EP0833897A2 - Prothrombin-derivate - Google Patents

Prothrombin-derivate

Info

Publication number
EP0833897A2
EP0833897A2 EP96915903A EP96915903A EP0833897A2 EP 0833897 A2 EP0833897 A2 EP 0833897A2 EP 96915903 A EP96915903 A EP 96915903A EP 96915903 A EP96915903 A EP 96915903A EP 0833897 A2 EP0833897 A2 EP 0833897A2
Authority
EP
European Patent Office
Prior art keywords
thrombin
hirudin
prothrombin
derivative
derivatives
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96915903A
Other languages
English (en)
French (fr)
Inventor
Bernhard Fischer
Uwe Schlokat
Artur Mitterer
Falko-Günter Falkner
Johann Eibl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baxter AG
Original Assignee
Baxter AG
Immuno AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baxter AG, Immuno AG filed Critical Baxter AG
Publication of EP0833897A2 publication Critical patent/EP0833897A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • C12N9/6429Thrombin (3.4.21.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/21Serine endopeptidases (3.4.21)
    • C12Y304/21005Thrombin (3.4.21.5)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/86Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood coagulating time or factors, or their receptors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)
    • G01N2333/948Hydrolases (3) acting on peptide bonds (3.4)
    • G01N2333/974Thrombin

Definitions

  • the invention relates to new prothrombin mutants or derivatives thereof which can be used as antagonists of their natural function.
  • extrinsic blood coagulation begins with the release of thromboplastin and activation of factor VII.
  • Activated factor VII in turn activates factor X, followed by activation of factor V and factor II (prothrombin).
  • Factor Ha thrombin converts fibrinogen to fibrin at the end of the cascade.
  • the other route is by activating factor XII by contact and then activating factor XI factor IX and factor X in the presence of calcium and factor VIII, followed by activation of factor II to factor Ha, which is the Triggers coagulation by cleavage of fibrinogen to fibrin.
  • Factor Ha therefore plays a central role in both routes of the blood coagulation cascade. So far, intensive research has been carried out into anticoagulants which can be used in particular in the treatment of septic shock, thromboses, embolisms, arteriosclerosis and heart attacks, and also in blood transfusions or after operations.
  • One method of suppressing blood clotting is to administer substances that inhibit thrombin directly.
  • heparin or coumarin have been used as anticoagulants. However, these are relatively systemic and increase the risk of internal bleeding.
  • hirudin is extremely specific in its binding to thrombin and offers even more advantages over the other anticoagulants. It does not require endogenous cofactors, is pharmacodynamically inert, has no effect on blood cells, plasma proteins (with the exception of thrombin) or enzymes, and is not immunogenic due to its small molecular size.
  • Hirudin does not lie down into organs and is excreted unchanged in the urine.
  • Hirudin is a single chain 65 amino acid polypeptide that is naturally formed by the medicinal leech (Hirudo medicinalis) in its secretory glands. Hirudin acts as an extremely strongly binding and very specific inhibitor against the protease thrombin and prevents blood clotting.
  • the mechanism of the action of hirudin as a thrombin inhibitor has been elucidated: the C-terminal part of hirudin binds to the anion binding sites of thrombin and thus occupies the binding site of the fibrinogen chain to thrombin.
  • the N-terminal part of hirudin blocks the active center of thrombin (Szyperski et al. 1992, J. Mol. Biol.
  • hirudin in hemodialysis, as an anticoagulant during pulmonary transluminal coronary angioplasty (PTCA), for the prophylaxis of postoperative thrombosis, to prevent re-thrombosis, for microvascular surgery, as an anticoagulant in hemodialysis and with extracorporeal circulation, as an admixture to thrombolytics such as Plasmin gene activators and streptokinase, as an anticoagulant during surgery and for clinical coagulation suppression.
  • PTCA pulmonary transluminal coronary angioplasty
  • thrombolytics such as Plasmin gene activators and streptokinase
  • WO 93/15757 proposes prothrombin intermediates as antidotes to hirudin.
  • these products are burdened with the usual dangers inherent in preparations derived from plasma, e.g. B. Contamination by human pathogenic viruses.
  • thrombin inhibitors such as NAPAP (Na- (2-naphthylsulforylglycyl) - D, L-amidinophenylalanine peptide) or PPACK (D-Phe-Pro Arg-CHCl) is known.
  • NAPAP Na- (2-naphthylsulforylglycyl) - D, L-amidinophenylalanine peptide
  • PPACK D-Phe-Pro Arg-CHCl
  • modified proteins such as inactivated coagulation factors to be used directly as anticoagulants. A particular problem with this is that the modified protein could possibly be removed from the blood faster than the wild-type protein in vivo.
  • the coagulation process comprising the interaction of the intrinsic and extrinsic blood coagulation cascade and cell surface receptors, is very complex.
  • An inactivated coagulation factor that can be used in vivo for therapy or prophylaxis should therefore not differ from the natural protein in any other essential property, such as e.g., due to its greatly reduced or completely inhibited coagulation activity. Distinguish receptor binding capacity. It would be desirable to have an in vivo half-life of the inactive protein which corresponds to that of the active coagulation factor or is even increased. Since thrombin in particular has a very short in vivo half-life, an inactive coagulation factor with an extended half-life would result in the active protein, e.g. Thrombin, with a competitive inhibition, increasingly displaced by its receptor. This would have the advantage that only a relatively small dose would have to be administered for the efficient anticoagulant action of the inactive protein.
  • the present invention therefore has as its object to provide a medically applicable antagonist of hirudin which has essentially no enzymatic activity which promotes blood clotting.
  • Another object of the present invention is to provide an inactive coagulation factor which does not differ from the natural protein in its essential properties, such as, for example, receptor binding capacity, and in which the in vivo half-life may be increased.
  • prothrombin mutants or derivatives thereof which have one or more changes in the protein sequence compared to the natural protein, are either inactive or at most have an activity of about 10%, preferably at most about 0.25% , of natural protein and in which the change in the protein sequence does not affect the binding capacity to thrombin-specific ligands and receptors, such as natural and synthetic anticoagulants.
  • the prothrombin mutants according to the invention or their derivatives do not differ functionally from their naturally occurring protein except for a strongly or completely reduced coagulation activity and possibly a changed in vivo half-life.
  • mutated prothrombin mutants or derivatives thereof are understood to mean all proteins which can be derived from the protein sequence of prothrombin and which have the essential binding determinants of thrombin which are necessary for binding to the thrombin-specific, natural and synthetic anticoagulants.
  • the structure of the prothrombin mutant should therefore not be changed as much as possible by the mutations compared to the wild-type protein or to its proteolytic derivatives, so that an optimal binding to the ligands, in particular to the natural ligands, is ensured.
  • mutants and derivatives according to the invention that the change in the protein sequence does not influence the binding capacity to thrombin-specific ligands and receptors, such as natural and synthetic anticoagulants.
  • mutants or derivatives according to the invention have a binding capacity of at least 80% of the binding must have capacity of the natural thrombin, so that the binding capacity can be regarded as not influenced. Mutants or derivatives, which have a higher binding capacity than natural thrombin, naturally also fall under the present invention.
  • DAPA Dansylarginine-N- (3-ethyl-l, 5-pentanediyl) -amide
  • Pei et al., J.Biol.Chem. 266: 9598, 1991 or by examining the binding affinity to an immobilized natural and syn ⁇ theoretical anticoagulant or inhibitor.
  • the natural synthetic anticoagulant or the inhibitor is immobilized on a solid matrix, a sample containing the derivative to be examined in a certain amount is brought into contact with the natural and synthetic anticoagulant or the inhibitor, the amount of bound ⁇ ) Mutant or derivative determined and the results relativized with a parallel determination with natural thrombin.
  • mutants or derivatives according to the invention should preferably be completely inactive, i.e. they should have no thrombin or thrombin-analogous activity.
  • derivatives with minor activity can also be used successfully according to the invention, since an activity of at most about 10%, in particular at most 0.25%, of the natural thrombin does not generally lead to undesirable side effects, e.g. Tendency to coagulate.
  • the mutants or derivatives according to the invention are further distinguished in that they can form a complex with hirudin and are therefore able to neutralize hirudin. Furthermore, they can dissociate a complex consisting of plasmatic or recombinant wt thrombin with hirudin, and that thereby freeing up hirudin complex. This also means that the released plasmatic or recombinant wild-type (wt) thrombin is active again and can perform its function in blood coagulation. According to the invention, this is also a necessary parameter for the therapeutic use of the thrombin derivatives.
  • Preferred embodiments of the mutants or derivatives according to the invention have an in vivo half-life of more than one hour.
  • the change in the amino acid sequence can consist of the exchange of one or more amino acids, but it can also consist of a deletion, preferably a deletion, which corresponds to the processing procedure when activating prothrombin, or an insertion if these changes result in the parameters essential to the invention an activity of at most about 10%, in particular of at most 0.25%, of the natural thrombin and a deletion binding to thrombin ligands and receptors are fulfilled.
  • the term "derivative" is intended to encompass both the mutated and the processed mutated proteins.
  • the most suitable amino acids to be introduced are those which influence the spatial structure of the protein as little as possible. These are either very small amino acids, such as alanine, or amino acids that are very similar to the original amino acid and differ from it only by a functional group, for example asparagine and aspartic acid.
  • the parameters according to the invention make the mutants or derivatives mentioned ideal thrombin inhibitor antagonists since they do not have the disadvantages mentioned in the prior art, namely undesired coagulation activity, toxicity or a lack of efficiency or specificity.
  • mutants or derivatives according to the invention are inactive or at most an activity of about 10%, in particular of at most about 0.25% of the natural thrombin (as a result of which the in vivo thrombin activity of the mutants or derivatives is still somewhat below this about 0.25% ), these cannot lead to undesirable coagulation effects even if they are administered in an overdose.
  • mutants or derivatives according to the invention are highly efficient and highly specific as antagonists, since their binding determinants are essentially unchanged from the natural and synthetic inhibitors and correspond to those of the natural thrombin.
  • Preferred changes in the protein sequence relate to amino acids from the active center of the prothrombin, meizothrombin or thrombin molecule, in particular the amino acids His-363 and Asp-419, based on the amino acid numbering in human prosthrombin according to FIG. 1 (the numbering of the amino acids
  • the cDNA sequence and the amino acid sequence of prothrombin are shown in Fig. 1.
  • the cleavage sites of factor Xa are indicated in the cDNA sequence so that the cDNA and amino acid sequence of the thrombin can be derived
  • the numbering begins with the 1st amino acid of the mature prothrombin after the leader sequence and the propeptide have been split off
  • the cDNA sequence of the prothrombin is in SEQ. ID.NO. 8, the amino acid sequence in SEQ. ID.NO 9 reproduced.).
  • amino acid aspartic acid 419 (Asp-419) has no close contact with the bound hirudin, which is why the exchange of this amino acid is particularly preferred in the context of the present invention.
  • cysteine residues Cys-293 and Cys-439 are related to amino acid numbering in prothrombin according to Fig.l, also preferred. These mutations enable the formation of a single-chain thrombin derivative (since the sulfur bridge bond between the B chain and the A chain is prevented) which, despite binding to hirudin, ultimately has no enzymatic activity (since the A chain is absent). In this case, the amino acids serine and alanine offer themselves as exchange partners.
  • the invention therefore preferably relates to prothrombin mutants or derivatives in which at least one amino acid selected from His-363 or Asp-419 and optionally Cys-293 or Cys-439 has been changed, in particular Asp-419 mutants.
  • a very particularly preferred embodiment of the mutants or derivatives according to the invention relates to mutants or derivatives in which the amino acid Asp-419 is replaced by Asn.
  • this variant is inactive, even against the artificial substrate AcOH-HD-CHG-Ala-Arg-pNA, only has a residual activity of about 0.25%, so that no coagulation-active side effects are to be expected .
  • the binding capacity of this derivative for example with respect to hirudin, cannot be distinguished from that of natural thrombin, since the structural change which the exchange Asp for Asn entails is very small and, moreover, the binding to the natural and synthetic ones Inhibitors, in particular hirudin, not in the region of the protein concerned.
  • prothrombins Although mutated prothrombins have been described in the prior art, derivatives which the claimed claims have been described Have properties have not yet been disclosed. However, it is precisely these properties which make the use of the prothrombin, meizothrombin and thrombin derivatives according to the invention so advantageous.
  • the serine 528 in the active center of the bovine prothrombin (synonymous with the serine 525 in the corresponding human prothrombin) was mutated to an alanine.
  • Basic science experiments were then carried out with such a mutated prothrombin in order to study the influence of this mutation on the expression, ⁇ -carboxylation and activation of prothrombin.
  • the structural analysis of the thrombin-hirudin complex has shown that amino acids from the active center of thrombin also make a weak contribution to the formation of the complex.
  • Ser-525 can form hydrogen bonds in human prothrombin to the N-terminal amino acid of hirudin and be located within a radius of 3.2 A from the N-terminus of hirudin. Ser-525 thus apparently contributes to the binding of hirudin (Rydel et al., Science 249: 277, 1990).
  • the bovine Ser 528 variant only has a 74% binding capacity compared to DAPA, compared to natural thrombin. This confirmed the assumption that this serine residue lies directly in the DAPA or hirudin binding determinant. Therefore, mutations which only affect the Ser 528 site in bovine prothrombin or the Ser 525 site in human prothrombin do not meet the requirement of sufficient binding capacity to the inhibitor.
  • thrombin fragments with larger deletions were produced (Gan et al., Arch. Biochem. Biophys. 1993: 301, 228).
  • a degradation product of thrombin, ⁇ -thrombin was obtained which has amino acids 469 to 579 of the ⁇ -thrombin sequence.
  • the amino acids arginine-517 (against glutamine), aspartic acid-519 (against glutamine) and serine-525 (against alanine) were mutated and less activity was found in the individual mutants than in wild-type thrombin.
  • the ability to bind hirudin was only partially preserved with some ⁇ -thrombins.
  • the Ser-525-Ala mutant showed the lowest enzymatic activity and the best results in terms of hirudin binding, but the binding capacity in these tests was significantly below that of natural thrombin. Although it was shown that the thrombin fragments compete with thrombin-hirudin binding to varying degrees in competitive binding studies and an absolute indication of the binding ability of the fragments to hirudin was not made, the results showed, however, that the binding capacity to hirudin was significantly reduced by the mutation has been.
  • ⁇ -thrombins are therefore not suitable for the object on which the invention is based: they are very greatly changed in comparison to the wild-type thrombins, and optimum binding to the natural ligands cannot be guaranteed.
  • prothrombin or thrombin derivatives described in the prior art.
  • prothrombin mutants derivatives
  • ⁇ -thrombin fragments there is also no information about a therapeutic or diagnostic application of these prothrombin mutants (derivatives) or ⁇ -thrombin fragments.
  • the present invention relates to the use of prothrombin mutants or derivatives thereof as medicaments, in particular for the production of a medicinal preparation for preventing side effects in an anticoagulation treatment, or as diagnostics.
  • This use of the mutants or derivatives according to the invention is particularly preferred for anticoagulation treatments with hirudin, heparin, antithrombin III and / or their derivatives, and also synthetic inhibitors.
  • the medical treatment according to the invention therefore comprises the administration of an effective dose of the prothrombin mutants or derivatives thereof to a patient, preferably by intravenous administration.
  • the effective dose depends on each individual case and should preferably be optimized using the results obtained in a thrombin and / or hirudin determination.
  • the prothrombin mutants or derivatives with the properties according to the invention with regard to insufficient thrombin activity and sufficient binding capacity are of course preferably used, but under certain conditions known derivatives can also be used, in particular those which are largely inactive, such as e.g. an analog to the bovine Ser-528 mutant described above (or its thrombin derivative), but one must accept the lack of the deteriorated binding capacity.
  • the in vivo half-life of the proteins in the blood circulation is influenced by the glycosylation.
  • Proteins from mammalian cells can be glycosylated via amino acid side chains of asparagine (N-glycosylation) and serine / threonine (O-glycosylation) located on the protein surface.
  • the glycosylation of circulating proteins delays excretion the blood circulation, ie prolongation of the half-life.
  • Recombinant proteins, produced by manipulating mammalian cells are naturally provided with the natural glycosylations which are usual for mammals and thus correspond to the surface structure of the corresponding human proteins.
  • amino acids located on the surface of a protein e.g. Asparagine (Asn) or serine (Ser) or threonine (Thr) into another amino acid, or by deleting one of these amino acids e.g. the native glycosylation can be abolished. It is known that weakly or non-glycosylated proteins are eliminated from the circulation much faster, i.e. that their half-life is shortened.
  • mutation and amino acid exchange of individual amino acids located on the protein surface in e.g. Asparagine increases the number of glycosylation sites of a protein molecule and thus also extends the in vivo half-life. Depending on the number of mutated, deleted or additionally introduced asparagine residues in the protein, the half-life can be varied.
  • Mutants in which the half-life of the protein is shortened by mutation are particularly suitable for the use according to the invention of the prothrombin mutants or derivatives thereof as antagonists against thrombin inhibitors. Therefore, mutants which have a half-life of at most 10 minutes are preferably used as antagonists.
  • the medical use according to the invention of the mutated prosthrombin mutants or derivatives also includes their use as anticoagulants by competitive inhibition of thrombin or as antagonists of their natural functions. This enables medicine to control blood coagulation with an almost nature-identical product.
  • prothrombin mutants or their derivatives are particularly suitable as Anticoagulants in vivo.
  • prothrombin mutants or derivatives thereof for the use according to the invention of the prothrombin mutants or derivatives thereof as anticoagulants, those mutants in which the half-life of the protein is increased by targeted amino acid exchange are particularly suitable. Those inactive mutants which have a half-life of more than 1 hour are therefore preferably used as anticoagulants.
  • prothrombin mutants according to the invention When used as anticoagulants, after application, corresponding to the natural protein, they are processed in vivo to inactive thrombin, which is then able to displace active thrombin occurring in the blood from its receptors.
  • the prothrombin mutant can optionally also be activated in vitro to the corresponding thrombin or meizothrombin mutant and the activated form can be used directly for administration to the patient.
  • blood coagulation can be slowed down or completely stopped in vivo.
  • prothrombin mutants or derivatives thereof which are characterized by an increased in vivo half-life, show the particular advantage that they circulate in the blood much longer than their natural proteins and can therefore effectively influence blood coagulation.
  • the amount of therapeutically used protein can also be reduced accordingly, if necessary.
  • the mutated prothrombin derivatives according to the invention are preferably produced using recombinant DNA technology.
  • the invention therefore also relates to a method for producing the prothrombin mutants or derivatives according to the invention, in which the genetic information of prothrombin is mutated, preferably point-mutated, and in a eukaryo- is expressed expression system and then the expressed derivative is obtained.
  • the human sequences are preferably used here.
  • expression in eukaryotic systems has the advantage that post-translational modifications such as glycosylation and carboxylation are also carried out and thus make the expressed protein more suitable for use in humans.
  • the mutated sequence parts of thrombin were expressed in E. coli and the recombinant peptides artificially provided with sulfur bridges in vitro.
  • the yield of expressed and suitable for experiments thrombin-like structures was accordingly very low.
  • the loss of thrombin activity can be attributed to the lack of large parts of the thrombin sequence as well as to the mutations introduced.
  • the cDNA sequence of the human prothrombin or the cDNA sequence of the human thrombin is preferably point-mutated, which results in an exchange of at least one amino acid in the amino acid sequence.
  • the mutation place according to the invention in the region of the prothrombin sequence which lies in the thrombin sequence after activation of the prothrombin.
  • the mutated prothrombin derivatives are preferably expressed in CHO-DUXS B1 cells (Urlaub & Chasin, Proc. Natl. Acad. Sci. USA 77: 4216, 1980) under the control of the SV40 promoter.
  • expression can be carried out using any conventional expression system, such as yeast, permanent cell lines or viral expression systems, and using any cell line which ensures that the protein is processed correctly and secreted in its functional form.
  • Proper processing of the derivatives includes not only complete glycosylation but also complete ⁇ -carboxylation.
  • the common eukaryotic expression systems include yeast, permanent cell lines (which are either created by stable integration of the foreign DNA into the host cell chromosomes, eg Vero, MRC5, CHO, BHK, 293, Sk-Hepl, in particular liver and kidney cells, or but through the use of a vector which is permanently inherited in the episomal state, for example vectors which are derived from papilloma viruses and which grow in C-127 cells, for example), or viral expression systems such as vaccinia virus, baculovirus or retroviral systems. Vero, MRC5, CHO, BHK, 293, Sk-Hepl, in particular liver and kidney cells, can generally be used as cell lines.
  • prothrombin mutants or derivatives Following the extraction of the expressed derivatives, further processing steps can then be carried out.
  • One possibility in the further processing of prothrombin mutants or derivatives is a process step in which the prothrombin derivative is cleaved into meizothrombin analogs by means of a snake venom protease (e.g. Venom protease).
  • a snake venom protease e.g. Venom protease
  • These meizothrombin analogs can then also be used as antagonists to the natural functions of thrombin, but show no enzymatic thrombin activity. All methods known from the literature can be used.
  • a prothrombin derivative obtained can be converted into the thrombin derivative using trypsin, preferably immobilized trypsin.
  • trypsin preferably immobilized trypsin.
  • any common method for cleaving prothrombin into thrombin can of course be used, including those that make use of other suitable proteases, for example with the snake venom from E. carinatue (Ecarin) or from 0. scvutellatus.
  • the derivatives according to the invention are either prepared with a physiological saline solution and optionally lyophilized, or lyophilized in distilled water and reconstituted with a physiological saline solution before administration.
  • the preparations can also be kept ready for use in other customary solutions and / or with a pharmaceutical carrier or auxiliary.
  • the preparations are in one for parenteral administration, i.e. form suitable for subcutaneous, intramuscular or intravenous administration.
  • preparations according to the invention are free from contamination by viruses.
  • preparations Before being released for medical use, the preparations can also indicate possible contamination by residual nucleic acids of the expression cell line using an extremely sensitive PCR method (for example, described in Austrian patent application A 1830/94) examined and if necessary cleaned again.
  • the derivatives according to the invention must be checked for their ability to bind their natural ligands.
  • a test system was developed for this, in which the binding capacity of the (pro) thrombin derivatives to hirudin or hirudin derivatives is analyzed qualitatively and quantitatively in a simple and reproductive manner.
  • This test system consists of a solid matrix to which natural or recombinant hirudin, derivatives or peptides thereof are bound.
  • the derivative according to the invention is finally bound to this immobilized hirudin and can by a subsequent detection reaction can be detected.
  • the invention therefore also relates to a solid matrix to which natural or recombinant hirudin, derivatives or peptides thereof are bound, and their use in the determination of thrombin or thrombin derivatives.
  • the determination can include both the quantification and the determination of the binding capacity of the thrombin or thrombin derivative.
  • a solid matrix means any solid phase on which the natural and synthetic inhibitor can be effectively immobilized, for example natural polymers, such as cellulose, starch, dextran, alginates, agarose, collagen, in particular the Sepharose or Cellulose materials, synthetic polymers such as polyacrylamide, polyvinyl alcohol, methyl acrylate, nylon or oxiranes, which can easily be shaped into user-friendly devices, such as, for example Microtiter plates, and finally inorganic materials, such as porous glasses, silica gel, etc. (see also Römpp Lexicon of Biotechnology, pages 385 ff.).
  • natural polymers such as cellulose, starch, dextran, alginates, agarose, collagen, in particular the Sepharose or Cellulose materials
  • synthetic polymers such as polyacrylamide, polyvinyl alcohol, methyl acrylate, nylon or oxiranes, which can easily be shaped into user-friendly devices, such as, for example Microtiter plates, and finally inorganic materials,
  • the device according to the invention With the device according to the invention, a simple and precise determination of the thrombin or thrombin derivative concentration can be carried out, whereby not only the active thrombin itself can be determined, but also enzymatically inactive or only weakly active prothrombin or thrombin and derivatives thereof. Furthermore, due to its user-friendly design, the device according to the invention can also be used indirectly for determining the concentration of any thrombin-binding substances, such as thrombin inhibitors, but especially hirudin. In addition, a determination of the binding strength of thrombin or thrombin derivatives to the respectively examined natural and synthetic inhibitors can also be determined with the device according to the invention.
  • thrombin or thrombin derivatives are understood to mean all proteins which can be derived from the protein sequence of the prothrombin, in particular those described above. wrote mutant thrombin, meizothrombin or prothromine derivatives. The derivative can also be changed in the binding determinants, as long as these changes do not rule out binding to the natural and synthetic inhibitors.
  • the thrombin derivatives can differ from natural thrombin in one or more point deletion or insertion mutations.
  • Prothrombin derivatives, meizothrombin and their derivatives can also be determined using the device according to the invention and - insofar as they relate to the determination thereof - are also to be regarded as thrombin derivatives within the scope of the present invention.
  • a test kit for the actual quantification of thrombin, thrombin derivatives and / or hirudin or hirudin derivatives, a test kit is provided according to the invention which contains the device according to the invention and one or more containers with reagents for a specific detection reaction, preferably a thrombin derivative-specific detection reaction.
  • Specific detection reaction should be understood to mean any suitable detection reaction, in particular those reactions which work with dyes (peroxidase, alkaline phosphatase, luminescence reactions, biotin, avidin or biotin-streptavidin (as amplification systems)) or radioactive determination methods.
  • the color reaction which is easier to handle, is preferably preferred for radioactive determination to determine the concentration.
  • peroxidase-labeled sheep anti-thrombin antibodies are used for the invention and the substrate solutions customary for the peroxidase reaction are used for the color reaction.
  • the test kit according to the invention furthermore contains a container with a physiological buffer solution containing a carrier protein, whereby the reproducibility of the quantification is considerably improved.
  • the specific detection reaction in the context of the test kit according to the invention is preferably a labeled thrombin-binding substance, since the determination of thrombin is common in the clinic is of outstanding importance compared to the other determinable components.
  • a large number of labeled thrombin-binding substances are known in the prior art.
  • a dye-labeled polyclonal or monoclonal antibody against thrombin is preferably used. Detection by means of chromogenic substances is often preferred to radioactive determination methods, since the dye reactions do not involve any radioactive contamination and the strict safety measures when working with radioactive material often make the radioactive determination method very impractical.
  • the detection process can proceed according to the process steps common in protein chemistry.
  • a thrombin solution is incubated with the hirudin-coupled solid matrix for 15 minutes to 16 hours, preferably between 45 minutes and 4 hours.
  • the reaction usually takes place in a physiological buffer, preferably in a Tris-HCl buffer. It is particularly advantageous if the physiological salt buffer contains a carrier protein, e.g. Albumin is added.
  • test kit according to the invention further comprises a reference solution containing thrombin, which allows the establishment of a reliable calibration line in the test system.
  • the invention relates to a method for quantifying thrombin or thrombin derivatives, which is characterized by the following steps:
  • the specific detection reaction can either be carried out in the context of the test kit according to the invention with the reagents for a specific detection reaction or directly by a measuring device on the solid matrix itself, for example with a sensor chip with a connected measuring system.
  • the method according to the invention can be carried out in a simple manner, it being particularly suitable for rapid and uncomplicated use in the clinical field.
  • a preferred embodiment of the method according to the invention relates to a method in which the specific detection reaction is a color reaction, the concentration of thrombin or thrombin derivative being determined by correlation with the intensity of the color reaction.
  • the method according to the invention is also suitable for the quantification of hirudin or hirudin derivatives, such a method being characterized by the following steps:
  • the present invention relates to the use of the device according to the invention or the test kit according to the invention for the quantification of thrombin, thrombin, Binder derivatives and / or hirudin or hirudin derivatives and for determining the binding strength of thrombin or thrombin derivatives to hirudin or hirudin derivatives.
  • this test kit can also be used for the first time to determine the binding strength of thrombin or thrombin derivatives to hirudin or other thrombin-preventing substances.
  • the binding strength of thrombin to hirudin is particularly interesting when thrombin derivatives are present, the binding properties of which are unknown to hirudin.
  • test kit can also be used for the functional analysis of hirudin antagonists.
  • the method can also be used when testing hirudin peptides or hirudin derivatives as effective anticoagulants.
  • test kit according to the invention is therefore suitable for answering all questions relating to concentration, binding strength and functionality which arise in connection with thrombin, hirudin and blood coagulation. It should be particularly emphasized that an extremely precise result can be achieved due to the specificity of the binding of hirudin to thrombin. Contamination by other blood factors or proteins cannot falsify the result. The presence of prothrombin does not interfere with the analyzes either, since prothrombin does not bind to hirudin.
  • hirudin is coupled to the matrix in a buffer system.
  • any buffer which is free of amino groups such as phosphate buffer, citrate buffer or preferably carbonate buffer, is suitable as the buffer system.
  • the pH value of the buffer system should ge are between 6 and 10, preferably at pH 9.3 to 9.7.
  • the coupling reaction of hirudin to the solid support is incubated between one and 48 hours, preferably between one and 16 hours.
  • the incubation time depends essentially on the incubation temperature, preferably in the case of a coupling reaction in the cold (4 ° C.) for 16 h, at room temperature for two to three hours and at 37 ° C. for one hour.
  • the excess, unbound hirudin is removed according to the invention with a washing buffer from a physiological salt solution, preferably from a Tris-HCl buffer.
  • a detergent preferably Tween 20, can be added to this washing buffer, the detergent concentration being between 0.01 and 1%, preferably 0.1%.
  • concentrations of thrombin or thrombin derivatives in the range from 0.1 pg / ml to 100 mg / ml thrombin, preferably in the range from 0.1 ng / ml to 200 ng / ml thrombin, can be determined.
  • test kit according to the invention is suitable for distinguishing thrombins with recombinantly designed, targeted mutations, deletions or insertions, it being possible to test whether the binding ability to hirudin has been retained regardless of the enzymatic activity.
  • This test according to the invention or the test kit according to the invention can be used in particular if the thrombin level in the blood is to be determined for a medical question in order to prevent thrombosis with a precisely metered dose of hirudin.
  • This test also has the particular advantage that thrombin can also be determined which is not functionally active and which is therefore not detectable in the tests which detect the enzymatic activity of thrombin. This is the case, for example, with genetic defects when physiologically inactive forms of thrombin are present.
  • the invention is explained in more detail with the aid of the following examples and associated drawing figures, to which, however, it should not be limited.
  • 1 shows the coding part of the cDNA sequence of recombinant human prothrombin and the amino acid sequence which can be derived therefrom, the physiological cleavage sites for processing the protein and the cleavage sites of factor Xa for activating the prothrombin Thrombin are shown; 2 shows the sequence listing; 3 shows a summary of the point mutation of a preferred prothrombin derivative in comparison to wt prothrombin, the underlined amino acid / nucleotides having been replaced; 4A shows the flow diagram of the cloning of the prothrombin Asn419; 4B shows a western blot for comparing plasmatic prothrombin, recombinant wt prothrombin and prothrombin Asn419; 5: the denaturing electrophoresis of individual purification stages of recombinant prophrombin derivative (A: cell culture supernatant; B: eluate 3; C: eluate 4; D: molecular weight marker); 6: the denatur
  • FIG. 12 shows the molecular structure of the catalytic Center in the thrombin-hirudin complex (comparison of human thrombin and recombinant thrombin derivative), with arrows pointing to the structural change caused by the mutation Asp ⁇ Asn and Ser, His and Asp or Asn the position of the amino acids of the catalytic center in the Thrombin molecule and Ile denote the N-terminal amino acid of hirudin.
  • Example 1 uses the example of prothrombin Asn419 to show how a point-mutated prothrombin can be obtained.
  • Example 2 demonstrates the purification and functional analysis of the prothrombin derivative.
  • Example 3 shows the recovery and functional analysis of the thrombin derivative.
  • Example 4 quantifies the binding activity of the thrombin derivative to hirudin;
  • Example 5 checks the prothrombin derivative for its ability to act as an antagonist of hirudin.
  • Example 6 shows that hirudin can be neutralized by the thrombin derivative.
  • Example 7 shows that the thrombin derivative can reactivate thrombin from a thrombin-hirudin complex;
  • Example 8 shows that the thrombin derivative is also effective in plasma and
  • Example 9 shows the recovery and functional analysis of a meizothrombin derivative.
  • Example 1 Construction of pSV-FIIwt and pSV-FII-Asn419 (Asp to Asn)
  • the plasmid pSVß (Nucl. Acids Res. 17: 2365; 1989) was cut with NotI to remove the internal ⁇ -galactosidase gene fragment. The remaining vector was religated and called pSV.
  • pSV was cut with HindII and Xbal. After removing the small polylinker fragment, the vector ends were filled in with Klenow enzyme and religated. The resulting plasmid was called pSV ⁇ .
  • the MCS was chemically synthesized in the form of two complementary oligonucleotides:
  • the two oligonucleotides were annealed and set in pSV ⁇ . Since the MCS insert had Xhol-compatible, "sticky" ends, but no complete Xhol sites, the ligation reaction was cut with Xhol. Constructs that could not be cut represented the desired plasmid, which was called pSV-MCS III.
  • a DNA fragment with the complete, human wt prothrombin cDNA was excised from plasmid pTKemc-PT2 (WO 91/11519) by means of partial Ncol and complete Smal restriction digestion.
  • This fragment was placed in the vector pSV-MCS III after it was also fully opened via partial Ncol and complete Smal digestion.
  • the resulting plasmid was named pSV-FIIwt and expresses wt prothrombin as evidenced by transient expression in COS cells and stable expression in CHO cells; the order of the functional elements on pSV-FIIwt is SV40 promoter / enhancer (of the early genes), SV40-5 'UTR, wt prothromine bin cDNA, SV40-16s / 19s intron, SV40 polyadenylation site, and pUC 19 sequences (with bacterial origin of replication and ampicillin resistance gene).
  • pSV-FIIwt was mutated: the codon coding for said aspartic acid is located on an EcoRV-DralII restriction fragment. Both restriction sites are unique in pSV-FIIwt.
  • the intended mutagenesis was carried out by means of a polymerase chain reaction with the primer pair 2104/2066 (Seq.ID.No.3 and 4), as a result of which the wt-prothrombin-EcoRV-Swalll fragment by the PCR containing the mutation Ecll36lI-DraIII fragment was substituted.
  • the two oligonucleotides were chemically synthesized:
  • Primer 2104 (5'-TAACTGACGG TCCTTGAGCT CCATGTTGGA AAAGATCTAC ATC-3 ') (Seq.ID.No.3) as a 5' primer; after the polymerase chain reaction, the Ecll36ll 'half site' is ligated onto the EcoRV 'half site' of the vector, whereby some nucleotides of the wt prothrombin have been changed at the DNA level, but the amino acid sequence as in the wt prothrombin preserved.
  • Primer 2066 (5'-GCAGACACAC AGGGTGAATG TAGTCACTGA AGGCAACAGG CTTCTTCAGC TTCATCAGGG CAATATTCCG GTCCAGGTTC TCCCGC-3 ') (Seq.ID. No.4) as 3' primer; this primer mutates the aspartic acid into asparagine at the DNA level, an Sspl restriction site is introduced and a Neil site is lost.
  • the PC reaction was carried out under standard conditions at an annealing temperature of 55 ° C.
  • the resulting plasmid pSV-FIIAsn419 which contains the Asp ⁇ Asn mutation, was identified by its restriction pattern with EcoRV, Dralll, Sspl, and Neil in comparison with pSV-FIIwt.
  • the expected nucleotide sequence of the Ecll36II-DraIII insert in pSV-FIIAsn419 was determined by subsequent sequencing with the 5 'and 3' primers 2197 (5'-CATAAGCCTG AAATCAACTC-3 ') (Seq.ID. No.5) and . 2198 (5'-CTTCGGAGCG TGGAGTCATC-3 ') (Seq.ID.No.6) confirmed.
  • Dihydrofolate reductase gene-deficient CHO-DUKS B1 grow routinely in "full medium” (DMEM / Ham's F12 1: 1 medium, supplemented with 2 mM glutamine, 0.075% bicarbonate, 100 IU penicillin and 100 mg streptomycin / ml, 10% fetalem Calf serum, and 10 mg deoxyadenosine, adenosine, and thymidine per ml).
  • DMEM / Ham's F12 1 1 medium, supplemented with 2 mM glutamine, 0.075% bicarbonate, 100 IU penicillin and 100 mg streptomycin / ml, 10% fetalem Calf serum, and 10 mg deoxyadenosine, adenosine, and thymidine per ml.
  • the cells were treated with 10 ⁇ g pSV-FIIwt or pSV-FIIAsn-419 and 1 ⁇ g pSV-dhfr (Fischer et al., FEBS Lett . 351: 345, 1994) co-transfected: 25 ml of 2.5M CaCl 2 were added to the DNA in 250 ml 1mM Tris pH 8.0.0.0mM EDTA. Then 250 ml of 280mM NaCl, 45mM Hepes, 2.8mM Na 2 HP0 4 , pH 7.12 were added. After 10 minutes, the resulting DNA coprecipitate was added to the subconfluent cells.
  • the medium was suctioned off and the cells were overlaid with 15% glycerol in PBS.
  • the glycerin was aspirated, the cells were washed with PBS, and the cells were provided with fresh "complete medium".
  • DMEM / F12 1 1 medium without hypoxanthine, glycine and thymidine; supplemented with 2 mM glutamine, 100 IU penicillin and 100 mg streptomycin / ml, and 10 % dialyzed fetal calf serum with an exclusion volume of 10OOOOd.
  • selection medium DMEM / F12 1: 1 medium without hypoxanthine, glycine and thymidine; supplemented with 2 mM glutamine, 100 IU penicillin and 100 mg streptomycin / ml, and 10 % dialyzed fetal calf serum with an exclusion volume of 10OOOOd.
  • Example 2 Purification and activity determination of recombinant wt prothrombin and prothrombin derivatives
  • buffer D 50 mM Tris / HCl buffer pH 7.4, 180 mM NaCl (buffer B) 50 mM Tris / HCl buffer pH 7.4, 300 mM NaCl (buffer C) 50 mM Tris / HCl buffer pH 7.4, 160 mM NaCl , 10 mM Ca acetate (buffer D)
  • the recombinant wt prothrombin and the prothrombin derivative from the cell culture supernatant were purified by Liquid chromatography. During the chromatography, the course was followed in the usual way by absorption measurement at 280 nm. The content of prothrombin or prothrombin derivatives of the individual fractions and eluates was determined in the usual way by means of ELISA using commercially available prothrombin preparation as standard.
  • the total protein concentration was determined by the method of Bradford, M. (Anal. Biochem. 72, 248 (1976)).
  • the anion exchange column was equilibrated with buffer A and then 970 ml of cell culture supernatant (prothrombin content (ELISA) 20 ⁇ g / ml; protein concentration 2.7 mg / ml) at a rate of 4 ml / Minute applied. Material not bound to the exchange gel was removed by rinsing the column with buffer A (eluate 1: 1030 ml: 1.2 mg / ml). Proteins weakly bound to the column were then removed by rinsing the column with buffer B (eluate 2: 20 ml; prothrombin content (ELISA) 2 ⁇ g / ml; total protein content 10.0 mg / ml).
  • ELISA cell culture supernatant
  • the column was then eluted with buffer C and protein bound to the column was obtained in the eluate (eluate 3: 30 ml; prothrombin content (ELISA) 355 ⁇ g / ml; total protein content 16 mg / ml).
  • the column was then regenerated by washing with 1 M NaCl solution and equilibrated with buffer D. 28 ml of eluate 3 were diluted 1.9 times with buffer A and Ca acetate was added to the final concentration of 10 mM. This solution was again filtered through the anion exchange column and rinsed with buffer D, whereby unbound protein in the eluate (eluate 4: 60 ml; prothrombin content (ELISA) 170 ⁇ g / ml) was obtained.
  • Example 3 Extraction, analysis and activity determination of wt-thrombin and thrombin-Asn99
  • Thrombin-Asn99 was obtained analogously to the method described in EP-A-0 565 512 by cleaving the prosthrombin Asn419 using immobilized trypsin.
  • the eluate obtained after the activation was examined by means of denaturing SDS-PAGE (FIG. 6).
  • the results of SDS-PAGE show that recombinant prothrombin derivative was converted into a thrombin derivative (thrombin-Asn99) with a molecular weight of 33,000 (heavy chain).
  • the N-terminal amino acid sequence analysis showed the following two sequences: (A) Thr-Ala-Thr-Ser-Glu-Tyr-Gln-Thr-Phe-Phe-Asn-Pro-Arg-Thr-Phe; (B) Ile-Val-Glu-Ser-Asp-Glu-Ile-Gly-Met-Ser-Pro Trp-Gln.
  • the sequences thus show that the recombinant thrombin derivative by proteolysis at the authentic cleavage sites of prothrombin (Arg271-Thr272 and Arg320-Ile321) as a double-chain molecule with an ⁇ -thrombin structure.
  • Figure 12 shows the molecular structure of the catalytic center.
  • FIG. 12 shows the comparison of human thrombin and the recombinant thrombin derivative Asn99.
  • the thrombin activity was determined using a chromogenic substrate at 25 ° C. in 50 mM Tris / HCl buffer, 150 mM NaCl, 0.1% PEG 6000, pH 8.0, with a concentration of the synthetic chromogenic substrate of 0. 2mM AcOH-DH-CHG-Ala-Arg-pNA (TH-1, pentapharm) in a volume of 1 ml. The absorption at 410 nm was determined as a function of time. Thrombin standard with defined activity (Immuno AG) was used as a reference The samples were diluted in the test buffer with the addition of 1% Prionex (collagen hydrolyzate, Pentapharm).
  • the activity determination revealed an activity of 0.24 nmol / min .mu.g protein for the recombinant thrombin derivative thrombin-Asn99.
  • Thrombin-Asn99 thus only has an activity of 0.24% in the chromogenic assay against human plasma thrombin.
  • Table 1 Determination of thrombin activity using a chromogenic substrate
  • Thrombin derivative specific activity ___ (nmol / min ⁇ g protein)
  • thrombin derivatives were examined for their thrombin activity using a thrombin standard (Immuno AG) defined activity. In this activity determination, no activity was found for thrombin-Asn99 (Table 2).
  • Thrombin derivative activity (IU / mg protein)
  • the active center of the thrombin derivatives was titrated by the method of M.F. Doyle and P.E. Haley (Methods in Enzymology (1993), 222, 299-312), using p-nitrophenyl-p'-guanidinobenzoate as substrate and an extinction coefficient of 16,595 M cm at 410 nm.
  • Thrombin derivative concentration of active thrombin (nmol / mg protein)
  • thrombin-Asn99 shows extremely low thrombin activity in only one of three test methods, which corresponds to approximately 1/400 of the native thrombin activity.
  • Recombinant wt thrombin and human plasma thrombin show very similar activity patterns.
  • hirudin from the thrombin derivative thrombin-Asn99 was examined by means of an ELISA test and compared with human plasma thrombin and recombinant wt thrombin.
  • This ELISA test is based on the use of immobilized hirudin.
  • thrombin is bound to hirudin, which is immobilized on microtiter plates, and detected via antibodies with a subsequent color reaction. This test is independent of the enzymatic activity of the thrombin.
  • Recombinant hirudin variant 1 (variant 1; Rhein Biotech company, FRG; 2 ⁇ g / ml, 100 ⁇ l) is bound to microtitration plates to produce the ELISA plates. After washing, recombinant wt thrombin, thrombin Asn99 or human plasma thrombin (100 ⁇ l of a solution with concentrations according to FIG. 7) were added and incubated for one hour. Non-bound thrombin was removed and bound thrombin using per- oxidase-labeled anti-thrombin immunoglobulin (Sheep anti-human thrombin;. Enzyme Research Lab Inc., Indiana USA; ul 100 a, 00 "dilution) were detected (Fig. 7). The measurement of the tion took place at 450 nm.
  • the binding constant of thrombin to hirudin was determined using fluorescence emissions using the PC program ENZFITTER (RJ. Leatherbarrow, Elsevier-Biosoft, 1987) using a binding model with a common binding site.
  • the intrinsic fluorescence of aromatic amino acids of the thrombin derivatives was determined in 50 mM Tris / HCl buffer, 150 mM NaCl, 0.1% PEG 6000, pH 7.4. The excitation took place at 280 nm (slit width 2.5 nm), the emission was registered between 300 nm and 400 nm (slit width 5 nm).
  • the intrinsic fluorescence of tryptophan in the thrombin molecule was excited at 280 nm and the emission was measured between 300 nm and 400 nm without adding hirudin or in the presence of hirudin.
  • the fluorescence at 341 nm (excitation 280 nm) of 390 nM thrombin-Asn99, 326 nM recombinant wt-thrombin and 350 nM human plasmatic thrombin was determined as a function of the hirudin concentration.
  • thrombin derivative Thrombin-Asn99 is compared with recombinant wt thrombin and human plasma thrombin. It can be seen from the results that in the presence of hirudin for all three thrombin derivatives, the fluorescence of tryptophan in the thrombin molecule (hirudin has no tryptophan) increases significantly (FIG. 8). This is obviously due to the formation of a hirudin-thrombin complex.
  • Trp 51, Trp 148 and Trp 227 from thrombin in particular come into contact with the inhibitor by hirudin binding.
  • FIG. 8 shows the dependence of the thrombin fluorescence on the hirudin concentration. Very similar bindings of hirudin to thrombin were obtained for all three thrombin derivatives. The binding of hirudin to all three thrombin derivatives corresponds to saturation and results in one binding site per thrombin molecule.
  • Example 5 Recombinant prothrombin as a hirudin antagonist
  • Coagulometer KC 10 (Amel Institute GmbH, Germany) Prothrombin-free normal plasma (Immuno AG, Vienna) Prothrombin concentration standard (Immuno AG, Vienna) Recombinant hirudin (Rhein Biotech, Germany)
  • prothrombin time test In a conventional laboratory method, the time required after activation of the factors involved in blood coagulation to determine normal plasma to coagulate was determined using a prothrombin time test. In this test, by adding Ca ions to the mixture of 1. Prothrombin-free Normal plasma (which however contains all other coagulation factors) and 2nd prothrombin concentration standard (prothrombin with defined activity) the coagulation factor Xa is formed, which then converts prothrombin (factor II) into thrombin (factor Ha). Thrombin then causes soluble fibrinogen to convert to insoluble fibrin. This leads to the formation of blood clots. The time interval between activation by adding the Ca ions and the formation of the blood clot is automatically determined by the coagulometer.
  • the duration of the blood coagulation depends on the concentration of the prothrombin or the concentration of the active thrombin formed. The higher the thrombin concentration in the reaction mixture, the shorter the clotting time.
  • a thrombin inhibitor such as hirudin
  • an inactive thrombin-hirudin complex is formed after the conversion of prothrombin to thrombin, so that the thrombin bound in this complex can no longer participate in the conversion of fibrinogen to fibrin.
  • the clotting time increases due to the reduced amount of active thrombin. With an excess of inhibitor over thrombin, there is complete inhibition of blood clotting.
  • Prothrombin leads to a rapid formation of the blood clot.
  • Hirudin inhibits blood clotting.
  • the recombinant prothrombin derivative does not cause blood to clot.
  • the recombinant prothrombin derivative has no influence on blood coagulation by natural prothrombin.
  • thrombin-Asn99 can neutralize hirudin and thus the inhibition of active thrombin is removed.
  • 50 ⁇ l of hirudin (44 nM, 4 ATU / ml) with different concentrations of thrombin-Asn99 were incubated for 1 minute.
  • 50 ⁇ l thrombin standard (3.9 IU / ml) and also an homogenous substrate in the measuring buffer (0.2 mM substrate according to Example 3c in 50 mM Tris / HCl buffer, 150 mM NaCl, 0.1% PEG 6000) , pH 8.0) added and the enzyme activity determined at 25 ° C.
  • Thrombin activity was determined photometrically at 410 nm.
  • hirudin is neutralized by thrombin-Asn99, and thus the inhibitory effect of hirudin on active thrombin is eliminated.
  • thrombin inhibition is neutralized at a ratio of 1 mol thrombin-Asn99 to 1 mol hirudin.
  • Example 7 Reactivation of the thrombin-hirudin complex by thrombin-Asn99
  • the aim of the experiment was to determine whether the thrombin activity can be recovered by adding thrombin-Asn99 to the thrombin-hirudin complex, ie whether thrombin-Asn99 is able to extract hirudin from the thrombin-hirudin complex neutralize.
  • the activity of thrombin (final concentration 0.1 IU / ml) was determined continuously using a chromogenic substrate. After 3 minutes, hirudin (final concentration 0.1 ATU / ml) was added and the reaction was continued for a further 4 minutes. Then different concentrations of thrombin-Asn99 (final concentrations 0.2 ⁇ g / ml, 0.4 ⁇ g / ml and 1 ⁇ g / ml) were added and the reaction was monitored photometrically (FIG. 7).
  • Fig. 10 shows that adding hirudin to thrombin inhibits its activity. From the results it can further be seen that, with the addition of increasing concentration of thrombin-Asn99, the inhibitory effect of hirudin on thrombin can be eliminated.
  • hirudin neutralization is time-dependent; it takes about 1 minute for hirudin to be neutralized by Thrombin-Asn99. This is due to the very high bin the constant of hirudin due to thrombin, the equilibrium of which is therefore shifted over time in favor of free thrombin and the formation of a hirudin-thrombin-Asn99 complex.
  • thrombin-Asn99 is also able to neutralize hirudin in plasma and thus to cancel an inhibitory effect of hirudin on thrombin.
  • hirudin is also neutralized in plasma by thrombin-Asn99, and thus the inhibition of hirudin on plasmatic thrombin is eliminated.
  • Prothrombin-Asn419 from Example 1 was used to obtain recombinant meizothrombin-Asn419.
  • Prothrombin-Asn419 was converted into meizothrombin-Asn419 by incubation with the Venom protease Ecarin.
  • Prothrombin-Asn419 was dissolved at 0.2 mg / ml in 20 mM Tris / HCl buffer, pH 7.4, 150 mM NaCl, 5 mM CaCl 2 , and 20 ng Ecarin (1 ⁇ g each of Prothrombin-Asn419 Pentapharm product) added. The activation took place at 4 ° C for 4 hours.
  • the resulting meizothrombin-Asn419 was purified and isolated in analogy to the purification of thrombin-Asn99 (Example 3) by affinity chromatography on the peptide gel.
  • Meizothrombin-Asn419 produced in this way has the identical molecular weight of prothrombin-Asn419 of 72,000 and consists of the prothrombin-Fl / F2 / A chain (molecular weight 52,000, N-terminal amino acid sequence Ala-Asn-Thr-Phe-leu -Gla- Gla-) and the B chain (molecular weight 32,000, N-terminal amino acid sequence Ile-Val-Glu-Ser-Asp-Ala-Glu-Ile).
  • meizothrombin-Asn419 that it neutralizes hirudin and thus cancels the inhibition of thrombin.
  • the thrombin inhibition is neutralized at a ratio of 1 mol of meizothrombin-Asn419 to 1 mol of hirudin.
  • meizothrombin-Asn419 that by adding meizothrombin-Asn419 to the thrombin-hirudin complex, the hirudin can be released again from the complex, and thus the thrombin regains its activity.
  • the data obtained correspond to those of Thrombin-Asn99.
  • Example 10 Characterization of thrombin-Asn99 and meizothrombin-Asn99 in vivo
  • hirudin neutralizing effects of thrombin-Asn99 and meizothrombin-Asn99 were examined in an animal model: 3 min after intravenous administration of a hirudin dose of 0.5 mg per kg body weight (200 ⁇ l) or 200 ⁇ l saline solution to NMRI mice ( 20 g body weight; each test group comprised 10 mice) 2.5 mg thrombin-Asn99 / kg body weight and 5.0 mg meizothrombin-Asn99 (200 ⁇ l each) were injected. After a further 3 minutes, blood was withdrawn from the anesthetized mice by heart puncture.
  • the citrated plasma obtained was examined for partial thromboplastin time (PTT), thrombin time (TT), anti-thrombin potential (aPT) and plasma concentration of thrombin-Asn99 and meizothrombin-Asn99, each measurement being carried out in triplicate.
  • PTT partial thromboplastin time
  • TT thrombin time
  • aPT anti-thrombin potential
  • plasma concentration of thrombin-Asn99 and meizothrombin-Asn99 each measurement being carried out in triplicate.
  • PTT 50 ⁇ l of citrated mouse plasma were mixed with 50 ⁇ l of factor II-deficient citrate plasma and 100 ⁇ l of partial thromboplastin reagent at 37 ° C. for 3 min. The coagulation was started by adding 100 ⁇ l of 25 mM CaCl 2 . To measure the TT, 50 ⁇ l of citrated mouse plasma were mixed with 150 ⁇ l of factor II-deficient citrate plasma at 37 ° C. for 1 min. The coagulation was started by adding 100 ul thrombin standard (7 units / ml).
  • the TT of all mice in groups 1 to 8 was determined using a calibration curve for the coagulation times of different thrombin standard concentrations (1 unit / ml to 10 units / ml, which gives the effective thrombin concentration in the individual TT
  • the differences which differed in the effective thrombin concentration in the tests with the mouse plasma from test groups 1 and 5 to the effective thrombin concentrations in the tests with the mouse plasma from test groups 2 to 4 and 4, respectively 6 to 8 resulted in the anti-thrombin potential, a difference in 1 thrombin unit / ml being defined as an anti-thrombin unit.
  • the plasma concentrations of thrombin-Asn99 and meizothrombin-Asn99 were determined by adding serial plasma dilutions to immobilized hirudin, thrombin-Asn99 and meizothrombin-Asn 9 being detected using sheep-anti-thrombin-IgG-peroxidase conjugate. Calibration lines with thrombin-Asn99 and meizothrombin-Asn99 concentrations of 3 ng / ml to 100 ng / ml were created for analysis.
  • test group 3 The sole administration of thrombin-Asn99 (test group 3) and meizothrombin-Asn99 (test group 7) showed no significant change in the coagulation parameters compared to test groups 1 and 5, however, both proteins could be detected in mouse plasma.
  • Hirudin-complexed forms of thrombin-Asn99 and meizothrom-bin-Asn99 are less reactive towards immobilized hirudin, which is why lower concentrations of thrombin-Asn99 and meizothrombin-Asn99 were found in plasma.

Abstract

Die Erfindung betrifft neue Prothrombinmutanten oder Derivate davon, welche gegenüber dem natürlichen Protein eine oder mehrere Veränderungen in der Proteinsequenz aufweisen, entweder inaktiv sind oder eine Aktivität von höchstens etwa 10 %, vorzugsweise höchstens etwa 0,25 % des natürlichen Proteins aufweisen und eine Bindungskapazität gegenüber natürlichen Liganden (natürlichen oder künstlichen Antikoagulantien) aufweisen, welche im wesentlichen der des natürlichen Proteins entspricht. Weiters wird die Verwendung von mutierten Prothrombinmutanten bzw. -derivaten als pharmazeutische Präparate beschrieben.

Description

Prothrombin-Derivate
Die Erfindung betrifft neue Prothrombinmutante oder Derivate davon, die als Antagonisten ihrer natürlichen Funktion einge¬ setzt werden können.
Der Mechanismus der Blutkoagulation erfolgt normalerweise in einer Kaskade von zwei möglichen Wegen. Eine der Routen, die sogenannte extrinsische Blutgerinnung, beginnt mit der Freiset¬ zung von Thromboplastin und Aktivierung von Faktor VII. Akti¬ vierter Faktor VII wiederum aktiviert Faktor X, gefolgt von einer Aktivierung von Faktor V und Faktor II (Prothrombin). Faktor Ha (Thrombin) wandelt Fibrinogen zu Fibrin am Ende der Kaskade um.
Die andere Route, die sogenannte intrinsische Blutgerinnung, erfolgt über eine Aktivierung von Faktor XII durch Kontakt und anschließender Aktivierung von Faktor XI Faktor IX und Faktor X in Anwesenheit von Calcium und Faktor VIII, gefolgt von einer Aktivierung von Faktor II zu Faktor Ha, der die Koagulation durch Spaltung von Fibrinogen zu Fibrin auslöst. Faktor Ha spielt daher in beiden Routen der Blutgerinnungskaskade eine zentrale Rolle. Bisher wurde intensiv nach Antikoagulantien ge¬ forscht, die insbesondere bei der Behandlung von septischem Schock, bei Thrombosen, Embolien, Arteriosklerose und bei Herz¬ infarkten, ferner bei Bluttransfusionen oder nach Operationen eingesetzt werden können. Eine Methode zur Unterdrückung der Blutgerinnung ist die direkte Verabreichung von Substanzen, die Thrombin inhibieren.
Bisher wurden als Antikoagulantien Heparin oder Coumarin ein¬ gesetzt. Diese sind allerdings relativ systemisch und erhöhen das Risiko für innere Blutungen. Hirudin hingegen ist extrem spezifisch in seiner Bindung an Thrombin und bietet gegenüber den anderen Antikoagulantien noch weiter Vorteile. Es braucht keine endogenen Cofaktoren, ist pharmakodynamisch inert, zeigt keinerlei Wirkung auf Blutzellen, Plasmaproteine (mit Ausnahme von Thrombin) oder Enzyme, und ist auf Grund seiner kleinen Molekülgröße nicht immunogen. Weiters lagert sich Hirudin nicht in Organe ein und wird unverändert im Harn ausgeschieden.
Hirudin ist ein einkettiges Polypeptid aus 65 Aminosäuren, das natürlicherweise durch den medizinischen Blutegel (Hirudo medicinalis) in dessen sekretorischen Drüsen gebildet wird. Hirudin wirkt als äußerst stark bindender und sehr spezifischer Inhibitor gegenüber der Protease Thrombin und verhindert die Blutgerinnung. Der Mechanismus der Wirkung von Hirudin als Thrombininhibitor ist aufgeklärt: Der C-terminale Teil von Hiru¬ din bindet an die Anionenbindungsstellen des Thrombins und be¬ legt somit die Bindungsstelle der Fibrinogenkette am Thrombin. Zusätzlich blockiert der N-terminale Teil von Hirudin das aktive Zentrum von Thrombin (Szyperski et al. 1992, J. Mol. Biol. 228: 1206-1211; Fenton et al. 1991, Blood Coagul. Fibrinol.2: 69-75; Rydel et al. 1990, Science 249: 277-280; Karshikov et al. 1992, Prot. Science 1: 727-735; Markwardt 1991, Thromb. Haemost. 66: 141-152). Aus diesem Grund besteht schon seit längerem ein Interesse für die Verwendung von Hirudin als spezifisches Anti- koagulans.
Seit kurzem ist man in der Lage, große Mengen an Hirudin auf rekombinantem Wege herzustellen und für pharmakologische Unter¬ suchungen zu verwenden (Rigel et al. 1993, Circl. Res. 72: 1091- 1102; Loison et al. 1988, Biotechnol. 6: 72-77; Zawilska et al. 1993, Thromb. Res. 69: 315-320; Klöcking et al. 1990, Blut 60: 129; Fareed und Walenga 1989, FASEB J. 3: 328; Markwardt et al. 1988, Pharmazie 43: 202-207). Dabei ergeben sich mehrere klini¬ sche Anwendungen für Hirudin: in der Hämodialyse, als Antikoa- gulans während der pulmonaren transluminalen koronären Angio- plastie (PTCA), zur Prophylaxe von postoperativer Thrombose, zur Verhinderung einer Re-Thrombose, zur microvaskulären Chirurgie, als Antikoagulans in der Hämodialyse und bei extrakorporaler Zirkulation, als Beimischung zu Thrombolytika wie z.B. Plasmino- genaktivatoren und Streptokinase, als Antikoagulans während der Operation und für die klinische Gerinnungsunterdrückung.
Bei Gabe von Antikoagulantien ist jedoch eine exakte Dosierung schwierig. Zum Beispiel kann die von Hirudin verursachte Hemmung von Thrombin in der Blutzirkulation ungewollt zu Komplikationen und Blutungen führen, die eine sofortige Eliminierung von Hiru¬ din aus der Zirkulation erforderlich machen (Fareed et al. 1991, Sem. Thromb. Hemost. 17: 137-144; Brüggener et al. 1989, Pharma¬ zie 44: 648-649; Fareed und Walenga 1989, FASEB J. 3: 328). Al¬ lerdings ist die Bestimmung des Hirudinspiegels (Differenzierung freies und gebundenes Hirudin) im Blut und eine Verlaufskontrol¬ le der Hirudin-Ausscheidung nur indirekt über die Bestimmung der Thrombin-Aktivität möglich. Zur Zeit besteht nur die Möglich¬ keit, den Hirudinspiegel im Blut durch natürliche Ausscheidung und gegebenenfalls mittels Dialyse zu reduzieren. Auch die Gabe von Prothrombin wurde vorgeschlagen (Walenga et al. Sem. Thromb. Hemost. 15:316:1989), jedoch ist die Umwandlung von Prothrombin in Thrombin in der Zirkulation zeitabhängig. Ein Überschuß an Thrombin begünstigt andererseits wieder die Gerinnungsneigung. Nicht zuletzt bildet Hirudin mit Thrombin einen sehr starken Komplex, der selbst in vitro nur schwer dissoziierbar ist, so daß eine Dosierung des Hirudinspiegels über einen Verdrängungs¬ mechanismus realistischerweise bisher nicht praktikabel war.
Es wurde daher im Stand der Technik intensiv nach einem brauch¬ baren Antagonisten zu Hirudin gesucht, der gezielt einsetzbar ist und keine die Blutgerinnung betreffenden Nebenwirkungen zeigt. Obwohl dies ein bekanntes Problem der Hirudinforschung ist (Markwardt F., Haemostasis 21:11; 1991), gibt es bis dato keine praktikablen, in der Medizin einsetzbaren Lösungen.
Es wurde vorgeschlagen (Brüggener et al., Pharmazie 44:648; 1989), eine chemische Veränderung des Thrombins vorzunehmen. Da¬ bei wurde Diisopropylfluorophosphat an Thrombin, das aus Plasma gereinigt wurde, gekoppelt. DIP lagert sich in das aktive Zen¬ trum von Thrombin ein, wodurch die dreidimensionale Struktur des katalytischen Bereiches verändert wird. Das entstandene DIP- Thrombin ist enzymatisch inaktiv, bindet aber Hirudin. Aller¬ dings ist Diisopropylfluorophosphat äußerst giftig und gefähr¬ lich. Auf Grund der nicht sehr stabilen Bindung von DIP an Thrombin kann DIP leicht abdissoziieren. Ein in vivo zerfallen¬ der DIP-Thrombin-Komplex ist für die Anwendung im klinischen Bereich daher völlig ungeeignet. In der WO 93/15757 werden Prothrombin-Intermediate als Antidote zu Hirudin vorgeschlagen. Diese Produkte sind allerdings mit den üblichen Gefahren belastet, die allgemein Präparaten, die aus Plasma gewonnen werden, anhaften, z. B. Kontaminationen durch humanpathogene Viren.
Neben der Verwendung von Heparin, Coumarin und Hirudin zur Ver¬ hinderung der Blutgerinnung sind ebenfalls auch synthetische Thrombininhibitoren wie NAPAP (Na-(2-Naphthylsulforyl-glycyl)- D,L-amidinophenylalanin-peptid) oder PPACK (D-Phe-Pro-Arg-CHCl) bekannt. Ferner wurde u.a. in Betracht gezogen, modifizierte Proteine, wie z.B. inaktivierte Koagulationsfaktoren, direkt als Antikoagulantien einzusetzen. Ein besonderes Problem dabei ist, daß das modifizierte Protein in vivo möglicherweise schneller als das Wildtyp-Protein aus dem Blut entfernt werden könnte. Der Koagulationsprozeß, umfassend das Zusammenwirken der intrinsi- schen und extrinsischen Blutgerinnungskaskade und Zeiloberflä¬ chenrezeptoren, ist sehr komplex. Ein in vivo für die Therapie oder Prophylaxe einsetzbarer, inaktivierter Koagulationsfaktor sollte sich daher vom natürlichen Protein, außer durch seine stark reduzierte oder vollständig inhibierte Koagulationsakti¬ vität in keiner weiteren wesentlichen Eigenschaft wie z.B. Rezeptorbindungskapazität unterscheiden. Wünschenswert wäre eine in vivo-Halbwertszeit des inaktiven Proteins, die der des akti¬ ven Koagulationsfaktor entspricht oder sogar erhöht ist. Da ins¬ besondere Thrombin eine sehr kurze in vivo-Halbwertszeit be¬ sitzt, würde ein inaktiver Koagulationsfaktor mit verlängerter Halbwertszeit das aktive Protein, z.B. Thrombin, bei einer kom- petitiven Hemmung verstärkt von seinem Rezeptor verdrängt. Dies hätte den Vorteil, daß zur effizienten Antikoagulanswirkung des inaktiven Proteins nur eine relativ geringe Dosis verabreicht werden müßte.
Die vorliegende Erfindung stellt sich daher die Aufgabe, einen medizinisch einsetzbaren Antagonisten von Hirudin zur Verfügung zu stellen, der im wesentlichen keine enzy atische Aktivität aufweist, die die Blutgerinnung fördert.
Eine weitere Aufgabe der vorliegenden Erfindung besteht darin, einen inaktiven Koagulationsfaktor zur Verfügung zu stellen, der sich in den wesentlichen Eigenschaften wie z.B. Rezeptorbin¬ dungskapazität nicht vom natürlichen Protein unterscheidet und bei dem gegebenenfalls die in vivo Halbwertszeit erhöht ist.
Diese Aufgabe wird erfindungsgemäß durch neue Prothrombinmutan¬ ten oder Derivate davon gelöst, die gegenüber dem natürlichen Protein eine oder mehrere Veränderungen in der Proteinsequenz aufweisen, entweder inaktiv sind oder aber höchstens eine Akti¬ vität von etwa 10 %, vorzugsweise höchstens etwa 0,25 %, des natürlichen Proteins aufweisen und bei denen die Veränderung der Proteinsequenz die Bindungskapazität zu thrombinspezifischen Li¬ ganden und Rezeptoren, wie natürliche und synthetische Antikoa¬ gulantien, nicht beeinflußt. Die erfindungsgemäßen Prothrombin¬ mutanten oder ihre Derivate unterscheiden sich funktionell außer durch eine stark oder vollständig reduzierte Koagulationsaktivi¬ tät und gegebenenfalls einer veränderten in vivo Halbwertszeit nicht von ihrem natürlich vorkommenden Protein.
Unter mutierten Prothrombinmutanten oder Derivaten davon werden im Rahmen der vorliegenden Erfindung sämtliche von der Protein¬ sequenz des Prothrombin ableitbaren Proteine verstanden, die die wesentlichen Bindungsdeterminanten des Thrombins aufweisen, wel¬ che zur Bindung an die thrombinspezifischen, natürlichen und synthetischen Antikoagulantien notwendig sind. Es sollte daher die Struktur der Prothrombinmutante im Vergleich zum Wildtyp- Protein bzw. zu dessen proteolytischen Derivaten möglichst nicht allzu stark durch die Mutationen verändert werden, so daß eine optimale Bindung zu den Liganden, insbesondere zu den natürli¬ chen Liganden, gewährleistet wird.
Daher ist eine wesentliche Voraussetzung für die erfindungsge¬ mäßen Mutanten und Derivate, daß die Veränderung der Proteinse¬ quenz die Bindungskapazität zu thrombinspezifischen Liganden und Rezeptoren, wie natürliche und synthetische Antikoagulantien, nicht beeinflußt.
Es ist davon auszugehen, daß die erfindungsgemäßen Mutanten bzw. Derivate eine Bindungskapazität von zumindest 80 % der Bindungs- kapazität des natürlichen Thrombins aufweisen müssen, so daß die Bindungskapazität als nicht beeinflußt angesehen werden kann. Auch Mutanten bzw. Derivate, welche eine höhere Bindungskapazi¬ tät als das natürliche Thrombin aufweisen, fallen selbstver¬ ständlich unter die vorliegende Erfindung.
Das Maß an Bindungskapazität kann mit jeder geeigneten Methode analysiert werden, beispielsweise mit Antikoagulantien-kompeti- tiver Analyse zwischen Mutante bzw. Derivat und natürlichem Thrombin (Gan et al., 1993), mit Untersuchungen zur Bindungs¬ affinität gegenüber künstlichen Inhibitoren (z.B. mit DAPA (= Dansylarginin-N-(3-ethyl-l,5-pentandiyl)-amid); Pei et al., J.Biol.Chem. 266: 9598, 1991) oder mittels Untersuchung der Bindungsaffinität an einem immobilisierten natürlichen und syn¬ thetischen Antikoagulans bzw. Inhibitor.
Bei letzterem wird das natürliche synthetische Antikoagulans bzw. der Inhibitor an einer festen Matrix immobilisiert, eine das zu untersuchende Derivat in einer bestimmten Menge enthal¬ tende Probe mit dem natürlichen und synthetischen Antikoagulans bzw. dem Inhibitor in Kontakt gebracht, die Menge an gebunde¬ ner^) Mutante bzw. Derivat bestimmt und die Ergebnisse mit einer Parallelbestimmung mit natürlichem Thrombin relativiert.
Die erfindungsgemäßen Mutanten bzw. Derivate sollen vorzugsweise gänzlich inaktiv sein, d.h. sie sollen keinerlei Thrombin- oder Thrombin-analoge Aktivität aufweisen. Jedoch können Derivate mit geringfügiger Aktivität ebenfalls erfolgreich erfindungsgemäß verwendet werden, da eine Aktivität von höchstens etwa 10 %, insbesondere von höchstens 0,25 % des natürlichen Thrombins bei der Verabreichung der erfindungsgemäßen Derivate im allgemeinen nicht zu unerwünschten Nebeneffekten, wie z.B. Gerinnungsnei- gung, führt.
Die erfindungsgemäßen Mutanten bzw. Derivate zeichnen sich wei¬ ters dadurch aus, daß sie einen Komplex mit Hirudin bilden kön¬ nen, und dadurch imstande sind, Hirudin zu neutralisieren. Fer¬ ner können sie einen Komplex, der aus plasmatischem oder rekom- binantem wt-Thrombin mit Hirudin besteht, dissoziieren und das dadurch freigewordene Hirudin ko plexieren. Daraus ergibt sich außerdem, daß das freigewordene plasmatische oder rekombinante Wildtyp (wt)-Thrombin wieder aktiv ist und seiner Aufgabe bei der Blutgerinnung nachkommen kann. Dies ist auch erfindungsgemäß ein notwendiger Parameter für den therapeutischen Einsatz der Thrombinderivate.
Bevorzugte Ausführungsformen der erfindungsgemäßen Mutanten bzw. Derivate weisen eine in vivo Halbwertszeit von mehr als einer Stunde auf.
Weiter bevorzugte Ausführungsformen weisen eine in vivo Halb¬ wertszeit von maximal 10 Minuten auf.
Die Veränderung der Aminosäuresequenz kann im Austausch von einer oder mehreren Aminosäuren bestehen, sie kann aber auch in einer Deletion, vorzugsweise einer Deletion, welche dem Prozes- sierungsvorgang bei der Aktivierung von Prothrombin entspricht, oder einer Insertion bestehen, wenn durch diese Veränderungen die erfindungswesentlichen Parameter eine Aktivität von höch¬ stens etwa 10 %, insbesondere von höchstens 0,25 % des natür¬ lichen Thrombins sowie eine Deletion Bindung an Thrombin-Ligan¬ den und -Rezeptoren erfüllt werden. Der Begriff "Derivat" soll sowohl die nur durch Mutation veränderten als auch die prozes¬ sierten mutierten Proteine umfassen. Für den Austausch von Ami¬ nosäuren eignen sich als einzuführende Aminosäuren diejenigen am besten, die die Raumstruktur des Proteins so wenig wie möglich beeinflussen. Das sind entweder sehr kleine Aminosäuren, wie Alanin, oder Aminosäuren, die der ursprünglichen Aminosäure sehr ähnlich sind und sich von dieser nur durch eine funktioneile Gruppe unterscheiden, zum Beispiel Asparagin und Asparaginsäure.
Die erfindungsgemäßen Parameter machen die erwähnten Mutanten bzw. Derivate zu idealen Thrombininhibitor-Antagonisten, da sie die im Stand der Technik erwähnten Nachteile, nämlich uner¬ wünschte Gerinnungsaktivität, Toxizität oder mangelnde Effizienz bzw. Spezifität nicht aufweisen.
Da die erfindungsgemäßen Mutanten bzw. Derivate inaktiv sind bzw. allerhöchstens eine Aktivität von etwa 10 %, insbesondere von höchstens etwa 0,25 % des natürlichen Thrombins aufweisen (wodurch die in-vivo-Thrombin-Aktivität der Mutanten bzw. Deri¬ vate noch um einiges unter diesen etwa 0,25 % liegt), können diese selbst dann nicht zu unerwünschten Gerinnungseffekten führen, wenn sie in Überdosis verabreicht werden.
Für die erfindungsgemäßen Mutanten bzw. Derivate ist kein to¬ xischer Effekt zu erwarten, da sie sich von den natürlichen Pro¬ teinen kaum unterscheiden und daher normal metabolisiert werden können.
Die erfindungsgemäßen Mutanten bzw. Derivate sind als Antagoni- sten hocheffizient und hochspezifisch, da ihre Bindungsdetermi¬ nanten gegenüber den natürlichen und synthetischen Inhibitoren im wesentlichen unverändert sind und denen des natürlichen Thrombins entsprechen.
Bevorzugte Veränderungen der Proteinsequenz betreffen Aminosäu¬ ren aus dem aktiven Zentrum des Prothrombin-, Meizothrombin- oder Thrombinmoleküls, insbesondere die Aminosäuren His-363 und Asp-419, bezogen auf die Aminosäurenumerierung in humanem Pro¬ thrombin gemäß Fig.1 (Die Numerierung der Aminosäuren erfolgt generell nach Fig.l, in der die cDNA-Sequenz und die Aminosäure¬ sequenz von Prothrombin gezeigt ist. Die Spaltstellen des Fak¬ tors Xa sind in der cDNA-Sequenz angezeigt, so daß man die cDNA- und Aminosäuresequenz des Thrombins ableiten kann. Die Numerie¬ rung beginnt mit der 1. Aminosäure des reifen Prothrombins nach Abspaltung der Leadersequenz und des Propeptides. Die cDNA-Se- quenz des Prothrombins ist in SEQ. ID.NO. 8, die Aminosäure¬ sequenz in SEQ. ID.NO. 9 wiedergegeben.).
Insbesondere die Aminosäure Asparaginsäure-419 (Asp-419) hat keinen nahen Kontakt zum gebundenen Hirudin, weshalb der Aus¬ tausch dieser Aminosäure im Rahmen der vorliegenden Erfindung besonders bevorzugt wird.
Zusätzlich sind die Veränderungen, welche die Cysteinreste Cys- 293 und Cys-439 betreffen, bezogen auf die Aminosäurenumerierung in Prothrombin gemäß Fig.l, ebenfalls bevorzugt. Diese Mutatio¬ nen ermöglichen die Bildung eines einkettigen Thrombinderivats (da die Schwefelbrückenbindung zwischen der B-Kette und der A- Kette verhindert wird), welches schließlich trotz Bindungsfähig¬ keit zu Hirudin keine enzymatische Aktivität aufweist (da die A- Kette fehlt) . In diesem Fall bieten sich die Aminosäuren Serin und Alanin als Austauschpartner an.
Da alle diese ausgewählten Derivate Mutationen aufweisen, die unmittelbar das katalytische Zentrum betreffen bzw. für die Funktion von Thrombin wichtige Disulfidbrücken, sind sie inak¬ tiv. Wie anhand von Strukturdaten (Rydel et al., 1990) festzu¬ stellen ist, betreffen diese Aminosäuren auch keine Regionen, die die Bindung von natürlichen und synthetischen Inhibitoren, insbesondere Hirudin, betreffen.
Die Erfindung betrifft daher bevorzugt Prothrombinmutanten oder Derivate, bei denen mindestens eine Aminosäure, ausgewählt aus His-363 oder Asp-419 und gegebenenfalls Cys-293 oder Cys-439, verändert worden ist, insbesondere Asp-419-Mutanten.
Eine ganz besonders bevorzugte Ausführungsform der erfindungs¬ gemäßen Mutanten bzw. Derivate betrifft Mutanten bzw. Derivate, bei welchen die Aminosäure Asp-419 gegen Asn ausgetauscht ist.
Es hat sich gezeigt, daß diese Variante inaktiv ist, sogar gegen das künstliche Substrat AcOH-H-D-CHG-Ala-Arg-pNA nur eine Rest¬ aktivität von etwa 0,25 % aufweist, so daß keinerlei gerinnungs¬ aktiven Nebeneffekte zu erwarten sind. Weiters ist die Bindungs¬ kapazität dieses Derivats beispielsweise gegenüber Hirudin nicht von der des natürlichen Thrombins zu unterscheiden, da die strukturelle Veränderung, die der Austausch Asp gegen Asn mit sich bringt, sehr gering ist und sich darüberhinaus in einer die Bindung zu den natürlichen und synthetischen Inhibitoren, insbe¬ sondere Hirudin, nicht betreffenden Region des Proteins befin¬ det.
Es sind zwar im Stand der Technik mutierte Prothrombine be¬ schrieben worden, jedoch Derivate, welche die beanspruchten Eigenschaften aufweisen, sind noch nicht geoffenbart worden. Es sind aber gerade diese Eigenschaften, welche die Verwendung der erfindungsgemäßen Prothrombin-, Meizothrombin- und Thrombinderi- vate so vorteilhaft machen.
Beispielsweise wurde eine Reihe genetischer Defekte beschrieben, die Prothrombine und daraus entstehende Thrombine mit Punktmuta¬ tionen betreffen, wobei die verschiedenen Mutanten eine dra¬ stisch verringerte Blutgerinnungsaktivität aufweisen (Henriksen R.A., Methods in Enzymology, Vol. 222:312 (1993). Diese Mutatio¬ nen betreffen aber allesamt Veränderungen, bei denen immer noch eine gewisse, wenngleich reduzierte Thrombinaktivität festzu¬ stellen ist (insbesondere gegenüber künstlichen Substraten). Diese Restaktivität ermöglicht aber wahrscheinlich erst das Überleben von Personen mit diesen Defekten, woraus zu schließen ist, daß eine Mutation, welche zu einem gänzlich inaktiven Thrombin führt, wahrscheinlich nicht Überlebensfähig ist.
Weiters wurden in vitro Punktmutationen in der Prothrombin- und Thrombinsequenz durchgeführt, um Struktur- und Funktionsanalysen durchzuführen:
Beispielsweise wurde das Serin-528 im aktiven Zentrum des bovi- nen Prothrombins (gleichbedeutend mit dem Serin-525 im entspre¬ chenden humanen Prothrombin) zu einem Alanin mutiert. Mit einem derart mutierten Prothrombin wurden daraufhin grundlagenwissen¬ schaftliche Experimente durchgeführt, um den Einfluß dieser Mutation auf die Expression, γ-Carboxylierung und Aktivierung von Prothrombin zu studieren.
Die Strukturanalyse des Thrombin-Hirudin-Komplexes hat ergeben, daß auch Aminosäuren aus dem aktiven Zentrum von Thrombin zur Bildung des Komplexes einen schwachen Beitrag leisten. So kann insbesondere Ser-525 im humanen Prothrombin Wasserstoffbrücken zur N-terminalen Aminosäure von Hirudin ausbilden und sich im Radius von 3,2 A vom N-Terminus von Hirudin befinden. Damit trägt Ser-525 offenbar zur Bindung von Hirudin bei (Rydel et al., Science 249:277, 1990). Weiters wurde festgestellt, daß die bovine Ser-528-Variante ge¬ genüber DAPA nur mehr eine 74 %-ige Bindungskapazität, vergli¬ chen mit dem natürlichen Thrombin, aufweist. Dies bestätigte die Annahme, daß dieser Serinrest unmittelbar in der DAPA- bzw. Hirudin-Bindungsdeterminante liegt. Daher erfüllen Mutationen, die nur die Ser-528-Stelle in bovinem Prothrombin bzw. die Ser- 525-Stelle in humanem Prothrombin betreffen, nicht das Erforder¬ nis der ausreichenden Bindungs-Kapazität zum Inhibitor.
Weiters wurden Thrombinfragmente mit größeren Deletionen herge¬ stellt (Gan et al., Arch. Biochem. Biophys. 1993:301, 228). Es wurde ein Abbauprodukt von Thrombin, ζ-Thrombin, erhalten, das die Aminosäuren 469 bis 579 der α-Thrombinsequenz aufweist. Für Funktionsstudien wurden die Aminosäuren Arginin-517 (gegen Glutamin), Asparaginsäure-519 (gegen Glutamin) beziehungsweise Serin-525 (gegen Alanin) mutiert und dabei bei den einzelnen Mutanten eine geringere Aktivität als bei Wildtyp-Thrombin fest¬ gestellt. Die Hirudinbindungsfähigkeit blieb bei einigen ζ- Thrombinen nur teilweise erhalten. Dabei zeigte die Ser-525-Ala Mutante zwar die geringste enzymatische Aktivität und die besten Resultate in Bezug auf die Hirudinbindung, jedoch lag die Bin¬ dungskapazität auch in diesen Untersuchungen deutlich unter der von natürlichem Thrombin. Zwar wurde gezeigt, daß die Thrombin¬ fragmente in kompetitiven Bindungsstudien in unterschiedlicher Stärke mit einer Thrombin-Hirudinbindung konkurrieren und eine Absolutangabe der Bindungsfähigkeit der Fragmente an Hirudin wurde nicht gemacht, die Ergebnisse zeigten jedoch klar, daß die Bindungskapazität gegenüber Hirudin durch die Mutation erheblich verringert worden ist.
Diese ζ-Thrombine sind daher für die der Erfindung zu Grunde liegenden Aufgabe nicht geeignet: sie sind im Vergleich zu den Wildtyp-Thrombinen sehr stark verändert und eine optimale Bin¬ dung zu den natürlichen Liganden kann nicht gewährleistet wer¬ den.
Mit den im Stand der Technik beschriebenen Prothrombin- bzw. Thrombinderivaten konnten daher die geforderten Parameter nicht erfüllt werden. In diesen Zitaten sind auch keinerlei Angaben über eine thera¬ peutische oder diagnostische Einsatzmöglichkeit dieser Prothrom¬ binmutanten (-derivate) oder ζ-Thrombinfragmente zu finden.
Daher betrifft die vorliegende Erfindung gemäß einem anderen Aspekt die Verwendung von Prothrombinmutanten oder Derivaten da¬ von als Arzneimittel, insbesondere zur Herstellung einer medizi¬ nischen Präparation zur Verhinderung von Nebeneffekten bei einer Antikoagulationsbehandlung, oder als Diagnostika. Diese erfin¬ dungsgemäße Verwendung der Mutanten bzw. Derivate ist besonders bevorzugt bei Antikoagulationsbehandlungen mit Hirudin, Heparin, Antithrombin III und/oder deren Derivaten, sowie synthetische Inhibitoren.
Die erfindungsgemäße medizinische Behandlung umfaßt daher das Verabreichen einer wirksamen Dosis der Prothrombinmutanten oder Derivaten davon an einen Patienten, vorzugsweise durch intra¬ venöse Gabe. Die wirksame Dosis richtet sich nach jedem indivi¬ duellen Einzelfall und sollte vorzugsweise unter Verwendung von bei einer Thrombin- und/oder Hirudin-Bestimmung erhaltenen Resultaten optimiert werden.
Bei der erfindungsgemäßen Verwendung werden natürlich bevorzugt die Prothrombinmutanten bzw. -derivate mit den erfindungsgemäßen Eigenschaften bezüglich mangelnder Thrombin-Aktivität und aus¬ reichender Bindungskapazität eingesetzt, unter gewissen Bedin¬ gungen sind aber auch bekannte Derivate einsetzbar, insbesondere solche, die weitgehend inaktiv sind, wie z.B. ein Analoges zu der oben beschriebenen bovinen Ser-528-Mutante (bzw. deren Thrombin-Derivat), wobei man aber den Mangel der verschlechter¬ ten Bindungskapazität in Kauf nehmen muß.
Es ist allgemein bekannt, daß die in vivo-Halbwertszeit der Pro¬ teine in der Blutzirkulation durch die Glykosylierung beeinflußt wird. Proteine aus Säugetierzellen können dabei über an der Pro¬ teinoberfläche lokalisierte Aminosäuren-Seitenketten von Aspa- ragin (N-Glykosylierung) und Serin/Threonin (O-Glykosylierung) glykosyliert vorliegen. Dabei wird durch die Glykosylierung von zirkulierenden Proteinen eine Verzögerung der Ausscheidung aus dem Blutkreislauf, d.h. Verlängerung der Halbwertszeit, erhal¬ ten. Rekombinante Proteine, hergestellt duch Manipulation von Säugetierzellen, sind naturgemäß mit dem für Säugetiere üblichen und natürlichen Glykosylierungen versehen und entsprechen somit der Oberflächenstruktur der entsprechenden humanen Proteine.
Durch Mutation von an der Oberfläche eines Proteins gelegenen Aminosäuren, wie z.B. Asparagin (Asn) bzw. Serin (Ser) oder Threonin (Thr) in eine andere Aminosäure, oder durch Deletion einer dieser Aminosäuren kann z.B. die native Glykosylierung aufgehoben werden. Es ist bekannt, daß schwach oder nicht-gly- kosylierte Proteine wesentlich schneller aus der Zirkulation ausgeschieden werden, d.h. daß ihre Halbwertszeit verkürzt ist.
Im Gegenzug kann durch Mutation und Aminosäureaustausch von einzelnen an der Proteinoberfläche gelegenen Aminosäuren in z.B. Asparagin die Anzahl der Glykosylierungsstellen eines Protein¬ moleküls erhöht und damit auch die in vivo-Halbwertszeit ver¬ längert werden. Abhängig von der Anzahl der mutierten, deletier- ten oder zusätzlich eingeführten Asparagin-Resten im Protein kann dadurch gegebenenfalls die Halbwertszeit variiert werden.
Für die erfindungsgemäße Verwendung der Prothrombinmutanten oder Derivaten davon als Antagonisten gegenüber Thrombininhibitoren eignen sich insbesondere solche Mutanten, bei denen durch Muta¬ tion die Halbwertszeit des Proteins verkürzt wird. Vorzugsweise werden daher als Antagonisten solche Mutanten eingesetzt, die eine Halbwertszeit von maximal 10 Minuten aufweisen.
Die erfindungsgemäße medizinische Verwendung der mutierten Pro¬ thrombinmutanten bzw. Derivate umfaßt auch ihre Verwendung als Antikoagulantien durch kompetitive Hemmung des Thrombins bzw. als Antagonisten ihrer natürlichen Funktionen. Dies ermöglicht der Medizin mit einem nahezu naturidenten Produkt die Blutge¬ rinnung zu steuern.
Auf Grund der erfindungsgemäßen Parameter und der unveränderten Bindungskapazität zu spezifischen Rezeptoren und Liganden eignen sich Prothrombinmutanten oder ihre Derivate insbesondere als Antikoagulantien in vivo .
Für die erfindungsgemäße Verwendung der Prothrombinmutanten oder Derivaten davon als Antikoagulantien eignen sich insbesondere solche Mutanten, bei denen durch gezielten Aminosäureaustausch die Halbwertszeit des Proteins erhöht wird. Vorzugsweise werden daher als Antikoagulantien solche inaktiven Mutanten eingesetzt, die eine Halbwertszeit von mehr als 1 Stunde aufweisen.
Bei Verwendung der erfindungsgemäßen Prothrombinmutanten als Antikoagulantien werden diese nach Applikation, entsprechend dem natürlichen Protein, in vivo zu inaktivem Thrombin prozessiert, das dann in der Lage ist, im Blut vorkommendes, aktives Thrombin von seinen Rezeptoren zu verdrängen. Die Prothrombinmutante kann gegebenenfalls auch in vitro zur entsprechenden Thrombin- oder Meizothrombinmutante aktiviert werden und die aktivierte Form direkt für die Verabreichung am Patienten eingesetzt werden. Entsprechend der Dosierung der erfindungsgemäßen Prothrombin¬ mutante oder deren Derivate in einem Arzneimittel kann in vivo die Blutgerinnung verlangsamt oder vollständig gestoppt werden. Die Verwendung von Prothrombinmutanten oder Derivaten davon, die sich durch eine erhöhte in vivo-Halbwertszeit auszeichnen, zei¬ gen den besonderen Vorteil, daß sie wesentlich länger im Blut zirkulieren als ihre natürlichen Proteine und daher effektiv die Blutgerinnung beeinflussen können. Zudem kann für eine effektive Antikoagulanswirkung die Menge an therapeutisch eingesetztem Protein gegebenenfalls auch entsprechend reduziert werden.
Für die in vivo-Anwendung der erfindungsgemäßen Prothrombin¬ mutanten oder deren Derivate als Antikoagulantien ist kein toxi¬ scher Nebeneffekt zu erwarten, da sie in vivo entsprechend ihrer natürlichen Proteine normal metabolisiert werden.
Die erfindungsgemäßen mutierten Prothrombinderivate werden be¬ vorzugt unter Verwendung der rekombinanten DNA-Technik herge¬ stellt. Daher betrifft die Erfindung auch ein Verfahren zur Her¬ stellung der erfindungsgemäßen Prothrombinmutanten bzw. -deri- vaten, bei welchem die genetische Information von Prothrombin mutiert, vorzugsweise punktmutiert, wird und in einem eukaryo- tischen Expressionssystem exprimiert wird und anschließend das exprimierte Derivat gewonnen wird.
Vorzugsweise werden dabei die humanen Sequenzen verwendet.
Die Expression in eukaryotischen Systemen bietet im Gegensatz zu bakteriellen Systemen den Vorteil, daß auch post-translationelle Modifikationen wie Glykosylierung und Carboxylierung durchge- geführt werden und damit das exprimierte Protein besser geeignet für die Anwendung am Menschen machen.
Zur Gewinnung der Peptide in Gan et al. wurden die mutierten Sequenzteile von Thrombin in E.coli exprimiert und die rekom- binanten Peptide in vitro künstlich mit Schwefelbrücken ver¬ sehen. Die Ausbeute an exprimierten und zu Versuchen geeigneten Thrombin-ähnlichen Strukturen war dementsprechend sehr gering. Der Verlust der Thrombinaktivität kann auf des Fehlen großer Teile der Thrombinsequenz genauso zurückgeführt werden, wie auf die eingeführten Mutationen.
Die Expression in E.coli, wie in Gan et al. beschrieben, ist für Proteine mit den erfindungsgemäßen Eigenschaften nicht geeignet, da dieses Expressionssystem keine Glykosylierung durchführt und auch die Faltung der exprimierten Proteine nicht der physiologi¬ schen Struktur entspricht. Erfindungsgemäß sollten aber mög¬ lichst wenig Veränderungen in den Derivaten im Vergleich zum Wildtyp-Thrombin vorgenommen werden. Für die funktionellen Stu¬ dien in Gan et al. war es aber unwichtig, daß die exprimierten ζ-Thrombine einerseits keine Kohlehydrate aufweisen (die einzige Glykosylierungsstelle im physiologischen Thrombin (Asparagin-53) fehlte) und die Faltung des Peptides in vitro auf komplizierte Weise durchgeführt worden ist. Durch dieses Verfahren gelangt man nur zu geringsten Ausbeuten.
Bei einem Verfahren gemäß der vorliegenden Erfindung wird die cDNA-Sequenz des humanen Prothrombins oder die cDNA-Sequenz des humanen Thrombins vorzugsweise punktmutiert, wodurch ein Aus¬ tausch mindestens einer Aminosäure in der Aminosäuresequenz her¬ beigeführt wird. Im Falle von Prothrombin ist die Mutations- stelle erfindungsgemäß in dem Bereich der Prothrombinsequenz zu finden, die nach Aktivierung des Prothrombins in der Thrombin¬ sequenz liegt.
Vorzugsweise werden die mutierten Prothrombinderivate unter Kontrolle des SV40-Promotors in CHO-DUXS Bll-Zellen (Urlaub & Chasin, Proc. Natl. Acad. Sei. USA 77:4216, 1980) exprimiert. Die Expression kann aber mit jedem gängigen Expressionsystem, wie Hefe, permanente Zellinien oder virale Expressionssysteme, und mit jeder beliebigen Zellinie erfolgen, welche gewährlei¬ stet, daß das Protein richtig prozessiert und in seiner funk- tionellen Form sezerniert wird. Zur richtigen Prozessierung der Derivate gehört nicht nur die vollständige Glykosylierung, son¬ dern auch die vollständige γ-Carboxylierung. Zu den gängigen eukaryotischen Expressionssystemen zählen Hefe, permanente Zell¬ linien (die entweder durch stabile Integration der Fremd-DNA in die Wirtszellchromosomen erstellt werden, z.B. Vero, MRC5, CHO, BHK, 293, Sk-Hepl, insbesondere Leber- und Nierenzellen, oder aber durch die Verwendung eines im episomalen Zustand permanent weitervererbten Vektors, z.B. Vektoren, die von Papilloma-Viren abgeleitet werden und z.B. in C-127-Zellen wachsen), oder virale Expressionssysteme, wie Vaccinia-Virus, Baculovirus oder retro- virale Systeme. Als Zellinien können allgemein Vero, MRC5, CHO, BHK, 293, Sk-Hepl, insbesondere Leber- und Nierenzellen, einge¬ setzt werden.
Im Anschluß an die Gewinnung der exprimierten Derivate können dann noch weitere Bearbeitungsschritte durchgeführt werden. Eine Möglichkeit bei der Weiterverarbeitung von Prothrombinmutanten bzw. -derivaten ist ein Verfahrensschritt, bei welchem das Pro- thrombinderivat mittels einer Schlangengift-Protease (z.B. Venom Protease) in Meizothrombinanaloga gespalten wird. Diese Meizo- thrombinanaloga sind dann ebenfalls als Antagonisten zu den na¬ türlichen Funktionen von Thrombin einsetzbar, zeigen aber keine enzymatische Thrombinaktivität. Dabei sind alle aus der Litera¬ tur bekannten Verfahren einsetzbar.
Weiters kann ein erhaltenes Prothrombinderivat mittels Trypsin, vorzugsweise immobilisiertem Trypsin, in das Thrombinderivat ge- spalten werden. Es kann aber natürlich jede gängige Methode zur Spaltung von Prothrombin in Thrombin zum Einsatz kommen, also auch solche, die sich anderer geeigneter Proteasen bedienen, beispielsweise mit dem Schlangengift aus E. carinatue (Ecarin) oder aus 0. scvutellatus.
Die erfindungsgemäßen Derivate werden zur Aufbereitung der Prä¬ parationen entweder mit einer physiologischen Salzlösung berei¬ tet und gegebenenfalls lyophilisiert, oder in destilliertem Wasser lyophilisiert und vor Verabreichung mit einer physiolo¬ gischen Salzlösung rekonstituiert. Alternativ dazu können die Präparationen aber auch in anderen gebräuchlichen Lösungen und/oder mit einem pharmazeutischen Träger- oder Hilfsstoff für den Einsatz bereitgehalten werden.
Erfindungsgemäß liegen die Präparationen in einer für die paren- terale Verabreichung, d.h. für die subkutane, intramuskuläre oder intravenöse Verabreichung geeigneten Form, vor.
Ein nicht zu vernachlässigender weiterer Vorteil der erfindungs¬ gemäßen Präparationen liegt darin, daß sie auf Grund ihrer Her¬ stellung frei von Kontaminationen durch Viren sind. Die Präpa¬ rationen können vor ihrer Freigabe für die medizinische Anwen¬ dung zusätzlich mit einer äußerst sensitiven PCR-Methode (bei¬ spielsweise in der österr. Patentanmeldung A 1830/94 beschrie¬ ben) auf eine mögliche Verunreinigung durch Rest-Nukleinsäuren der Expressionszellinie hin untersucht und notwendigenfalls nochmals gereinigt werden.
Die erfindungsgemäßen Derivate müssen schließlich auf ihre Fä¬ higkeit, ihre natürlichen Liganden binden zu können, überprüft werden. Im Rahmen der vorliegenden Erfindung wurde dazu ein Testsystem erarbeitet, bei dem die Bindungskapazität der (Pro-)- Thrombin-Derivate zu Hirudin oder Hirudinderivaten in einfacher und reproduzierender Weise qualitativ und quantitativ analysiert wird. Dieses Testsystem besteht aus einer festen Matrix, an der natürliches oder rekombinantes Hirudin, Derivate oder Peptide davon gebunden ist. An dieses immobilisierte Hirudin wird schließlich das erfindungsgemäße Derivat gebunden und kann durch eine anschließende Detektionsreaktion nachgewiesen werden.
Daher betrifft die Erfindung auch eine feste Matrix, an der na¬ türliches oder rekombinantes Hirudin, Derivate oder Peptide da¬ von gebunden sind, und deren Verwendung bei der Bestimmung von Thrombin oder Thrombinderivaten. Die Bestimmung kann sowohl die Quantifizierung als auch die Bestimmung der Bindungskapazität des Thrombin oder Thrombinderivats umfassen.
Unter fester Matrix ist erfindungsgemäß jegliche feste Phase zu verstehen, an welcher der natürliche und synthetische Inhibitor wirksam immobilisiert werden kann, beispielsweise natürliche Polymere, wie Cellulose, Stärke, Dextran, Alginate, Agarose, Collagen, insbesondere die in der Immobilisierungstechnologie weitverbreiteten Sepharose- bzw. Cellulosematerialien, syntheti¬ sche Polymere, wie Polyacrylamid, Polyvinylalkohol, Methylacry- lat, Nylon oder Oxirane, welche leicht zu anwenderfreundlichen Vorrichtungen geformt werden können, wie z.B. Mikrotiterplatten, und schließlich anorganische Materialien, wie poröse Gläser, Silikagel, etc. (siehe auch Römpp-Lexikon der Biotechnologie, Seiten 385 ff. ).
Mit der erfindungsgemäßen Vorrichtung kann eine einfache und präzise Bestimmung der Thrombin- bzw. Thrombinderivatkonzentra- tion vorgenommen werden, wobei nicht nur das aktive Thrombin selbst bestimmt werden kann, sondern auch enzymatisch inaktives oder nur schwach aktives Prothrombin oder Thrombin und Derivate davon. Weiters läßt sich die erfindungsgemäße Vorrichtung auch auf Grund ihrer anwenderfreundlichen Gestaltung indirekt zur Konzentrationsbestimmung von jeglichen Thrombin-bindenden Sub¬ stanzen, wie Thrombininhibitoren, aber insbesondere von Hirudin, einsetzen. Darüberhinaus ist auch eine Bestimmung der Bindungs¬ stärke von Thrombin oder Thrombinderivaten zu den jeweils unter¬ suchten natürlichen und synthetischen Inhibitoren mit der erfin¬ dungsgemäßen Vorrichtung bestimmbar.
Als Thrombin oder Thrombinderivate werden im Rahmen der vorlie¬ genden Erfindung sämtliche von der Proteinsequenz des Prothrom¬ bins ableitbaren Proteine verstanden, insbesondere die oben be- schriebenen mutierten Thrombin-, Meizothrombin- oder Prothrom- bin-Derivate. Dabei kann das Derivat aber auch an den Bindungs¬ determinanten verändert sein, solange diese Veränderungen eine Bindung an die natürlichen und synthetischen Inhibitoren nicht ausschließen. Die Thrombinderivate können sich von natürlichem Thrombin durch eine oder mehrere Punkt-Deletions- oder Inser- tionsmutationen unterscheiden. Prothrombinderivate, Meizothrom¬ bin sowie dessen Derivate können ebenfalls mit der erfindungsge¬ mäßen Vorrichtung bestimmt werden und sind - soweit es die Be¬ stimmung derselben betrifft - im Rahmen der vorliegenden Erfin¬ dung ebenfalls als Thrombinderivate anzusehen.
Zur eigentlichen Quantifizierung von Thrombin, Thrombinderivaten und/oder Hirudin oder Hirudinderivaten wird erfindungsgemäß ein Testkit vorgesehen, welcher die erfindungsgemäße Vorrichtung sowie einen oder mehrere Behälter mit Reagentien für eine spezi¬ fische Detektionsreaktion, vorzugsweise eine Thrombinderivat- spezifische Detektionsreaktion, enthält. Dabei ist unter spezi¬ fischer Detektionsreaktion jede geeignete Detektionsreaktion zu verstehen, insbesondere solche Reaktionen, die mit Farbstoffen arbeiten (Peroxidase, alkalische Phosphatase, Lumineszenzreak¬ tionen, Biotin, Avidin oder Biotin-Streptavidin (als Verstärker¬ systeme)) oder radioaktive Bestimmungsmethoden.
Vorzugsweise wird die in der Handhabung einfachere Farbreaktion zur Konzentrationsbestimmung der radioaktiven Bestimmung vor¬ gezogen. Im besonderen werden für die Erfindung Peroxidasemar- kierte Schaf-Anti-Thrombin-Antikörper verwendet und die für die Peroxidasereaktion gängigen Substratlösungen zur Farbreaktion eingesetzt.
•Der erfindungsgemäße Testkit enthält weiters einen Behälter mit einer ein Trägerprotein beinhaltenden physiologischen Puffer¬ lösung, wodurch die Reproduzierbarkeit der Quantifizierung er¬ heblich verbessert wird.
Die spezifische Detektionsreaktion im Rahmen des erfindungsge¬ mäßen Testkits ist vorzugsweise eine markierte Thrombin-bindende Substanz, da in der Klinik die Bestimmung von Thrombin häufig gegenüber den anderen bestimmbaren Komponenten von herausragen¬ der Wichtigkeit ist. Im Stand der Technik ist eine Vielzahl von markierten Thrombin-bindenden Substanzen bekannt. Erfindungsge¬ mäß kommt bevorzugt ein Farbstoff-markierter polyklonaler oder monoklonaler Antikörper gegen Thrombin zur Anwendung. Die Detek- tion mittels chromogenen Substanzen wird häufig gegenüber radio¬ aktiven Bestimmungsmethoden bevorzugt, da die Farbstoffreaktio- nen keine radioaktiven Kontaminationen mit sich bringen und die strengen Sicherheitsmaßnahmen beim Arbeiten mit radioaktivem Material die radioaktive Bestimmungsmethode oft sehr unpraktisch machen.
Das Detektionsverfahren kann nach den in der Proteinchemie gän¬ gigen Verfahrensschritten ablaufen. Zur Bestimmung der Konzen¬ tration von Thrombin oder Thrombinderivaten wird eine Thro bin- lösung mit der Hirudin-gekoppelten festen Matrix für 15 Minuten bis 16 Stunden, vorzugsweise zwischen 45 Minuten und 4 Stunden inkubiert. Die Reaktion findet üblicherweise in einem physiolo¬ gischen Puffer, vorzugsweise in einem Tris-HCl-Puffer, statt. Es ist von besonderem Vorteil, wenn dem physiologischen Salzpuffer ein Trägerprotein, wie z.B. Albumin, zugesetzt wird.
Eine bevorzugte Ausführungsform des erfindungsgemäßen Testkits umfaßt weiters eine Thrombin-haltige Referenzlösung, die die Er¬ stellung einer zuverlässigen Eichgerade im Testsystem erlaubt.
Gemäß einem weiteren Aspekt betrifft die Erfindung ein Verfahren zur Quantifizierung von Thrombin oder Thrombinderivaten, welches durch die folgenden Schritte gekennzeichnet ist:
- Inkubieren einer Lösung, welche eine zu quantifizierende Menge an Thrombin oder Thrombinderivaten enthält, mit Hiru¬ din oder einem Hirudinderivat, welches auf einer festen Matrix immobilisiert ist, wobei das Thrombin oder das Thrombinderivat an das immobilisierte Hirudin oder Hirudin¬ derivat gebunden wird,
- gegebenenfalls Entfernen von nicht-gebundenem Thrombin oder Thrombinderivat,
- Durchführen einer spezifischen Detektionsreaktion, wobei die Menge an gebundenem Thrombin oder Thrombinderivat bestimmt wird.
Das Durchführen der spezifischen Detektionsreaktion kann entwe¬ der im Rahmen des erfindungsgemäßen Testkits mit den Reagentien für eine spezifische Detektionsreaktion durchgeführt werden oder direkt durch eine Meßvorrichtung auf der festen Matrix selbst, etwa mit einem Sensorchip mit angeschlossener Meßanlage.
Das erfindungsgemäße Verfahren kann in einfacher Weise durch¬ geführt werden, wobei es sich besonders für die rasche und un¬ komplizierte Anwendung im klinischen Bereich eignet.
Eine bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens betrifft ein Verfahren, bei welchem die spezifische Detektions¬ reaktion eine Farbreaktion ist, wobei die Konzentration an Thrombin oder Thrombinderivat durch Korrelation mit der Inten- ität der Farbreaktion bestimmt wird.
Das erfindungsgemäße Verfahren eignet sich gemäß einem weiteren Aspekt auch zur Quantifizierung von Hirudin oder Hirudinderiva- ten, wobei ein solches Verfahren durch die folgenden Schritte gekennzeichnet ist:
- Inkubieren einer Lösung mit einer zu quantifizierenden Menge an Hirudin oder Hirudinderivat mit einer Lösung mit einer bekannten Menge an freiem Thrombin oder Thrombinderi¬ vat,
- Bestimmen der nach dem Inkubieren mit dem Hirudin- oder Hirudinderivat verbliebenen freien Thrombin- oder Thrombin- derivat-Konzentration durch das oben geschilderte erfin¬ dungsgemäße Verfahren und
- Bestimmen der Menge an Hirudin- oder Hirudinderivat durch Rückrechnen aufgrund der Unterschiede zwischen der ursprüng¬ lichen bekannten und der bestimmten Menge an Thrombin- oder Thrombinderivat.
Gemäß einem weiteren Aspekt betrifft die vorliegende Erfindung die Verwendung der erfindungsgemäßen Vorrichtung bzw. des erfin¬ dungsgemäßen Testkits zur Quantifizierung von Thrombin, Throm- binderivaten und/oder Hirudin oder Hirudinderivaten sowie zur Bestimmung der Bindungsstärke von Thrombin oder Thrombinderiva¬ ten zu Hirudin oder Hirudinderivaten.
Es hat sich nämlich überraschenderweise gezeigt, daß mit diesem Testkit erstmals auch die Bindungsstärke von Thrombin oder Thrombinderivaten an Hirudin oder anderen Thrombin-hindernden Substanzen bestimmt werden kann. Die Bindungsstärke von Thrombin an Hirudin wird vor allem dann interessant, wenn Thrombinderi¬ vate vorliegen, deren Bindungseigenschaften an Hirudin unbekannt sind.
Weiters kann der Testkit zur Funktionsanalyse von Hirudin-Anta- gonisten eingesetzt werden. Bei der Austestung von Hirudinpep- tiden oder Hirudinderivaten als effektive Antikoagulantien läßt sich das Verfahren ebenfalls anwenden.
Der erfindungsgemäße Testkit eignet sich daher, alle im Zusam¬ menhang mit Thrombin, Hirudin und der Blutgerinnung auftretenden Fragen in Hinblick auf Konzentration, Bindungsstärke und Funk¬ tionalität zu beantworten. Dabei ist besonders hervorzuheben, daß auf Grund der Spezifität der Bindung von Hirudin an Thrombin ein äußerst exaktes Ergebnis erzielt werden kann. Verunreinigun¬ gen durch andere Blutfaktoren oder Proteine können das Ergebnis nicht verfälschen. Auch die Anwesenheit von Prothrombin stört die Analysen nicht, da Prothrombin nicht an Hirudin bindet.
Es ist zwar bekannt, Hirudin an Mikrotiter-Platten zu koppeln, um mit diesen ELISA-Platten Anti-Hirudin-Antikörper zu testen, eine Quantifizierung oder Bestimmung der Bindungskapazität wurde jedoch nicht mit diesen Platten beschrieben. (Mille B. et al., Clin.Chem. 40:734, 1994).
Bei der Herstellung einer Hirudin-gekoppelten festen Matrix wird Hirudin in einem Puffersystem an die Matrix gekoppelt.
Als Puffersystem eignet sich jeder Puffer, der frei ist von Aminogruppen, wie Phosphatpuffer, Citratpuffer oder vorzugsweise Carbonatpuffer. Der pH-Wert des Puffersystems sollte in der Men- ge zwischen 6 und 10 liegen, vorzugsweise bei pH 9,3 bis 9,7.
Erfindungsgemäß wird bei der Kopplungsreaktion von Hirudin an den festen Träger zwischen einer und 48 Stunden, vorzugsweise zwischen einer und 16 Stunden inkubiert. Die Inkubationszeit richtet sich im wesentlichen nach der Inkubationstemperatur, wo¬ bei vorzugsweise bei einer Kopplungsreaktion in der Kälte (4°C) für 16 h, bei Raumtemperatur zwei bis drei Stunden und bei 37°C eine Stunde inkubiert wird.
Nach der Kopplungsreaktion wird erfindungsgemäß das überschüssi¬ ge, nicht gebundene Hirudin mit einem Waschpuffer aus einer phy¬ siologischen Salzlösung, vorzugsweise aus einem Tris-HCl-Puffer, entfernt. Diesem Waschpuffer kann ein Detergens, vorzugsweise Tween 20, zugesetzt sein, wobei die Detergenskonzentration zwi¬ schen 0,01 und 1 %, vorzugsweise bei 0,1 %, liegt.
Mit dem erfindungsgemäßen Testkit lassen sich Konzentrationen von Thrombin oder Thrombinderivaten im Bereich von 0,1 pg/ml bis zu 100 mg/ml Thrombin, vorzugsweise im Bereich von 0,1 ng/ml bis 200 ng/ml Thrombin bestimmen.
Nicht zuletzt eignet sich der erfindungsgemäße Testkit zum Un¬ terscheiden von Thrombinen mit rekombinant gestalteten, geziel¬ ten Mutationen, Deletionen oder Insertionen, wobei daraufhin getestet werden kann, ob die Bindungsfähigkeit zu Hirudin unab¬ hängig von der enzymatischen Aktivität erhalten geblieben ist.
Dieser erfindungsgemäße Test oder erfindungsgemäße Testkit kann speziell zum Einsatz kommen, wenn für eine medizinische Frage¬ stellung der Thrombinspiegel im Blut bestimmt werden soll, um mit einer genau dosierten Hirudin-Gabe Thrombosen zu verhindern.
Dieser Test hat außerdem den besonderen Vorteil, daß auch Throm¬ bin bestimmt werden kann, das funktionell nicht aktiv ist und das daher in den Tests, die die enzymatische Aktivität des Thrombins erfassen, nicht nachweisbar ist. Dies ist zum Beispiel bei genetischen Defekten der Fall, wenn physiologisch inaktive Thrombinformen vorliegen. Die Erfindung wird anhand der nachfolgenden Beispiele und dazu¬ gehörigen Zeichnungsfiguren, auf die sie jedoch nicht beschränkt sein soll, noch weiter erläutert.
Es zeigen: Fig.l den kodierenden Teil der cDNA-Sequenz von re- kombinantem humanen Prothrombin und die daraus ableitbare Amino¬ säuresequenz, wobei die physiologischen Spaltstellen zur Prozes¬ sierung des Proteins beziehungsweise die Spaltstellen des Fak¬ tors Xa zur Aktivierung des Prothrombins zu Thrombin eingezeich¬ net sind; Fig.2 das Sequenzprotokoll; Fig.3 eine Zusammenfassung der Punktmutation eines bevorzugten Prothrombinderivats im Ver¬ gleich zum wt-Prothrombin, wobei die unterstrichenen Aminosäu- re/Nukleotide ausgetauscht worden sind; Fig.4A das Flußschema der Klonierung des Prothrombin-Asn419; Fig.4B einen Western-Blot zum Vergleich von plasmatischem Prothrombin, rekombinantem wt- Prothrombin und Prothrombin-Asn419; Fig.5: die denaturierende Elektrophorese einzelner Reinigungsstufen von rekombinantem Pro- thrombinderivat (A: Zellkulturüberstand; B: Eluat 3; C: Eluat 4; D: Molekulargewichtsmarker); Fig.6: die denaturierende Elektro¬ phorese einzelner Stufen der Bildung von Thrombin-Asn99 aus Prothrombin-Asn419 (A: Prothrombin-Asn419; B: Eluat 3; C: huma¬ nes Thrombin; D: Molekulargewichtsmarker); Fig.7 die Bindung von Thrombin-Asn99 (A), rekombinantem wt-Thrombin (B) und humanem plasmatischen Thrombin (C) an immobilisiertes Hirudin; Fig.8 die Abhängigkeit der Thrombinfluoreszenz von der Hirudinkonzentra- tion (die Fluoreszenz bei 341 nm (Exitation 280 nm) von 390 nM Thrombin-Asn99 (A), 326 nM rekombinantes wt-Thrombin (B) und 350 nM humanes plasmatisches Thrombin (C) wurde in Abhängigkeit der Hirudinkonzentration bestimmt, die Fluoreszenz ohne Hirudin wur¬ de als 0 %, die Fluoreszenz bei Hirudinsättigung als 100 % dar¬ gestellt); Fig.9 die Neutralisierung von Hirudin durch Thrombin- Asn99; Fig.10 die Wiederherstellung der Thrombinaktivität aus dem Hirudin-Thrombin-Komplex durch Zugabe von Thrombin-Asn99 durch unterschiedliche Konzentrationen von Thrombin-Asn99: (A) 0,2 μg/ml, (B) 0,4 μg/ml, (C) 1 μg/ml); Fig.11 die Neutralisa¬ tion von Hirudin im Plasma (dabei ist die Gerinnungszeit in An¬ wesenheit von Hirudin (x x) und ohne Hirudinzusatz ( ) in Abhängigkeit von der Konzentration an Thrombin-Asn99 im Test dargestellt); Fig. 12 die molekulare Struktur des katalytischen Zentrums im Thrombin-Hirudin-Komplex (Vergleich von humanem Thrombin und rekombinantem Thrombinderivat), wobei mit Pfeilen auf die durch Mutation Asp→Asn hervorgerufene Strukturverände¬ rung hingewiesen wird und Ser, His und Asp bzw. Asn die Lage der Aminosäuren des katalytischen Zentrums im Thrombinmolekül und Ile die N-terminale Aminosäure von Hirudin bezeichnen.
Beispiele:
Beispiel 1 zeigt am Beispiel Prothrombin Asn419 die Verfahrens¬ weise, wie ein punktmutiertes Prothrombin erhalten werden kann. Beispiel 2 demonstriert die Reinigung und Funktionsanalyse des Prothrombinderivats. Beispiel 3 zeigt die Gewinnung und Funk¬ tionsanalyse des Thrombinderivats. Beispiel 4 quantifiziert die Bindungsaktivität des Thrombinderivats an Hirudin; Beispiel 5 überprüft das Prothrombinderivat auf seine Fähigkeit als Antago- nist von Hirudin zu wirken, Beispiel 6 zeigt, daß Hirudin durch das Thrombin-Derivat neutralisiert werden kann. In Beispiel 7 wird gezeigt, daß das Thrombin-Derivat Thrombin aus einem Throm¬ bin-Hirudin-Komplex wieder aktivieren kann; Beispiel 8 zeigt, daß das Thrombin-Derivat auch im Plasma wirksam ist und Beispiel 9 zeigt die Gewinnung und Funktionsanalyse eines Meizothrombin- Derivats.
Beispiel 1: Konstruktion von pSV-FIIwt und pSV-FII-Asn419 (Asp zu Asn)
Das Plasmid pSVß (Nucl. Acids Res. 17: 2365; 1989) wurde mit Notl geschnitten, um das interne ß-Galactosidasegen-Fragment zu entfernen. Der verbleibende Vektor wurde religiert und pSV ge¬ nannt.
Um den größten Teil der 3'-seitig der Polyadenylierungsstelle gelegenen und später möglicherweise störenden Polylinker-Sequenz zu entfernen, wurde pSV mit HindiII und Xbal geschnitten. Nach Entfernen des kleinen Polylinker-Fragments wurden die Vektor- Enden mit Klenow-Enzym aufgefüllt und religiert. Das resultie¬ rende Plasmid wurde pSVΔ genannt. Anschließend wurde in die 5'-seitig des 16/19S-Introns gelegene Xhol-Stelle eine 'Multiple Cloning Site' (MCS) mit geeigneten Restriktions-Schnittstellen eingefügt.
Die MCS wurde in Form zweier komplementärer Oligonukleotide chemisch synthetisiert:
5 '-TCGACCATGG ACAAGCTTAT CGATCCCGGG AATTCGGTAC CGTCGACCTG CAGGTGCACG GGCCCAGATC TGACTGACTG A-3* (Seq.ID.No.1) und
5' -TCGATCAGTC AGTCAGATCT GGGCCCGTGC ACCTGCAGGT CGACGGTACC GAATTCCCGG GATCGATAAG CTTGTCCATG G-3' . (Seq.ID.No.2)
Die beiden Oligonukleotide wurden "annealed" und in pSVΔ ge¬ setzt. Da das MCS-Insert zwar Xhol-kompatible, "sticky"-Enden, jedoch keine vollständigen Xhol-Stellen aufwies, wurde die Liga- tions-Reaktion mit Xhol geschnitten. Nicht schneidbare Konstruk- te repräsentierten das gewünschte Plasmid, welches pSV-MCS III genannt wurde.
Ein DNA-Fragment mit der vollständigen, humanen wt-Prothrombin- cDNA wurde mittels partiellem Ncol- und vollständigem Smal- Restriktionsverdau aus Plasmid pTKemc-PT2 (WO 91/11519) ausge¬ schnitten.
Dieses Fragment wurde in den Vektor pSV-MCS III gesetzt, nachdem er ebenfalls über partiellen Ncol- und vollständigen Smal-Verdau vollständig geöffnet worden war.
Das resultierende Plasmid wurde pSV-FIIwt genannt und exprimiert wt-Prothrombin, wie durch transiente Expression in COS-Zellen und stabile Expression in CHO-Zellen nachgewiesen wurde; die Reihenfolge der funktioneilen Elemente auf pSV-FIIwt ist SV40- Promotor/Enhancer (der frühen Gene), SV40-5' UTR, wt-Prothrom- bin-cDNA, SV40-16s/19s-Intron, SV40-Polyadenylierungs-Stelle, und pUC 19-Sequenzen (mit bakteriellem Replikations-Ursprung und Ampicillin-Resistenz-Gen) .
Um die Asparaginsäure des katalytischen Zentrums des Thrombins in ein Asparagin zu mutieren und somit eine inaktive Mutante des Thrombins herzustellen, wurde pSV-FIIwt mutiert: Das für die ge¬ nannte Asparaginsäure codierende Codon befindet sich auf einem EcoRV-DralII-Restriktionsfragment. Beide Restriktionsstellen sind einzigartig in pSV-FIIwt vorhanden. Die beabsichtigte Muta- genese wurde mittels Polymeraseketten-Reaktion mit dem Primer- Paar 2104/2066 (Seq.ID.No.3 und 4) durchgeführt, in deren Folge das wt-Prothrombin-EcoRV-Dralll-Fragment durch das die Mutation enthaltende PCR Ecll36lI-DraIII-Fragment substituiert wurde.
Die beiden Oligonukleotide wurden chemisch synthetisiert:
Primer 2104 (5'-TAACTGACGG TCCTTGAGCT CCATGTTGGA AAAGATCTAC ATC- 3') (Seq.ID.No.3) als 5' Primer; nach der Polymeraseketten-Reak¬ tion wird die Ecll36ll 'half site' auf die EcoRV 'half site' des Vektors ligiert, wodurch zwar auf DNA-Ebene einige Nukleotide des wt-Prothrombin verändert wurden, die Aminosäuresequenz je¬ doch wie im wt-Prothrombin erhalten bleibt.
Primer 2066 (5'-GCAGACACAC AGGGTGAATG TAGTCACTGA AGGCAACAGG CTTCTTCAGC TTCATCAGGG CAATATTCCG GTCCAGGTTC TCCCGC-3' ) (Seq.ID. No.4) als 3' Primer; durch diesen Primer wird auf DNA-Ebene die Asparaginsäure in Asparagin mutiert, eine Sspl-Restriktions¬ stelle eingeführt und eine Neil-Stelle verloren.
Die PC-Reaktion wurde unter Standardbedingungen bei einer "annealing" Temperatur von 55βC durchgeführt.
Das resultierende Plasmid pSV-FIIAsn419, das die Asp→Asn-Muta- tion beinhaltet, wurde durch sein Restriktionsmuster mit EcoRV, Dralll, Sspl, und Neil im Vergleich mit pSV-FIIwt identifiziert.
Das Flußschema des Klonierungsweges ist in Fig.4A gezeigt.
Die erwartete Nukleotid-Sequenz des Ecll36II-DraIII-Inserts in pSV-FIIAsn419 wurde durch anschließende Sequenzierung mit den 5'- und 3'-Primern 2197 (5'-CATAAGCCTG AAATCAACTC-3' ) (Seq.ID. No.5) bzw. 2198 (5'-CTTCGGAGCG TGGAGTCATC-3' ) (Seq.ID.No.6) bestätigt. Dihydrofolatreduktasegen-defiziente CHO-DUKS Bll wachsen rou¬ tinemäßig in "Voll-Medium" (DMEM/Ham's F12 1:1 Medium, supple- mentiert mit 2mM Glutamin, 0,075% Bicarbonat, 100IU Penicillin und 100 mg Streptomycin/ml, 10% foetalem Kälberserum, sowie 10 mg Desoxyadenosin, Adenosin, und Thymidin pro ml).
Mittels modifizierter CaP04-Methode (Graham und van der Eb, Virology 52: 456, 1973) wurden die Zellen mit 10 μg pSV-FIIwt bzw. pSV-FIIAsn-419 und 1 μg pSV-dhfr (Fischer et al., FEBS Lett. 351:345, 1994) cotransfiziert: zur DNA in 250 ml lmM Tris pH 8,0, 0,lmM EDTA wurden 25 ml 2,5M CaCl2 addiert. Anschließend wurden 250 ml 280mM NaCl, 45mM Hepes, 2,8mM Na2HP04, pH 7,12 zugegeben. Nach 10 Minuten wurde das entstandene DNA-Copräzipi- tat zu den subkonfluenten Zellen gegeben.
Sechs Stunden später wurde das Medium abgesaugt und die Zellen mit 15% Glyzerin in PBS überschichtet. Eine Minute später wurde das Glyzerin abgesaugt, die Zellen mit PBS gewaschen, und die Zellen mit frischem "Vollmedium" versehen.
48 Stunden später wurden die Zellen trypsiniert und in unter¬ schiedlichen Konzentrationen in "Selektions-Medium" (DMEM/F12 1:1 Medium ohne Hypoxanthin, Glycin und Thymidin; Supplementiert mit 2mM Glutamin, 100IU Penicillin and 100 mg Streptomycin/ml, und 10% dialysiertem foetalen Kälberserum mit einem Ausschlu߬ volumen von lO.OOOKd) aufgeteilt. Bei regelmäßigen Mediumwech¬ seln 2-3 mal in der Woche wurden Zellklone nach etwa 10 Tagen sichtbar. Eine weitere Woche später wurden die resultierenden Zellklone isoliert und in separaten Zellkultur-Schalen zur Kon- fluenz gewachsen. In serumfreien 24-Stunden-Zellkulturüberstän- ständen mit sekretiertem, rekombinanten wt-Prothrombin bzw. ProthrombinAsn419 in Selektionsmedium (supplementiert mit 10 μg Vitamin K^ml, aber ohne Kälberserum) wurden anschließend Anti- genmenge und qualitative Integrität (Western Blot-Analyse), Funktionalität (geeignete Aktivitätstests) und Interaktion des zu Thrombin aktivierten Prothrombin mit Hirudin untersucht. Die Zellzahl wurde nach Trypsinieren der Zellen im Zellzahlmeßgerät der Fa. Schärfe, Reutlingen, Deutschland) bestimmt. Zur Western Blot-Analyse wurden lOμl Zellkulturüberstand re¬ duziert und denaturiert, und in denaturierenden 4% Sammel-/8% Trenngelen nach Lämmli (Nature 227: 680pp, 1970) mit dem BioRad Mini-Protean II Dual Slab Gel-System aufgetrennt (BioRad Laboratories, Richmond, CA, USA). Die Proteine wurden nach er¬ folgtem Gellauf mit dem BioRad Mini Trans-Blot-System (BioRad Laboratories, Richmond, CA, USA) in Transferpuffer (25mM Tris, 192mM Glycin) auf Nitrozellulose-Membranen transferiert. Zur Vi¬ sualisierung des rekombinanten Proteins wurde das Protoblot- System der Fa. Promega (Madison, WIS, USA) verwendet. Als Anti¬ körper zur Prothrombin-Bindung wurde Kaninchen Anti-Prothrombin- Serum (Best. No.A325) der Fa. Dakopatts (Glostrup, Dänemark) eingesetzt. (Fig.4B)
Beispiel 2: Reinigung und Aktivitätsbestimmung von rekombinantem wt-Prothrombin und Prothrombinderivaten
a) Reinigung des rekombinanten wt-Prothrombins und des Prothrom- bin-Asn419
Material: Anionen-Austauschersäule Fraktogel EMD TMAE 6 50, 1,6 x 5 cm (Merck)
Flüssigkeitschromatographiegerät FPLC LCC-500 (Pharmacia) anti-Prothrombin-Immunglobulin (Stago)
Lösungen: 50 mM Tris/HCl Puffer pH 7,4 (Puffer A)
50 mM Tris/HCl Puffer pH 7,4, 180 mM NaCl (Puffer B) 50 mM Tris/HCl Puffer pH 7,4, 300 mM NaCl (Puffer C) 50 mM Tris/HCl Puffer pH 7,4, 160 mM NaCl, 10 mM Ca- Acetat (Puffer D)
Für die Gewinnung des rekombinanten wt-Prothrombins und des Pro- thrombinderivats wurde Zellkulturüberstand von transformierten CHO-Zellen aus Beispiel 1 verwendet, der ein lösliches rekombi- nantes Prothrombinderivat enthielt.
Die Reinigung des rekombinanten wt-Prothrombins und des Pro- thrombinderivats aus dem Zellkulturüberstand erfolgte durch Flüssigkeitschromatographie. Während der Chromatographie wurde der Verlauf in üblicher Weise durch Absorptionsmessung bei 280 nm verfolgt. Der Gehalt an Prothrombin bzw. an Prothrombinderi- vaten der einzelnen Fraktionen und Eluate wurde in üblicher Weise mittels ELISA unter Verwendung von handelsüblichem Pro- thrombinpräparat als Standard ermittelt.
Die Gesamtproteinkonzentration wurde nach der Methode von Bradford, M. (Anal. Biochem. 72, 248 (1976)) ermittelt.
Das Reinigungsverfahren ist in Fischer et al., J.Biotechn. 38:129, 1995, beschrieben.
Die Daten zur Reinigung des wt-Prothrombins werden nicht ge¬ zeigt.
Zur Reinigung des Prothrombin-Asn419 wurde die Anionen-Austau¬ schersäule mit Puffer A äquilibriert und anschließend wurden 970 ml Zellkulturüberstand (Prothrombingehalt (ELISA) 20 μg/ml; Pro¬ teinkonzentration 2,7 mg/ml) mit einer Geschwindigkeit von 4 ml/ Minute aufgetragen. Nicht an das Austauschergel gebundenes Mate¬ rial wurde durch Spülen der Säule mit Puffer A entfernt (Eluat 1: 1030 ml: 1,2 mg/ml) . Anschließend wurden schwach an die Säule gebundene Proteine durch Spülen der Säule mit Puffer B entfernt (Eluat 2: 20 ml; Prothrombingehalt (ELISA) 2 μg/ml; Gesamtpro¬ teingehalt 10,0 mg/ml). Danach wurde die Säule mit Puffer C elu- iert und an der Säule gebundenes Protein wurde im Eluat (Eluat 3: 30 ml; Prothrombingehalt (ELISA) 355 μg/ml; Gesamtproteinge¬ halt 16 mg/ml) erhalten. Anschließend wurde die Säule durch Wa¬ schen mit 1 M NaCl-Lösung regeneriert und mit Puffer D äquili¬ briert. 28 ml des Eluates 3 wurden mit Puffer A 1,9-fach ver¬ dünnt und Ca-Acetat wurde zur Endkonzentration von 10 mM zuge¬ setzt. Diese Lösung wurde wiederum durch die Anionen-Austau- schersäule filtriert und mit Puffer D gespült, wobei ungebunde¬ nes Protein im Eluat (Eluat 4: 60 ml; Prothrombingehalt (ELISA) 170 μg/ml) erhalten wurde. In den einzelnen Stufen der Chroma¬ tographie wurde das Protein durch denaturierende SDS-Polyacryl- amidgel-Elektrophorese (SDS-PAGE) (Laemmli, 1970) untersucht. Fig.5 zeigt mittels SDS-PAGE die Reinigung des Prothrombinderi- vats. Aus der Darstellung ist ersichtlich, daß das Prothrombin- binderivat im Eluat 4 in reiner Form erhalten wurde.
b) Aktivitätsbestimmung des Prothrombinderivats:
Alle Reinigungsstufen und Eluate wurden hinsichtlich der Ge¬ rinnungsaktivität von Prothrombin mittels Prothrombin-Zeit-Test (Quick AJ, J. Biol. Chem. 109:73, 1935 und Denson KWE et al, in Laboratory Diagnosis, Blackwell R. Scientific Publications Oxford 1976, Seite 310ff. ) untersucht. Weder im Zellkulturüber¬ stand, den einzelnen Reinigungsstufen, noch in den Eluaten 1 - 4 konnte Prothrombinaktivität nachgewiesen werden.
Beispiel 3: Gewinnung, Analyse und Aktivitätsbestimmung von wt-Thrombin und Thrombin-Asn99
a) Gewinnung von Thrombin-Asn99:
Die Gewinnung von Thrombin-Asn99 erfolgte analog zur Methode, welche in der EP-A-0 565 512 beschrieben wird, indem das Pro¬ thrombin Asn419 mittels immobilisiertem Trypsin gespalten wird.
Das nach der Aktivierung erhaltene Eluat wurde mittels denatu¬ rierender SDS-PAGE untersucht (Fig.6). Die Ergebnisse der SDS- PAGE zeigen, daß rekombinantes Prothrombinderivat in ein Throm¬ binderivat (Thrombin-Asn99) mit einem Molekulargewicht von 33.000 (schwere Kette) umgewandelt wurde.
Parallel dazu wird nach demselben Verfahren rekombinantes wt- Prothrombin zu Thrombin aktiviert.
b) Analyse der Aminosäuresequenz des Thrombinderivats Thrombin Asn99
Die N-terminale Aminosäuresequenzanalyse ergab folgende zwei Se¬ quenzen: (A) Thr-Ala-Thr-Ser-Glu-Tyr-Gln-Thr-Phe-Phe-Asn-Pro- Arg-Thr-Phe; (B) Ile-Val-Glu-Ser-Asp-Glu-Ile-Gly-Met-Ser-Pro- Trp-Gln. Die Sequenzen zeigen somit, daß das rekombinante Throm¬ binderivat durch Proteolyse an den authentischen Spaltstellen von Prothrombin (Arg271-Thr272 und Arg320-Ile321) als zweiket- tiges Molekül mit α-Thrombin-Struktur gewonnen wurde.
Zur besseren Veranschaulichung der räumlichen Struktur des Thrombin Asn99-Hirudin-Komplexes zeigt Fig.12 die molekulare Struktur des katalytischen Zentrums. Die Fig. 12 zeigt den Ver¬ gleich von humanem Thrombin und dem rekombinanten Thrombinderi¬ vat Asn99.
c) Die Aktivitätsbestimmung des rekombinanten Thrombin-Asn99 er¬ folgte nach drei voneinander unabhängigen Methoden.
I. Bestimmung der Thrombinaktivität mittels chromogenem Substrat
Die Bestimmung der Thrombinaktivität mittels chromogenem Sub¬ strat erfolgte bei 25 "C in 50mM Tris/HCl-Puffer, 150 mM NaCl, 0,1 % PEG 6000, pH 8,0, mit einer Konzentration des syntheti¬ schen chromogenen Substrats von 0,2mM AcOH-DH-CHG-Ala-Arg-pNA (TH-1, Pentapharm) in einem Volumen von 1 ml. Es wurde die Absorption bei 410 nm zeitabhängig bestimmt. Als Referenz wurde Thrombinstandard mit definierter Aktivität (Immuno AG) verwen¬ det. Die Verdünnungen der Proben erfolgte im Testpuffer mit einem Zusatz von 1 % Prionex (Collagenhydrolysat, Pentapharm).
Die Aktivitätsbestimmung ergab eine Aktivität von 0,24 nmol/ min μg Protein für das rekombinante Thrombinderivat Thrombin- Asn99. Damit weist Thrombin-Asn99 lediglich eine Aktivität von 0,24 % im chromogenen Assay gegenüber dem humanen plasmatischen Thrombin auf. Tabelle 1: Bestimmung der Thrombinaktivität mittels chromogenem Substrat
Thrombinderivat spezifische Aktivität ___ (nmol/min μg Protein)
Thrombin-Asn99 0,24 rekombinantes wt-Thrombin 98,4 humanes plasmatisches Thrombin 102,0
II. Bestimmung der Aktivität unter Verwendung eines Thrombin¬ standards
Alle Thrombinderivate wurden bezüglich ihrer Thrombinaktivität unter Verwendung eines Thrombinstandards (Immuno AG) definierter Aktivität untersucht. In dieser Aktivitätsbestimmung wurde für das Thrombin-Asn99 keine Aktivität gefunden (Tabelle 2).
Tabelle 2: Bestimmung der Aktivität unter Verwendung eines Thrombinstandards
Thrombinderivat Aktivität (IE/mg Protein)
Thrombin-Asn99 0 rekombinantes wt-Thrombin 1656 humanes plasmatisches Thrombin 1509,0
III. Aktivitätsbestimmung durch Titration des aktiven Zentrums
Die Titration des aktiven Zentrums der Thrombinderivate erfolgte nach der Methode von M.F. Doyle und P.E. Haley (Methods in Enzymology (1993), 222, 299-312), unter Verwendung von p-Nitro- phenyl-p'-Guanidinobenzoat als Substrat und eines Extinktions¬ koeffizienten von 16.595 M cm bei 410 nm.
Humanes plasmatisches Thrombin, rekombinantes wt-Thrombin und Thrombin-Asn99 wurden mit dieser Methode auf ihren Gehalt an aktivem Zentrum (aktive Thrombinkonzentration) untersucht. Dabei konnte für Thrombin-Asn99 kein aktives Zentrum ermittelt werden (Tabelle 3). Tabelle 3: Aktivitätsbestimmung durch Titration des aktiven Zentrums
Thrombinderivat Konzentration aktives Thrombin (nmol/mg Protein)
Thrombin-Asn99 0 rekombinantes wt-Thrombin 16,34 humanes plasmatisches Thrombin 16,89
Zusammenfassung: Im Unterschied zu rekombinantem wt-Thrombin und humanem plasmatischen Thrombin zeigt Thrombin-Asn99 nur in einer von drei Testmethoden eine äußerst geringe Thrombinaktivität, die ca. 1/400 der nativen Thrombinaktivität entspricht. Rekom¬ binantes wt-Thrombin und humanes plasmatisches Thrombin zeigen sehr ähnliche Aktivitätsmuster.
Beispiel 4: Quantifizierung der Hirudinbindung des rekombi¬ nanten Thrombinderivats
I. Die Bindungsfähigkeit zu Hirudin von dem Thrombinderivat Thrombin-Asn99 wurde mittels eines ELISA-Tests untersucht und mit humanem plasmatischen Thrombin und rekombinantem wt-Thrombin verglichen. Dieser ELISA-Test beruht auf der Verwendung von immobilisiertem Hirudin. Gemäß einer der Ausführungsformen die¬ ses Tests wird Thrombin an Hirudin, welches an Mikrotiterplatten immobilisiert ist, gebunden und über Antikörper mit anschließen¬ der Farbreaktion nachgewiesen. Dieser Test ist unabhängig von der enzymatischen Aktivität des Thrombins.
Zur Herstellung der ELISA-Platten wird rekombinantes Hirudin Variante 1 (Variante 1; Firma Rhein Biotech, BRD; 2 μg/ml, 100 μl) an Mikrotitrationsplatten gebunden. Nach dem Waschen wurden rekombinantes wt-Thrombin, Thrombin Asn99 oder humanes plasma¬ tisches Thrombin (100 μl einer Lösung mit Konzentrationen laut Fig.7) zugegeben und für eine Stunde inkubiert. Nicht-gebundenes Thrombin wurde entfernt und gebundenes Thrombin mittels Per- oxidase-markiertem anti-Thrombin-Immunglobulin (Sheep anti-human Thrombin; Enzyme Research Lab. Inc., Indiana USA; 100 μl einer ,00„-Verdünnung) nachgewiesen (Fig.7). Die Messung der Absorp- tion erfolgte bei 450 nm.
Aus den Ergebnissen ist klar ersichtlich, daß sowohl rekombinan¬ tes wt-Thrombin (Fig.7B), humanes plasmatisches Thrombin (Fig. 7C), als auch Thrombin-Asn99 (Fig.7A) in identischer und kon¬ zentrationsabhängiger Weise an immobilisiertes Hirudin binden.
II. Bestimmung der Bindung von Hirudin an Thrombin mittels Ände¬ rung der Fluoreszenz aromatischer Aromasäuren im Thrombinmolekül und Bestimmung der Bindungskonstante von Hirudin an Thrombin¬ derivate.
Anhand von Fluoreszenzemissionen wurde unter Verwendung des PC- Programms ENZFITTER (RJ. Leatherbarrow, Elsevier-Biosoft, 1987) unter Zugrundelegung eines Bindungsmodells mit einer gemeinsamen Bindungsstelle die Bindungskonstante von Thrombin zu Hirudin er¬ mittelt. Die Bestimmung der intrinsischen Fluoreszenz aromati¬ scher Aminosäuren der Thrombinderivate erfolgte in 50mM Tris/HCl-Puffer, 150mM NaCl, 0,1 % PEG 6000, pH 7,4. Die Exita- tion erfolgte bei 280 nm (Spaltbreite 2,5 nm), die Emission wur¬ de zwischen 300 nm und 400 nm (Spaltbreite 5 nm) registriert.
Die intrinsische Fluoreszenz von Tryptophan im Thrombinmolekül wurde bei 280 nm angeregt und die Emission zwischen 300 nm und 400 nm ohne Hirudinzusatz bzw. in Anwesenheit von Hirudin gemes¬ sen. Die Fluoreszenz bei 341 nm (Exitation 280 nm) von 390 nM Thrombin-Asn99, 326 nM rekombinantes wt-Thrombin und 350 nM humanes plasmatisches Thrombin wurde in Abhängigkeit der Hiru- dinkonzentration bestimmt.
Wieder wird das Thrombinderivat Thrombin-Asn99 mit rekombinantem wt-Thrombin und humanem plasmatischen Thrombin verglichen. Aus den Ergebnissen ist ersichtlich, daß sich in Anwesenheit von Hirudin zu allen drei Thrombinderivaten die Fluoreszenz von Tryptophan im Thrombinmolekül (Hirudin besitzt kein Tryptophan) wesentlich erhöht (Fig.8). Dies ist offensichtlich auf die Herausbildung eines Hirudin-Thrombin-Komplexes zurückzuführen.
Dadurch kommt es offenbar zu einer strukturellen Änderung im Thrombinmolekül, die die Fluoreszenzeigenschaften von Tryptophan beeinflussen. Aus Raumstruktur-Analysen des Thrombin-Hirudin- Komplexes ist bekannt, daß insbesondere Trp 51, Trp 148 und Trp 227 aus Thrombin durch Hirudinbindung in Kontaktnähe zum Inhibi¬ tor gelangen.
Fig.8 zeigt im Vergleich die Abhängigkeit der Thrombinfluores- zenz von der Hirudinkonzentration. Für alle drei Thrombinderiva¬ te wurden sehr ähnliche Bindungen von Hirudin an Thrombin er¬ halten. Die Bindung von Hirudin an alle drei Thrombinderivate entspricht einer Sättigung und ergibt eine Bindungsstelle je Thrombinmolekül.
Die Daten aus Fig.8 wurden benutzt, um die Bindungskonstanten von Hirudin an die Thrombinderivate zu bestimmten (Tabelle 4). Es ist ersichtlich, daß für alle Thrombinderivate sehr ähnliche und sehr hohe Assoziationskonstanten erhalten wurden.
Tabelle 4: Bindungskonstanten von Hirudin an die Thrombinderivate
Thrombinderivat Assoziationskonstante des Throm- bin-Hirudin-Komplexes (M—)
Thrombin-Asn99 3,7 x 107 rekombinantes wt-Thrombin 4,3 x 107 humanes plasmatisches Thrombin 3,2 x IQ7
Beispiel 5: Rekombinantes Prothrombin als Hirudin-Antagonist
Material: Koagulometer KC 10 (Amelungen GmbH, Deutschland) Prothrombin-freies Normalplasma (Immuno AG, Wien) Prothrombin-Konzentrationsstandard (Immuno AG, Wien) Rekombinantes Hirudin (Rhein Biotech, Deutschland)
In einem üblichen Laborverfahren wurde mittels eines Prothrom- bin-Zeit-Testes die Zeit ermittelt, die nach Aktivierung der an der Blutgerinnung beteiligten Faktoren benötigt wird, um Normal¬ plasma zur Gerinnung zu bringen. In diesem Test wird durch Zu¬ gabe von Ca -Ionen zur Mischung aus 1. Prothrombin-freiem Normalplasma (welches jedoch alle anderen Gerinnungsfaktoren enthält) und 2. Prothrombin-Konzentrationsstandard (Prothrombin mit definierter Aktivität) der Gerinnungsfaktor Xa gebildet, welcher dann Prothrombin (Faktor II) in Thrombin (Faktor Ha) umwandelt. Thrombin bewirkt dann die Umwandlung von löslichem Fibrinogen in unlösliches Fibrin. Dies führt zur Bildung von Blutgerinnseln. Der Zeitabstand zwischen Aktivierung mittels Zugabe der Ca -Ionen und der Bildung des Blutgerinnsels wird dabei automatisch durch das Koagulometer bestimmt. Bekannter¬ weise hängt die Zeitdauer der Blutgerinnung von der Konzentra¬ tion des Prothrombins bzw. der Konzentration des gebildeten ak¬ tiven Thrombins ab. Je höher die Thrombinkonzentration im Reak¬ tionsgemisch ist, desto geringer ist die Gerinnungszeit. Bei der Zugabe eines Thrombininhibitors, wie Hirudin, kommt es nach der Umwandlung von Prothrombin in Thrombin zur Herausbildung eines inaktiven Thrombin-Hirudin-Komplexes, so daß das in diesem Komplex gebundene Thrombin sich nicht mehr an der Umwandlung von Fibrinogen in Fibrin beteiligen kann. Folglich verlängert sich die Gerinnungszeit aufgrund der verringerten Menge an aktivem Thrombin. Bei einem Überschuß an Inhibitor über Thrombin kommt es zur vollständigen Hemmung der Blutgerinnung. Wird jedoch zu einem Testsystem sowohl ein Thrombin-Inhibitor wie Hirudin und eine weitere Komponente, die ihrerseits den Inhibitor bindet, aber nicht an der Blutgerinnung beteiligt ist, zugegeben, ver¬ ringert sich die Wirkung des Inhibitors auf Thrombin. Dann ist die Gerinnungszeit wieder verkürzt. In Tabelle 5 sind die Er¬ gebnisse verschiedener Untersuchungen zusammengefaßt:
Aus den Ergebnissen der Tabelle 5 geht hervor:
1. Prothrombin führt zu einer raschen Bildung des Blutge¬ rinnsels.
2. Hirudin führt zur Hemmung der Blutgerinnung.
3. Das rekombinante Prothrombinderivat führt zu keiner Blutge¬ rinnung.
4. Das rekombinante Prothrombinderivat führt zu keiner Beein¬ flussung der Blutgerinnung durch natürliches Prothrombin.
5. Durch Zugabe von rekombinantem Prothrombinderivat wird die
Hirudin-abhängige Hemmung der Blutgerinnung aufgehoben. Tabelle 5:
Komponenten im Gerinnungstest Gerinnungszeit (Sekunden)
Ansatz (A)
Prothrombin-freies Normalplasma
125 mU/ml (12,5 μg/ml) Prothrombin 18
Ansatz (B)
Prothrombin-freies Normalplasma
125 mU/ml (12,5 μg/ml) Prothrombin
2,5 μg/ml Hirudin > 100
Ansatz (C)
Prothrombin-freies Normalplasma
25 μg/ml erfindungsgemäßes
Prothrombinderivat > 100
Ansatz (D)
Prothrombin-freies Normalplasma
125 mU/ml (12,5 μg/ml) Prothrombin
25 μg/ml erfindungsgemäßes
Prothrombinderivat 18
Ansatz (E)
Prothrombin-freies Normalplasma
125 mU/ml (12,5 μg/ml) Prothrombin
25 μg/ml erfindungsgemäßes Prothrombin- derivat, 2,5 μg/ml Hirudin 35
Beispiel 6: Neutralisierung von Hirudin durch Thrombin-Asn99
Zur Testung, ob Thrombin-Asn99 Hirudin neutralisieren kann und somit die Hemmung bezüglich aktivem Thrombin aufgehoben wird, wurden 50 μl Hirudin (44 nM, 4 ATU/ml) mit verschiedenen Kon¬ zentrationen an Thrombin-Asn99 für 1 Minute inkubiert. An¬ schließend wurden 50 μl Thrombinstandard (3,9 IE/ml), sowie ehromogenes Substrat im Meßpuffer (0,2 mM Substrat lt. Beispiel 3c in 50 mM Tris/HCl-Puffer, 150 mM NaCl, 0,1 % PEG 6000, pH 8,0) zugegeben und die Enzymaktivität bei 25°C bestimmt. Die Thrombinaktivität wurde bei 410 nm photometrisch bestimmt. Als Vergleich wurde die Thrombinaktivität ohne Hirudin bestimmt (100 % Thrombinaktivität), sowie die Thrombinaktivität in Gegen¬ wart von Hirudin jedoch ohne Zusatz von Thrombin-Asn99 (0 % Thrombinaktivität). Die Ergebnisse sind in Fig.9 dargestellt.
Es ist eindeutig ersichtlich, daß durch Thrombin-Asn99 Hirudin neutralisiert wird, und somit die hemmende Wirkung von Hirudin auf aktives Thrombin aufgehoben wird. Gleichzeitig wird deut¬ lich, daß bei einem Verhältnis von 1 Mol Thrombin-Asn99 zu 1 Mol Hirudin die Thrombinhemmung neutralisiert wird.
Beispiel 7: Reaktivierung des Thrombin-Hirudin-Komplexes durch Thrombin-Asn99
Ziel des Experimentes war es festzustellen, ob durch die Zugabe von Thrombin-Asn99 zum Thrombin-Hirudin-Komplex die Thrombin¬ aktivität wieder zurückgewonnen werden kann, d.h., ob Thrombin- Asn99 in der Lage ist, Hirudin aus dem Thrombin-Hirudin-Komplex zu neutralisieren.
Dazu wurde photometrisch die Aktivität von Thrombin (Endkonzen¬ tration 0,1 IE/ml) mittels chromogenem Substrat kontinuierlich bestimmt. Nach 3 Minuten wurde Hirudin (Endkonzentration 0,1 ATU/ml) zugegeben und die Reaktion für weitere 4 Minuten fortge¬ führt. Danach wurden unterschiedliche Konzentrationen an Throm¬ bin-Asn99 (Endkonzentrationen 0,2 μg/ml, 0,4 μg/ml und 1 μg/ml) zugegeben und die Reaktion photometrisch verfolgt (Fig.7).
Fig.10 zeigt, daß durch Zugabe von Hirudin zu Thrombin dessen Aktivität gehemmt wird. Aus den Ergebnissen ist weiterhin er¬ sichtlich, daß mit Zugabe zunehmender Konzentration von Throm- bin-Asn99 die inhibierende Wirkung von Hirudin auf Thrombin jedoch wieder aufgehoben werden kann.
Interessanterweise ist der Prozeß der Hirudinneutralisation zeitabhängig; es dauert ca. 1 Minute, bis Hirudin durch Throm- bin-Asn99 neutralisiert wird. Dies ist auf die sehr hohe Bin- dungskonstante von Hirudin an Thrombin zurückzuführen, dessen Gleichgewicht folglich zeitabhängig zugunsten freien Thrombins und der Herausbildung eines Hirudin-Thrombin-Asn99-Komplexes verschoben wird.
Beispiel 8: Neutralisation von Hirudin im Plasma
Ziel der Untersuchung war es zu zeigen, daß Thrombin-Asn99 in der Lage ist, auch im Plasma Hirudin zu neutralisieren und somit eine hemmende Wirkung von Hirudin auf Thrombin aufzuheben. Zur Durchführung wurden in Analogie zum aPPT-Test 110 μl hirudini- siertes Citratplasma (Hirudinkonzentration 1,8 μg/ml) mit 100 μl partiellem Thromboplastin-Reagens (Boehringer Mannheim, BRD) und 10 μl Thrombin-Asn99 (von 0 - 17 μg/ml lt. Fig. 11) gemischt und für 3 Minuten bei 37°C inkubiert. Anschließend wurden 100 μl 25 mM CaCl2 zugegeben und die Gerinnungszeit automatisch bestimmt (Fig. 11).
Aus den Ergebnissen ist ersichtlich, daß durch Hirudin (ohne Zu¬ satz an Thrombin-Asn99) die Gerinnungszeit sehr stark verlängert wird. Konzentrationsabhängig, mit zunehmender Menge an Thrombin- Asn99, verkürzt sich die Gerinnungszeit jedoch wieder, und er¬ reicht die für Normalplasma üblichen Werte.
Aus der Darstellung ist klar ersichtlich, daß auch im Plasma Hirudin durch Thrombin-Asn99 neutralisiert wird, und somit die Hemmung von Hirudin auf plasmatisches Thrombin aufgehoben wird.
Die Gesamtheit der Untersuchungsergebnisse zeigen eindeutig, daß die hergestellte Thrombinmutante Thrombin-Asn99 entsprechend der Zielsetzung nur eine vernachlässigbar kleine Aktivität besitzt (weniger als 0,24 % von aktivem Thrombin), jedoch Hirudin in identischer Weise bindet.
Die Eigenschaft, Hirudin zu binden, befähigt das rekombinante Molekül, den Inhibitor sowohl im definierten Puffersystem, als auch im Plasma zu neutralisieren. Darüberhinaus ist Thrombin- Asn99 in der Lage, Hirudin aus dem Thrombin-Hirudin-Komplex herauszulösen und zu neutralisieren. Beispiel 9: Gewinnung und Funktionsanalyse von Meizothrombin- Asn419
Für die Gewinnung von rekombinantem Meizothrombin-Asn419 wurde Prothrombin-Asn419 aus Beispiel 1 verwendet. Prothrombin-Asn419 wurde durch Inkubation mit der Venom-Protease Ecarin in Meizo- thrombin-Asn419 umgewandelt. Dabei wurde Prothrombin-Asn419 zu 0,2 mg/ml in 20 mM Tris/HCl-Puffer, pH 7,4, 150 mM NaCl, 5 mM CaCl2, gelöst, und auf je 1 μg Prothrombin-Asn419 wurden 20 ng Ecarin (Produkt der Firma Pentapharm) zugegeben. Die Aktivierung erfolgte bei 4°C für 4 Stunden. Das resultierende Meizothrombin- Asn419 wurde in Analogie zur Reinigung von Thrombin-Asn99 (Bei¬ spiel 3) durch Affinitätschromatographie am Peptid-Gel gereinigt und isoliert.
Auf diese Weise hergestelltes Meizothrombin-Asn419 besitzt das identische Molekulargewicht von Prothrombin-Asn419 von 72 000, und besteht aus der Prothrombin-Fl/F2/A-Kette (Molekulargewicht 52 000, N-terminale Aminosäuresequenz Ala-Asn-Thr-Phe-leu-Gla- Gla-) und der B-Kette (Molekulargewicht 32 000, N-terminale Aminosäuresequenz Ile-Val-Glu-Ser-Asp-Ala-Glu-Ile) .
In Analogie zu den Beispielen 3 (c) I bis III wurden die enzyma- tischen Eigenschaften von Meizothrombin-Asn419 untersucht. In keinem der Testverfahren wurde für Meizothrombin-Asn419 eine Aktivität bestimmt.
In Analogie zu Beispiel 4 (I) und (II) konnte ermittelt werden, daß Meizothrombin-Asn419 in einer konzentrationsabhängigen Weise und mit einer Stärke vergleichbar mit humanem plasmatischen Thrombin an immobilisiertes Hirudin bindet und sich die Fluores¬ zenzintensität aromatischer Aminosäuren durch die Bindung an Hirudin, wie für Thrombin-Asn99 beschrieben, erhöht.
In Analogie zu Beispiel 6 konnte für Meizothrombin-Asn419 ge¬ zeigt werden, daß es Hirudin neutralisiert und somit die Hemmung bezüglich Thrombin aufhebt. Bei einem Verhältnis von 1 Mol Meizothrombin-Asn419 zu 1 Mol Hirudin wird die Thrombinhemmung neutralisiert. In Analogie zu Beispiel 7 konnte für Meizothrombin-Asn419 ge¬ zeigt werden, daß durch die Zugabe von Meizothrombin-Asn419 zum Thrombin-Hirudin-Komplex das Hirudin aus dem Komplex wieder her¬ ausgelöst werden kann, und somit das Thrombin seine Aktivität wiedergewinnt. Die dabei gewonnenen Daten entsprechen denen von Thrombin-Asn99.
In Analogie zu Beispiel 8 konnte für Meizothrombin-Asn419 ge¬ zeigt werden, daß es in der Lage ist, im Plasma Hirudin zu neu¬ tralisieren und somit die hemmende Wirkung auf Thrombin aufzu¬ heben. Die dabei gewonnenen Daten entsprechen denen von Thrombin-Asn99.
Beispiel 10: Charakterisierung von Thrombin-Asn99 und Meizo- thrombin-Asn99 in vivo
Die Hirudin-neutralisierenden Effekte von Thrombin-Asn99 und Meizothrombin-Asn99 wurden in einem Tiermodell untersucht: 3 min nach einer intravenösen Verabreichung einer Hirudin-Dosis von 0,5 mg pro kg Körpergewicht (200 μl) oder 200 μl Kochsalzlösung an NMRI-Mäusen (20 g Körpergewicht; jede Testgruppe umfaßte 10 Mäuse) wurden 2,5 mg Thrombin-Asn99/kg Körpergewicht und 5,0 mg Meizothrombin-Asn99 (jeweils 200 μl) injiziert. Nach weiteren 3 min wurde Blut durch Herzpunktation von den narkotisierten Mäu¬ sen entnommen. Das erhaltene Citratplasma wurde auf partielle Thromboplastinzeit (PTT), Thrombinzeit (TT), anti-Thrombin- Potential (aPT) und Plasmakonzentration von Thrombin-Asn99 und Meizothrombin-Asn99 untersucht, wobei jede Messung dreifach vor¬ genommen worden ist.
Zur Messung der PTT wurden 50 μl citriertes Maus-Plasma mit 50 μl Faktor II-defizientem Citratplasma und 100 μl partiellem Thromboplastin-Reagens bei 37°C für 3 min gemischt. Die Gerin¬ nung wurde durch Zugabe von 100 μl 25 mM CaCl2 gestartet. Zur Messung der TT wurden 50 μl citriertes Maus-Plasma mit 150 μl Faktor II-defizientem Citratplasma bei 37°C für 1 min ge¬ mischt. Die Gerinnung wurde durch Zugabe von 100 μl Thrombin- Standard (7 Einheiten/ml) gstartet. Zur Bestimmung des aPT wurde die TT aller Mäuse der Gruppen 1 bis 8 mit einer Eichkurve der Gerinnungszeiten von verschiedenen Thrombin-Standard-Konzentrationen (1 Einheit/ml bis 10 Einhei¬ ten/ml, woraus sich die effektive Thrombin-Konzentration in den einzelnen TT-Versuchen ergab. Die Unterschiede, welche sich in der effektiven Thrombin-Konzentration in den Versuchen mit dem Maus-Plasma der Testgruppen 1 und 5 zu den effektiven Thrombin- Konzentrationen in den Versuchen mit dem Maus-Plasma der Test¬ gruppen 2 bis 4 bzw. 6 bis 8 ergaben, resultierten im anti- Thrombin-Potential, wobei ein Unterschied in 1 Thrombin-Ein¬ heit/ml als eine anti-Thrombin-Einheit definiert wurde.
Die Plasma-Konzentrationen von Thrombin-Asn99 und Meizothrombin- Asn99 wurden durch Zugabe von seriellen Plasma-Verdünnungen zu immobilisiertem Hirudin bestimmt, wobei Thrombin-Asn99 und Meizothrombin-Asn 9 mittels Schaf-anti-Thrombin-IgG-Peroxidase- Konjugat detektiert wurden. Zur Analyse wurden Eichgeraden mit Thrombin-Asn99- und Meizothrombin-Asn99-Konzentrationen von 3 ng/ml bis 100 ng/ml erstellt.
Die Ergebnisse diser Untersuchungen sind in Tabelle 6 darge¬ stellt.
Tabelle 6:
Parameter Thrombin- Asn99 Meizothrombin-Asn99 Test-Gruppe Test-Gruppe 1 2 3 4 5 6 7 8
PTT (sek) 23,8 42,3 24,0 26,2 22,4 38,2 21,0 21,8
TT (sek) 11,4 19,8 11,6 11,7 11,6 19,3 11,2 12,0 aTP (ATU) 0 4,3 0 0,33 0 3,8 0 0,12
Plasmakonzentration 0 0 16 10 0 0 39 16
Diese Daten zeigen, daß die Injektion von Hirudin (Testgruppe 2 und 6) eine Erhöhung des PTT von mindestens 75 %, eine Erhöhung des TT von mindestens 60 %, das Auftreten eines hohen aPT und keine Detektion von Thrombin in Plasma verursachte.
Die alleinige Verabreichung von Thrombin-Asn99 (Testgruppe 3) und Meizothrombin-Asn99 (Testgruppe 7) zeigte keine signifikante Veränderung der Gerinnungs-Parameter, verglichen mit den Test¬ gruppen 1 bzw. 5, jedoch konnten beide Proteine in Maus-Plasma detektiert werden.
Die Injektion von Hirudin, gefolgt von Thrombin-Asn99 (Test¬ gruppe 4) und die Injektion von Hirudin, gefolgt von Meizo- thrombin-Asn99 (Testgruppe 8) resultierte in einer Normalisie¬ rung des PTT und des TT, wobei das aPT erheblich reduziert wurde. Es konnten also beide Proteine offensichtlich Hirudin im Kreislauf neutralisierten und dabei die freie Hirudin-Konzen- tration reduzierten.
Hirudin-komplexierte Formen von Thrombin-Asn99 und Meizothrom- bin-Asn99 sind weniger reaktiv gegenüber immobilisiertem Hiru¬ din, weshalb niedrigere Konzentrationen von Thrombin-Asn99 und Meizothrombin-Asn99 in Plasma gefunden wurden.

Claims

P a t e n t a n s p r ü c h e :
1. Prothrombinmutante oder Derivat davon, dadurch gekennzeich¬ net, daß es gegenüber dem natürlichen Protein eine oder mehrere Veränderungen in der Proteinsequenz aufweist, keine oder eine Aktivität von höchstens etwa 10 %, vorzugsweise von höchstens etwa 0,25 % des natürlichen Protein aufweist und bei der die Veränderung der Proteinsequenz die Bindungskapazität zu spezi¬ fischen Liganden und Rezeptoren nicht beeinflußt.
2. Prothrombinmutante oder Derivat davon nach Anspruch 1, da¬ durch gekennzeichnet, daß sie eine in vivo-Halbwertszeit von mehr als einer Stunde aufweist.
3. Prothrombinmutante oder Derivat davon nach Anspruch 1, da¬ durch gekennzeichnet, daß sie eine in vivo-Halbwertszeit von maximal 10 Minuten aufweist.
4. Prothrombinmutante oder Derivat davon nach einem der An¬ sprüche 1 bis 3, dadurch gekennzeichnet, daß die Veränderung mindestens ein Aminosäurenaustausch, eine Deletion oder eine Insertion ist.
5. Prothrombinmutante oder Derivat davon, nach einem der An¬ sprüche 1 bis 4, dadurch gekennzeichnet, daß die Veränderung mindestens eine Aminosäure aus dem aktiven Zentrum betrifft.
6. Prothrombinmutante oder Derivat davon, nach einem der An¬ sprüche 1 bis 5, dadurch gekennzeichnet, daß die Veränderung mindestens eine Aminosäure, ausgewählt aus den Aminosäuren His- 363 oder Asp-419 und gegebenenfalls Cys-293 oder Cys-439, bezo¬ gen auf die Aminosäurennumerierung in Prothrombin gemäß Fig.1, betrifft.
7. Prothrombinmutante oder Derivat davon nach einem der An¬ sprüche 1 bis 6, dadurch gekennzeichnet, daß die Aminosäure Asp- 419 gegen Asn ausgetauscht ist.
8. Prothrombinmutante oder Derivat davon als Arzneimittel.
9. Verwendung von Prothrombinmutanten oder Derivaten davon zur Herstellung einer Präparation zur Verhinderung von Nebeneffekten bei einer Antikoagulationsbehandlung.
10. Verwendung nach Anspruch 9, dadurch gekennzeichnet, daß die Antikoagulationsbehandlung mit Hirudin, Heparin, Antithrombin III und/oder deren Derivaten durchgeführt wird.
11. Verwendung von Prothrombinmutanten oder Derivaten davon zur Herstellung einer Präparation, welche antagonistische Wirkung gegenüber einem natürlichen oder synthetischen Thrombininhibi- tor, insbesondere Hirudin, Heparin, Antithrombin III und/oder deren Derivaten, aufweist.
12. Verwendung von Prothrombinmutanten und Derivaten davon als Antikoagulans.
13. Verwendung von Prothrombinmutanten oder Derivaten davon zur Herstellung einer Präparation zur Antikoagulationsbehandlung.
14. Verfahren zur Herstellung von Prothrombinmutanten oder Deri¬ vaten davon nach einem der Ansprüche 1 bis 7, dadurch gekenn¬ zeichnet, daß die genetische Information für Prothrombin mu¬ tiert, vorzugsweise punktmutiert, und in einem eukaryotischen Expressionssystem exprimiert wird und anschließend das expri¬ mierte Derivat gewonnen wird.
15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, daß das exprimierte Derivat ein mutiertes Prothrombinderivat ist und in einem weiteren Schritt durch Behandlung mit einer geeigneten Protease, wie Trypsin, Ecarin oder 0. scvutellatus Venom, ge¬ spalten wird.
16. Pharmazeutische Präparation enthaltend ein rekombinante Prothrombinmutante oder ein Derivat davon.
17. Pharmazeutische Präparation nach Anspruch 16, dadurch ge- kennzeichnet, daß sie im wesentlichen frei von viralen Kontami¬ nationen und Verunreinigungen durch Rest-DNA von der Expressi- onszellinie ist.
18. Vorrichtung zur Quantifizierung von Derivaten von Prothrom- ■ bin oder Prothrombinmutanten, Thrombin, Thrombinmutanten, Meizo¬ thrombin oder Meizothrombinmutanten und/oder Hirudin oder Hiru¬ dinderivaten, welche eine feste Matrix mit einem darauf immobi¬ lisierten Hirudin oder Hirudinderivat umfaßt.
19. Vorrichtung nach Anspruch 18, dadurch gekennzeichnet, daß die feste Matrix durch die Fläche einer Mikrotiterplatte gebil¬ det ist.
20. Testkit, welcher eine Vorrichtung nach Anspruch 18 oder 19 und einen oder mehrere Behälter mit Reagentien für eine spezi¬ fische Detektionsreaktion, vorzugsweise eine spezifische Detek¬ tionsreaktion, enthält.
21. Testkit nach Anspruch 20, welcher weiters einen Behälter mit einer ein Trägerprotein beinhaltenden physiologischen Puffer¬ lösung enthält.
22. Testkit nach Anspruch 19 oder 20, wobei das Reagens für eine spezifische Detektionsreaktion eine markierte Thrombin-bindende Substanz ist.
23. Testkit nach Anspruch 22, dadurch gekennzeichnet, daß die markierte Thrombin-bindende Substanz ein Farbstoff-markierter monoklonaler oder polyklonaler Antikörper gegen Thrombin ist.
24. Testkit nach einem der Ansprüche 20 bis 23, welcher weiters eine Thrombin-hältige Referenzlösung enthält.
25. Verfahren zur Quantifizierung von Derivaten von Prothrombin, Prothrombinmutanten, Thrombin, Thrombinderivaten, Meizothrombin oder Meizothrombinmutanten, gekennzeichnet durch die folgenden Schritte: - Inkubieren einer Lösung, enthaltend eine zu quantifizie¬ rende Substanz mit einem Hirudin oder Hirudinderivat, wel¬ ches auf einer festen Matrix immobilisiert ist, wobei die Substanz an immobilisiertes Hirudin oder Hirudinderivat gebunden wird,
- Durchführen einer spezifischen Detektionsreaktion, wobei die Menge an der gebundenen Substanz bestimmt wird.
26. Verfahren nach Anspruch 25, dadurch gekennzeichnet, daß eine Vorrichtung nach einem der Ansprüche 18 oder 19 bzw. ein Testkit nach Anspruch 20 bis 24 eingesetzt wird.
27. Verfahren nach Anspruch 25 oder 26, dadurch gekennzeichnet, daß bei der spezifischen Detektionsreaktion eine Farbreaktion eingesetzt wird, wobei die Konzentration der Substanz durch Korrelation mit der Intensität der Farbreaktion bestimmt wird.
28. Verfahren zur Quantifizierung von Hirudin oder Hirudinderi¬ vaten, gekennzeichnet durch die folgenden Schritte:
- Inkubieren einer Lösung mit einer zu quantifizierenden Menge an Hirudin oder Hirudinderivat mit einer Lösung mit einer bekannten Menge an freiem Thrombin oder Thrombin¬ derivat,
- Bestimmen der nach dem Inkubieren mit dem Hirudin oder Hirudinderivat verbliebenen freien Thrombin- oder Thrombin- derivat-Konzentration durch ein Verfahren nach einem der Ansprüche 25 bis 27 und
- Bestimmen der Menge an Hirudin oder Hirudinderivat durch Rückrechnen aufgrund der Unterschiede zwischen der ursprüng¬ lichen bekannten und der bestimmten Menge an Thrombin- oder Thrombinderivat.
29. Verwendung einer Vorrichtung nach Anspruch 18 oder 19 bzw. eines Testkits nach Anspruch 20 bis 24 zur Quantifizierung von Derivaten von Prothrombin oder Prothrombinmutanten, vorzugsweise Thrombin, Thrombinderivaten, Meizothrombin, Meizothrombinderiva- ten, Hirudin oder Hirudin-Derivaten.
EP96915903A 1995-06-13 1996-06-12 Prothrombin-derivate Withdrawn EP0833897A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AT0100695A AT404357B (de) 1995-06-13 1995-06-13 Prothrombin-derivate
AT100695 1995-06-13
PCT/AT1996/000105 WO1996041868A2 (de) 1995-06-13 1996-06-12 Prothrombin-derivate

Publications (1)

Publication Number Publication Date
EP0833897A2 true EP0833897A2 (de) 1998-04-08

Family

ID=3504770

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96915903A Withdrawn EP0833897A2 (de) 1995-06-13 1996-06-12 Prothrombin-derivate

Country Status (9)

Country Link
US (1) US6086871A (de)
EP (1) EP0833897A2 (de)
JP (1) JPH11507542A (de)
AT (1) AT404357B (de)
AU (1) AU700631B2 (de)
CA (1) CA2224634A1 (de)
CZ (1) CZ402097A3 (de)
HU (1) HUP9900506A3 (de)
WO (1) WO1996041868A2 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2008202376B2 (en) * 2001-07-06 2011-02-10 Juridical Foundation The Chemo-Sero-Therapeutic Research Institute Process for producing human thrombin by gene modification technique
ATE423199T1 (de) * 2001-07-06 2009-03-15 Chemo Sero Therapeut Res Inst Verfahren zur herstelllung von menschlichem thrombin mittels genmodifikationstechnik
US20030099957A1 (en) * 2001-09-28 2003-05-29 Vitivity, Inc. Diagnosis and treatment of vascular disease
WO2006104398A1 (en) * 2005-03-26 2006-10-05 Protemix Corporation Limited Copper antagonist compositions
EP2093290A4 (de) 2006-11-15 2010-03-24 Chisso Corp Thrombinmutante
EP3824902A1 (de) 2007-09-28 2021-05-26 Portola Pharmaceuticals, Inc. Gegenmittel für faktor-xa-inhibitoren und verfahren zur verwendung davon
EP2344174B1 (de) * 2008-10-27 2016-04-27 Trustees Of Tufts College Peptid-kodierende nukleinsäuren zur wundbehandlung, antiangiogene verbindungen und verwendungen davon
CN102316893B (zh) 2008-11-14 2015-02-18 博尔托拉制药公司 因子Xa抑制剂的解毒剂及其与血液凝固剂组合使用的方法
EP2414517B1 (de) 2009-03-30 2016-09-21 Portola Pharmaceuticals, Inc. Gegenmittel für faktor-xa-hemmer und verwendungsverfahren dafür
JP6163304B2 (ja) * 2009-07-15 2017-07-12 ポートラ ファーマシューティカルズ, インコーポレイテッド 第Xa因子インヒビターの解毒剤の単位用量処方物およびその使用方法
AR079944A1 (es) 2010-01-20 2012-02-29 Boehringer Ingelheim Int Anticuerpo neutralizante de la actividad de un anticoagulante
EP2471945A1 (de) * 2010-12-30 2012-07-04 Siemens Healthcare Diagnostics Products GmbH Verfahren zur Bestimmung von Inhibitoren der Gerinnung
AP2013007046A0 (en) 2011-03-30 2013-08-31 Boehringer Ingelheim Int Anticoagulant antidotes
EP2874646A4 (de) * 2012-04-17 2016-07-06 Univ Aarhus Sorcs1 zur verwendung bei der behandlung von adipositas und übergewicht
GB2504499A (en) * 2012-07-31 2014-02-05 Baxter Healthcare Sa Selective measurement of active human protease coagulation factors
BR112016027649A2 (pt) 2014-05-26 2017-08-15 Academisch Ziekenhuis Leiden Proteínas prohemostáticas para o tratamento de hemorragia

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5167960A (en) * 1988-08-03 1992-12-01 New England Deaconess Hospital Corporation Hirudin-coated biocompatible substance
US5112615A (en) * 1988-08-03 1992-05-12 New England Deaconess Hospital Corporation Soluble hirudin conjugates
CA2000887A1 (en) * 1988-11-01 1990-05-01 Cecilia S.L. Ku Thromboresistant materials and methods for making same
ES2069726T5 (es) * 1989-01-25 1999-09-16 Novartis Ag Anticuerpos monoclonales especificos para hirudina.
JP2549224B2 (ja) * 1990-01-26 1996-10-30 イムノ・アクチェンゲゼルシャフト 組換えにより産生される血液因子及びその血液因子の発現方法並びにその方法に使用されるワクシニアウイルス組換え体
US5688768A (en) * 1991-02-19 1997-11-18 Cor Therapeutics, Inc. Recombinant thrombin receptor and related pharmaceuticals
DE4203965A1 (de) * 1992-02-11 1993-08-12 Max Planck Gesellschaft Antidot fuer hirudin und synthetische thrombininhibitoren
AU1096595A (en) * 1993-11-12 1995-05-29 Gilead Sciences, Inc. Thrombin mutants
AT401270B (de) * 1994-09-26 1996-07-25 Immuno Ag Verfahren zur quantifizierung von genomischer dna

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9641868A2 *

Also Published As

Publication number Publication date
HUP9900506A2 (hu) 1999-06-28
CZ402097A3 (cs) 1998-04-15
CA2224634A1 (en) 1996-12-27
AU5887196A (en) 1997-01-09
WO1996041868A2 (de) 1996-12-27
US6086871A (en) 2000-07-11
AU700631B2 (en) 1999-01-07
AT404357B (de) 1998-11-25
WO1996041868A3 (de) 1997-04-10
HUP9900506A3 (en) 2001-10-29
JPH11507542A (ja) 1999-07-06
ATA100695A (de) 1998-03-15

Similar Documents

Publication Publication Date Title
DE69333724T2 (de) Hybrider menschlich-schweinlicher faktor viii
DE60019122T2 (de) Veränderter faktor viii
DE60133541T2 (de) Modifizierter faktor viii
DE69736068T2 (de) Faktor viii vom schwein und hybride davon
AT404357B (de) Prothrombin-derivate
DE69930778T2 (de) Protease zum Aktivierung des Gerinnungsfaktor VII
DE69828330T2 (de) Aktiviertes Protein C Formulierungen
DE69333727T2 (de) Protein-C-Derivat
DE3586402T3 (de) Proteinzusammensetzung mit Koagulations-wirkung und Verfahren zu ihrer Herstellung.
DE69832628T2 (de) Rekombinant-kaninchengewebefaktor basiertes prothrombinzeitreagenz
EP0203509B1 (de) Verfahren zur quantitativen Bestimmung von Protein C und Aktivatorpräparat zur Durchführung des Verfahrens
EP1572229B1 (de) Stabiles therapeutisches fibrinogen
DE69333738T2 (de) Therapeutische domänen des von willebrand-faktor
DE69333491T2 (de) Protease-Resistant Thrombomodulin Analogs
DE69737500T2 (de) Gereinigte Multimerase
DE69411898T3 (de) Neue antikoagulant-cofaktor aktivität
EP0478827A1 (de) Stabilisiertes Thrombin, seine Herstellung und seine Verwendung als Thrombinzeitreagens
CN103037893A (zh) 具有纤溶亢进的凝血病的治疗
DE2734427B2 (de) Verfahren zur Gewinnung von thrombinartigen Enzymen aus Schlangengiften
EP0677107B1 (de) Thrombininhibitor aus speichel von protostomiern
CA2235628A1 (en) Hybrid factor viii with modified activity
EP0119990A2 (de) Verfahren zur Herstellung von therapeutisch verabreichbaren, in Endbehältern abgefüllten Plasmaderivaten
AT404516B (de) Vorrichtung zur quantifizierung von prothrombin-derivaten
DE4442665A1 (de) Chimäre Proteine mit fibrinolytischen und thrombinhemmenden Eigenschaften
EP0687687A2 (de) Pharmazeutische Zusammensetzung zur Vorbeugung und Behandlung von Blutgerinnungsstörungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971206

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAXTER AKTIENGESELLSCHAFT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAXTER AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 20030827

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040623