled into the reaction vessel.
  • Explosions are then periodically generated there, which smash the ore particles over the shock wave generated in this way, so that the usable components can be separated from the useless components.
  • the explosions are achieved by discharging an electrical energy store.
  • electrodes protrude into the sludge contained in the vessel.
  • a vessel in which materials can be smashed with a higher degree of efficiency by focusing the shock wave.
  • the vessel is covered at its opening with a device which reflects the shock wave emanating from the electrical discharge between the anode and cathode and focuses on the pile of material lying on the bottom of the vessel.
  • This lid is elastic connected to the vessel wall in order to cushion the mechanical load from the shock wave.
  • the underlying principle of material destruction is the generation of a shock wave by electrical discharge in the liquid.
  • the shock wave thus generated in the reaction vessel acts on the objects to be smashed from the outside (electrohydraulics).
  • a high expenditure of energy is necessary for this, since the hard or brittle materials immersed in the liquid have to be broken up by the action of pressure from the outside, comparable to hammer blows.
  • a balance of the energy input shows only from a physical point of view that no amount of energy can be introduced into the solid in the liquid through the shock wave effect, so that the destruction process can only be improved on this basis by means of higher discharge currents and thus larger energy stores.
  • the intensity of the shock wave decreases with 1 / r 2 from the point of origin.
  • the incoming shock wave is split up, namely that about 2/3 is reflected in water as liquid and about 1/3 penetrates into the body to be destroyed.
  • the energy input into the solid via electro-hydraulic action is therefore proportionately small.
  • the increase in the storage energy by means of an enlarged capacitor battery means higher discharge currents, which entails a greater load on the components via current load (on switching components) and shock wave (vibration on particularly exposed components in the reaction vessel).
  • the invention is based on the object of supplementing or replacing the electrohydraulic smashing method by means of shock waves in such a way that with a considerably higher energy entry into the body to be destroyed, smashing is achieved with less energy expenditure.
  • the object is achieved by the method steps of claim 1 while observing the specified parameter ranges.
  • the apparatus structure can be suitable for the respective material, which, in addition to the usual material placement in the liquid, is also based on the easy material loading and rapid material removal.
  • FIG. 1 a shows the electrical model on which the interpretation of the processes during the discharge in the reaction vessel is based.
  • FIG. 2 shows such distortion curves for rock, water, transformer oil and air. All curves generally show a non-linear drop in the required breakdown voltage with increasing delay time T, but the drop is not the same in time and the voltage level is sometimes significantly different, that is to say material-specific.
  • air is characterized by a curve of the voltage-time curve that has very low voltage values throughout.
  • transformer oil has a very high voltage level throughout.
  • Two curves in FIG. 2 show that the breakdown voltage curve depends on a type of solid (stone) and flux. cut liquid (water). If the breakdown voltage is reached in this intersection time, 500 nsec for this example, the breakdown can take place both in stone and in the liquid. If the tension rises faster than this point of intersection, then the breakthrough in stone is more likely. If the voltage rises more slowly, the breakthrough in water is more likely. The tendency to break through is of course the more probable for one or the other medium, the more clearly the voltage rise on the side or beyond the delay time ⁇ is for the intersection.
  • the delay time specification ⁇ or the time ⁇ until the breakdown voltage amplitude is reached in claim 1 is therefore material-specific. It has only proven to be reliable for many rock-like materials and ores. In one or the other application, it could be modified in the case of intersecting characteristic curves of the material to be destroyed and reaction liquid, taking into account the delay time at the intersection of the two.
  • the right corner point of the common overlap area indicates the time of delay from which the breakthrough in the liquid occurs.
  • Such a system can therefore be operated much more efficiently than in the pure electrohydraulic regime if: the field strength between the electrodes is in the range between 10 kV / mm and 30 kV / mm, the voltage rise to breakdown voltage takes place within 200 nsec, or more generally: the reliability is considerably shorter than the delay time at the point of intersection of the liquid and solid reaction medium in the reaction vessel, and the energy coupling along the discharge path in the solid, based on this path, is in the range between 12 J / mm and 40 J / mm holds.
  • the energy input per discharge determines the action mechanism in the solid.
  • the parameter range is selected so that in the solid body along the unloading path by energy coupling the body is torn by the shock wave generated inside, so to speak an explosion tearing. It comes about as follows:
  • the heat coupled in along the discharge path in a very short time is not and cannot be dissipated sufficiently quickly via heat conduction, but rather releases a shock wave in the solid body via velocity components of the atoms, directed away from the discharge channel.
  • the effect of the shock wave is strengthened by the superposition of reflected portions of the shock wave at the interfaces of the solid body to the liquid medium, as a result of which the solid body is further broken down into fractions.
  • shock wave generated in the material itself compared to an external impact on the body is incomparably higher on the basis of the one explained above in the introduction.
  • the shock wave generated in the solid body around the discharge channel loses only about 1/3 of the intensity to the liquid process medium due to transmission at the solid body interface, 2/3 are reflected there and continue to strain the body when it moves through it. It is understandable by this model that the shock wave generated in the body and the resulting explosion rupture place a much greater burden on the body than the shock wave action from outside in the form of compression on the body.
  • the solid bodies immersed in the process liquid can be successively reduced to a predetermined grain size by repeated unloading processes.
  • the grain size of the destroyed goods down to 40 ⁇ m can be achieved without increasing the efforts for this.
  • the minimum grain size that can be achieved with this method is material-specific and can be quickly determined by tests in a laboratory system.
  • Claim 2 therefore identifies tap water or demineralized water as the process liquid with which the minimum time in the voltage rise due to the intersection of the breakdown curve of water and that of the solid must be undershot.
  • Claim 3 characterizes liquids with good electrical insulation, such as transformer oils, alcohols, paraffins in liquid, that is to say heated, or liquid substances, cooled or heated, with which a breakthrough in the solid is achieved in any case.
  • the process liquid may well be a multi-component liquid with the above-mentioned properties.
  • Claim 5 characterizes the choice of polarity of the high voltage.
  • a positive polarity of the high voltage at the one electrode immersed in the liquid and the other electrode at ground potential in the form of a sieve, for example, through which the small fractions fall work more efficiently than if it had high electrode negative polarity. This can be explained plausibly on the model of the gas breakthrough between the anode and the cathode.
  • the method can be used in a wide variety of ways, as is characterized in the claims 6 and 7. It can be used to process ore-containing rock, inclusions containing precious metals or to uncover minerals and crystalline inclusions (claim 6).
  • FIG. 2 curve of the breakdown voltage as a function of the delay time
  • FIG. 3 curve of the breakdown voltage in the tolerance band
  • FIG. 4 classification of FIG. 2 into the current flow and shock wave regime
  • Figure 6 shows the reaction vessel in section.
  • Figure la is briefly explained again from the electrical structure. It shows the electrical scheme for the determination of the breakdown voltage curves.
  • the source 13 which consists of a converter and transformer, feeds the capacitor 10, which then passes into the load via the spark gap 14 16 discharges.
  • the load 16 consists of the electrically parallel arrangement of solid and liquid.
  • the reaction vessel 1 is located on a frame 2.
  • the frame 2 is the collecting vessel 3 for the fractions 5 that have sunk through the sieve 4 and are deposited on the bottom.
  • the sieve 4 is connected to earth potential.
  • the reaction vessel 1 consists of an impact-resistant plastic which can absorb the impacts during the discharges.
  • the indicated rings 6 are mechanical reinforcement rings which also extend the electrical creepage path, so that creep discharge along the reaction vessel is at least very difficult or even completely prevented.
  • the positively polarized high-voltage electrode 7 projects into the reaction vessel. It is connected to the energy store 8.
  • the energy store 8 consists of the capacitor bank 10 and the voltage multiplier circuit 9.
  • the entire energy store is also on a frame 11, under which the control cabinet 12, the converter transformer 13 and the switching path 14 to the energy store 8 are located.
  • FIG. 6 is briefly explained in the schematic structure.
  • the section through the wall of the reaction vessel 1 shows the structural arrangement.
  • the hemispherical sieve 4 has a mesh or hole size such that fractions with the desired grain size can fall through or sink through and settle on the bottom of the collecting vessel 3. From there they can be sucked off together with the liquid through the bottom opening.
  • the sieve 4 forms the grounded electrode 4.
  • the reaction vessel 1 is covered with a cover 20, through which the high-voltage electrode 7 projects into the interior of the vessel so that the electrode tip is at the predetermined distance from the sieve 4.
  • the high-voltage electrode 7 is surrounded over a long way in the reaction vessel 1 by a cylindrical insulator 21, which prevents parasitic discharges into the filled process liquid.
  • the bulges 6 are the rings mentioned above for mechanical support of the reaction vessel and for extending the electrical creepage distance.
  • Plants of this type and for such uses have a wide variety of structural designs, particularly when they are embedded in processing processes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Disintegrating Or Milling (AREA)
EP96930040A 1995-09-15 1996-08-14 Verfahren zur zerkleinerung und zertrümmerung von aus nichtmetallischen oder teilweise metallischen bestandteilen konglomerierten festkörpern und zur zerkleinerung homogener nichtmetallischer festkörper Withdrawn EP0850107A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE1995134232 DE19534232C2 (de) 1995-09-15 1995-09-15 Verfahren zur Zerkleinerung und Zertrümmerung von aus nichtmetallischen oder teilweise metallischen Bestandteilen konglomerierten Festkörpern und zur Zerkleinerung homogener nichtmetallischer Festkörper
DE19534232 1995-09-15
PCT/EP1996/003591 WO1997010058A1 (de) 1995-09-15 1996-08-14 Verfahren zur zerkleinerung und zertrümmerung von aus nichtmetallischen oder teilweise metallischen bestandteilen konglomerierten festkörpern und zur zerkleinerung homogener nichtmetallischer festkörper

Publications (1)

Publication Number Publication Date
EP0850107A1 true EP0850107A1 (de) 1998-07-01

Family

ID=7772257

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96930040A Withdrawn EP0850107A1 (de) 1995-09-15 1996-08-14 Verfahren zur zerkleinerung und zertrümmerung von aus nichtmetallischen oder teilweise metallischen bestandteilen konglomerierten festkörpern und zur zerkleinerung homogener nichtmetallischer festkörper

Country Status (5)

Country Link
EP (1) EP0850107A1 (ja)
JP (1) JPH0975769A (ja)
AU (1) AU6924496A (ja)
DE (1) DE19534232C2 (ja)
WO (1) WO1997010058A1 (ja)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19736027C2 (de) * 1997-08-20 2000-11-02 Tzn Forschung & Entwicklung Verfahren und Vorrichtung zum Aufschluß von Beton, insbesondere von Stahlbetonplatten
DE19756874A1 (de) * 1997-12-19 1999-06-24 Basf Ag Vorrichtung zum Herstellen von dispersen Stoffgemischen mittels Ultraschall und Verwendung einer derartigen Vorrichtung
DE19834447A1 (de) 1998-07-30 2000-02-10 Wacker Chemie Gmbh Verfahren zum Behandeln von Halbleitermaterial
US6469517B1 (en) * 1998-11-25 2002-10-22 Murata Manufacturing Co., Ltd. Sorting method of monolithic ceramic capacitors based on insulation resistance
DE19902010C2 (de) * 1999-01-21 2001-02-08 Karlsruhe Forschzent Verfahren zur Aufbereitung von Asche aus Müllverbrennungsanlagen und von mineralischen Rückständen durch Entsalzung und künstlichen Alterung mittels elektrodynamischer Unter-Wasser-Prozesse und Anlage zur Durchführung des Verfahrens
DE10059594A1 (de) 2000-11-30 2002-06-06 Solarworld Ag Verfahren und Vorrichtung zur Erzeugung globulärer Körner aus Reinst-Silizium mit Durchmessern von 50 mum bis 300 mum und ihre Verwendung
ATE311939T1 (de) 2001-03-24 2005-12-15 Karlsruhe Forschzent Verfahren zur selektiven abtrennung von partikeln aus einer suspension
DE10126646C2 (de) 2001-06-01 2003-04-10 Karlsruhe Forschzent Rotationssymmetrische Elektrodenanordnung aus einer mit Hochspannung beaufschlagbaren, stabförmigen Elektrode
DE10144486C1 (de) * 2001-09-10 2003-04-24 Karlsruhe Forschzent Verfahren zum kontinuierlichen nichtthermischen Aufschluß und Pasteurisieren industrieller Mengen organischen Prozessguts durch Elektroporation und Reaktor zum Durchführen des Verfahrens
FR2833192B1 (fr) 2001-12-11 2004-08-06 Commissariat Energie Atomique Procede de broyage d'une matiere carbonee conductrice par application d'impulsions haute-tension en milieu liquide
FR2833269B1 (fr) 2001-12-11 2004-10-15 Commissariat Energie Atomique Procede de gazeification d'une matiere carbonee conductrice par application d'impulsions haute tension a ladite matiere en milieu aqueux
DE10203649A1 (de) * 2002-01-30 2003-08-14 Karlsruhe Forschzent Schaltfunkenstrecke
US7087061B2 (en) 2002-03-12 2006-08-08 Lithotech Medical Ltd Method for intracorporeal lithotripsy fragmentation and apparatus for its implementation
DE10302867B3 (de) 2003-01-25 2004-04-08 Forschungszentrum Karlsruhe Gmbh Verfahren zur rechnergestützten Prozessführung einer Fragmentieranlage
TW200512007A (en) * 2003-05-30 2005-04-01 Fullerene Internat Corp Cosmetic compositions containing fullerene clusters
DE10342376B3 (de) 2003-09-13 2005-07-07 Forschungszentrum Karlsruhe Gmbh Verfahren zum Betreiben einer Fragmentieranlage und Fragmentrieranlage zur Durchführung des Verfahrens
DE10346650A1 (de) * 2003-10-08 2005-05-19 Forschungszentrum Karlsruhe Gmbh Prozessreaktor und Betriebsverfahren für die elektrodynamische Fragmentierung
CA2645268C (en) 2006-03-30 2013-12-31 Selfrag Ag Method for grounding a high voltage electrode
DE102007016927A1 (de) 2007-04-05 2008-10-16 Kern, Martin Verfahren zur reversiblen und irreversiblen elektrophysikalischen Zellporation und die zur Durchführung erforderlichen Porationsreaktoren
FR2942149B1 (fr) 2009-02-13 2012-07-06 Camille Cie D Assistance Miniere Et Ind Procede et systeme de valorisation de materiaux et/ou produits par puissance pulsee
DE102009060560B3 (de) * 2009-12-23 2010-12-02 Jörg Dipl.-Ing. Beckmann Verfahren zum Zerkleinern elastomerer und thermoplastischer Feststoffe für die Wiederverwertung
US9743980B2 (en) 2010-02-24 2017-08-29 Safepass Vascular Ltd Method and system for assisting a wire guide to cross occluded ducts
US8777963B2 (en) 2010-02-24 2014-07-15 Lithotech Medical Ltd Method and system for destroying of undesirable formations in mammalian body
DE102010011937B4 (de) 2010-03-18 2012-02-02 Jörg Beckmann Verfahren zum Zerkleinern von Elektronikschrott und technischem Glas für die Wiederverwertung
RU2449836C2 (ru) * 2010-05-25 2012-05-10 Учреждение Российской академии наук Институт электрофизики Уральского отделения РАН (ИЭФ УрО РАН) Способ селективного разупрочнения и дезинтеграции материала, содержащего ферромагнитные компоненты
DE102010052723B4 (de) 2010-11-25 2013-11-07 Technische Universität Ilmenau Verfahren und Vorrichtung zum Vorbereiten oder Bearbeiten von Prozessgut, insbesondere biologischen Prozesgut
WO2012129708A1 (de) 2011-03-30 2012-10-04 Selfrag Ag Elektrodenanordnung für eine elektrodynamische fragmentierungsanlage
DE102011105708B4 (de) 2011-06-22 2015-01-29 Jörg Beckmann Verwendung eines Blends für die Polymer- und Kunststofftechnik
WO2013060403A1 (de) 2011-10-26 2013-05-02 Adensis Gmbh Verfahren und vorrichtung zum zerlegen eines recyclinggutes
DE102012101165A1 (de) 2012-02-14 2013-08-14 Ald Vacuum Technologies Gmbh Dekontaminationsverfahren für radioaktiv kontaminiertes Material
DE102012101161A1 (de) 2012-02-14 2013-08-14 Ald Vacuum Technologies Gmbh Abtrennung von Radionukliden aus kontaminiertem Material
WO2013120919A1 (de) * 2012-02-14 2013-08-22 Ald Vacuum Technologies Gmbh Dekontaminationsverfahren für radioaktiv kontaminiertes material
WO2014037433A1 (en) 2012-09-05 2014-03-13 Walder Ingar F Method of mineral leaching
JP5367189B1 (ja) * 2013-03-05 2013-12-11 国立大学法人 熊本大学 パルスパワーによる中子砂処理装置
DE102013005392A1 (de) 2013-03-28 2014-10-02 HLW-LSA GmbH Vorrichtung zum Zerkleinern von Feststoffen
JP6403795B2 (ja) * 2014-03-26 2018-10-10 ゼルフラーク アクチエンゲゼルシャフトselFrag AG とりわけ多結晶シリコンからなるロッド状の材料を断片化するための方法
DE102014013856A1 (de) 2014-09-24 2016-03-24 Jörg Beckmann Verfahren zum Reinigen und/oder Trennen von Feststoffen
DE102017217611A1 (de) * 2017-10-04 2019-04-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Recyceln von Keramiken, danach erhältliche Regenerate und Verwendung der Regenerate zur Herstellung von Keramiken
ES2971793T3 (es) 2018-06-06 2024-06-07 Impulstec Gmbh Procedimiento y dispositivo para triturar y descomponer un elemento
DE102018131541A1 (de) * 2018-12-10 2020-06-10 Technische Universität Bergakademie Freiberg Einrichtung zur Beanspruchung von Partikeln mittels Elektroimpulsen
JPWO2023136299A1 (ja) 2022-01-14 2023-07-20
US11865546B2 (en) 2022-02-11 2024-01-09 Sharp Pulse Corp. Material extracting system and method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3207447A (en) * 1963-08-22 1965-09-21 Kennecott Copper Corp Method of crushing ores with explosive energy released in a liquid medium, and apparatus therefor
BE659375A (ja) * 1964-02-06
GB1284426A (en) * 1969-12-22 1972-08-09 Atomic Energy Authority Uk Improvements in or relating to electrohydraulic crushing apparatus
GB2120579B (en) * 1982-05-21 1985-07-10 De Beers Ind Diamond Method and apparatus for crushing materials such as minerals
US4653697A (en) * 1985-05-03 1987-03-31 Ceee Corporation Method and apparatus for fragmenting a substance by the discharge of pulsed electrical energy
DE3527898C1 (de) * 1985-08-03 1987-03-12 Dornier System Gmbh Einrichtung zum Herausloesen von Mineralen aus dem sie umgebenden Material
SU1542619A1 (ru) * 1988-09-08 1990-02-15 Предприятие П/Я М-5064 Устройство управлени электрогидравлической дробилкой
SU1719075A1 (ru) * 1990-04-06 1992-03-15 Экспериментальный кооператив "ЭГИДА-А" Устройство дл электрогидравлического дроблени и измельчени твердых материалов

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9710058A1 *

Also Published As

Publication number Publication date
AU6924496A (en) 1997-04-01
WO1997010058A1 (de) 1997-03-20
DE19534232C2 (de) 1998-01-29
DE19534232A1 (de) 1997-03-20
JPH0975769A (ja) 1997-03-25

Similar Documents

Publication Publication Date Title
DE19534232C2 (de) Verfahren zur Zerkleinerung und Zertrümmerung von aus nichtmetallischen oder teilweise metallischen Bestandteilen konglomerierten Festkörpern und zur Zerkleinerung homogener nichtmetallischer Festkörper
EP2771120B1 (de) Verfahren und vorrichtung zum zerlegen eines recyclinggutes
EP0427956B1 (de) Verbesserung des Zündverhaltens bei Unterwasser-Funkenstrecken
EP3801912B1 (de) Verfahren und vorrichtung zum zerkleinern und zerlegen eines gutes
EP1673172B1 (de) Prozessreaktor und betriebsverfahren für die elektrodynamische fragmentierung
DE19545580A1 (de) Verfahren und Anordnung zum Aufschluß von elastischen Materialien in Verbindung mit metallischen Materialien
DE10342376B3 (de) Verfahren zum Betreiben einer Fragmentieranlage und Fragmentrieranlage zur Durchführung des Verfahrens
DE2649677A1 (de) Verfahren und einrichtung zur vergroesserung des kontaktbereiches in einem fluessigen und/oder gasfoermigen mehrphasensystem
EP0573855B1 (de) Verfahren zum kontaminationsfreien Zerkleinern von Halbleitermaterial, insbesondere Silicium
DE102006037914B3 (de) Reaktionsgefäß einer hochspannungsimpulstechnischen Anlage und Verfahren zum Zertrümmern/Sprengen spröder, hochfester keramischer/mineralischer Werk-/Verbundwerkstoffe
DE60219349T2 (de) Verfahren zur behandlung von kontaminiertem nuklearem graphit
EP2136925A1 (de) Probenbehälter und anordnung zur elektrodynamischen fragmentierung von proben
DE102006027273B3 (de) Verfahren zur Gewinnung von Reinstsilizium
DE102009034314A1 (de) Verfahren zur materialselektiven Zerkleinerung von Brennstoffzellenstacks
DE1299209B (de) Vorrichtung zum elektrohydraulischen Zerkleinern
DE19532219C2 (de) Energiewandler zur Hochleistungspulserzeugung
DE19543914C1 (de) Verfahren und Vorrichtung zur Bearbeitung von Feststoffen
EP1153149B1 (de) Verfahren zur aufbereitung von asche aus muellverbrennungsanlagen durch entsalzung und künstlichen alterung mittels unter-wasser hochspannungs-funkenentladungen
Narahara et al. Evaluation of concrete made from recycled coarse aggregates by pulsed power discharge
EP1243339B1 (de) Verfahren zur selektiven Abtrennung von Partikeln aus einer Suspension
RU2072263C1 (ru) Способ измельчения использованных автопокрышек и устройство для его осуществления
EP1266693B1 (de) Fragmentiervorrichtung mit rotationssymmetrischer Elektrodenanordnung
DE19545579C2 (de) Verfahren und Anordnung zur Zerkleinerung von Materialien in metallischen Gehäusen, insbesondere Autokatalysatoren
Shaimerdenova et al. Electrohydropulse method for destruction of natural minerals
WO2020120437A1 (de) Einrichtung zur beanspruchung von partikeln mittels elektroimpulsen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971204

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): FR GB

17Q First examination report despatched

Effective date: 20010323

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20020612