EP0839918B1 - Verfahren und Vorrichtung zum Kühlen eines Gegenstandes - Google Patents

Verfahren und Vorrichtung zum Kühlen eines Gegenstandes Download PDF

Info

Publication number
EP0839918B1
EP0839918B1 EP96810731A EP96810731A EP0839918B1 EP 0839918 B1 EP0839918 B1 EP 0839918B1 EP 96810731 A EP96810731 A EP 96810731A EP 96810731 A EP96810731 A EP 96810731A EP 0839918 B1 EP0839918 B1 EP 0839918B1
Authority
EP
European Patent Office
Prior art keywords
coolant
jets
microchannels
process according
article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96810731A
Other languages
English (en)
French (fr)
Other versions
EP0839918A1 (de
Inventor
Miroslaw Plata
Claude-Alain Rolle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3A Composites International AG
Original Assignee
Alcan Technology and Management Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcan Technology and Management Ltd filed Critical Alcan Technology and Management Ltd
Priority to DE59608802T priority Critical patent/DE59608802D1/de
Priority to AT96810731T priority patent/ATE213785T1/de
Priority to EP96810731A priority patent/EP0839918B1/de
Priority to AU40986/97A priority patent/AU722395B2/en
Priority to ZA9709364A priority patent/ZA979364B/xx
Priority to CA002218781A priority patent/CA2218781C/en
Priority to US08/955,286 priority patent/US5902543A/en
Priority to NO19975000A priority patent/NO319260B1/no
Priority to JP30180597A priority patent/JP3984339B2/ja
Publication of EP0839918A1 publication Critical patent/EP0839918A1/de
Application granted granted Critical
Publication of EP0839918B1 publication Critical patent/EP0839918B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching

Definitions

  • the invention relates to a method for cooling an object by applying a liquid coolant to the Surface of the object in the form of continuous Coolant jets.
  • a liquid coolant to the Surface of the object in the form of continuous Coolant jets.
  • One is also within the scope of the invention device suitable for carrying out the method and an application of the method or use of the device.
  • the metal When cooling pressed profiles and hot-rolled strips made of an aluminum alloy from the pressing or hot rolling temperature the metal needs to be from about 450 to 480 ° C in as possible in a short time to less than about 300 ° C, in many cases cooled to about 100 ° C.
  • EP-A-0343103 describes a method for cooling pressed profiles and roller belts known, in which by means of spray nozzles a water mist is generated. However, this procedure is for the rapid inline cooling of hot rolled strips because of the not suitable for low heat transfer. This previously known Cooling method using spray nozzles is in EP-A-0429394 described for cooling cast metal strands.
  • EP-A-0578607 describes an inline method for cooling profiles emerging from an extruder disclosed which the spray nozzles known from EP-A-0343103 in Modules are installed.
  • EP-A-0695590 describes a method and a device for cooling hot-rolled plates and strips an aluminum alloy known, with cut plates or belts continuously pass through a cooling station and in this directly supplied with water via flat jet nozzles become.
  • the water jet is additionally made by means of a flat jet nozzle Air or water jets are periodically deflected in such a way that the water jet hitting the plate or belt surface performs a wiping motion.
  • Flat jet nozzles result when the water jet hits a narrow one on the plate or belt surface Impact area with high heat transfer.
  • This locally high Heat transfer together with the wiping movement leads to one even heat removal.
  • the heat removal is too low, for example for hot rolled strips from an aluminum alloy after the last one Stitch a short distance before reeling, i.e. in very short time, to a temperature of less than 300 ° C cool.
  • the invention is therefore based on the object of a method and a device of the type mentioned create with which the cooling capacity compared to known Methods and devices can be further increased.
  • Complete evaporation prevents training a water film that inhibits heat extraction. Arise no local build-up of coolant that leads to an uncontrolled Cooling and thus too different mechanical properties near the surface of the object being able to lead. Such differences in mechanical For example, a later forming operation due to a locally different Forming behavior disturbs the surface quality impact.
  • the method according to the invention is also particularly suitable for all areas of application where there is an explosive evaporation of coolant can have a negative or even dangerous effect can.
  • the cooling capacity can be achieved with the method according to the invention optimally control what makes the generation more accurate and reproducible Cooling conditions enabled.
  • the coolant becomes Achieving optimal cooling performance over a variety Coolant jets distributed over the surface to be cooled applied small diameter.
  • Each jet of coolant has a diameter from 20 to 200 ⁇ m, in particular 30 to 100 ⁇ m.
  • the distance the points of impact of adjacent coolant jets on the surface is preferably 2 to 10 mm, in particular about 3 to 5 mm.
  • a maximum cooling performance results with a laminar Flow of the coolant jets.
  • the dwell time of the item in the cooling zone is very in short, care must be taken to ensure that the heat is removed from the surface of the object for the most part by evaporation and only to a small extent by heating of the coolant to the evaporation temperature. If the temperature of the surface is too low There is a risk that the coolant coolant not completely evaporated and thus the cooling capacity reducing coolant film on the surface leads.
  • the temperature of the coolant is therefore preferably a maximum of 50 ° C, in particular a maximum of 10 ° C, lower than that Boiling point of the coolant.
  • water is preferably used as a coolant for aluminum alloys water is preferably used.
  • the object to be cooled is expediently transverse to the beam direction of the coolant moves. This happens during cooling stationary objects preferably by oscillation or Vibration, with inline cooling through continuous Displacement of the object to be cooled. alternative or in addition to the movement of the object to be cooled can also the coolant jets or the cooling device through oscillation or vibration relative to the object be moved.
  • Suitable device is characterized by the features of claim 7 and comprises a plurality of nozzles Applying the individual coolant jets to the surface of the object.
  • Each nozzle has one Diameters from 20 to 200 ⁇ m, preferably 30 to 100 ⁇ m, on.
  • the nozzles are in a carrier as microchannels made of graphite, ceramic, glass, metal or plastic and the carrier is made of sheet-like Stack of elements, the surfaces of the elements serving as stacking surfaces are fluid-tight against each other.
  • the carrier is made of sheet-like Stack of elements, the surfaces of the elements serving as stacking surfaces are fluid-tight against each other.
  • the are facing surfaces of adjacent elements Grooves arranged to form the microchannels such that Cooling liquid on one side of the formed by the grooves Microchannels enter and on the other side of the Microchannels can leak out.
  • the elements are preferred as plates with plane-parallel ones Surfaces formed and have at least one opening to supply the coolant to the microchannels.
  • the grooves connect the opening to the outer edge of the preferably annular plates.
  • the grooves have a width and a depth of 20 to 200 microns, preferably 30 to 100 microns.
  • the individual elements According to the desired distance of the impact points have adjacent coolant jets on the surface the individual elements have a thickness of 2 to 10 mm, preferably 3 to 5 mm.
  • a preferred application of the method according to the invention as well as the device is in continuous cooling a hot-rolled aluminum alloy strip seen.
  • the high cooling capacity of the method according to the invention allows in the often limited existing Space between the rolling mill and reel device to arrange a small and powerful cooling unit.
  • the method and the device according to the invention can also ideal for applying a thin layer of release agent on the still hot surface of a mold be used.
  • the release agent becomes the coolant added. Because the coolant when hitting the hot surface completely evaporated, the application takes place of the release agent is extremely even.
  • the cooling nozzles can be used to apply release agents to the mold surface a die-casting mold mounted on a tree in the usual way be after the demolding between the mold halves of the opened mold is introduced.
  • a nozzle module has a tubular support 10 with a central feed channel 12 for feed a coolant to microchannels or nozzles 14.
  • the Microchannels 14 connect the central feed channel 12 with the surface of the carrier 10.
  • the coolant exits through the microchannels 14 in the form of individual coolant jets 16 and strikes the hot surface 20 of an object 18, for example a hot-rolled strip made of an aluminum alloy, essentially at right angles.
  • an object for example a hot-rolled strip made of an aluminum alloy, essentially at right angles.
  • T k in the feed channel 12 is, for example, approximately 90 ° C., ie it is approximately 10 ° C. below the boiling temperature T s of water.
  • the length 1 of the microchannels 14 is 10 mm, for example and the diameter c of the channels is e.g. at 50 ⁇ m.
  • the distance of the impact points the coolant jets 16 on the surface 20 of item 18 is e.g. 3 mm.
  • the dimensions of the microchannels 14 or the coolant jets 16 is chosen so that the coolant jets 16 at Impact on the surface 20 of the hot object 18 completely change into coolant vapor 22.
  • the nozzle module shown in FIGS. 2 to 4 consists of individual annular plates 32 from, for example Alumina ceramics with plane-parallel polished surfaces 34 with a small degree of roughness.
  • surfaces 34 are radial from central opening 36 grooves 40 running to the outer edge 38 of the plate 32 arranged.
  • the grooves have a width b and a depth t of, for example, 50 ⁇ m each.
  • the individual tiles 32 a thickness e of, for example, 3 mm between two end plates 42 fixed stack 30 lined up.
  • One of the two end plates 42 has a coolant inlet opening 44 provided in one from the central opening 36 of the individual plates 32 formed coolant channel 46 of the stack 30 opens.
  • 5 and 6 are the individual plates 32 rectangular and have several central openings 36, of which each in one of the Surfaces 34 incorporated grooves 40 also to the edge 38 of the plate 32 run.
  • the cooling surface covered by the coolant jets 16 on the belt 50 is approximately 2 m 2 with a bandwidth of 2 m and a length of the cooling station of 1 m. With such an order, the total number of microchannels 14 is approximately 200,000. Depending on the desired cooling capacity, the coolant can be applied to one or both surfaces of the belt 50.
  • the cooling capacity of the method according to the invention was determined on the basis of cooling tests on test specimens.
  • a coolant jet was applied to the end face of a cylindrical specimen made of aluminum, 50 mm long and 4 mm in diameter.
  • the time course of the temperature of the test specimen under different blasting conditions is shown in FIG. 8. Water with a temperature of 18 ° C. was used as the coolant.
  • the following values were selected as the operating parameters for the coolant jet: Curve A Beam diameter 100 ⁇ m water pressure 4 bar Cooling water flow 9.66 ml / min
  • Curve B Beam diameter 100 ⁇ m water pressure 8 bar Cooling water flow 13.4 ml / min
  • Curves A and B clearly show the high cooling capacity of the inventive method.
  • the cooling rates achieved were at 50 ° C / sec (curve A) or 200 ° C / sec (Curve B).
  • the cooling rates are comparatively low for the specimen used here with conventional Cooling between about 5 and 15 ° C / sec.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Continuous Casting (AREA)
  • Extrusion Of Metal (AREA)
  • Nozzles (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Kühlen eines Gegenstandes durch Aufbringen eines flüssigen Kühlmittels auf die Oberfläche des Gegenstandes in der Form kontinuierlicher Kühlmittelstrahlen. Im Rahmen der Erfindung liegt auch eine zur Durchführung des Verfahrens geeignete Vorrichtung sowie eine Anwendung des Verfahrens bzw. eine Verwendung der Vorrichtung.
Bei der Abkühlung von Pressprofilen und warmgewalzten Bändern aus einer Aluminiumlegierung von der Press- bzw. Warmwalztemperatur muss das Metall von etwa 450 bis 480°C in möglichst kurzer Zeit auf weniger als etwa 300°C, in vielen Fällen bis auf etwa 100°C, abgekühlt werden.
Aus der EP-A-0343103 ist ein Verfahren zum Kühlen von Pressprofilen und Walzbändern bekannt, bei dem mittels Spraydüsen ein Wassernebel erzeugt wird. Dieses Verfahren ist jedoch für das rasche inline-Kühlen von Warmwalzbändern wegen des zu geringen Wärmeübergangs nicht geeignet. Dieses vorbekannte Kühlverfahren mittels Spraydüsen ist in der EP-A-0429394 zum Kühlen gegossener Metallstränge beschrieben.
In der EP-A-0578607 ist ein inline-Verfahren zum Kühlen von aus einer Strangpresse austretenden Profilen offenbart, bei welchem die aus der EP-A-0343103 bekannten Spraydüsen in Module eingebaut sind.
Aus der EP-A-0695590 ist ein Verfahren sowie eine Vorrichtung zum Kühlen von warmgewalzten Platten und Bändern aus einer Aluminiumlegierung bekannt, wobei abgelängte Platten oder Bänder kontinuierlich eine Kühlstation durchlaufen und in dieser über Flachstrahldüsen direkt mit Wasser beaufschlagt werden. Unmittelbar nach seinem Austritt aus der Flachstrahldüse wird der Wasserstrahl zusätzlich mittels Luft- oder Wasserstrahlen periodisch derart abgelenkt, dass der auf die Platten- oder Bandoberfläche auftreffende Wasserstrahl eine Wischbewegung ausführt. Mit dem Einsatz von Flachstrahldüsen ergibt sich beim Auftreffen des Wasserstrahls auf der Platten- oder Bandoberfläche eine schmale Auftrefffläche mit hohem Wärmeübergang. Dieser lokal hohe Wärmeübergang führt zusammen mit der Wischbewegung zu einem gleichmässigen Wärmeentzug. Auch bei diesem Verfahren ist jedoch der Wärmeentzug zu gering, um beispielsweise Warmwalzbänder aus einer Aluminiumlegierung nach dem letzten Stich vor dem Aufhaspeln auf einer kurzen Strecke, d.h. in sehr kurzer Zeit, auf eine Temperatur von weniger als 300°C abzukühlen.
Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren sowie eine Vorrichtung der eingangs genannten Art zu schaffen, mit welchen die Kühlleistung gegenüber bekannten Verfahren und Vorrichtungen weiter gesteigert werden kann.
In bezug auf das Verfahren wird die Aufgabe durch die Merkmale von Auspruch 1 gelöst.
Die vollständige Verdampfung verhindert die Ausbildung eines den Wärmeentzug hemmenden Wasserfilms. Es entstehen keine lokale Ansammlungen von Kühlmittel, die zu einer unkontrollierten Abkühlung und damit zu unterschiedlichen mechanischen Eigenschaften in Oberflächennähe des Gegenstandes führen können. Derartige Unterschiede in den mechanischen Eigenschaften können sich beispielsweise bei einer späteren Umformoperation infolge eines lokal unterschiedlichen Umformverhaltens störend auf die Oberflächenqualität auswirken.
Wegen der vollständigen Verdampfung des Kühlmittels eignet sich das erfindungsgemässe Verfahren insbesondere auch für alle Einsatzbereiche, wo sich eine explosionsartige Verdampfung von Kühlmittel negativ oder sogar gefährlich auswirken kann.
Mit dem erfindungsgemässen Verfahren lässt sich die Kühlleistung optimal steuern, was die Erzeugung genauer und reproduzierbarer Abkühlbedingungen ermöglicht.
Damit eine möglichst hohe Wassermenge zur Verdampfung gebracht werden kann, ohne dass sich an der Oberfläche des Gegenstandes ein Wasserfilm bildet, wird das Kühlmittel zur Erzielung einer optimalen Kühlleistung über eine Vielzahl über die zu kühlende Oberfläche verteilte Kühlmittelstrahlen geringen Durchmessers aufgebracht.
Jeder Kühlmittelstrahl weist einen Durchmesser von 20 bis 200 µm, insbesondere 30 bis 100 µm, auf. Der Abstand der Auftreffpunkte benachbarter Kühlmittelstrahlen auf der Oberfläche beträgt vorzugsweise 2 bis 10 mm, insbesondere etwa 3 bis 5 mm.
Eine maximale Kühlleistung ergibt sich mit einer laminaren Strömung der Kühlmittelstrahlen.
Ist die Verweilzeit des Gegenstandes in der Abkühlzone sehr kurz, so muss darauf geachtet werden, dass der Wärmeentzug aus der Oberfläche des Gegenstandes zum überwiegenden Teil durch Verdampfung und nur zu einem geringen Teil durch Aufheizen des Kühlmittels auf die Verdampfungstemperatur erfolgt. Bei zu tiefer Temperatur des auf der Oberfläche auftreffenden Kühlmittels besteht die Gefahr, dass das Kühlmittel nicht vollständig verdampft und damit zu einem die Kühlleistung vermindernden Kühlmittelfilm auf der Oberfläche führt. Bevorzugt liegt daher die Temperatur des Kühlmittels maximal 50°C, insbesondere maximal 10°C, niedriger als die Siedetemperatur des Kühlmittels. Als Kühlmittel für Aluminiumlegierungen wird im übrigen bevorzugt Wasser eingesetzt.
Zweckmässig wird der zu kühlende Gegenstand quer zur Strahlrichtung des Kühlmittels bewegt. Dies geschieht bei der Kühlung ruhender Gegenstände bevorzugt durch Oszillation bzw. Vibration, bei einer inline-Kühlung durch eine kontinuierliche Verschiebung des zu kühlenden Gegenstandes. Alternativ oder zusätzlich zur Bewegung des zu kühlenden Gegenstandes können auch die Kühlmittelstrahlen bzw. die Kühlvorrichtung durch Oszillation bzw. Vibration relativ zum Gegenstand bewegt werden.
Eine zur Durchführung des erfindungsgemässen Verfahrens geeignete Vorrichtung zeichnet sich aus durch die Merkmale von Anspruch 7 und umfasst eine Vielzahl von Düsen zum Aufbringen der einzelnen Kühlmittelstrahlen auf die Oberfläche des Gegenstandes. Hierbei weist jede Düse einen Durchmesser von 20 bis 200 µm, vorzugsweise 30 bis 100 µm, auf.
Die Düsen sind als Mikrokanäle in einem Träger aus Graphit, Keramik, Glas, Metall oder Kunststoff ausgebildet und der Träger ist durch einen aus flächenförmigen Elementen zusammengesetzten Stapel gebildet, wobei die als Stapelflächen dienenden Oberflächen der Elemente einander fluiddicht anliegen. In wenigstens eine der einander zugewandten Oberflächen benachbarter Elemente sind Rillen zur Bildung der Mikrokanäle derart angeordnet, dass Kühlflüssigkeit auf der einen Seite der durch die Rillen gebildeten Mikrokanäle eintreten und auf der anderen Seite der Mikrokanäle austreten kann.
Die Elemente sind bevorzugt als Plättchen mit planparallelen Oberflächen ausgebildet und weisen wenigstens eine Oeffnung zur Zuführung der Kühlflüssigkeit an die Mikrokanäle auf. Die Rillen verbinden die Oeffnung mit dem äusseren Rand der vorzugsweise kreisringförmig ausgebildeten Plättchen.
In Uebereinstimmung mit den Dimensionen der Kühlmittelstrahlen weisen die Rillen eine Breite und eine Tiefe von 20 bis 200 µm, vorzugsweise 30 bis 100 µm, auf.
Entsprechend dem gewünschten Abstand der Auftreffpunkte benachbarter Kühlmittelstrahlen auf der Oberfläche weisen die einzelnen Elemente eine Dicke von 2 bis 10 mm, vorzugsweise 3 bis 5 mm, auf.
Eine bevorzugte Anwendung des erfindungsgemässen Verfahrens sowie der Vorrichtung wird in der kontinuierlichen Kühlung eines warmgewalzten Bandes aus einer Aluminiumlegierung gesehen. Die hohe Kühlleistung des erfindungsgemässen Verfahrens ermöglicht es, in dem oft nur beschränkt vorhandenen Zwischenraum zwischen Walzwerk und Haspeleinrichtung ein kleines und zugleich leistungsfähiges Kühlaggregat anzuordnen.
Das erfindungsgemässe Verfahren und die Vorrichtung können in idealer Weise auch zum Auftragen einer dünnen Trennmittelschicht auf die noch heisse Oberfläche einer Giessform eingesetzt werden. Hierzu wird das Trennmittel dem Kühlmittel beigemischt. Da das Kühlmittel beim Auftreffen auf die heisse Oberfläche vollständig verdampft, erfolgt der Auftrag des Trennmittels äusserst gleichmässig. Die Kühldüsen können zum Auftragen von Trennmittel auf die Formoberfläche einer Druckgiessform in üblicher Art an einem Baum montiert sein, der nach dem Entformen zwischen die Formhälften der geöffneten Giessform eingeführt wird.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnung; diese zeigt schematisch in
Fig. 1
eine Prinzipdarstellung des Kühlverfahrens mit einzelnen Kühlmittelstrahlen;
Fig. 2
die Seitenansicht einer ersten Ausführungsform eines Düsenmoduls;
Fig. 3
einen Schnitt durch das Modul von Fig. 2 nach deren Linie I-I;
Fig. 4
einen Schnitt durch ein Element des Moduls von Fig. 2 nach der Linie II-II in Fig. 3;
Fig. 5
die Seitenansicht einer zweiten Ausführungsform eines Düsenmoduls;
Fig. 6
einen Schnitt durch das Modul von Fig. 5 nach deren Linie III-III;
Fig. 7
eine Schrägsicht auf eine Anordnung mit Düsenmodulen zum Kühlen eines warmgewalzten Bandes;
Fig. 8
den zeitlichen Verlauf der Temperatur beim Abkühlen von Probekörpern.
Gemäss Fig. 1 weist ein Düsenmodul einen rohrförmigen Träger 10 mit einem zentralen Zuführungskanal 12 zur Zuführung eines Kühlmittels zu Mikrokanälen bzw. -düsen 14 auf. Die Mikrokanäle 14 verbinden den zentralen Zuführungskanal 12 mit der Oberfläche des Trägers 10.
Das Kühlmittel tritt durch die Mikrokanäle 14 in der Form einzelner Kühlmittelstrahlen 16 aus und trifft im wesentlichen rechtwinklig auf die heisse Oberfläche 20 eines Gegenstandes 18, beispielsweise ein warmgewalztes Band aus einer Aluminiumlegierung. Wird Wasser als Kühlmittel verwendet, so beträgt dessen Temperatur Tk im Zuführungskanal 12 beispielsweise etwa 90°C, d.h. sie liegt etwa 10°C unter der Siedetemperatur Ts von Wasser.
Die Länge 1 der Mikrokanäle 14 beträgt beispielsweise 10 mm und der Durchmesser c der Kanäle liegt z.B. bei 50 µm.
Die Kühlmittelstrahlen 16 eines Durchmessers d von beispielsweise 50 µm treffen in einem Abstand h von beispielsweise 30 mm auf der Oberfläche 20 auf. Der Abstand der Auftreffpunkte der Kühlmittelstrahlen 16 auf der Oberfläche 20 des Gegenstandes 18 beträgt z.B. 3 mm.
Die Dimensionen der Mikrokanäle 14 bzw. der Kühlmittelstrahlen 16 wird so gewählt, dass die Kühlmittelstrahlen 16 beim Auftreffen auf der Oberfläche 20 des heissen Gegenstandes 18 vollständig in Kühlmitteldampf 22 übergehen.
Das in den Fig. 2 bis 4 dargestellte Düsenmodul besteht aus einzelnen kreisringförmigen Plättchen 32 aus beispielsweise Aluminiumoxidkeramik mit planparallelen polierten Oberflächen 34 mit einem kleinen Rauhigkeitsgrad. In jeweils eine der Oberflächen 34 sind radial von der zentralen Oeffnung 36 zum äusseren Rand 38 des Plättchens 32 verlaufende Rillen 40 angeordnet. Die Rillen weisen eine Breite b sowie eine Tiefe t von beispielsweise je 50 µm auf. Die einzelnen Plättchen 32 einer Dicke e von beispielsweise 3 mm sind zu einem zwischen zwei Endplatten 42 fixierten Stapel 30 aneinandergereiht. Eine der beiden Endplatten 42 ist mit einer Kühlmitteleinlassöffnung 44 versehen, die in einen aus der zentralen Oeffnung 36 der einzelnen Plättchen 32 gebildeten Kühlmittelkanal 46 des Stapels 30 mündet.
Bei dem in den Fig. 5 und 6 dargestellten Düsenmodul sind die einzelnen Plättchen 32 rechteckförmig und weisen mehrere zentrale Oeffnungen 36 auf, von denen die in jeweils eine der Oberflächen 34 eingearbeiteten Rillen 40 ebenfalls zum Rand 38 des Plättchens 32 verlaufen. Selbstverständlich kann auch eine einzige langgestreckte Oeffnung an Stelle einzelner zentraler Oeffnungen 36 vorgesehen sein.
In Fig. 7 sind mehrere Düsenmodule bzw. Stapel 30 parallel zueinander in einer Kühlmittelstation zur Kühlung eines warmgewalzten Bandes 50 aus einer Aluminiumlegierung angeordnet. Die einzelnen Düsenmodule oder Stapel 30 sind an eine Kühlmittelzuführungsleitung 48 angeschlossen. Selbstverständlich sollte immer darauf geachtet werden, dass der an der heissen Bandoberfläche entstehende Kühlmitteldampf nicht oberhalb des Bandes kondensiert und auf das Band abtropft. Dies kann dadurch verhindert werden, dass die über dem Band angeordneten Teile der Kühleinrichtung wie z.B. eine Dampfabsaughaube sowie Kühlmittelleitungen auf einer oberhalb der Siedetemperatur des Kühlmittels liegenden Temperatur gehalten werden.
Die durch die Kühlmittelstrahlen 16 auf dem Band 50 abgedeckte Kühlfläche beträgt bei einer Bandbreite von 2 m und einer Länge der Kühlstation von 1 m etwa 2 m2. Die Gesamtzahl der Mikrokanäle 14 liegt bei einer derartigen Ordnung bei etwa 200'000. Je nach gewünschter Kühlleistung kann das Kühlmittel auf eine oder auf beide Oberflächen des Bandes 50 aufgetragen werden.
Die Kühlleistung des erfindungsgemässen Verfahrens wurde anhand von Abkühlversuchen an Probekörpern bestimmt. Hierzu wurde die Stirnfläche eines zylindrischen Probekörpers aus Aluminium mit 50 mm Länge und 4 mm Durchmesser mit einem Kühlmittelstrahl beaufschlagt. Der zeitliche Verlauf der Temperatur des Probekörpers bei unterschiedlichen Strahlbedingungen ergibt sich aus Fig. 8. Als Kühlmittel diente Wasser mit einer Temperatur von 18°C. Als Betriebsparameter für den Kühlmittelstrahl wurden folgende Werte gewählt:
Kurve A Strahldurchmesser 100 µm
Wasserdruck 4 bar
Kühlwasserdurchfluss 9.66 ml/min
Kurve B Strahldurchmesser 100 µm
Wasserdruck 8 bar
Kühlwasserdurchfluss 13.4 ml/min
Die Kurven A und B zeigen deutlich die hohe Kühlleistung des erfindungsgemässen Verfahrens. Die erzielten Abkühlgeschwindigkeiten lagen bei 50°C/sec (Kurve A) bzw. 200°C/sec (Kurve B). Vergleichsweise liegen die Abkühlgeschwindigkeiten für den hier verwendeten Probekörper bei konventioneller Kühlung zwischen etwa 5 und 15°C/sec.

Claims (15)

  1. Verfahren zum Kühlen eines Gegenstandes durch Aufbringen eines flüssigen Kühlmittels auf die Oberfläche (20) des Gegenstandes (18) in der Form kontinuierlicher Kühlmittelstrahlen (16),
    dadurch gekennzeichnet, dass
    das Kühlmittel über eine Vielzahl über die zu kühlende Oberfläche (20) verteilte, einen Durchmesser (d) von 20 bis 200 µm aufweisende Kühlmittelstrahlen (16) aufgebracht wird, wobei die Förderleistung jedes Kühlmittelstrahls (16) so eingestellt wird, dass das auf die Oberfläche (20) auftreffende Kühlmittel vollständig verdampft.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass jeder Kühlmittelstrahl (16) einen Durchmesser (d) von 30 bis 100 µm aufweist.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Abstand (a) der Auftreffpunkte benachbarter Kühlmittelstrahlen (16) auf der Oberfläche (20) 2 bis 10 mm, vorzugsweise 3 bis 5 mm, beträgt.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Kühlmittelstrahlen (16) eine laminare Strömung aufweisen.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Temperatur (Tk) des Kühlmittels maximal 50°C, vorzugsweise maximal 10°C, niedriger liegt als dessen Siedetemperatur (Ts).
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass sich der zu kühlende Gegenstand (18) und die Kühlmittelstrahlen (16) relativ zu einander quer zur Strahlrichtung (x) des Kühlmittels bewegen, vorzugsweise durch Oszillation des zu kühlenden Gegenstandes (18) und/oder der Kühlmittelstrahlen (16) und/ oder durch kontinuierliche Verschiebung des zu kühlenden Gegenstandes (18).
  7. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 6, mit einer Vielzahl von Düsen (14) zum Aufbringen der einzelnen Kühlmittelstrahlen (16) auf die Oberfläche (20) des Gegenstandes (18), dadurch gekennzeichnet, dass die Düsen als Mikrokanäle (14) mit einem Durchmesser (c) von 20 bis 200 µm in einem Träger (10) aus Graphit, Keramik, Glas, Metall oder Kunststoff ausgebildet sind und der Träger (10) durch einen aus flächenförmigen Elementen (32) zusammengesetzten Stapel (30) gebildet ist, wobei die als Stapelflächen dienenden Oberflächen (34) der Elemente einander fluiddicht anliegen, und wobei in wenigstens eine der einander zugewandten Oberflächen (34) benachbarter Elemente (32) Rillen (40) zur Bildung der Mikrokanäle (14) derart angeordnet sind, dass Kühlflüssigkeit auf der einen Seite der durch die Rillen (40) gebildeten Mikrokanäle eintreten und auf der anderen Seite der Mikrokanäle austreten kann.
  8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die Mikrokanäle (14) einen Durchmesser (c) von 30 bis 100 µm aufweisen.
  9. Vorrichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass die Elemente als Plättchen (32) mit planparallelen Oberflächen (34) ausgebildet sind.
  10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass die Plättchen (32) wenigstens eine Oeffnung (36) zur Zuführung der Kühlflüssigkeit an die Mikrokanäle (14) aufweisen und die Rillen (40) die Oeffnung (36) mit dem äusseren Rand (38) der Plättchen (32) verbinden.
  11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass die Plättchen (32) kreisringförmig ausgebildet sind.
  12. Vorrichtung nach einem der Ansprüche 7 bis 11, dadurch gekennzeichnet, dass die Rillen (40) eine Breite (b) und eine Tiefe (t) von 20 bis 200 µm, vorzugsweise 30 bis 100 µm, aufweisen.
  13. Vorrichtung nach einem der Ansprüche 7 bis 12, dadurch gekennzeichnet, dass die einzelnen Elemente (32) eine Dicke (e) von 2 bis 10 mm, vorzugweise 3 bis 5 mm, aufweisen.
  14. Anwendung des Verfahrens nach einem der Ansprüche 1 bis 6 zum gleichmässigen Auftragen einer dünnen Schicht eines Formtrennmittels auf die Oberfläche einer Giessform durch Beimischung des Trennmittels zum Kühlmittel.
  15. Verwendung der Vorrichtung nach einem der Ansprüche 7 bis 13 zum gleichmässigen Auftragen einer dünnen Schicht eines Formtrennmittels auf die Oberfläche einer Giessform durch Beimischung des Trennmittels zum Kühlmittel.
EP96810731A 1996-11-01 1996-11-01 Verfahren und Vorrichtung zum Kühlen eines Gegenstandes Expired - Lifetime EP0839918B1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
DE59608802T DE59608802D1 (de) 1996-11-01 1996-11-01 Verfahren und Vorrichtung zum Kühlen eines Gegenstandes
AT96810731T ATE213785T1 (de) 1996-11-01 1996-11-01 Verfahren und vorrichtung zum kühlen eines gegenstandes
EP96810731A EP0839918B1 (de) 1996-11-01 1996-11-01 Verfahren und Vorrichtung zum Kühlen eines Gegenstandes
AU40986/97A AU722395B2 (en) 1996-11-01 1997-10-15 Process and device for cooling an article
ZA9709364A ZA979364B (en) 1996-11-01 1997-10-20 Process and device for cooling an article.
CA002218781A CA2218781C (en) 1996-11-01 1997-10-21 Process and device for cooling an article
US08/955,286 US5902543A (en) 1996-11-01 1997-10-21 Process and device for cooling an article
NO19975000A NO319260B1 (no) 1996-11-01 1997-10-30 Fremgangsmate og anordning for kjoling av en gjenstand, og anvendelse av anordningen.
JP30180597A JP3984339B2 (ja) 1996-11-01 1997-11-04 物品を冷却する方法及び装置並びにその使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP96810731A EP0839918B1 (de) 1996-11-01 1996-11-01 Verfahren und Vorrichtung zum Kühlen eines Gegenstandes

Publications (2)

Publication Number Publication Date
EP0839918A1 EP0839918A1 (de) 1998-05-06
EP0839918B1 true EP0839918B1 (de) 2002-02-27

Family

ID=8225741

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96810731A Expired - Lifetime EP0839918B1 (de) 1996-11-01 1996-11-01 Verfahren und Vorrichtung zum Kühlen eines Gegenstandes

Country Status (9)

Country Link
US (1) US5902543A (de)
EP (1) EP0839918B1 (de)
JP (1) JP3984339B2 (de)
AT (1) ATE213785T1 (de)
AU (1) AU722395B2 (de)
CA (1) CA2218781C (de)
DE (1) DE59608802D1 (de)
NO (1) NO319260B1 (de)
ZA (1) ZA979364B (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10207584A1 (de) * 2002-02-22 2003-09-11 Vits Maschb Gmbh I Ins Verfahren zum Abkühlen von Bändern oder Platten aus Metall und Kühlvorrichtung
EP2085489A1 (de) * 2008-02-02 2009-08-05 Novaltec Sàrl Flüssigkeits-Mikrostrahlsystem
FR2942629B1 (fr) * 2009-03-02 2011-11-04 Cmi Thermline Services Procede de refroidissement d'une bande metallique circulant dans une section de refroidissement d'une ligne de traitement thermique en continu, et installation de mise en oeuvre dudit procede
EP3067652B1 (de) * 2015-03-11 2019-11-13 Politechnika Gdanska Wärmetauscher und wärmetauschverfahren
CN115007824A (zh) * 2022-05-11 2022-09-06 福建圣力智能工业科技股份有限公司 一种水平连铸机用水冷装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE955042C (de) * 1953-08-02 1956-12-27 Friedrichshuette Ag Verfahren und Vorrichtung zum Abkuehlen von warmgewalztem, flachem Walzgut
DE1214186B (de) * 1956-09-05 1966-04-14 United Steel Companies Ltd Verfahren zum Kuehlen warmgewalzter metallischer Baender oder Bleche
US3035865A (en) * 1958-11-21 1962-05-22 James A Sokaly Head rest for hair dryers
DE1558798B2 (de) * 1967-04-24 1977-03-03 Swiss Aluminium Ltd., Chippis (Schweiz) Verfahren zur kuehlung von eine temperatur von ueber 371 grad c aufweisenden formkoerpern aus kupfer, aluminium oder legierungen dieser metalle
NL145782B (nl) * 1970-01-20 1975-05-15 Koninklijke Hoogovens En Staal Koelsysteem.
JPS5727926B2 (de) * 1973-11-28 1982-06-14
SU619524A1 (ru) * 1976-08-17 1978-08-15 Институт черной металлургии Способ охлаждени проката
US4407487A (en) * 1980-01-15 1983-10-04 Heurtey Metallurgie Device for cooling metal articles
EP0343103B1 (de) 1988-05-19 1992-11-11 Alusuisse-Lonza Services Ag Verfahren und Vorrichtung zum Kühlen eines Gegenstandes
US4882107A (en) * 1988-11-23 1989-11-21 Union Carbide Chemicals And Plastics Company Inc. Mold release coating process and apparatus using a supercritical fluid
US5076344A (en) * 1989-03-07 1991-12-31 Aluminum Company Of America Die-casting process and equipment
ZA908728B (en) * 1989-11-23 1991-08-28 Alusuisse Lonza Services Ag Cooling of cast billets
CH686072A5 (de) 1992-06-19 1995-12-29 Alusuisse Lonza Services Ag Sprayanlage zum Kuhlen von Profilen.
US5640872A (en) 1994-07-20 1997-06-24 Alusuisse-Lonza Services Ltd. Process and device for cooling heated metal plates and strips

Also Published As

Publication number Publication date
AU722395B2 (en) 2000-08-03
CA2218781A1 (en) 1998-05-01
CA2218781C (en) 2006-10-03
JP3984339B2 (ja) 2007-10-03
NO975000L (no) 1998-05-04
AU4098697A (en) 1998-05-07
ATE213785T1 (de) 2002-03-15
US5902543A (en) 1999-05-11
NO975000D0 (no) 1997-10-30
EP0839918A1 (de) 1998-05-06
JPH10156427A (ja) 1998-06-16
NO319260B1 (no) 2005-07-11
DE59608802D1 (de) 2002-04-04
ZA979364B (en) 1998-05-12

Similar Documents

Publication Publication Date Title
DE2759736C2 (de) Verwendung einer Schlitzdüse und eines Kühlkörpers
EP0668818B1 (de) Vorrichtung und vefahren zur herstellung cellulosischer folien
CH625438A5 (en) Method and apparatus for the production of a metal strip
EP0584318A1 (de) Verfahren zur herstellung cellulosischer formkörper sowie vorrichtung zur durchführung des verfahrens.
CH620887A5 (en) Process and apparatus for the production of glass fibres
DE2706347A1 (de) Verfahren und vorrichtung zum herstellen von glasfasern
DE60102931T2 (de) Kühlung eines giessbandes und strangführung beim doppelbandstranggiessen von meatallband
EP0111728A2 (de) Verfahren und Vorrichtung zur Herstellung band- oder folienartiger Produkte
EP0839918B1 (de) Verfahren und Vorrichtung zum Kühlen eines Gegenstandes
DE2917737B2 (de) Düsenkopf für eine Glasfaserziehdüse
DE3201725A1 (de) Verfahren zum giessen von leichtmetallerzeugnissen
DE3440237A1 (de) Vorrichtung zum bandstranggiessen von metallen, insbesondere von stahl
EP1744835A2 (de) Verfahren zum auftragen eines films auf ein flächiges substrat, umlenkelement und vorrichtung zum auftragen eines films auf ein flächiges substrat
EP1064113B1 (de) Verfahren und vorrichtung zum vergleichmässigen eines schmelzflüssigen metallfilmes
EP1485509B1 (de) Verfahren zum abkühlen von bändern oder platten aus metall und kühlvorrichtung
EP1131170B1 (de) Verfahren und einrichtung zur verringerung von zunderbildung auf einem walzgut
DE102022124585A1 (de) Vorrichtung zum Härten von Blechbauteilen
DE2023812C (de) Gießstrang Kuhlvorrichtung fur Stahlstrange
EP0213333A2 (de) Verfahren und Einrichtung zum Härten von Stahlblechen
CH666840A5 (de) Verfahren, vorrichtung und anwendungen des verfahrens zur herstellung eines bandes, einer folie oder einer beschichtung aus metallischem oder metalloxydischem material.
EP0038084B1 (de) Verfahren zum Behandeln einer festen Folienbahn
DD286706A7 (de) Kuehlrohr fuer walzadern
DE3527864A1 (de) Verfahren zum strangpressen bzw. strangziehen
DE102020211642A1 (de) Verfahren zum Herstellen eines flachen Mikrostrukturbauteils, flaches Mikrostrukturbauteil sowie Vorrichtung zum Herstellen des flachen Mikrostrukturbauteils
DE2419684B2 (de) Verfahren und Vorrichtung zum Kühlen beim Stranggießen von Metall

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19981106

AKX Designation fees paid

Free format text: AT BE CH DE FR GB IT LI NL

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE FR GB IT LI NL

17Q First examination report despatched

Effective date: 20000614

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCAN TECHNOLOGY & MANAGEMENT AG

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL

REF Corresponds to:

Ref document number: 213785

Country of ref document: AT

Date of ref document: 20020315

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59608802

Country of ref document: DE

Date of ref document: 20020404

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020626

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20021128

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. PATENTANWAELTE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: ALCAN TECHNOLOGY & MANAGEMENT AG

Free format text: ALCAN TECHNOLOGY & MANAGEMENT AG#BADISCHE BAHNHOFSTRASSE 16#8212 NEUHAUSEN AM RHEINFALL (CH) -TRANSFER TO- ALCAN TECHNOLOGY & MANAGEMENT AG#BADISCHE BAHNHOFSTRASSE 16#8212 NEUHAUSEN AM RHEINFALL (CH)

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: NOVELIS, INC.

Free format text: ALCAN TECHNOLOGY & MANAGEMENT AG#BADISCHE BAHNHOFSTRASSE 16#8212 NEUHAUSEN AM RHEINFALL (CH) -TRANSFER TO- NOVELIS, INC.#191 EVANS AVENUE#TORONTO, ONTARIO M8Z 1J5 (CA)

Ref country code: CH

Ref legal event code: NV

Representative=s name: LUCHS & PARTNER PATENTANWAELTE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59608802

Country of ref document: DE

Representative=s name: WEICKMANN & WEICKMANN PATENTANWAELTE - RECHTSA, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 59608802

Country of ref document: DE

Representative=s name: PATENTANWAELTE WEICKMANN & WEICKMANN, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 59608802

Country of ref document: DE

Representative=s name: WEICKMANN & WEICKMANN, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20151124

Year of fee payment: 20

Ref country code: GB

Payment date: 20151127

Year of fee payment: 20

Ref country code: CH

Payment date: 20151127

Year of fee payment: 20

Ref country code: DE

Payment date: 20151127

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20151126

Year of fee payment: 20

Ref country code: BE

Payment date: 20151130

Year of fee payment: 20

Ref country code: AT

Payment date: 20151021

Year of fee payment: 20

Ref country code: FR

Payment date: 20151117

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59608802

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20161031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20161031

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 213785

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20161031