EP1673172B1 - Prozessreaktor und betriebsverfahren für die elektrodynamische fragmentierung - Google Patents

Prozessreaktor und betriebsverfahren für die elektrodynamische fragmentierung Download PDF

Info

Publication number
EP1673172B1
EP1673172B1 EP04763842A EP04763842A EP1673172B1 EP 1673172 B1 EP1673172 B1 EP 1673172B1 EP 04763842 A EP04763842 A EP 04763842A EP 04763842 A EP04763842 A EP 04763842A EP 1673172 B1 EP1673172 B1 EP 1673172B1
Authority
EP
European Patent Office
Prior art keywords
electrode
reaction
voltage
funnel
processing reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP04763842A
Other languages
English (en)
French (fr)
Other versions
EP1673172A1 (de
Inventor
Peter Hoppe
Josef Singer
Harald Giese
Peter Stemmermann
Uwe Schweike
Wolfram Edinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Karlsruhe GmbH
Original Assignee
Forschungszentrum Karlsruhe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Karlsruhe GmbH filed Critical Forschungszentrum Karlsruhe GmbH
Publication of EP1673172A1 publication Critical patent/EP1673172A1/de
Application granted granted Critical
Publication of EP1673172B1 publication Critical patent/EP1673172B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/18Use of auxiliary physical effects, e.g. ultrasonics, irradiation, for disintegrating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/18Use of auxiliary physical effects, e.g. ultrasonics, irradiation, for disintegrating
    • B02C2019/183Crushing by discharge of high electrical energy

Definitions

  • the invention relates to a process reactor for the electrodynamic fragmentation of particulate mineral materials immersed in a process fluid by means of pulsed high-voltage discharges and a method for operating the process reactor.
  • overrun mode also called batch mode in technical usage
  • a small amount in the range of a few kilograms of the material to be treated is usually introduced by hand into the process space and above the ground electrode, usually a sieve bottom , deposited and fragmented by means of high voltage discharges.
  • the sieve passage and, if present, the sieve support are discharged separately.
  • Typical representative of this mode of operation is the Franka 0 system DE19534232 C2 ( Figures 5, 6) or similar systems, which are described for example in the publication [1].
  • Sieves also have the serious disadvantage of an inevitable tendency to clogging due to debris in the concrete debris, such as nails and Arm michsreste that affect the functioning of a technical system.
  • the object of the invention is to provide a process reactor for a preferably continuous and efficient electrodynamic fragmentation of brittle, particulate, mineral materials for industrially relevant mass flow rates.
  • the object is achieved by a process reactor according to the characterizing features of claim 1 and by a method according to the method steps of claim 11.
  • the outlet at the funnel-shaped bottom opens into a pitot tube, below which there is a transport unit for the removal of material, which removes the processed fragmented material that sank through the pitot tube.
  • a material supply device is introduced with the fraction to be fractionated material in the reaction vessel.
  • a stowage device which regulates the material flow and the level height in the reaction chamber or with which the material flow is regulated.
  • the average residence time T M of the material in the reaction zone by the speed of the material throughput determines the pitot tube below the reaction zone. This speed is determined by the outlet area A u at the Staurohrausgang, the adjustable distance a between the lower opening of the pitot tube and the transport / material extraction unit and their speed v 0 . The combination of these parameters results in the delivery rate dV / dt.
  • the length 1 of the pitot tube is chosen so that when fragmenting a stable angle of repose of the struck on the transport unit, fragmented Guts formed.
  • the degree of fragmentation of the processed material is set via the average number of high-voltage pulses n acting on the quantity m of the material in the reaction zone and the delivery rate dV / dt and the amount of energy introduced into the material per high-voltage pulse and the pulse repetition frequency f of the high-voltage pulses ,
  • the central outlet at the funnel-shaped bottom is a metallic Pitot tube with the upper clear entrance surface A o, the outlet, the lower clearance exit area A u and the area relationship A o ⁇ A u.
  • This outlet has a conical edge and fits flush and smooth into the conical part of the funnel-shaped bottom.
  • the metallic border of the outlet forms the counter electrode in the two-electrode system of the process reactor and is connected to a reference potential, usually ground potential.
  • the pitot tube can have a round or polygonal cross-section and lead away from the reactor vertically or obliquely.
  • the metallic wall of the reaction vessel it is placed on the same reference potential as the pitot tube.
  • the pitot tube opens vertically or obliquely into a discharge channel, and is at an adjustable distance a above the transport unit for material removal.
  • a material supply device In the opening of the wall of the reaction vessel opens a material supply device, is introduced with the fragment to be fragmented in the reaction vessel.
  • a stowage device is located in or protrudes into the reaction vessel, which regulates the level or the material flow.
  • the high-voltage electrode is, as described in claim 3, from electrically good conductive, low-burning metal. According to claim 4, it can therefore be solid cylindrical or tubular so hollow cylindrical with each round or polygonal cross-section.
  • the central diameter d e end of the conical widening on the outlet tube faces parallel with the circumferentially constant width g to form a conically annular gap between the high voltage electrode and the reference potential electrode, thus forming the conically annular reaction zone for fragmentation.
  • the material supply device for example, a known from the conveyor vibrator or a conveyor belt.
  • the stowage device in the reaction vessel is according to claim 6, for example, a guided on the wall of the reaction vessel, height adjustable baffle, which touches in the closed position with its bottom edge of the reaction vessel or seated there.
  • the stowage device according to claim 7 may be a horizontally or helically circulating group of at least one channel along the bottom line of which there are holes at each of which attaches a tube with at least the clear width of the hole diameter, thus not jamming by falling Good can.
  • the tubes lead down near the reactor wall and open into the actual reaction volume.
  • a baffle plate according to claim 8 on which the piled-up, fractionated material is turned away and, for example, deflected downwards via a separating board, or likewise a conveyor belt according to claim 9.
  • the beginning of the discharge channels at the two electrodes is crucial for the reliable long-term operation of the fragmentation system. At the exit surfaces they should begin in a designated area, so that the electrode erosion is not locally stuck, but occurs statistically evenly distributed with each discharge.
  • Two surface states can contribute according to claim 10, namely the annular forehead of the high voltage electrode is smooth or rough designed in the intended start region of the discharge channels on their surface, that statistically uniform distribution local elevations of the electric field come about through the shaping.
  • pulsed high-voltage discharges are used.
  • the electrical discharge is in this regime, at least predominantly by the property to be fragmented and not around it only by the process liquid.
  • FIG. 1 shows the process reactor in axial section
  • FIG. 2 enlarges the reaction area with the near environment and the pitot tube.
  • the material to be fragmented is conveyed / vibrated via the oscillatingly mounted tube 5, the vibrator, from the material receiving funnel into the barrel-shaped reaction container 1 made of sheet metal.
  • the amount of material supplied is adjustable by the intensity of the vibratory conveyor drive 6.
  • the baffle plate 7 is installed height adjustable. With the adjustable passage width w between the baffle plate lower edge and the funnel-shaped wall of the reaction vessel 1, the height of the bed of the material to be processed in the reaction chamber above the reaction zone 8, regardless of the intensity of the vibratory conveyor 6 or Material transport limited to the top. This reduces the residence time of the material before it is processed.
  • the restriction of the total amount of material in the reaction vessel 1 is also important in the case of repair work.
  • the plate-like shaped end 4 of the high voltage electrode 3 with the mean diameter d e of the forehead forms the annular gap of width g with the opposite funnel-shaped ground electrode 9.
  • the high voltage discharges occur preferably at the highest field strengths, ie between the end 4 of the high voltage electrode 3, a hereby in contact mineral material chunks with lower relative dielectric constant ⁇ r than the process liquid, here water, and the reaction vessel 1 here to ground / ground potential.
  • the Fragmentierguts with the electrodes 4 and 9 as well as the HV discharges occur statistically distributed over the circumference of the electrodes 4, 9.
  • the reaction zone 8 sufficient material to be fragmented is heaped up and the material throughput through this zone is not geometrically limited, even if the pulse generator / electrical energy store is sufficiently powerful. Then, the average residence time T M of the material in the reaction zone is determined by the speed of material withdrawal through the pitot tube 9.
  • the pitot tube 9 is strongly conical with its high voltage electrode 3 opposite region, here has a circular cross-section and opens slightly conical downward.
  • the entry of the reaction zone 8 into the pitot tube has the smaller inside diameter d o and thus the circular entrance surface A o and the exit the larger clear width d u with the corresponding larger exit area A u .
  • the length 1 of the pitot tube 9 is chosen so that a stable angle of repose forms on the backstoping surface under water and despite the vibrations caused by the fragmentation process. Under these conditions, the mean number n of high-voltage pulses, which acts on the amount m of the material passed, determined by the stagnation parameters a, v 0 and the pulse repetition frequency f of the high voltage pulses.

Description

  • Die Erfindung betrifft einen Prozessreaktor für die elektrodynamische Fragmentierung von in eine Prozessflüssigkeit getauchten, stückigen, mineralischen Materialien durch gepulste Hochspannungsentladungen und ein Verfahren zum Betreiben des Prozessreaktors.
  • In seinem grundsätzlichen Aufbau besteht ein solcher Prozessreaktor aus:
    • einem geschlossenen Reaktionsbehälter mit trichterförmigem Boden und zentralem Auslass darin. Eine mit Hochspannung beaufschlagbare Elektrode, die Hochspannungselektrode, ragt von oben in diesen hinein. Diese Elektrode ist bis auf ihren frei stehenden Endbereich mit einer elektrischen Isolation ummantelt. Die Hochspannungselektrode ist entlang ihrer Achse verschiebbar, so dass das Ende derselben dem Auslass, dessen metallische Umrandung die andere, auf elektrischem Bezugspotential befindliche Gegenelektrode repräsentiert, am trichterförmigen Boden des Reaktionsbehälters zentral gegenübersteht. Material wird über eine Öffnung in der Wand des Reaktionsbehälters zur Fraktionierung kontinuierlich oder schubweise zugeführt.
  • Der überwiegende Teil der bisher bekannt gewordenen Fragmentierungsanlagen arbeitet im Schubbetrieb, im fachlichen Sprachgebrauch auch Batch-Mode genannt, d.h. eine geringe Menge im Bereich von einigen Kilogramm des zu behandelnden Materials wird in den Prozessraum meist von Hand eingebracht und über der Masseelektrode, meist einem Siebboden, deponiert und mittels der Hochspannungsentladungen fragmentiert. Wenn die gewünschte Zahl der Entladungen erreicht ist, wird der Siebdurchgang und, soweit vorhanden, die Siebauflage getrennt entladen. Typischer Vertreter dieser Betriebsweise ist die Franka-0-Anlage DE19534232 C2 (Fign. 5, 6) bzw. ähnliche Anlagen, die beispielsweise in der Veröffentlichung [1] beschrieben werden.
  • Für industriell relevante Massendurchsätze ist dieser Batch-Mode nicht sonderlich geeignet. Die in [2] angegebene Vorrichtung ist für die kontinuierliche Befüllung, ist aber u.a. wegen des verwendeten Siebes nicht für größere Massendurchsätze geeignet.
  • In der US 6 039 274 (Fig. 1) wird ebenfalls ein kontinuierlicher Materialstrom im Zusammenhang mit einem Sieb bzw. Schwingsieb angegeben, allerdings ist ungelöst: der Durchsatz, die Behandlungsdauer und die Sieblebensdauer.
  • Die in der DE 197 27 534 C2 und GB 1 284 426 patentierten, kontinuierlich arbeitenden Verfahren beruhen auf dem Einsatz des elektrohydraulischen Prinzips, d.h. nur der Einwirkung der Schockwellen infolge einer HV-Entladung unter Wasser. Allgemein kann gesagt werden, dass ein wesentlicher Schwachpunkt aller Anlagen mit Siebboden im Prozessgefäß darin liegt, dass abgesehen von den nur relativ kleinen möglichen Massendurchsätzen die größte Zuschlagkomponente, der ein Entkommen aus dem Prozessbereich ermöglicht wird, stets kleiner ist, als die Maschenweite des Siebes. In der Praxis sind die Verhältnisse noch ungünstiger: ist eine Zuschlagkomponente aus dem Material herausgelöst und liegt sie nicht zwangsläufig über einem Loch des Bodensiebs, sondern gelangt dort erst im Verlauf einiger weiterer Entladungen hin, kann sie eine oder weitere Fragmentierung/-en erfahren. Dieser Effekt ist immer dann unerwünscht, wenn neben der grundsätzlichen Forderung nach Zerkleinerung eines Materials auch die Erhaltung der Größe bestimmter Komponenten in einem heterogen Material eine wichtige Rolle spielt. Als Beispiel sei hier die Aufbereitung von Beton angeführt, bei der das Arbeiten über einer Siebelektrode unvermeidlich zu einer unerwünschten Verschiebung der Sieblinie des ursprünglichen Zuschlagmaterials zu kleineren Fraktionen führt. Ein direktes Anmischen neuen Betons auf der Basis dieses Rezyklats ist somit ausgeschlossen. Soll diese Sieblinienverschiebung oder der unerwünschte Mahlprozess vermieden werden, so muss ein Sieb mit größerer Löcheranzahl und mit größerem Lochdurchmesser eingesetzt werden. Dies hat jedoch zur Folge, dass mit größerer Lochzahl die Bruchwahrscheinlichkeit des Siebes zunimmt und dass durch die größeren Löcher nicht nur die Zuschlagkomponenten in der gewünschten Originalgröße, sondern auch kleinere Zuschlagbestandteile mit Restanhaftungen der Zementmatrix und Matrixkonglomerate entkommen. Dies wiederum widerspricht der Forderung nach einer möglichst vollständigen Separation der Komponenten.
  • Siebe haben zudem den gravierenden Nachteil einer nicht zu umgehende Tendenz zum Verstopfen infolge von Fremdkörpern im Betonschutt, wie Nägel und Armierungsreste, welche die Funktionsfähigkeit einer technischen Anlage beeinträchtigen.
  • Der Erfindung liegt die Aufgabe zugrunde, für eine vorzugsweise kontinuierliche und effiziente elektrodynamische Fragmentierung von spröden, stückigen, mineralischen Materialien für industriell relevante Massendurchsätze einen Prozessreaktor bereitzustellen.
  • Die Aufgabe wird durch einen Prozessreaktor gemäß den kennzeichnenden Merkmalen des Anspruchs 1 und durch ein Verfahren gemäß den Verfahrensschritten des Anspruchs 11 gelöst.
  • Der Auslass am trichterförmigen Boden mündet in ein Staurohr, unter dem sich eine Transporteinheit für den Materialabtransport befindet, die das durch das Staurohr absackende prozessierte Fragmentiergut abtransportiert. In der Öffnung der Wand des Reaktionsgefäßes endet eine Materialzuführungseinrichtung, mit der zu fraktionierendes Material in das Reaktionsgefäß eingeleitet wird. Im Reaktionsgefäß vor dem Materialeinlass sitzt eine Staueinrichtung, die den Materialzustrom und die Füllstandshöhe im Reaktionsraum reguliert oder mit der der Materialzustrom reguliert wird.
  • Nach Anspruch 11 wird die mittlere Verweildauer TM des Materials in der Reaktionszone durch die Geschwindigkeit des Materialabzuges durch das Staurohr unterhalb der Reaktionszone bestimmt. Diese Geschwindigkeit wird durch die Austrittsfläche Au am Staurohrausgang, den einstellbaren Abstand a zwischen der unteren Öffnung des Staurohres und der Transport-/Materialab-zugseinheit und deren Geschwindigkeit v0 festgelegt. Aus der Kombination dieser Parameter ergibt sich die Förderrate dV/dt. Die Länge 1 des Staurohres wird so gewählt, dass sich beim Fragmentieren ein stabiler Schüttwinkel des auf der Transporteinheit auffallenden, fragmentierten Guts ausbildet. Schließlich wird der Fragmentierungsgrad des prozessierten Guts über die mittlere Zahl der Hochspannungspulse n, die auf die Menge m des in der Reaktionszone befindlichen Materials einwirken, und die Förderrate dV/dt sowie die pro Hochspannungsimpuls in das Material eingetragene Energiemenge und die Pulsfolgefrequenz f der Hochspannungspulse eingestellt.
  • In den Unteransprüchen 2 bis 9 sind Merkmale beschrieben, mit welchen spezifischen Baukomponenten die Einrichtung aufgebaut werden kann.
  • Nach Anspruch 2 ist der zentrale Auslass am trichterförmigen Boden ein metallisches Staurohr mit der oberen lichten Eintrittsfläche Ao, dem Auslass, der unteren lichten Austrittsfläche Au und der Flächenbeziehung Ao < Au. Dieser Auslass hat einen konischen Rand und fügt sich bündig und glatt in den konischen Teil des trichterförmigen Bodens ein. Die metallische Umrandung des Auslass bildet die Gegenelektrode in dem Zweielektrodensystem des Prozessreaktors und ist an ein Bezugspotential, meist Erdpotential, angeschlossen.
  • Im Falle des kreisförmigen Querschnitts und damit senkrecht sitzenden Staurohrs stehen Durchmesser und Querschnitt über A = πd2/4 in Beziehung. Im Allgemeinen kann das Staurohr runden oder polygonalen Querschnitt haben und senkrecht oder schräg vom Reaktor wegführen. Auf dem trichterförmigen Boden sitzt die metallische Wand des Reaktionsgefäßes auf, sie ist an das gleiche Bezugspotential wie das Staurohr gelegt.
  • Das Staurohr mündet senkrecht oder schräg in einen Abzugskanal, und steht mit einem einstellbarem Abstand a über der Transporteinheit für den Materialabtransport.
  • In die Öffnung der Wand des Reaktionsgefäßes mündet eine Materialzuführungseinrichtung, mit der zu fragmentierendes Gut in das Reaktionsgefäß eingebracht wird.
  • Eine Staueinrichtung sitzt in dem oder ragt in das Reaktionsgefäß, die die Füllstandshöhe oder der Materialzustrom reguliert.
  • Die Hochspannungselektrode ist, wie in Anspruch 3 beschrieben, aus elektrisch gut leitfähigem, abbrandarmen Metall. Nach Anspruch 4 kann sie massiv also vollzylindrisch oder röhrenförmig also hohlzylindrisch sein mit jeweils rundem oder polygonalem Querschnitt.
  • Die Stirn mit dem mittleren Durchmesser de steht der konischen Aufweitung am Auslassrohr steht unter Bildung eines konisch ringförmigen Spaltes zwischen der Hochspannungselektrode und der auf dem Bezugspotential liegenden Elektrode mit der umfänglich konstanten Weite g parallel gegenüber und bildet damit die konisch ringförmige Reaktionszone für das Fragmentieren.
  • Die Materialzuführungseinrichtung ist nach Anspruch 5 beispielsweise ein aus der Fördertechnik bekannter Rüttler oder ein Transportband. Die Staueinrichtung im Reaktionsgefäß ist nach Anspruch 6 beispielsweise eine an der Wand des Reaktionsgefäßes geführte, höhenverstellbare Prallwand, die in geschlossener Stellung auch mit ihrem Bodenrand das Reaktionsgefäß berührt oder dort aufsitzt. Andrerseits kann die Staueinrichtung nach Anspruch 7 eine an der Innenwand des Reaktionsraums waagrecht oder helikal umlaufende Gruppe aus mindestens einer Rinne sein, entlang deren Bodenlinie sich Löcher befinden, an denen jeweils ein Rohr mit mindestens der lichten Weite des Lochdurchmessers ansetzt, damit durchfallendes Gut nicht verklemmen kann. Die Rohre führen nahe der Reaktorwand nach unten und münden in das eigentliche Reaktionsvolumen.
  • Als Transporteinheit kommt beispielsweise in Frage:
  • Ein Stauscheibe nach Anspruch 8, auf der das aufgeschüttete, fraktionierte Gut weggedreht und beispielsweise über ein Abscheidebrett runtergelenkt wird, oder ebenfalls ein Transportband nach Anspruch 9.
  • Der Beginn der Entladungskanäle an den beiden Elektroden ist entscheidend für den zuverlässigen Langzeitbetrieb der Fragmentieranlage. An den Austrittsflächen sollen sie in einem vorgesehenen Gebiet beginnen, damit der Elektrodenabbrand nicht lokal festsitzt, sondern bei jeder Entladung möglichst statistisch gleichmäßig verteilt auftritt. Zwei Oberflächenzustände können nach Anspruch 10 dazu beitragen, nämlich die ringförmige Stirn der Hochspannungselektrode ist im vorgesehenen Startgebiet der Entladungskanäle an ihrer Oberfläche glatt oder derart rau gestaltet, dass durch die Formgebung statistisch gleichverteilt lokale Überhöhungen des elektrischen Feldes zustande kommen.
  • Bei der elektrodynamischen Fragmentierung wird mit gepulsten Hochspannungsentladungen prozessiert. Die elektrische Entladung geht in diesem Regime zumindest überwiegend durch das zu fragmentierende Gut und nicht darum herum nur durch die Prozessflüssigkeit.
  • Der Prozessreaktor erfüllt folgende Anforderungen:
    • kontinuierliche und kontrollierte Zu- und Abfuhr des zu fragmentierenden Materials zum und aus dem Reaktionsvolumen;
    • Anordnung von Hochspannungs- und Masselektrode derart, dass große Materialdurchsätze erzielt werden.
  • Durch diese Maßnahmen werden die folgenden Vorteile erreicht:
    • Die Füllhöhe des Materials im Prozessreaktor wird konstant gehalten. Dies ist ein wesentlicher Punkt, da beim Versagen der Staueinrichtung der Prozessreaktor in dem Fall, in dem die Anlieferung des Materials schneller erfolgt als die Bearbeitung und Abfuhr - ein Szenario, das bei Betriebsstörungen leicht eintreten kann - sukzessive mit zugeliefertem Material aufgefüllt werden würde. Dies hätte zwei nachteilige Auswirkungen:
      • Erstens, die Materialkinetik im Prozessraum wird durch die Überschichtung mit großen Materialmengen eingeengt. Das Material kann sich bei der Bearbeitung unter der Einwirkung der Schockwellen bei jedem Puls weniger frei umschichten und die Fraktionierung erfolgt weniger gleichmäßig.
      • Zweitens, die hohe Überschichtung des Reaktionsraumes mit nachfolgendem Material führt erfahrungsgemäß zu Kavernenbildung, als Silo-Effekt bezeichnet. Diese Kavernen sind teilweise durch Ausbildung einer Art Gewölbedecke von so großer Stabilität, dass die Materialnachförderung total zum Erliegen kommt.
    • Die mittlere Verweildauer des zu fragmentierenden Gutes im Reaktionsvolumen kontrolliert, um den gewünschten Grad der Fragmentierung durch eine mittlere Zahl von Entladungen je Masseeinheit des durchgesetzten Materials zu erreichen.
    • Das fragmentierte Material wird aus dem Reaktionsvolumen kontrolliert und kontinuierlich abgeführt.
  • Die Gestaltung der Elektrodengeometrie bringt die folgenden Vorteile:
    • Die Hochspannungsentladungen gehen bevorzugt durch das zu fragmentierende Material, es wird elektrodynamisch fraktioniert, d.h. Entladungswege durch das Material explodieren dasselbe zunächst, darauf folgende Schockwelleneinwirkung mahlt das Material weiter durch äußere Einwirkung.
    • Keine Entladungen treten an der Oberfläche der Isolation der Hochspannungselektrode auf.
  • Entsprechend konstruktive, feldentlastende Maßnahmen, wie in der DE 101 26 646 A1 beschrieben, werden im Bereich des Isolationsendes durch die Formgebung der Hochspannungselektrode getroffen.
  • Gegenüber den bisher üblicherweise verwendeten, zylindrischen HV-Elektroden, die einer Masseplatte oder einem Siebboden in Abständen von ca. 20 bis 40 mm gegenüberstehen (siehe z.B. DE 195 34 232 C2 ), weist die hier angegebene Elektrodenanordnung die Vorteile auf:
    • der Reaktionsraum ist bei gleichem Elektrodenabstand auf Grund seiner konischen Ringform wesentlich größer, demnach kann mehr Material durchgesetzt und bearbeitet werden;
    • der Abbrand beider Elektroden ist wegen derer größerer Oberflächen und der statistisch über deren Umfang verteilt auftretenden Funken geringer;
    • die Masseelektrode, das Staurohr, weist nicht die üblichen siebähnlichen Strukturen mit den damit verbundenen Problemen der mechanischen Stabilität sowie der Verstopfung auf;
    • eine Kompensation des Elektrodenabbrandes wird durch eine vertikale Verschiebung in z-Richtung der HV-Elektrode gemeinsam mit deren Isolator 2 durchgeführt und damit auch der Elektrodenabstand g an die optimalen Prozessparameter angepasst;
    • wegen der stochastischen Natur der Verteilung der Materialbrocken in der Reaktionszone bzw. der Funkenbildung ist das Staurohr insgesamt die Masseelektrode und hat daher auch eine axiale Ausdehnung
  • Im Folgenden wird der Aufbau des Prozessreaktors gemäß den Ansprüchen 2, 7 und 8 anhand der Zeichnung vorgestellt.
  • Figur 1 zeigt den Prozessreaktor im axialen Schnitt, Figur 2 vergrößert das Reaktionsgebiet mit naher Umgebung und Staurohr.
  • Das zu fragmentierende Material wird über das schwingfähig gelagerte Rohr 5, den Rüttler, vom Materialaufnahmetrichter in den tonnenförmigen Reaktionsbehälter 1 aus Blech gefördert/gerüttelt. Die zugeführte Materialmenge ist durch die Intensität des Schwingförderantriebs 6 einstellbar. Um ein Überfüllen des Reaktionsbehälters 1 zu vermeiden aber auch zum Schutz der Hochspannungselektrode 3 samt Isolator 2 ist die Prallplatte 7 höhenverstellbar eingebaut. Mit der einstellbaren Durchlassweite w zwischen der Prallplattenunterkante und der trichterförmigen Wand des Reaktionsbehälters 1 wird die Höhe der Schüttung des zu prozessierenden Guts im Reaktionsraum oberhalb der Reaktionszone 8 unabhängig von der Intensität des Schwingförderers 6 oder des Materialtransportes nach oben hin begrenzt. Dadurch wird die Aufenthaltsdauer des Materials vor seiner Prozessierung reduziert. Die Beschränkung der Gesamtmenge an Material im Reaktionsbehälter 1 ist darüber hinaus für den Fall von Reparaturarbeiten von Bedeutung.
  • Das tellerähnlich geformte Ende 4 der Hochspannungselektrode 3 mit dem mittleren Durchmesser de der Stirn bildet den Ringspalt der Breite g mit der gegenüberliegenden trichterförmigen Masseelektrode 9. Die Hochspannungsentladungen treten bevorzugt an den Orten höchster Feldstärke auf, d.h. zwischen dem Ende 4 der Hochspannungselektrode 3, einem hiermit in Kontakt stehenden mineralischen Materialbrocken mit geringerer relativer Dielektrizitätskonstanten εr als die Prozessflüssigkeit, hier Wasser, und dem Reaktionsbehälter 1 hier auf Masse-/Erdpotential. Bei der räumlich und zeitlich statistischen Berührung des Fragmentierguts mit den Elektroden 4 und 9, treten so auch die HV-Entladungen statistisch verteilt über den Umfang der Elektroden 4, 9 auf.
  • Zu- und Ablauf der bei der elektrodynamischen Fragmentierung benötigten Prozessflüssigkeit - meist Wasser - erfolgen über Öffnungen im Boden des Reaktionsbehälters 11, 12.
  • Oberhalb der Reaktionszone 8 ist ausreichend zu fragmentierendes Material aufgeschüttet und der Materialdurchsatz durch diese Zone geometrisch nicht begrenzt, auch sei der Pulsgenerator/elektrische Energiespeicher genügend stark ausgelegt. Dann wird die mittlere Verweildauer TM des Materials in der Reaktionszone durch die Geschwindigkeit des Materialabzugs durch das Staurohr 9 bestimmt. Das Staurohr 9 ist stark konisch mit seinem der Hochspannungselektrode 3 gegenüberstehenden Bereich, hat hier kreisrunden Querschnitt und öffnet sich schwach konisch nach unten. Der Eintritt von der Reaktionszone 8 in das Staurohr hat die kleinere lichte Weite do und damit die kreisförmige Eintrittsfläche Ao und der Austritt die größere lichte Weite du mit der entsprechend größeren Austrittsfläche Au. Die Abzugsgeschwindigkeit v0 bzw. Förderrate dV/dt aus der Reaktionszone 8 wird, bedingt durch den einstellbaren Abstand a zwischen dem Ausgang des Staurohrs 9 und der Transporteinheit 10, die hier ein Transportband ist, das sich mit der einstellbaren Geschwindigkeit vo bewegt, von der rückstauenden Oberfläche des Austrags auf dem Transportband bestimmt. Die Länge 1 des Staurohrs 9 wird so gewählt, dass sich unter Wasser und trotz der Erschütterungen durch den Fragmentierungsprozess ein stabiler Schüttwinkel auf der rückstauenden Oberfläche ausbildet. Unter diesen Bedingungen wird die mittlere Zahl n der Hochspannungspulse, die auf die Menge m des durchgesetzten Materials einwirkt, durch die Stauparameter a, v0 sowie die Pulsfolgefrequenz f der Hochspannungspulse festgelegt. Über diese Parameter wird der Fragmentierungsgrad des durchgesetzten Materials gesteuert. Bei konstanten Stauparametern führt die Erhöhung/Reduktion der Pulsfolgefrequenz f zu einer höheren/geringeren Fragmentierung. Werden die Grenzen der Leistungsfähigkeit des Pulsgenerators erreicht oder wirken der Elektrodenabstand g und/oder der elektrodenseitige Durchmesser do des Staurohrs begrenzend, müssen die Stauparameter angepasst werden, d.h. der Abstand a zum rückstauenden Element und/oder die Geschwindigkeit vo der rückstauenden Oberfläche reduziert werden.
  • Bezugszeichenliste:
  • 1.
    Reaktionsbehälter
    2.
    Hochspannungsisolator
    3.
    Hochspannungselektrode
    4.
    Ende/Stirn der Hochspannungselektrode
    5.
    Rohr/Rüttler
    6.
    Schwingförderantrieb
    7.
    Prallplatte
    8.
    Reaktionszone
    9.
    Staurohr, Masseelektrode
    10.
    Transporteinheit
    11.
    Düse
    12.
    Siebfilter
    Referenzen:
  • [1]
    Hammon J. et al. "Electric pulse rock sample disintegrator", Proc. 28th IEEE Int. Conf on Plasma Science and 13th IEEE Int. Pulsed Power Conf. (PPPS-2001), Las Vegas, USA, June 17-22, 2001, pp 1142-1145
    [2]
    Andres, J. in: Int. Journal of Mineral Processing, 4 (1977) 33-38

Claims (11)

  1. Prozessreaktor für die elektrodynamische Fragmentierung von in eine Prozessflüssigkeit getauchten, stückigen, mineralischen Materialien durch gepulste Hochspannungsentladungen, bestehend aus:
    einem Reaktionsbehälter mit trichterförmigem Boden,
    einer von oben in diesen ragenden, mit Hochspannung beaufschlagbaren Elektrode, die Hochspannungselektrode, die bis auf ihren Endbereich mit einer elektrischen Isolation ummantelt ist,
    wobei die Hochspannungselektrode entlang ihrer Achse verschiebbar ist, so dass das Ende derselben dem zentralen Auslass, wo sich die andere, die auf elektrischem Bezugspotential befindliche Elektrode befindet, am trichterförmigen Boden des Reaktionsbehälters in variablem Abstand gegenübersteht, dadurch gekennzeichnet, dass:
    der Auslass am trichterförmigen Boden in ein Staurohr mündet, unter dem sich eine Transporteinheit (10) für den Materialabtransport befindet, die das durch das Staurohr absackende prozessierte Fragmentiergut abtransportiert,
    in die Öffnung der Wand des Reaktionsgefäßes (1) eine Materialzuführungseinrichtung (5) mündet, mit der zu fraktionierendes Material in das Reaktionsgefäß (1) eingeleitet wird,
    im Reaktionsgefäß (1) vor dem Materialeinlass eine Staueinrichtung (7) sitzt, die den Materialzustrom und die Füllstandshöhe im Reaktionsraum reguliert oder mit der der Materialzustrom reguliert wird,
  2. Prozessreaktor nach Anspruch 1, dadurch gekennzeichnet, dass
    der zentrale Auslass am trichterförmigen Boden ein metallisches Staurohr (9) der Länge 1 mit der oberen lichten Weite do und der unteren lichten Weite du und do < du ist, einen konischen Rand hat und bündig und glatt in den konischen Teil des trichterförmigen Bodens eingelassen ist und die auf Bezugspotential liegende Elektrode bildet,
    die auf den trichterförmigen Boden des Reaktionsgefäßes (1) aufsitzende Wand ebenfalls metallisch ist und diese und das Staurohr (9) auf einem gemeinsamen elektrischen Potential, dem Bezugspotential, liegen.
  3. Prozessreaktor nach Anspruch 2, dadurch gekennzeichnet, dass
    die Hochspannungselektrode (3) aus elektrisch gut leitfähigem, abbrandarmen Metall ist,
    außerhalb des Reaktionsraumes an ihr ein isolierender Schlauch zur Kühlwasserzuführung angeschlossen ist,
    am der Elektrode auf Bezugspotential gegenüberliegenden freien Ende trichterförmig aufgeweitet ist und,
    wobei die Stirn mit dem Durchmesser de der konischen Aufweitung am Auslassrohr (9) unter Bildung eines konisch ringförmigen Spaltes zwischen der Hochspannungselektrode (3) und der auf dem Bezugspotential liegenden Elektrode (9) mit der umfänglich konstanten Weite g parallel gegenübersteht und damit die konisch ringförmige Reaktionszone (8) für das Fragmentieren bildet,
  4. Prozessreaktor nach Anspruch 3, dadurch gekennzeichnet, dass
    Hochspannungselektrode (3) vollzylindrisch oder hohlzylindrisch ist und runden oder polygonalen Querschnitt hat.
  5. Prozessreaktor nach Anspruch 4, dadurch gekennzeichnet, dass
    die Materialzuführungseinrichtung (5) ein Rüttler oder ein Transportband ist.
  6. Prozessreaktor nach Anspruch 5, dadurch gekennzeichnet, dass
    die Staueinrichtung (7) eine höhenverstellbare Prallwand ist.
  7. Prozessreaktor nach Anspruch 5, dadurch gekennzeichnet, dass
    die Staueinrichtung (7) eine an der Innenwand des Reaktionsraums waagrecht oder helikal umlaufende Gruppe aus mindestens einer Rinne ist, entlang deren Bodenlinie sich Löcher befinden, an denen jeweils ein Rohr mit mindestens der lichten Weite des Lochdurchmessers ansetzt, und die Rohre nahe der Reaktorwand nach unten führen und kurz vor dem Reaktionsboden enden.
  8. Prozessreaktor nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass
    die Transporteinheit (10) für den Materialabtransport eine Stauscheibe ist.
  9. Prozessreaktor nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass
    die Transporteinheit (10) für den Materialabtransport ein Transportband ist.
  10. Prozessreaktor nach einem der Ansprüche 8 und 9, dadurch gekennzeichnet, dass
    die ringförmige Stirn der Hochspannungselektrode (3) an ihrer Oberfläche glatt oder derart gestaltet ist, dass durch die Formgebung lokale Überhöhungen des elektrischen Feldes zustande kommen.
  11. Verfahren zur elektrodynamischen Fragmentierung von in eine Prozessflüssigkeit getauchten, stückigen, mineralischen Materialien durch gepulste Hochspannungsentladungen mit einem Prozessreaktor gemäß einem der Ansprüche 1 bis 9, bestehend aus den Schritten:
    das zu fragmentierende Material wird über eine Materialzuführungseinrichtung regulierbar in den tonnenförmigen Reaktionsbehälter (1) eingeleitet,
    die Höhe der Materialschüttung im Reaktionsbehälter (1) wird über eine Staueinrichtung nach oben hin begrenzt,
    die mittlere Verweildauer TM des Materials in der Reaktionszone (8) wird durch die Geschwindigkeit des Materialabzuges durch ein Staurohr (9) unterhalb der Reaktionszone (8) bestimmt, wobei diese Geschwindigkeit durch die Förderrate dV/dt der Transport-/Materialabzugseinheit (10) bestimmt wird,
    die Länge 1 des Staurohres (9) so gewählt wird, dass sich beim Fragmentieren ein stabiler Schüttwinkel des auf der Transporteinheit (10) abfallenden, fragmentierten Guts ausbildet,
    der Fragmentierungsgrad des prozessierten Guts wird über die mittlere Zahl der Hochspannungspulse n, die auf die Menge m des in der Reaktionszone befindlichen Materials einwirken, und die Förderrate dV/dt sowie die pro Hochspannungsimpuls in das Material eingetragene Energiemenge und die Pulsfolgefrequenz f der Hochspannungspulse eingestellt,
EP04763842A 2003-10-08 2004-08-06 Prozessreaktor und betriebsverfahren für die elektrodynamische fragmentierung Active EP1673172B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10346650A DE10346650A1 (de) 2003-10-08 2003-10-08 Prozessreaktor und Betriebsverfahren für die elektrodynamische Fragmentierung
PCT/EP2004/008802 WO2005044457A1 (de) 2003-10-08 2004-08-06 Prozessreaktor und betriebsverfahren für die elektrodynamische fragmentierung

Publications (2)

Publication Number Publication Date
EP1673172A1 EP1673172A1 (de) 2006-06-28
EP1673172B1 true EP1673172B1 (de) 2008-02-13

Family

ID=34441841

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04763842A Active EP1673172B1 (de) 2003-10-08 2004-08-06 Prozessreaktor und betriebsverfahren für die elektrodynamische fragmentierung

Country Status (7)

Country Link
US (1) US7246761B2 (de)
EP (1) EP1673172B1 (de)
CN (1) CN100457278C (de)
AT (1) ATE385854T1 (de)
CA (1) CA2537045C (de)
DE (2) DE10346650A1 (de)
WO (1) WO2005044457A1 (de)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10346055B8 (de) * 2003-10-04 2005-04-14 Forschungszentrum Karlsruhe Gmbh Aufbau einer elektrodynamischen Fraktionieranlage
DE102008045946B4 (de) * 2008-09-04 2015-04-30 Exland Biotech Inc. Hochfrequenzzerkleinerer
FR2942149B1 (fr) * 2009-02-13 2012-07-06 Camille Cie D Assistance Miniere Et Ind Procede et systeme de valorisation de materiaux et/ou produits par puissance pulsee
FR2949356B1 (fr) * 2009-08-26 2011-11-11 Camille Cie D Assistance Miniere Et Ind Procede et systeme de valorisation de materiaux et / ou produits par puissance pulsee
WO2012129708A1 (de) * 2011-03-30 2012-10-04 Selfrag Ag Elektrodenanordnung für eine elektrodynamische fragmentierungsanlage
CA2850980C (en) * 2011-10-10 2018-05-01 Selfrag Ag Method of fragmenting and/or weakening of material by means of high voltage discharges
DE102012101165A1 (de) * 2012-02-14 2013-08-14 Ald Vacuum Technologies Gmbh Dekontaminationsverfahren für radioaktiv kontaminiertes Material
RU2596987C1 (ru) * 2012-08-24 2016-09-10 Зельфраг Аг Способ и устройство для фрагментации и/или ослабления материала посредством высоковольтных импульсов
WO2015024048A1 (en) * 2013-08-19 2015-02-26 Technological Resources Pty. Limited An apparatus and a method for treating mined material
EP3060347B1 (de) * 2013-10-25 2017-11-01 Selfrag AG Verfahren zur fragmentierung und/oder vorschwächung von material mittels hochspannungsentladungen
CN105764614A (zh) * 2013-10-25 2016-07-13 泽尔弗拉格股份公司 通过高压放电打碎和/或弱化材料的方法
DE102014008989B4 (de) * 2014-06-13 2022-04-07 Technische Universität Bergakademie Freiberg Einrichtung und Verfahren zur Zerkleinerung von Feststoffen mittels Elektroimpulsen
JP6815323B2 (ja) * 2015-02-27 2021-01-20 ゼルフラーク アクチエンゲゼルシャフトselFrag AG 高電圧放電を用いた、流し込み可能な材料を破片化および/または弱化するための方法および装置
WO2016134488A1 (de) * 2015-02-27 2016-09-01 Selfrag Ag Verfahren und vorrichtung zur fragmentierung und/oder schwächung von schüttfähigem material mittels hochspannungsentladungen
CN104984807B (zh) * 2015-07-08 2017-10-31 温州科技职业学院 一种用于连续放电破碎矿石的装置及其破碎矿石的方法
CN105618230B (zh) * 2016-02-22 2018-06-01 沈阳理工大学 一种高压脉冲破碎岩矿装置
CN106944225B (zh) * 2017-03-31 2018-08-28 东北大学 一种强化磁铁矿破碎及分选的高压电脉冲预处理方法
CN106944223B (zh) * 2017-03-31 2018-11-27 东北大学 一种利用电脉冲预处理矿石提高磨矿效率的方法
CN106824454B (zh) * 2017-03-31 2018-10-23 东北大学 一种强化难处理金矿石浸出的高压电脉冲预处理方法
JP6722874B2 (ja) * 2017-06-06 2020-07-15 パナソニックIpマネジメント株式会社 板状物品の分解装置
DE102018003512A1 (de) 2018-04-28 2019-10-31 Diehl Defence Gmbh & Co. Kg Anlage und Verfahren zur elektrodynamischen Fragmentierung
JP6947126B2 (ja) * 2018-06-12 2021-10-13 株式会社Sumco シリコンロッドの破砕方法及び装置並びにシリコン塊の製造方法
CN110215985B (zh) * 2019-07-05 2021-06-01 东北大学 一种用于矿石粉碎预处理的高压电脉冲装置
WO2022258470A1 (en) 2021-06-11 2022-12-15 Evonik Operations Gmbh A method of cell lysis

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1341851A (fr) * 1962-12-17 1963-11-02 Enertron Corp Procédé et appareil pour le traitement de matières, notamment par pulvérisation et le mélange de matières par une nouvelle action électrohydraulique
US3207447A (en) * 1963-08-22 1965-09-21 Kennecott Copper Corp Method of crushing ores with explosive energy released in a liquid medium, and apparatus therefor
US3715082A (en) * 1970-12-07 1973-02-06 Atomic Energy Authority Uk Electro-hydraulic crushing apparatus
GB1350600A (en) * 1970-12-30 1974-04-18 Atomic Energy Authority Uk Electro-hydraulic crushing apparatus
US4313573A (en) * 1980-02-25 1982-02-02 Battelle Development Corporation Two stage comminution
CA1207376A (en) * 1982-05-21 1986-07-08 Uri Andres Method and apparatus for crushing materials such as minerals
US4653697A (en) * 1985-05-03 1987-03-31 Ceee Corporation Method and apparatus for fragmenting a substance by the discharge of pulsed electrical energy
AU9135591A (en) * 1990-12-03 1992-06-25 Bruce K. Redding Jr. Apparatus and method for micronizing particles
RU2081259C1 (ru) * 1995-02-22 1997-06-10 Научно-исследовательский институт высоких напряжений при Томском политехническом университете Способ изготовления изделий из некондиционного железобетона
CA2151316C (en) * 1995-06-08 1999-06-15 Sadan Kelebek Process for improved separation of sulphide minerals or middlings associated with pyrrhotite
DE19534232C2 (de) * 1995-09-15 1998-01-29 Karlsruhe Forschzent Verfahren zur Zerkleinerung und Zertrümmerung von aus nichtmetallischen oder teilweise metallischen Bestandteilen konglomerierten Festkörpern und zur Zerkleinerung homogener nichtmetallischer Festkörper
US5758831A (en) * 1996-10-31 1998-06-02 Aerie Partners, Inc. Comminution by cryogenic electrohydraulics
DE10009569C2 (de) * 2000-02-29 2003-03-27 Schott Glas Verfahren und Vorrichtung zum Zerkleinern von Glaskörpern mittels Mikrowellenerwärmung

Also Published As

Publication number Publication date
WO2005044457A1 (de) 2005-05-19
CA2537045C (en) 2008-08-05
CN100457278C (zh) 2009-02-04
DE502004006209D1 (de) 2008-03-27
US7246761B2 (en) 2007-07-24
CN1863602A (zh) 2006-11-15
CA2537045A1 (en) 2005-05-19
DE10346650A1 (de) 2005-05-19
ATE385854T1 (de) 2008-03-15
EP1673172A1 (de) 2006-06-28
US20060163392A1 (en) 2006-07-27

Similar Documents

Publication Publication Date Title
EP1673172B1 (de) Prozessreaktor und betriebsverfahren für die elektrodynamische fragmentierung
EP2766123B1 (de) Verfahren zur fragmentierung und/oder vorschwächung von material mittels hochspannungsentladungen
DE19534232C2 (de) Verfahren zur Zerkleinerung und Zertrümmerung von aus nichtmetallischen oder teilweise metallischen Bestandteilen konglomerierten Festkörpern und zur Zerkleinerung homogener nichtmetallischer Festkörper
EP3261769B1 (de) Verfahren und vorrichtung zur fragmentierung und/oder schwächung von schüttfähigem material mittels hochspannungsentladungen
EP1663498B1 (de) Verfahren zum betreiben einer fragmentieranlage sowie anlage dafür
EP2691180B1 (de) Elektrodenanordnung für eine elektrodynamische fragmentierungsanlage
DE10144479C2 (de) Elektroporationsreaktor zur kontinuierlichen Prozessierung von stückigen Produkten
EP3060347B1 (de) Verfahren zur fragmentierung und/oder vorschwächung von material mittels hochspannungsentladungen
EP3122463B1 (de) Verfahren zum fragmentieren eines stangenartigen materials, insbesondere aus polykristallinem silizium
EP3787796A1 (de) Anlage und verfahren zur elektrodynamischen fragmentierung
WO2008017172A1 (de) Verfahren zur fragmentierung von material mittels hochspannungsentladungen
DE1299209B (de) Vorrichtung zum elektrohydraulischen Zerkleinern
CH660073A5 (de) Vakuum-trocken-vorrichtung.
EP1243339B1 (de) Verfahren zur selektiven Abtrennung von Partikeln aus einer Suspension
EP1266693B1 (de) Fragmentiervorrichtung mit rotationssymmetrischer Elektrodenanordnung
EP3894080A1 (de) Einrichtung zur beanspruchung von partikeln mittels elektroimpulsen
EP2888053B1 (de) Verfahren und vorrichtung zur fragmentierung und/oder schwächung von material mittels hochspannungspulsen
EP1886729B1 (de) Zerkleinerungsvorrichtung und Zerkleinerungsverfahren
DE1298394B (de) Verfahren und Vorrichtung zur Herstellung von Pulver aus Metallen oder anderen elektrisch leitenden Stoffen durch Elektroerosion

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060112

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: ROTTMANN, ZIMMERMANN + PARTNER AG

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502004006209

Country of ref document: DE

Date of ref document: 20080327

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080524

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080213

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080213

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080213

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080213

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080213

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080213

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080213

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20081114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080513

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080806

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: FORSCHUNGSZENTRUM KARLSRUHE GMBH

Free format text: FORSCHUNGSZENTRUM KARLSRUHE GMBH#WEBERSTRASSE 5#76133 KARLSRUHE (DE) -TRANSFER TO- FORSCHUNGSZENTRUM KARLSRUHE GMBH#WEBERSTRASSE 5#76133 KARLSRUHE (DE)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20150824

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20150820

Year of fee payment: 12

Ref country code: GB

Payment date: 20150824

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20150824

Year of fee payment: 12

Ref country code: FR

Payment date: 20150824

Year of fee payment: 12

Ref country code: BE

Payment date: 20150820

Year of fee payment: 12

Ref country code: AT

Payment date: 20150820

Year of fee payment: 12

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: GARTENSTRASSE 28 A, 5400 BADEN (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20160901

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 385854

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160806

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160806

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160807

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160806

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170823

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004006209

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230902

Year of fee payment: 20