EP0841112B1 - Procédé de coulée continue entre cylindres - Google Patents

Procédé de coulée continue entre cylindres Download PDF

Info

Publication number
EP0841112B1
EP0841112B1 EP97402589A EP97402589A EP0841112B1 EP 0841112 B1 EP0841112 B1 EP 0841112B1 EP 97402589 A EP97402589 A EP 97402589A EP 97402589 A EP97402589 A EP 97402589A EP 0841112 B1 EP0841112 B1 EP 0841112B1
Authority
EP
European Patent Office
Prior art keywords
signal
casting
harmonic
representative
comparison
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97402589A
Other languages
German (de)
English (en)
Other versions
EP0841112A1 (fr
Inventor
Jean-Michel Damasse
Olivier Salvado
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thyssen Stahl AG
USINOR SA
Original Assignee
Thyssen Stahl AG
USINOR SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thyssen Stahl AG, USINOR SA filed Critical Thyssen Stahl AG
Publication of EP0841112A1 publication Critical patent/EP0841112A1/fr
Application granted granted Critical
Publication of EP0841112B1 publication Critical patent/EP0841112B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0622Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by two casting wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D2/00Arrangement of indicating or measuring devices, e.g. for temperature or viscosity of the fused mass

Definitions

  • the present invention relates to continuous casting between cylinders of thin metal products, in particular in steel.
  • the product produced for example a thin steel strip of a few millimeters thick, is obtained by pouring the molten metal in a casting space defined between two cylinders with parallel axes, cooled and driven rotating in opposite directions.
  • the metal solidifies and the metal skins solidified, entrained by the rotation of the cylinders, meet at the neck between the cylinders, to form said band, pulled down.
  • the casting strip must in particular have a section corresponding, in shape and dimensions, to the desired section, the actual section of the strip being directly function of the space, called air gap, between the cylinders at the neck.
  • thermo-hydraulic molten metal or those known under the name of "shiny bands".
  • This last type of default corresponds to a localized decrease in the surface roughness of the cylinders, which causes variations in strip cooling which can be detected by temperature measurements on the casting strip.
  • the observation of these faults does not can be done only a posteriori, on the strip already formed, and therefore belatedly after their appearance.
  • These defects may damage the surface condition of the cylinders, and all the more so since they are perceived late, these damage can then become irreparable.
  • the object of the present invention is to resolve the problems mentioned above and aims to allow, from of the measurement of the spacing force of the cylinders (RSF), real-time detection of faults, before that an amplification of these defects causes damage irremediable in particular to cylinders.
  • the invention has also intended to allow monitoring of the evolution of these faults, in order to be able to offer the operator corrective actions or interruption of the casting in depending on the severity of said defects.
  • the object of the invention is a continuous casting process between product cylinders thin metals, especially steel, according to which continuous measurement, during the casting, the effort cylinder spacing, and a signal is generated representative of variations in spreading force (RSF) as a function of time, and we act, in particular by function of said signal, on the spacing of the cylinders to compensate for the runout of the cylinders, this process being characterized in that, for the purpose of detecting faults other than the runout of the cylinders, we breaks down said signal into different components harmonics, and we compare these said components harmonics to rank reference harmonics corresponding, the results of said comparison being representative of a fault state of the casting process, and we define, according to the results of said comparison, rules of conduct for the casting process.
  • RSF spreading force
  • the inventors were able to establish, following numerous tests carried out on an industrial scale, there is a certain relationship between variations in signals representative of the spreading force and the appearance of defects during casting.
  • the appearance on a cylinder of the defect called strip brilliant is characterized by the presence of a disturbance on the spreading force signal measured.
  • This disturbance is cyclical and manifests itself at each revolution of the cylinder. It reflects an over-solidification of the product when it goes to the collar and translated by variations in effort which are clearly faster than those that can be generated by example by variations in product thickness solidified.
  • the inventors then imagined making a decomposition into harmonics of said signals so to differentiate in these signals the part that can be attributed to normal runout and that from other causes. They thus verified, by comparison of harmonic components noted during various flows, that although representative signals from the spacing effort varies in particular depending even if it is offset by a compensation system, variations of some harmonic components corresponded to the appearance of defects during casting. It therefore appeared that a analysis, carried out continuously during casting, of these harmonic components could allow, by comparison with a reference obtained experimentally when casting is considered to be faultless, to detect almost real-time deviations revealing such casting faults, much faster than by known methods.
  • the spectrum of the signal representative of the spreading force of cylinders and resulting from the only normal runout is characterized by a harmonic component of rank 0 significant (for example 70% of the total amplitude of the signal) and higher order harmonics in rapid decay (20% for the 1st harmonic, 10% for the 2nd harmonic). We rarely note the presence of higher order harmonics.
  • the distribution of harmonics is different from the above case, the presence of an over-solidification front at level of the shiny strip generating more high harmonics.
  • the amplitude of the harmonic components of rank i will be designated subsequently by h i , and by H i a value representative of the harmonics of rank i considered over a predetermined number of revolutions of the cylinders.
  • an air gap regulation system such as described above
  • RSF effort cylinder spacing
  • the value H i representative of each harmonic of rank i is calculated as being an average value of the amplitudes h i of each harmonic, determined over a given number of revolutions of the cylinders.
  • the value H i representative of each harmonic being calculated as being an average over a given number of turns of the amplitudes measured, this makes it possible to attenuate the effect of random and localized defects in time and space, non-repetitive over several turns cylinder.
  • the system will completely integrate this data after said number of turns, while the effect of harmonics only appearing on a low number of turns, significantly less than said number of turns given, will be considerably reduced.
  • the comparison of the measured signal with a signal of a flow deemed good can be done in different ways.
  • the casting installation shown only partially in Figure 1, includes so conventional, and known per se, two cylinders 1, 2, of axes parallel, spaced from each other by a named distance air gap. It corresponds to the desired thickness of the casting strip, minus the crushing due to the RSF. Both cylinders 1, 2 are rotated in direction opposite, at the same speed. They are carried by bearings 3, 4, schematically represented, of two supports 5, 6 mounted on a chassis 7. Support 5, and therefore the axis of the corresponding cylinder 1 is fixed by relative to the chassis 7. The other support 6 is movable in translation on the chassis 7. Its position is adjustable and determined by thrust cylinders 9 acting from so as to bring the supports 5, 6, one apart the other.
  • Means for measuring the spreading force cylinders such as load cells 8 are arranged between the fixed support 5 and the chassis 7. Sensors 10 measure the position of the mobile support 6, and therefore the position variations with respect to a predetermined set position according to the desired thickness of the strip.
  • the molten metal is spilled between the cylinders, and begins to solidify at contact of their cooled walls by forming skins solidified which are driven by the rotation of cylinders and meet substantially at the neck 11 between the cylinders to form the solidified strip pulled down.
  • the metal exerts on the cylinders a spreading force (RSF), measured by weigh 8, this effort being variable in particular depending the degree of solidification of the metal.
  • RSF spreading force
  • the casting installation includes a regulation system.
  • the difference between the effort setpoint signal and the effort signal measured by the effort sensor 8 is calculated by a first comparator 12.
  • the signal for this difference is introduced into a regulator force 13 which determines a position setpoint signal introduced into a second comparator 14.
  • the force signal measured by the force sensor 8 is also introduced into a runout compensation system 15 which performs a decomposition into harmonics of the force signal and generates signals H 1 , H 2 , H 3 for compensation of each of said harmonics.
  • These signals H 1 , H 2 and H 3 are added to an adder 16 which generates a position correction setpoint signal which is transmitted to the second comparator 14.
  • the output signal from the second comparator 14 is introduced into a third comparator 17 as well as a position signal from the position sensor 10.
  • the output signal from the third comparator 17 is introduced into the position regulator 18 which controls the jacks 9.
  • This cruise control 21 receives a signal from a thickness regulator 22 receiving itself a thickness reference signal, the signal force emitted by the force sensor 8 and the signal position emitted by the position sensor 10.
  • An action on the cylinders 9 is executed automatically by this regulation system, which allows for example to act on the cylinders 9 in the direction leading to a spacing of the cylinders to reduce the spreading force (RSF), or vice versa in the direction a bringing together of the cylinders to increase the effort.
  • this system allows for a at least partial compensation for the normal false round, i.e. to compensate for any existing misalignment between the axis of the ferrule and its axis of rotation as well as irregularities in the shape of a cylinder, that these are of mechanical or thermal origin.
  • the system of regulation then takes these shape defects into account and of coaxiality to give a displacement instruction to thrust cylinders 9 controlling the air gap of the cylinders in order to keep this air gap as constant as possible during the rotation of the cylinders.
  • the values H i are then calculated as indicated above, that is to say by performing an average of the amplitudes h i over a predetermined number of revolutions of the cylinders, for example over the last ten revolutions. It will be noted that the preceding method for calculating the coefficients H i is given only by way of example and is not at all limiting.
  • the values H i representative of each harmonic of rank i can also be calculated as being the effective value of the amplitude h i of the harmonics or any other calculated value characterizing these said harmonics, this calculation being able to be made according to an arithmetic mean, according to the least squares method or any other method.
  • the values H i are representative of the relative amplitude of each harmonic of rank i and of frequency F i .
  • the ratio R f B F / F 0 , F 0 corresponding to the frequency of rotation of the cylinders is then calculated.
  • a comparison of these different calculated criteria during casting with a predetermined threshold allows then to detect for the casting in progress if such fault appears.
  • Figures 3a, 3b, 3c and 3d which show variations of different parameters measured and calculated during a casting process with compensation for runout deemed good
  • Figures 4a, 4b, 4c and 4d which show comparatively the curves obtained during casting with defects in shiny bands.
  • Figures 3a and 4a show the variations of the spacing force of the cylinders expressed in percentage of allowable RSF, measured for 40 minutes from the start of casting.
  • Figures 3b and 4b show the evolution during this time of parameter A, i.e. the average amplitude over 10 turns, in ⁇ m, of the displacement of the bearings of the mobile cylinder controlled by the compensation module of the false round.
  • Figures 3c and 4c show in correspondence evolution of the parameter R.
  • Figures 3d and 4d show in correspondence on the same graph the changes in the values H 0 , H 1 and H 2 , representative of the amplitudes of the harmonics of rank 0, 1 and 2, the first (H 0 ) being represented at the bottom of the diagram. , the second (H 1 ) in the middle and the third (H 2 ) at the top.
  • the invention is not limited to the calculation methods of the various parameters indicated above only at as an example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Moulding By Coating Moulds (AREA)
  • Safety Devices In Control Systems (AREA)
  • Crushing And Grinding (AREA)
  • Paper (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

La présente invention concerne la coulée continue entre cylindres de produits métalliques minces, notamment en acier.
Selon cette technique connue, le produit fabriqué, par exemple une bande mince en acier de quelques millimètres d'épaisseur, est obtenue en déversant le métal en fusion dans un espace de coulée défini entre deux cylindres d'axes parallèles, refroidis et entraínés en rotation en sens contraire. Au contact des parois froides des cylindres, appelées viroles, le métal se solidifie et les peaux de métal solidifiées, entraínées par la rotation des cylindres, se rejoignent au niveau du col entre les cylindres, pour former la dite bande, extraite vers le bas.
L'exploitation du procédé de coulée entre cylindres est soumise à diverses contraintes relatives tant au produit coulé qu'à la mise en oeuvre de l'installation de coulée.
La bande coulée doit en particulier avoir une section correspondant, en forme et dimensions, à la section souhaitée, la section réelle de la bande étant directement fonction de l'espace, appelé entrefer, entre les cylindres au niveau du col.
Pour cela, on connaít un procédé de régulation de la coulée continue entre cylindres, décrite dans la demande de brevet FR-A-2728817, selon lequel on mesure l'effort d'écartement des cylindres (RSF) et on agit en conséquence sur la position relative desdits cylindres. Ce procédé permet d'agir sur la position relative des cylindres pour les écarter en cas d'effort trop important ou les rapprocher dans le cas d'effort trop faible, afin notamment d'éviter des percées de métal liquide ou même une rupture de la bande coulée, et aussi pour éviter un endommagement des cylindres en cas de sur-solidification du métal coulé.
Par ailleurs, on sait que un faux rond des cylindres ne peut pas être totalement évité, d'une part pour des raisons mécaniques et d'autre part du fait des déformations thermiques subies par la virole, lors du premier contact du métal en fusion au moment du démarrage de la coulée, et aussi ultérieurement lors de la rotation des cylindres. Il est déjà connu de compenser ce faux rond, qui sera appelé par la suite "faux rond normal" (ou encore "faux rond mécanique" bien qu'étant en partie d'origine thermique), en agissant automatiquement sur la position des paliers d'au moins un des cylindres en fonction de la position angulaire des cylindres, de manière à garder un entrefer le plus constant possible. Compte tenu de l'impossibilité pratique de mesurer directement l'entrefer, il a déjà été proposé d'utiliser comme paramètre représentatif du faux rond un signal fourni par les moyens de mesure de l'effort d'écartement des cylindres, le système de compensation de faux rond étant alors combiné avec un système de régulation tel que celui décrit dans le document FR-A-2728817 déjà cité.
La mise en oeuvre de ces procédés ne permet toutefois pas de détecter en temps réel certains défauts susceptibles de perturber la coulée ou même de conduire à son arrêt, ou d'endommager durablement les cylindres.
On connaít déjà des méthodes de détection de défauts, visuelles ou autres, permettant de déceler des défauts liés au procédé de coulée, à la thermo-hydraulique du métal en fusion, ou encore ceux connus sous le nom de "bandes brillantes". Ce dernier type de défaut correspond à une diminution localisée de la rugosité de surface des cylindres, laquelle entraíne des variations du refroidissement de la bande qui peuvent être détectées par de mesures de température effectuées sur la bande coulée. Mais l'observation de ces défauts ne peut se faire que a posteriori, sur la bande déjà formée, et donc tardivement après leur apparition. Or ces défauts peuvent endommager l'état de surfaces des cylindres, et ceci d'autant plus qu'ils sont perçus tardivement, ces endommagements pouvant alors devenir irrémédiables.
Certains défauts pourraient a priori être détectés à partir de l'observation directe du signal représentant l'effort d'écartement des cylindres. Mais les variations de ce signal représentent à la fois des variations d'effort dues au faux rond normal et des variations dues à d'autres paramètres où événements pouvant survenir en cours de coulée. Une observation directe du signal d'effort ne permet donc pas de déterminer la part de chacune de ces causes dans les variations du signal.
La présente invention a pour but de résoudre les problèmes évoqués ci-dessus et vise à permettre, à partir de la mesure de l'effort d'écartement des cylindres (RSF), la détection en temps réel de défauts, avant qu'une amplification de ces défauts provoque des dégâts irrémédiables notamment aux cylindres. L'invention a aussi pour but de permettre un suivi de l'évolution de ces défauts, afin de pouvoir proposer à l'opérateur des actions correctives ou d'interruption de la coulée en fonction de la gravité desdits défauts .
Avec ces objectifs en vue l'invention a pour objet un procédé de coulée continue entre cylindres de produit métalliques minces, notamment en acier, selon lequel on mesure en continu, au cours de la coulée, l'effort d'écartement des cylindres, et on génère un signal représentatif des variations de l'effort d'écartement (RSF) en fonction du temps, et on agit, notamment en fonction du dit signal, sur l'écartement des cylindres pour compenser le faux rond des cylindres, ce procédé étant caractérisé en ce que, dans le but de détecter des défauts autres que le faux rond des cylindres, on décompose ledit signal en différentes composantes harmoniques, et on compare ces dites composantes harmoniques à des harmoniques de référence de rang correspondant, les résultats de ladite comparaison étant représentatifs d'un état de défaut du procédé de coulée, et on définit, en fonction des résultats de ladite comparaison, des règles de conduite du procédé de coulée.
Les inventeurs ont en effet pu établir, suite à de nombreux essais effectués à échelle industrielle, qu'il existe une certaine relation entre les variations des signaux représentatifs de l'effort d'écartement et l'apparition de défauts lors de la coulée. Par exemple, l'apparition sur un cylindre du défaut appelé bande brillante se caractérise par la présence d'une perturbation sur le signal de l'effort d'écartement mesuré. Cette perturbation est cyclique et se manifeste à chaque tour du cylindre. Elle reflète une sur-solidification du produit lorsqu'il passe au col et se traduit par des variations de l'effort qui sont nettement plus rapides que celles qui peuvent être engendrées par exemple par des variations de l'épaisseur du produit solidifié.
Les inventeurs ont alors imaginé de faire une décomposition en harmoniques des dits signaux de manière à différencier dans ces signaux la part pouvant être attribuée au faux rond normal et celle provenant d'autres causes. Ils ont ainsi vérifié, par comparaison des composantes harmoniques relevées lors de diverses coulées, que, bien que les signaux représentatifs de l'effort d'écartement varient en particulier en fonction du faux rond, même lorsque celui-ci est compensé par un système de compensation, des variations de certaines composantes harmoniques correspondaient à l'apparition de défauts lors des coulées. Il est donc apparu qu'une analyse, effectuée en continu au cours des coulées, de ces composantes harmoniques pourrait permettre, par comparaison avec une référence obtenue expérimentalement lors de coulées considérées sans défauts, de détecter quasiment en temps réel des écarts révélateurs de tels défauts de coulée, bien plus rapidement que par les méthodes connues.
Une hypothèse explicative de la relation existant entre les variations des composantes harmoniques et la présence de défauts de coulée est que le faux rond normal provoque des variations du signal représentatif de l'effort d'écartement des cylindres (RSF) qui sont majoritairement lentes et douces, autrement dit que dudit signal se dégagent, du fait du dit faux rond normal, essentiellement une composante harmonique de rang faible, de fréquence égale à la fréquence de rotation des cylindres. Par contre, des défauts réels, tels que les bandes brillantes évoquées précédemment, engendrent principalement des variations brusques dudit signal et donc des harmoniques de rang plus élevé. Typiquement, le spectre du signal représentatif de l'effort d'écartement des cylindres et résultant du seul faux rond normal est caractérisé par une composante harmonique de rang 0 importante (par exemple 70% de l'amplitude totale du signal) et des harmoniques de rang supérieur en décroissance rapide (20% pour l'harmonique de rang 1, 10% pour l'harmonique de rang 2) . On note rarement la présence d'harmoniques de rang plus élevé. Par contre, dans le cas de la présence de bandes brillantes, la répartition des harmoniques est différente du cas ci-dessus, la présence d'un front de sur-solidification au niveau de la bande brillante engendrant plus d'harmoniques élevées.
Il est précisé que ici et par la suite, on désigne par harmonique de rang i la composante du signal à une fréquence Fi=2iF0, F0 étant la fréquence fondamentale correspondant à la vitesse de rotation des cylindres. De manière similaire, on désignera par la suite par hi l'amplitude des composantes harmoniques de rang i, et par Hi une valeur représentative des harmoniques de rang i considérées sur un nombre de tours prédéterminé des cylindres.
Selon une disposition particulière de l'invention lorsque un système de régulation de l'entrefer, tel que décrit précédemment, est mis en place, on peut utiliser comme signal représentatif des variations de l'effort d'écartement des cylindres (RSF), issu de la mesure du dit effort, un signal associé utilisé comme consigne de déplacement des paliers d'au moins un cylindre. C'est à dire que le signal qui est alors décomposé en différentes composantes harmoniques est directement lié à ladite consigne de déplacement élaborée par un module de compensation de faux rond, et reflétant donc les variations de l'effort d'écartement.
Pour effectuer la décomposition du signal en ses différentes composantes harmoniques, on pourra notamment utiliser une transformée de Fourier rapide appliquée au signal représentatif de l'effort d'écartement des cylindres (RSF), ce signal étant donc soit directement le signal de mesure de l'effort d'écartement, soit un signal correspondant élaboré par le dit module de compensation de faux rond.
Dans une disposition préférée de l'invention, on calcule la valeur Hi représentative de chaque harmonique de rang i comme étant une valeur moyenne des amplitudes hi de chaque harmonique, déterminée sur un nombre donné de tours des cylindres. La valeur Hi représentative de chaque harmonique étant calculée comme étant une moyenne sur un nombre de tours donné des amplitudes mesurées, ceci permet d'atténuer l'effet de défauts aléatoires et localisés dans le temps et l'espace, non répétitifs sur plusieurs tours de cylindre. Ainsi, si le défaut est engendré par un problème durable sur un cylindre, le système intégrera complètement cette donnée au bout dudit nombre de tours, alors que l'effet des harmoniques n'apparaissant que sur un nombre de tours faible, notablement inférieur au dit nombre de tours donné, sera considérablement atténué.
La comparaison du signal mesuré avec un signal d'une coulée jugée bonne peut s'effectuer de différentes manières. On peut comparer simplement termes à termes les valeurs Hi représentatives de chaque harmonique du signal mesuré à des valeurs de références Hir provenant de mesures effectuées lors de coulées jugées bonnes, et vérifier que la somme des différences des valeurs Hi représentatives de chaque harmonique avec les valeurs Hir de référence n'est pas trop élevée. On peut aussi comparer la proportion de chaque harmonique par rapport à une répartition proportionnelle de référence. Toutefois, préférentiellement, la comparaison sera effectuée sur la base d'un barycentre des harmoniques, ce barycentre étant calculé en pondérant chaque harmonique d'un coefficient prédéterminé, de manière à accorder aux différentes harmoniques des importances relatives en pondérant de façon inégale ces dernières. Ce mode de calcul est justifié par des constatations expérimentales : lors d'une coulée jugée bonne, la première harmonique est la plus importante, l'importance des différentes harmoniques étant décroissante en fonction du rang croissant des harmoniques considérées. En pondérant les harmoniques de rang plus élevé par un coefficient adapté, les variations de ces harmoniques de rang élevé seront en quelque sorte amplifiées, rendant leur apparition ou augmentation plus facilement perceptible dans le résultat du calcul de barycentre.
On pourra par exemple calculer un barycentre fréquentiel Bf en affectant à chaque fréquence d'harmoniques un coefficient représentant l'amplitude de l'harmonique considéré : Bf (Hz) = Σ Hi*Fi / Σ Hi    et normer ce barycentre par la fréquence fondamentale pour obtenir un rapport R = Bf/F0 qui pourra être comparé à une valeur de référence R0 prédéterminée, de manière à s'affranchir d'éventuelles différences de fréquence fondamentale, et donc de vitesse effective des cylindres, entre la coulée considérée et la référence.
On pourra de plus calculer la dérivée dR/dt et également comparer le résultat à un deuxième seuil prédéterminé, permettant ainsi de suivre l'évolution du rapport R dans le temps, une évolution rapide de R étant en quelque sorte le signe d'une aggravation rapide d'un défaut.
Avec les valeurs des différents paramètres :
  • A représentant l'amplitude totale des variations : A = Σ Hi
  • R représentatif de la part ou de l'importance des défauts dans le signal,
  • et E = dR/dt
  •    on peut établir un tableau de décision, comme on le verra par la suite, qui pourra être utilisé pour proposer en temps réel à l'opérateur des actions correctives sur certains paramètres de coulée, dans le but visé de remédier à des défauts le plus rapidement possible après leur apparition.
    D'autres avantages et particularités apparaítront à la lecture de la description détaillée qui va suivre d'exemples de réalisation de l'invention, donnée à titre indicatif et nullement limitatif, à lire conjointement aux dessins annexés parmi lesquels :
    • la figure 1 est une vue schématique d'un dispositif de coulée entre cylindres avec un système de régulation de type connu en soi, mais utilisant une décomposition en harmonique du signal de compensation de faux rond,
    • la figure 2 représente un tableau de décision permettant de définir la démarche à suivre au cours de la coulée en fonction des valeurs des différents paramètres fournis par le procédé selon l'invention,
    • les figures 3a, 3b, 3c et 3d présentent, sous forme de tracés représentant les variations des différents paramètres mesurés ou calculés, les résultats obtenus lors d'une coulée jugée bonne avec procédé de compensation de faux rond,
    • les figures 4a, 4b, 4c et 4d présentent les tracés correspondants obtenus lors d'une coulée jugée mauvaise.
    L'installation de coulée, représentée seulement partiellement à la figure 1, comporte de manière classique, et connue en soi, deux cylindres 1, 2, d'axes parallèles, espacés l'un de l'autre d'une distance nommée entrefer. Elle correspond à l'épaisseur souhaitée de la bande coulée, moins l'écrasement dû à la RSF. Les deux cylindres 1, 2 sont entraínés en rotation de sens contraires, à même vitesse. Ils sont portés par des paliers 3, 4, schématiquement représentés, de deux supports 5, 6 montés sur un châssis 7. Le support 5, et donc l'axe du cylindre 1 correspondant, est fixe par rapport au châssis 7. L'autre support 6 est mobile en translation sur le châssis 7. Sa position est réglable et déterminée par des vérins de poussée 9 agissant de manière à rapprocher ou éloigner les supports 5, 6, l'un de l'autre. Des moyens de mesure de l'effort d'écartement des cylindres (RSF), tels que des pesons 8, sont disposés entre le support fixe 5 et le châssis 7. Des capteurs 10 permettent de mesurer la position du support mobile 6, et donc les variations de position par rapport à une position de consigne prédéterminée en fonction de l'épaisseur souhaitée de la bande.
    Lors d'une coulée, le métal en fusion est déversé entre les cylindres, et commence à se solidifier au contact de leurs parois refroidies en formant des peaux solidifiées qui sont entraínées par la rotation des cylindres et se rejoignent sensiblement au niveau du col 11 entre les cylindres pour former la bande solidifiée extraite vers le bas. Ce faisant, le métal exerce sur les cylindres un effort d'écartement (RSF), mesuré par les pesons 8, cet effort étant variable notamment en fonction du degré de solidification du métal.
    Pour réguler cet effort, et garantir la continuité de la coulée, l'installation de coulée comporte un système de régulation. Dans ce système de régulation, la différence entre le signal de la consigne d'effort et le signal de l'effort mesuré par le capteur d'effort 8 est calculée par un premier comparateur 12. Le signal de cette différence est introduit dans un régulateur d'effort 13 qui détermine un signal de consigne de position introduit dans un deuxième comparateur 14. Le signal de l'effort mesuré par le capteur d'effort 8 est aussi introduit dans un système de compensation de faux rond 15 qui effectue une décomposition en harmoniques du signal d'effort et génère des signaux H1, H2, H3 de compensation de chacune des dites harmoniques. Ces signaux H1, H2 et H3 sont additionnés dans un sommateur 16 qui engendre un signal de consigne de correction de la position qui est transmis au deuxième comparateur 14. Le signal de sortie du deuxième comparateur 14 est introduit dans un troisième comparateur 17 ainsi qu'un signal de position provenant du capteur de position 10. Le signal de sortie du troisième comparateur 17 est introduit dans le régulateur de position 18 qui commande les vérins 9.
    La rotation des cylindres 1 et 2 est assurée respectivement par des moteurs 19 et 20 commandés par un régulateur de vitesse 21. Ce régulateur de vitesse 21 reçoit un signal d'un régulateur d'épaisseur 22 recevant lui-même un signal de consigne d'épaisseur, le signal d'effort émis par le capteur d'effort 8 et le signal de position émis par le capteur de position 10.
    Une action sur les vérins 9 est exécutée automatiquement par ce système de régulation, qui permet par exemple d'agir sur les vérins 9 dans le sens conduisant à un écartement des cylindres pour réduire l'effort d'écartement (RSF), ou inversement dans le sens d'un rapprochement des cylindres pour augmenter l'effort. De manière similaire, ce système permet d'effectuer une compensation au moins partielle du faux rond normal, c'est à dire de compenser un éventuel désaxage existant entre l'axe de la virole et son axe de rotation ainsi que les irrégularités de forme d'un cylindre, que celles-ci soient d'origine mécanique ou thermique. Le système de régulation prend alors en compte ces défauts de forme et de coaxialité pour donner une consigne de déplacement aux vérins de poussée 9 commandant l'entrefer des cylindres afin de maintenir cet entrefer le plus constant possible au cours de la rotation des cylindres.
    On va maintenant décrire une méthode préférée de détermination des différents paramètres A, R et E qui seront utilisés pour avertir l'opérateur de la présence de défauts et de la gravité de ceux-ci.
    Dans cette méthode on utilise une décomposition en harmoniques du signal représentatif de l'effort d'écartement des cylindres, cette décomposition étant effectuée dans le module de compensation de faux rond 15 à l'aide d'une transformée de Fourier. On pourrait tout aussi bien réaliser la même opération non pas à l'aide d'une transformée de Fourier mais avec une transformée de Laplace ou toute autre opération mathématique ou de traitement du signal telle que par exemple l'utilisation de filtres permettant d'obtenir le même résultat, à savoir une décomposition d'un signal en différentes composantes harmoniques.
    On calcule ensuite les valeurs Hi comme indiqué précédemment, c'est à dire en effectuant une moyenne des amplitudes hi sur un nombre de tours prédéterminé des cylindres, par exemple sur les dix derniers tours. On notera que la méthode de calcul des coefficients Hi précédente n'est donnée qu'à titre d'exemple et n'est absolument pas limitative. Les valeurs Hi représentatives de chaque harmonique de rang i peuvent également être calculées comme étant la valeur efficace de l'amplitude hi des harmoniques ou toute autre valeur calculée caractérisant ces dites harmoniques, ce calcul pouvant être fait selon une moyenne arithmétique, selon la méthode des moindres carrés ou selon toute autre méthode.
    Quel que soit le mode de calcul, les valeurs Hi sont représentatives de l'amplitude relative de chaque harmonique de rang i et de fréquence Fi.
    On calcule ensuite le critère Bf comme étant un barycentre fréquentiel des différentes harmoniques. C'est à dire que l'on calcule le barycentre des fréquences des harmoniques considérées, chaque valeur Fi étant affectée d'un poids constitué par la valeur Hi correspondante, soit : Bf = Σ Hi x Fi / Σ Hi.
    On utilisera en général uniquement les harmoniques de rang 0, 1 et 2. Toutefois il serait bien évidemment possible de prendre en compte plus d'harmoniques.
    Afin de pouvoir effectuer des comparaisons valables à des vitesses de rotation des cylindres différentes, on calcule alors le ratio Rf = BF/F0, F0 correspondant à la fréquence de rotation des cylindres.
    Dans le cas pris en exemple où seules sont prises en compte les trois premières harmoniques, on obtient alors les trois critères suivants :
    • amplitude globale des variation du signal : A=H1+H2+H3,
    • barycentre normé : Rf = (F1xH1+F2xH2+F3xH3)/((H1+H2+H3)xF0)
    • évolution de Rf dans le temps : E=dRf/dt.
    Une comparaison de ces différents critères calculés en cours de coulée avec un seuil prédéterminé permet alors de détecter pour la coulée en cours si un tel défaut apparait.
    A titre d'exemple, dans un cas où le signal représentatif de l'effort d'écartement des cylindres est le signal issu du module de compensation de faux rond, c'est à dire exprimé en valeur de déplacement du cylindre mobile, et en présence du seul faux rond normal, on peut avoir :
  • H0 = 700 µm, H1 = 200 µm, H2 = 100 µm, avec
  • F0 = 0,2 Hz, F1 = 0,4 Hz et F2 = 0,8 Hz ,
  • alors Bf = 0,3 Hz et Rf = 1,5 .
  • Si une bande brillante apparait, ces valeurs deviennent respectivement 350 µm, 350 µm et 300 µm pour H0, H1, H2, et alors Rf = 2,25.
    On voit ainsi que en fixant simplement un seuil adéquat sur Rf, par exemple Rfseuil=1,6, le passage de Rf au dessus de ce seuil peut activer une alarme signalant un défaut.
    Une meilleure appréciation de la gravité des défauts peut être obtenue par la prise en compte simultanée des trois critères mentionnés ci-dessus.
    Pour cela, on pourra par exemple utiliser un tableau de décision tel que représenté figure 2 qui indique directement à l'opérateur l'état défectologique de la coulée, c'est à dire lui donne une indication sur la présence, l'importance, et l'évolution de défauts et signale le besoin d'entreprendre des actions correctives, telles que des modifications de certains paramètres de coulée pour essayer de remédier aux défauts apparus, ou au pire la nécessité d'arrêter la coulée pour éviter des dégâts irrémédiables à l'installation de coulée.
    Ce tableau présente par exemple la démarche a suivre en fonction des valeurs relatives des coefficients A, Rf et E :
    • A "petit" est le signe de faibles variations de l'effort d'écartement des cylindres, la coulée se déroule dans de bonnes conditions,
    • quand A est "moyen",
    • si R et E sont "petit", ce qui signifie pas ou peu de défauts,, la coulée se déroule encore dans de bonnes conditions,
    • si R est "petit" et E "grand", cela peut signifier que, bien qu'il n'y ait pas de présence réelle de défauts, le point de fonctionnement de l'installation est instable, pour des raisons liées essentiellement au faux rond "normal", et une alarme du procédé de coulée est déclenchée pour avertir l'opérateur d'un besoin de modifier par exemple les conditions thermiques de la virole (température ou débit de l'eau de refroidissement),
    • si R est "grand" et E "petit", ce qui signale la présence de défauts, sans tendance notable à une éventuelle aggravation de ceux-ci, une alarme du procédé de coulée est déclenchée,
    • si R et E sont "grand", signalant la présence de défauts et l'aggravation de ceux-ci, un arrêt de la coulée est demandé,
    • quand A est "grand",
    • si R et E sont "petit", aucun défaut latent n'est signalé, le faux rond normal est correctement compensé, mais l'amplitude des déplacements du cylindre mobile pour réaliser cette compensation est importante, ce qui n'est pas grave pour la coulée elle-même, mais peut révéler des problèmes de géométrie des cylindres,
    • si R est "grand" et E "petit", ce qui signale en plus la présence de défauts, mais sans aggravation notable, une alarme du procédé de coulée est déclenchée,
    • si E est "grand", quelque soit la valeur de R, une forte aggravation des défauts est signalée et un arrêt rapide de la coulée est demandé.
    On notera que les caractères "petit", "moyen" et "grand" des différents critères sont appréciés par comparaison à des données expérimentales acquises lors de coulées antérieures.
    A titre d'illustration des possibilités de détection de défauts par le procédé selon l'invention, on peut se reporter aux figures 3a, 3b, 3c et 3d qui présentent les variations des différents paramètres mesurés et calculés lors d'une coulée avec procédé de compensation de faux rond jugée bonne, et aux figures 4a, 4b, 4c et 4d qui montrent comparativement les courbes obtenues lors d'une coulée présentant des défauts de bandes brillantes.
    Les figures 3a et 4a présentent les variations de l'effort d'écartement des cylindres exprimé en pourcentage de la RSF admissible, mesuré pendant 40 minutes à partir du début de coulée.
    Les figures 3b et 4b montrent l'évolution pendant ce temps du paramètre A, c'est à dire l'amplitude moyenne sur 10 tours, en µm, du déplacement des paliers du cylindre mobile commandé par le module de compensation du faux rond.
    Les figures 3c et 4c montrent en correspondance temporelle l'évolution du paramètre R.
    Les figures 3d et 4d montrent en correspondance sur le même graphique les évolutions des valeurs H0, H1 et H2, représentatives des amplitudes des harmoniques de rang 0, 1 et 2, la première (H0) étant représenté en bas du schéma, la seconde (H1) au milieu et la troisième (H2) en haut.
    On constate que, dans le cas de la coulée jugée bonne, la croissance de A pendant environ les 20 premières minutes correspond à une croissance similaire de H0 et reflète essentiellement l'évolution de la compensation de faux rond, jusqu'à obtenir une stabilité de A au voisinage de 50 µm, signalant une compensation de faux rond quasi-parfaite. On note également une stabilité du paramètre R au bout d'une dizaine de minutes, après une excursion de R vers des valeurs supérieures, correspondant à une amplitude relativement importante de H2 pendant la même période de début de coulée.
    Par comparaison, les tracés des figures 4b, 4c et 4d, relatifs à une coulée dont le déroulement a été fortement perturbé, montrent des amplitudes importantes de H1 et H2 pendant environ 40 minutes, avec une valeur élevée de a pendant la même période, et surtout une valeur élevée de R.
    On comprendra aisément au vu de ces relevés que une comparaison, effectuée en temps réel en cours de coulée, des valeurs de A et surtout de R avec des seuils prédéterminés aurait permis de détecter rapidement les défauts correspondant aux fortes amplitudes des harmoniques H1 et H2, et d'agir immédiatement sur les paramètres de coulée pour éviter qu'ils ne s'aggravent.
    L'invention n'est pas limitée aux modes de calculs des différents paramètres indiqués ci-dessus uniquement à titre d'exemple.
    En particulier, en utilisant toujours les mêmes valeurs Hi représentatives de l'amplitude de chaque harmonique, on pourra calculer un autre barycentre B du spectre harmonique de la valeur représentative de l'effort d'écartement des cylindres, par exemple en affectant alors à chaque valeur Hi un coefficient de pondération judicieusement choisi permettant d'accentuer dans la valeur calculée de ce barycentre l'influence des harmoniques de rang plus élevé, qui sont significatives de défauts. Quelque soit le type de calcul de barycentre utilisé, on utilisera des valeurs représentatives des différentes harmoniques et des coefficients de pondération relatifs à chaque harmonique tels que l'on puisse aisément suivre l'évolution de la valeur du barycentre et la comparer à des valeurs expérimentales en vue de définir en temps réel un niveau défectologique par comparaison avec l'état défectologique (coulée sans problèmes, coulée perturbée, coulée mauvaise ayant conduit à un arrêt ou à un endommagement des cylindres, etc) des coulées précédentes.
    Pour effectuer la comparaison des harmoniques, on pourra également définir une répartition de référence des amplitudes des harmoniques, en pourcentage de chaque harmonique par rapport au signal total, par exemple en posant a priori que la première harmonique représente 66% de ce signal, la deuxième 17 % et la troisième également 17%. On pourra alors suivre l'évolution de cette répartition au cours de chaque coulée et, par comparaison avec la répartition de référence, apprécier facilement d'éventuels écarts. Cette comparaison pourra par exemple être faite en calculant une somme Rd des différences entre la proportion Hi/A de chaque composante harmonique dans le signal mesuré représentatif de l'effort d'écartement et la proportion de référence αi : Rd=pos(α0-H0/A)+pos(H1/A-α1) +...+pos(Hi/A-αi) , (c'est à dire, chaque élément de cette somme n'est comptabilisé que s'il est positif). De cette façon, si la proportion de l'harmonique de rang 0 est supérieure à la proportion de référence ou si la proportion d'une harmonique de rang supérieur ou égal à 1 est inférieure à la proportion de référence, la différence relative à l'harmonique considérée n'est pas prise en compte. Par exemple, si le premier harmonique représente par exemple 98 % de A, le second 2 % et le troisième 0 %, ce qui correspondrait à une absence presque totale d'harmonique de rang supérieur à 0 et donc à une absence de défauts, Rd=0.
    Dans le cas où l'installation de coulée continue entre cylindres ne comporterait pas de système de régulation de l'entrefer en fonction du faux rond, on pourrait bien évidemment appliquer le procédé selon l'invention précédemment décrit en prenant directement comme signal soumis à une décomposition en harmonique la mesure directe des variations de l'effort d'écartement des cylindres (RSF), l'utilisation des valeurs Hi issues du module de compensation de faux rond restant toutefois particulièrement pratique lorsque un tel module de compensation existe déjà dans l'installation et effectue déjà, dans le cadre de son fonctionnement habituel, la décomposition en harmonique requise.

    Claims (10)

    1. Procédé de coulée continue entre cylindres de produits métalliques minces, notamment en acier, selon lequel on mesure en continu, au cours de la coulée, l'effort d'écartement des cylindres (RSF), et on génère un signal représentatif des variations de l'effort d'écartement (RSF) en fonction du temps, et on agit, notamment en fonction du dit signal, sur l'écartement des cylindres pour compenser le faux rond des cylindres, caractérisé en ce que, dans le but de détecter des défauts autres que le faux rond des cylindres, on décompose ledit signal en différentes composantes harmoniques, et on compare ces dites composantes harmoniques à des harmoniques de référence de rang correspondant, les résultats de ladite comparaison étant représentatifs d'un état de défaut du procédé de coulée, et on définit, en fonction des résultats de ladite comparaison, des règles de conduite du procédé de coulée.
    2. Procédé selon la revendication 1, caractérisé en ce que ledit signal représentatif, issu de la mesure des variations l'effort d'écartement des cylindres (RSF), est un signal associé utilisé comme consigne de déplacement des paliers d'un cylindre dans une boucle de régulation de l'écartement entre lesdits cylindres.
    3. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'on utilise une transformée de Fourier afin de décomposer ledit signal représentatif de l'effort d'écartement des cylindres (RSF) en différentes composantes harmoniques.
    4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que pour effectuer la comparaison, on utilise comme valeur représentative de chaque harmonique de rang i, une valeur Hi correspondant à la moyenne des amplitudes hi des harmoniques de ce rang mesurées sur un nombre de tours donné.
    5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que pour effectuer la comparaison, on utilise un barycentre des harmoniques, ce barycentre étant calculé en pondérant une valeur représentative de chaque harmonique d'un coefficient prédéterminé.
    6. Procédé selon la revendication 5, caractérisé en ce que on calcule un barycentre fréquentiel (Bf) = (Σ(Hi×Fi))/(ΣHi) dans lequel la valeur représentative de chaque harmonique est sa fréquence Fi et le coefficient de pondération Hi représente l'amplitude de l'harmonique considérée.
    7. Procédé selon la revendication 6, caractérisé en ce que la comparaison est effectué sur la base d'un ratio Rf=Bf/F0, où F0 est la fréquence correspondant à la vitesse de rotation des cylindres.
    8. Procédé selon la revendication 1, caractérisé en ce que la comparaison est effectuée en utilisant comme critère de comparaison la proportion Hi/A de chaque composante harmonique par rapport au signal représentatif de l'effort d'écartement, Hi représentant l'amplitude de l'harmonique de rang i et A=ΣHi.
    9. Procédé selon la revendication 8, caractérisé en ce que le résultat de la comparaison est représenté par la somme Rd=pos(α0-H0/A)+pos(H1/A-α1) +...+pos(Hi/A-αi) .
    10. Procédé selon l'une des revendications 7 ou 9, caractérisé en ce qu'on utilise un tableau de décision pour déterminer la conduite à suivre pour la coulée, en fonction des valeurs des critères :
      A=ΣHi,
      R (Rf ou Rd),
      E=dR/dt .
    EP97402589A 1996-11-07 1997-10-31 Procédé de coulée continue entre cylindres Expired - Lifetime EP0841112B1 (fr)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR9613777 1996-11-07
    FR9613777A FR2755385B1 (fr) 1996-11-07 1996-11-07 Procede de detection de defauts lors d'une coulee continue entre cylindres

    Publications (2)

    Publication Number Publication Date
    EP0841112A1 EP0841112A1 (fr) 1998-05-13
    EP0841112B1 true EP0841112B1 (fr) 2000-05-24

    Family

    ID=9497541

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP97402589A Expired - Lifetime EP0841112B1 (fr) 1996-11-07 1997-10-31 Procédé de coulée continue entre cylindres

    Country Status (24)

    Country Link
    US (1) US5927375A (fr)
    EP (1) EP0841112B1 (fr)
    JP (1) JP3907023B2 (fr)
    KR (1) KR100540617B1 (fr)
    CN (1) CN1069240C (fr)
    AT (1) ATE193233T1 (fr)
    AU (1) AU717254B2 (fr)
    BR (1) BR9705436A (fr)
    CA (1) CA2220887C (fr)
    CZ (1) CZ291523B6 (fr)
    DE (1) DE69702104T2 (fr)
    DK (1) DK0841112T3 (fr)
    ES (1) ES2146072T3 (fr)
    FR (1) FR2755385B1 (fr)
    GR (1) GR3033604T3 (fr)
    PL (1) PL184806B1 (fr)
    PT (1) PT841112E (fr)
    RO (1) RO119773B1 (fr)
    RU (1) RU2169053C2 (fr)
    SK (1) SK282849B6 (fr)
    TR (1) TR199701327A2 (fr)
    TW (1) TW358045B (fr)
    UA (1) UA62912C2 (fr)
    ZA (1) ZA979752B (fr)

    Families Citing this family (29)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    KR100333070B1 (ko) * 1997-12-20 2002-10-18 주식회사 포스코 쌍롤식박판주조장치에서의에지댐위치제어방법
    AUPP852699A0 (en) * 1999-02-05 1999-03-04 Bhp Steel (Jla) Pty Limited Strip casting apparatus
    AUPP852499A0 (en) 1999-02-05 1999-03-04 Bhp Steel (Jla) Pty Limited Casting metal strip
    US6837301B2 (en) * 1999-02-05 2005-01-04 Castrip Llc Strip casting apparatus
    AUPQ818000A0 (en) * 2000-06-15 2000-07-06 Bhp Steel (Jla) Pty Limited Strip casting
    US6988530B2 (en) * 2000-06-15 2006-01-24 Castrip Llc Strip casting
    DE10039015C1 (de) * 2000-08-10 2002-01-17 Sms Demag Ag Verfahren und Einrichtung zum Überwachen der Drehlager, insbesondere der Wälzlager, von in einem Stützrollengerüst von Metall-, insbesondere von Stahl-Stranggießvorrichtungen, gelagerten Stranggießstützrollen
    KR100851195B1 (ko) * 2002-07-02 2008-08-08 주식회사 포스코 쌍롤식 박판 주조 공정에서의 롤 압하력 및 롤 갭 제어방법
    KR100882134B1 (ko) * 2002-07-02 2009-02-06 주식회사 포스코 쌍롤식 박판 주조 공정에서의 롤 압하력 제어 방법
    ITMI20021505A1 (it) * 2002-07-10 2004-01-12 Danieli Off Mecc Dispositivo di supporto di rulli per colata continua di nastro metallico
    KR100895070B1 (ko) * 2002-08-29 2009-04-27 재단법인 포항산업과학연구원 연속주조중 세그먼트 롤 진단방법
    KR100833006B1 (ko) * 2002-08-30 2008-05-27 주식회사 포스코 쌍롤형 박판주조 제어 장치 및 방법
    AT411822B (de) 2002-09-12 2004-06-25 Voest Alpine Ind Anlagen Verfahren und vorrichtung zum starten eines giessvorganges
    AT412072B (de) * 2002-10-15 2004-09-27 Voest Alpine Ind Anlagen Verfahren zur kontinuierlichen herstellung eines dünnen stahlbandes
    SE527507C2 (sv) 2004-07-13 2006-03-28 Abb Ab En anordning och ett förfarande för stabilisering av ett metalliskt föremål samt en användning av anordningen
    US7168478B2 (en) * 2005-06-28 2007-01-30 Nucor Corporation Method of making thin cast strip using twin-roll caster and apparatus therefor
    KR100650561B1 (ko) 2005-12-20 2006-11-30 주식회사 포스코 주조롤 반발력 제어 방법
    US7308930B2 (en) * 2006-03-09 2007-12-18 Nucor Corporation Method of continuous casting steel strip
    US7556084B2 (en) * 2006-03-24 2009-07-07 Nucor Corporation Long wear side dams
    US7503375B2 (en) * 2006-05-19 2009-03-17 Nucor Corporation Method and apparatus for continuously casting thin strip
    US7650925B2 (en) * 2006-08-28 2010-01-26 Nucor Corporation Identifying and reducing causes of defects in thin cast strip
    DE102008014524A1 (de) * 2007-12-28 2009-07-02 Sms Demag Ag Stranggießanlage mit einer Vorrichtung zur Bestimmung von Erstarrungszuständen eines Gießstrangs und Verfahren hierfür
    US8028741B2 (en) * 2008-11-06 2011-10-04 Nucor Corporation Strip casting apparatus with improved side dam force control
    US8322402B2 (en) * 2009-09-23 2012-12-04 Nucor Corporation Method and apparatus for controlling strip temperature rebound in cast strip
    EP2436459A1 (fr) * 2010-09-29 2012-04-04 Siemens Aktiengesellschaft Dispositif et procédé de positionnement d'au moins un des deux rouleaux de coulée dans une procédé de coulée continue pour la fabrication d'une bande métallique
    JP5837758B2 (ja) 2011-04-27 2015-12-24 キャストリップ・リミテッド・ライアビリティ・カンパニー 双ロール鋳造装置及びその制御方法
    US10046384B2 (en) 2015-09-30 2018-08-14 Nucor Corporation Side dam with pocket
    EP3676033A4 (fr) * 2017-09-22 2021-04-28 Nucor Corporation Commande d'apprentissage itératif pour perturbations périodiques dans une coulée en bande à deux cylindres avec retard de mesure
    CN110849928B (zh) * 2019-10-17 2022-05-03 浙江工业大学 一种超声滚压加工温度测量分析方法

    Family Cites Families (15)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4222254A (en) * 1979-03-12 1980-09-16 Aluminum Company Of America Gauge control using estimate of roll eccentricity
    JPS6083747A (ja) * 1983-10-12 1985-05-13 Ishikawajima Harima Heavy Ind Co Ltd 回転鋳造装置
    JPS61200453A (ja) * 1985-03-01 1986-09-05 Nippon Steel Corp 連続鋳造における鋳造欠陥検出方法
    JPS61212451A (ja) * 1985-03-15 1986-09-20 Nisshin Steel Co Ltd 双ドラム式連鋳機
    JPH0615096B2 (ja) * 1985-04-05 1994-03-02 三菱重工業株式会社 薄板連続鋳造方法
    JPS626740A (ja) * 1985-07-02 1987-01-13 Nisshin Steel Co Ltd 溶鋼の薄板連鋳法
    US4678023A (en) * 1985-12-24 1987-07-07 Aluminum Company Of America Closed loop delivery gauge control in roll casting
    JPS62254915A (ja) * 1986-04-30 1987-11-06 Toshiba Corp 多重圧延機のロ−ル偏芯除去制御装置
    CA1284681C (fr) * 1986-07-09 1991-06-04 Alcan International Limited Methode et dispositif pour detecter et corriger le desaxement des cylindres de laminoirs
    JPH0787971B2 (ja) * 1988-09-16 1995-09-27 株式会社日立製作所 双ロール式連続鋳造方法及びその装置
    JP2849186B2 (ja) * 1990-08-21 1999-01-20 日新製鋼株式会社 連続鋳造設備におけるロールの異常検出方法
    JP3135282B2 (ja) * 1991-05-28 2001-02-13 日新製鋼株式会社 薄板連鋳法
    JP3016632B2 (ja) * 1991-07-09 2000-03-06 日新製鋼株式会社 双ロール式連鋳機の運転制御法
    US5203188A (en) * 1991-09-16 1993-04-20 Morgan Construction Company System and method for monitoring a rolling mill
    FR2728817A1 (fr) * 1994-12-29 1996-07-05 Usinor Sacilor Procede de regulation pour la coulee continue entre cylindres

    Also Published As

    Publication number Publication date
    FR2755385A1 (fr) 1998-05-07
    ES2146072T3 (es) 2000-07-16
    CA2220887A1 (fr) 1998-05-07
    FR2755385B1 (fr) 1998-12-31
    PL184806B1 (pl) 2002-12-31
    ZA979752B (en) 1998-05-22
    PL323065A1 (en) 1998-05-11
    UA62912C2 (en) 2004-01-15
    TR199701327A3 (tr) 1999-08-23
    PT841112E (pt) 2000-09-29
    KR19980042167A (ko) 1998-08-17
    US5927375A (en) 1999-07-27
    ATE193233T1 (de) 2000-06-15
    DE69702104T2 (de) 2001-02-15
    BR9705436A (pt) 1999-05-04
    CA2220887C (fr) 2006-03-14
    KR100540617B1 (ko) 2006-02-28
    CN1069240C (zh) 2001-08-08
    AU717254B2 (en) 2000-03-23
    RU2169053C2 (ru) 2001-06-20
    EP0841112A1 (fr) 1998-05-13
    GR3033604T3 (en) 2000-10-31
    JPH10146652A (ja) 1998-06-02
    CZ351397A3 (cs) 1998-07-15
    DK0841112T3 (da) 2000-09-11
    SK148697A3 (en) 1998-12-02
    SK282849B6 (sk) 2002-12-03
    DE69702104D1 (de) 2000-06-29
    RO119773B1 (ro) 2005-03-30
    CZ291523B6 (cs) 2003-03-12
    TW358045B (en) 1999-05-11
    TR199701327A2 (xx) 1999-08-23
    CN1194895A (zh) 1998-10-07
    AU4361197A (en) 1998-05-14
    JP3907023B2 (ja) 2007-04-18

    Similar Documents

    Publication Publication Date Title
    EP0841112B1 (fr) Procédé de coulée continue entre cylindres
    EP0719607B1 (fr) Procédé de régulation pour la coulée continue entre cylindres
    EP3074748B1 (fr) Procédé et dispositif de détermination de l'usure d'une face de dépouille d'un outil de coupe
    EP2507598B1 (fr) Procédé et dispositif de surveillance de vibrations en torsion d'un arbre rotatif d'une turbomachine
    EP0047218B1 (fr) Procédé de contrôle et de régulation de paramètres de marche d'une machine de coulée continue de bandes entre cylindres
    CH617267A5 (en) Method and device for detecting the wear on the bearings of a rotating shaft
    EP4363131A1 (fr) Procede de prechauffage d'un cylindre de travail de laminage
    FR2533623A1 (fr) Procede de detection de chute de pression d'huile et dispositif de mise en oeuvre
    EP0867245B1 (fr) Procédé de régulation de la vitesse de rotation des cylindres lors d'une opération de coulée continue entre cylindres
    FR2862011A1 (fr) Procede et dispositif de coupe des extremites d'ebauches avant laminage a chaud de finition
    WO2023202963A1 (fr) Procede pour signaler un probleme de corrosion sur un nez d'injecteur de carburant d'un moteur a combustion interne
    JP2005111523A (ja) 双ドラム式ストリップキャスト連鋳装置のホットライン検出方法および装置
    WO1992018273A1 (fr) Procede de controle dynamique de la vitesse d'extraction lors d'un cycle de cicatrisation apres collage, dans un processus de coulee continue d'acier
    FR3014199A1 (fr) Procede et dispositif d'evaluation de l'usure d'une face de depouille d'un outil de coupe
    FR2689046A1 (fr) Procédé et dispositif de contrôle en temps réel et en fonctionnement de l'état géométrique et mécanique des éléments constitutifs du système de soutien d'une installation de coulée continue.
    EP1953538A1 (fr) Dispositif et procédé permettant de déterminer la dilution en liquide de refroidissement d'une huile de moteur thermique
    FR2724335A1 (fr) Procede de prevention de marquage de bande metallique defilant dans une installation de traitement au contact d'au moins un cylindre en rotation
    FR2799235A1 (fr) Procede de surveillance d'un dispositif de commande pour moteur a combustion interne
    EP0702139A1 (fr) Procédé et dispositif de suppression des oscillations longitudinales d'un véhicule automobile
    FR2835208A3 (fr) Procede de coulee continue des metaux en lingotiere oscillante
    FR2718987A1 (fr) Procédé et dispositif de contrôle du pilotage de la coulée continue.
    MXPA97008584A (en) Continuous colada process between rodil
    EP0695938A1 (fr) Procédé de détermination du pourcentage d'un constituant d'un matériau composé d'au moins deux constituants distincts
    FR2692183A1 (fr) Procédé et dispositif de contrôle des rouleaux de soutien d'une machine de coulée continue des métaux.

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

    17P Request for examination filed

    Effective date: 19981113

    AKX Designation fees paid

    Free format text: AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

    RBV Designated contracting states (corrected)

    Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    17Q First examination report despatched

    Effective date: 19990602

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: THYSSEN STAHL AKTIENGESELLSCHAFT

    Owner name: USINOR

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

    REF Corresponds to:

    Ref document number: 193233

    Country of ref document: AT

    Date of ref document: 20000615

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: FRENCH

    REF Corresponds to:

    Ref document number: 69702104

    Country of ref document: DE

    Date of ref document: 20000629

    ITF It: translation for a ep patent filed
    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2146072

    Country of ref document: ES

    Kind code of ref document: T3

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20000724

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: T3

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: SC4A

    Free format text: AVAILABILITY OF NATIONAL TRANSLATION

    Effective date: 20000526

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20101014

    Year of fee payment: 14

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20101022

    Year of fee payment: 14

    Ref country code: GB

    Payment date: 20101027

    Year of fee payment: 14

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GR

    Payment date: 20110914

    Year of fee payment: 15

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: PT

    Payment date: 20111028

    Year of fee payment: 15

    Ref country code: SE

    Payment date: 20111011

    Year of fee payment: 15

    Ref country code: BE

    Payment date: 20111012

    Year of fee payment: 15

    Ref country code: CH

    Payment date: 20111012

    Year of fee payment: 15

    Ref country code: FI

    Payment date: 20111011

    Year of fee payment: 15

    Ref country code: IE

    Payment date: 20111011

    Year of fee payment: 15

    Ref country code: NL

    Payment date: 20111021

    Year of fee payment: 15

    Ref country code: FR

    Payment date: 20111103

    Year of fee payment: 15

    Ref country code: DK

    Payment date: 20111011

    Year of fee payment: 15

    Ref country code: ES

    Payment date: 20111115

    Year of fee payment: 15

    Ref country code: LU

    Payment date: 20111013

    Year of fee payment: 15

    BERE Be: lapsed

    Owner name: *USINOR

    Effective date: 20121031

    Owner name: *THYSSEN STAHL A.G.

    Effective date: 20121031

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: MM4A

    Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

    Effective date: 20130430

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: V1

    Effective date: 20130501

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: EBP

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MM01

    Ref document number: 193233

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20121031

    REG Reference to a national code

    Ref country code: GR

    Ref legal event code: ML

    Ref document number: 20000401290

    Country of ref document: GR

    Effective date: 20130508

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20121031

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20130628

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20121031

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20121031

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20121101

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20121031

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20121031

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20121031

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: MM4A

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20121031

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130430

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20121031

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130508

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20121031

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130501

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20121031

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20121031

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20140116

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20121031

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20121101

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20160922

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 69702104

    Country of ref document: DE