EP0833126B1 - Verfahren und vorrichtungen zur prüfung von beschichtungen - Google Patents

Verfahren und vorrichtungen zur prüfung von beschichtungen Download PDF

Info

Publication number
EP0833126B1
EP0833126B1 EP96917648A EP96917648A EP0833126B1 EP 0833126 B1 EP0833126 B1 EP 0833126B1 EP 96917648 A EP96917648 A EP 96917648A EP 96917648 A EP96917648 A EP 96917648A EP 0833126 B1 EP0833126 B1 EP 0833126B1
Authority
EP
European Patent Office
Prior art keywords
light
image pickup
coating layer
glass bottle
bottle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96917648A
Other languages
English (en)
French (fr)
Other versions
EP0833126A1 (de
EP0833126A4 (de
Inventor
Junjirou Imaizumi
Tsutomu Amano
Yoshimoto Take
Yoshito Amino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kirin Brewery Co Ltd
Original Assignee
Kirin Brewery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP14775295A external-priority patent/JPH08338815A/ja
Priority claimed from JP20601395A external-priority patent/JP3304239B2/ja
Application filed by Kirin Brewery Co Ltd filed Critical Kirin Brewery Co Ltd
Publication of EP0833126A1 publication Critical patent/EP0833126A1/de
Publication of EP0833126A4 publication Critical patent/EP0833126A4/de
Application granted granted Critical
Publication of EP0833126B1 publication Critical patent/EP0833126B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/90Investigating the presence of flaws or contamination in a container or its contents

Definitions

  • the present invention relates to apparatus and methods for inspecting conditions of a coating layer applied on a surface of a glass bottle, more specifically inspecting thickness and deteriorating situation of a coating layer so as to maintain sufficient strength of the glass bottle which is lightened in weight.
  • a container used for filling beverages for example, a container such as a bottle made of glass has been widely used.
  • the bottle mentioned above is to be lightened in weight in order to benefit convenience in transportation thereof.
  • a means of forming a coating layer on the surface of the bottle is applied in order to prevent the bottle from weakening in strength due to the introduction of lightening the bottle in weight.
  • Metal oxide coating layer such as SnO2 or TiO2 is formed by means of a so-called hot end coating process on the surface of the bottle for this purpose.
  • the hot end coating process is a technique in which a reaction gas is sprayed on the surface of the bottle, during the time when the surface thereof still has a relatively higher temperature prior to the application of a slow cooling thereto upon manufacturing the bottle, to form an oxide coating layer of SnO2 or TiO2 on the surface of the bottle.
  • the thickness of the coating layer should fall within a prescribed scope to maintain a mechanical strength (i.e., durability) of the bottle. With a thin coating layer outside the scope, bottles contact with each other upon transporting thereof to result in causing a scratch on the surface of the bottle so that it becomes difficult to maintain the desired strength of the bottle, thus cracking the bottle.
  • the inspection of the thickness of the coating layer formed on the surface of the bottle has been carried out by an apparatus for measuring the thickness thereof by means of contacting the bottle to be inspected (hereinafter referred to as a "contact-type measuring apparatus"), for example, a hot end coating meter manufactured by American Glass Research, Inc.
  • a contact-type measuring apparatus for example, a hot end coating meter manufactured by American Glass Research, Inc.
  • silicone oil as an optical coupling fluid has to be immersed on the surface of the bottle when the light emitting/sensoring device is contacted with the bottle. It is therefore necessary to wipe out the immersion fluid after the thickness is measured. Because it takes time to wipe out the painted oil, the bottles used for measuring the thickness of the coating layer are discarded in general.
  • the bottles are sampled to detect and measure the thickness of the coating layer in the manufacturing process of the bottles. It is therefore necessary to increase the number of the inspections in order to obtain the overall information about the situation of the coating layer of the manufactured bottles, thus increasing the number of bottles to be discarded, and lowering efficiency of the inspection.
  • Japanese Patent Provisional Publication No. 131,547/91 discloses a bottle to be recycled and repeatedly used with a coating layer formed on the surface thereof (which has a SnO2 coating layer of about 100 nm thickness)(hereinafter referred to as a "returnable bottle”) so as to lighten the weight of the bottle for beverages like beer and increase the number of repetitive use.
  • the above-mentioned conventional contact-type measuring apparatus has a problem that it can measure only the thickness of the coating layer up to about 60 nm, it is impossible to detect and measure the thickness of the coating layer of about 100 nm mentioned above.
  • a bottle with a prescribed thickness of a coating layer formed on the surface thereof can be recycled and used, thus increasing the number of the repetitive use of the bottle.
  • a heated alkaline solution for example, 4 % of a caustic soda aqueous solution at the temperature of 80°C
  • the coating layer on the surface of the bottle may be deteriorated by the heated alkaline solution.
  • the surface of the bottle looks like a whitish, thus deteriorating a fine external view of the bottle to lower the value of the commodity as a bottled product, even if the bottle has a sufficient strength to be recycled and used.
  • the coating layer for example, the SnO2 coating layer has pinholes from 2 to 3 ⁇ m in diameter therein from the beginning, as illustrated in Fig. 13(a). Then, the coating layer is repeatedly washed in the heated alkaline solution so that the pinholes gradually grow deeper and larger up to about 10 ⁇ m in diameter, as illustrated in Fig. 13(b).
  • the surface of the bottle becomes like a ground glass so that the overall or part of the surface of the bottle lose a shine, resulting in looking like a whitish.
  • the bottles with remarkably deteriorated coating layer on the surface thereof have to be discarded even if they have a sufficient strength to be recycled.
  • the present invention is made to solve the above mentioned problems in the inspection of the thickness or deteriorating situation of the coating layer formed on the surface of the bottle.
  • the purpose of the present invention is to provide an apparatus and method for inspecting a coating layer, in which a thickness of the coating layer formed on the surface of the bottle can be measured without contacting the bottle, the inspection of the bottles can be carried out not to the selected sampling bottles but to all the bottles, and even a coating layer having a thick thickness can be measured.
  • Another purpose of the invention is to provide an apparatus and method for inspecting a coating layer, in which the deteriorating situation of the coating layer formed on the surface of the bottle can be automatically operated and differentiated on the basis of an objective standard, and a high inspecting speed is possible.
  • Fig. 1 is a schematic structural view illustrating an apparatus for inspecting a coating layer in the first embodiment of the present invention.
  • Fig. 2 is a table and graph describing a process of establishing a standard data in the apparatus for inspecting a coating layer in the first embodiment of the present invention.
  • Fig. 3 is a schematic frontal view illustrating an apparatus of inspecting a coating layer in the second embodiment of the present invention.
  • Fig. 4 is a schematic plan view illustrating the apparatus for inspecting a coating layer in the second embodiment of the present invention.
  • Fig. 5 is a schematic structural view illustrating an apparatus for inspecting a coating layer in the third embodiment of the present invention.
  • Fig. 6 is a descriptive view illustrating a placement of the apparatus for inspecting a coating layer in the third embodiment of the present invention with a single slit provided.
  • Fig. 7 is a descriptive view illustrating a placement of the apparatus for inspecting a coating layer in the third embodiment of the present invention with two slits provided.
  • Fig. 8 is a descriptive view illustrating situations of a pickup image of a scattered light.
  • Fig. 9 is a partial cross-sectional view illustrating a situation of a bottle with a coating layer deteriorated in a wetted situation.
  • Fig. 10 is a schematic structural view illustrating a measuring device for establishing a standard data in the third embodiment of the present invention.
  • Fig. 11 is a table describing a process of establishing a standard data in the third embodiment of the present invention.
  • Fig. 12 is a graph corresponding to the table in Fig. 11.
  • Fig. 13 is a descriptive view illustrating a deteriorating situation of a coating layer.
  • Fig. 1 illustrates an apparatus for inspecting a coating layer of the first embodiment of the present invention.
  • the inspecting apparatus of Fig. 1 measures a thickness of the coating layer formed on a bottle off the production line.
  • an apparatus 1 for inspecting a coating layer includes a light source unit 3 for emitting an inspecting light L to a bottle 4, a stabilized power source 2 connected to the light source unit 3 for supplying a stable power source to the light source unit 3 such that an amount of a light emission of the inspecting light L and an emission spectral distribution becomes constant, a color CCD camera 5 for receiving a reflected light LR of the inspecting light L reflected from the bottle 4, and converting the reflected light LR to a RGB image pickup signal V and outputting same, and an operating unit 6 connected to the color CCD camera 5 for operating a thickness of a coating layer formed on the surface of the bottle on the basis of the inputted RGB image pickup signal V.
  • the light source unit 3 includes a plurality of white light sources 3A for irradiating an original inspecting light LO, and a diffusion plate 3B for diffusing the original inspecting light LO irradiated from the white light source 3A to produce a uniform surface illuminant.
  • a white fluorescent lamp is applied, because the spectral distribution of the white fluorescent lamp is flat, the color temperature variation thereof is almost constant, and the color temperature correction thereof is not necessary.
  • the light source unit 3 is provided to emit the inspecting light L in such manner that the angle of the light axis to the measuring plane of the coating layer of the bottle falls within a range of 30° to 60°.
  • the reason of the angle set as above is that an affection of the thickness variation of the coating layer exerted to the spectral distribution of the reflected light LR can be surely measured.
  • the operating unit 6 includes an operating unit body 6A for performing actual calculation and various controls, and a display unit 6B for displaying various operating results and controlling situations.
  • the stable power source is supplied from the stabilized power source 2 to the white light source 3A of the light source unit 3. Then, the white light source 3A irradiates the original inspecting light LO having a prescribed emission spectral distribution toward the diffusion plate 3B.
  • the diffusion plate 3B diffuses the original inspecting light LO irradiated from the white light source 3A to produce the uniform surface illuminant, from which surface illuminant the inspecting light is irradiated toward the bottle 4.
  • the irradiated inspecting light L is absorbed, reflected or interfered, depending on the thickness of the coating layer, and then, the reflected light LR, which has a different spectral distribution from that of the incident inspecting light L, is produced.
  • the reflected light LR has the same spectral distribution as those of the inspecting light L.
  • the reflected light LR becomes bluish, as the thickness becomes thicker, and when the thickness reaches 40 nm, the reflected light LR becomes the most bluish.
  • the reflected light becomes golden.
  • a color tone variation i.e., spectral distribution variation
  • the operating unit 6 operates in the operating unit body 6A the thickness of the coating layer formed on the surface of the bottle 4 on the basis of the RGB image pickup signal inputted from the color CCD camera 5, and then displays the operated thickness of the coating layer on the displaying unit 6B.
  • the operating process of the thickness of the coating layer in the operating unit body 6A is as follows:
  • Fig. 2 there is illustrated the relationship between the thickness of the coating layer and the bistimulus values X and Y of the light source color in the XYZ calorimetric system in case that the color of the bottle 4 to be measured is amber.
  • Fig. 2(a) shows the bistimulus values X and Y for each thickness, wherein the coating layers having different thicknesses are premeasured by means of other process, for example, the process of imaging the cross-section of the coating layer by means of an electron microscope, and then, the inspecting light L is irradiated to the coating layer whose thickness is already measured to obtain the bistimulus values X and Y from the reflected light LR thereof.
  • Fig. 2(b) is a graph illustrating the relationship between the measured thickness of the coating layer and the bistimulus values X and Y, as thus obtained, wherein the stimulus value X is taken along the horizontal axis and the stimulus value Y is taken along the vertical axis.
  • the graph indicating the relationship between the coating thickness of the coating layer and the bistimulus values X and Y can be almost approximated by a linear line.
  • the operating unit body 6A operates the thickness of the coating layer based on the approximate formula obtained from Fig. 2(b). More specifically, the operating unit body 6A obtains the bistimulus values X and Y in the reflected light LR from the RGB image pickup signal V inputted from the color CCD camera 5, based on the reference formula shown in JIS Z 8701, and then operates the thickness of the coating layer from the approximate formula obtained from Fig. 2(b) with the use of thus obtained bistimulus values X and Y.
  • the thickness of the coating layer thus operated is displayed on the displaying device 6B by the control of the operating unit body 6A.
  • Figs. 3 and 4 illustrate the second embodiment of the apparatus for inspecting the coating layer of the present invention.
  • Fig. 3 is a schematic frontal view of the inspecting apparatus 11 in the second embodiment.
  • Fig. 4 is the schematic plan view of the inspecting apparatus 11.
  • the inspecting apparatus 11 measures the thickness of the coating layer of the bottle on the production line, while the inspecting apparatus 1 in the first embodiment measures same off the production line.
  • the inspecting apparatus 11 includes a light source unit 12 for irradiating the inspecting light L to the bottle 13 on a transporting conveyer 16, a color CCD camera 14-1 for receiving the reflected light LR of the inspecting light L reflected from the bottle 13, converting the reflected light LR to the RGB image pickup signal V1 and outputting same, a color CCD camera 14-2 for receiving the reflected light LR, converting the reflected light LR to the RGB image pickup signal V2 and outputting same, a control unit 15 for being inputted the RGB image pickup signal V1 and V2 from the color CCD camera 14-1 and 14-2, operating the thickness of the coating layer of the bottle 13 based on the inputted RGB image pickup signal V1 and V2, and controlling the overall apparatus, an infeeder 17 for supplying the bottle 13 onto the transporting conveyer 16 at the prescribed interval, and a location sensor 18 for detecting that the bottle 13 arrives at a measuring location.
  • a light source unit 12 for irradiating the inspecting light L to the bottle 13 on a
  • the inspecting apparatus 11 includes two color CCD cameras 14-1 and 14-2 because it is possible to measure the coating layer at the plural portions of the bottle 13 such as a neck portion and a central portion of the bottle 13 with the use of two cameras.
  • the control unit 15 includes the control unit body 15A for operating a thickness of the coating layer and performing various controls, and the displaying device 15B for displaying the operating result and controlling situation and the like.
  • the working process of the above inspecting apparatus 11 is as follows:
  • the bottle 13 to be measured is supplied onto the transporting conveyer 16 by the infeeder 17 at the prescribed interval, and is transported to the measuring location by the transporting conveyer 16. Then, when it is detected by the location sensor 18 that the bottle 13 arrives at the measuring location, the detecting signal is outputted from the location sensor 18 to the control unit body 15.
  • the control unit body 15 starts operating the thickness of the coating layer by the inputted detecting signal from the location sensor 18.
  • a stable power source is supplied from the stabilized power source (not shown) to the light source unit 12, and the inspecting light L having a prescribed emission spectral distribution is irradiated toward the bottle 13 from the light source unit 12.
  • the phenomenon such as the absorption, reflection, interference or the like of the inspecting light corresponding to the thickness of the coating layer occurs and then, the reflected light LR, which has a different spectral distribution from that of the inspecting light L, is produced.
  • the reflected light LR reflected from the bottle 13 is received by the two color CCD cameras 14-1 and 14-2, and converted to the RGB image pickup signal V1 and V2 and outputted to the control unit 15, respectively.
  • the control unit 15 by means of the same process described in the first embodiment with reference to Figs. 2(a) and (b), operates the thickness of the coating layer of the bottle 13 through the RGB image pickup signal V1 and V2, respectively. Then, the respective thickness of the coating layers operated in each color CCD cameras is displayed on the displaying device 15.
  • the above inspecting apparatus 11 it is possible to measure the thickness of the coating layer of all the bottles sequentially and without contacting the bottle in the manufacturing process. Thus, it is possible to improve the reliability of the coating layer applied on the surface of the bottle, and in addition, it is possible to carry out the speedy measurement of the coating layer because the thickness of the coating layer is measured automatically without handling by hand.
  • the XYZ calorimetric system is applied to compare the spectral distribution, however, it is possible to apply the other means as far as the spectral distribution can be differentiated in quantity.
  • Fig. 5 illustrates the third embodiment of the apparatus for inspecting a thickness of the coating layer of the present invention.
  • the inspecting apparatus of Fig. 5 inspects the deteriorating situation of the coating layer formed on the bottle.
  • the inspecting apparatus 21 includes a inspecting light emitting unit 24, provided facing to the side portion of a conveyer 23 transporting a bottle 22 to be inspected and having therein a light source (not shown) of such as a fluorescent lamp of about 30 Watt, for emitting the inspecting light L from a slit S provided on the side of the conveyer 23, a image pickup unit 25 comprising a CCD camera provided at the location of the opposite side of the inspecting light emitting unit 24 with the conveyer 23 therebetween as well as at the location of receiving only a scattering light scattered from the coating layer of the bottle 22 out of the whole inspecting light L emitted from the inspecting light emitting unit 24, a control unit 27 for operating a deteriorating situation of the coating layer formed on the bottle 22 based on an image pickup signal V inputted therein from the image pickup unit 25, a displaying device 26 for displaying a result operated in the control unit 27 as well as the pickup image obtained through the image pickup signal V from the image pickup unit 25, and a location sensor 28 for a light source (
  • the side wall of the inspecting light emitting unit 24 with the slit S is formed thereon, facing toward the conveyer 23, is painted black. This enables to more distinctly detect the scattering situation of the scattered light when the bottle 22 is imaged by the image pickup unit 25.
  • Fig. 6 shows an example of the relative location thereof in case that a single slit S is provided.
  • the inspecting light L irradiated from the light source through the slit S to the bottle 22 to be inspected passes through the bottle 22.
  • the optical pass of the inspecting light after passing through the bottle 22 becomes the straight line in accordance with the optical pass of the original inspecting light L before being incident on the bottle 22 in case that a scattered light is not produced at the time the inspecting light L passes through the bottle 22, as shown in the solid line.
  • the optical pass of the inspecting light L after passing through the bottle 22 becomes refracted in relation to the optical pass of the original inspecting light L before being incident on the bottle 22 in case that a scattered light is produced at the time the inspecting light L passes through the bottle 22, as shown in the dotted lines.
  • the image pickup unit 25 is provided in the optical pass of the scattered light (i.e., the optical pass shown in dotted line). This enables that the scattered light of the inspecting light L is incident on the image pickup unit 25 only in case that the scattered light is produced at the time the inspecting light L passes through the bottle 22, on the other hand, the emission light of the inspecting light L is not incident on the image pickup unit 25 in case that the scattered light is not produced at the time the inspecting light L passes through the bottle 22.
  • Fig. 7 shows an example of the relative location thereof in case that a plurality of slits S (in this example, two slits) are provided.
  • two slits S are respectively formed at the location where two straight lines L1, L2', each of which intersects by the prescribed angle ⁇ a straight line L1 containing an optical axis of the image pickup unit 25 and passing through the center of the bottle 22, intersect the front wall of inspecting light emitting unit 24.
  • the straight line L1 between the bottle 22 and the image pickup unit 25 indicates an optical pass of the scattered light when the scattered light is produced at the time the inspecting light L is irradiated from the slit S to the bottle 22.
  • two straight lines L2, L2' indicate optical passes when the inspecting light L is not scattered at the time the inspecting lights L pass through the bottle 22.
  • the angle ⁇ is set up in such manner that the image pickup unit 25 is not located on both of the respective two straight lines L2, L2'.
  • the optical pass of the scattered light is refracted from the original optical pass and becomes in accordance with the optical axis of the image pickup unit 25, as shown in dotted line, in case that the scattering is produced at the time the inspecting lights L emitted from each of the slits S pass through the bottle 22 to be inspected, thus the scattered light of the inspecting light L is incident on the image pickup unit 25.
  • the optical pass of the emission lights becomes straight lines in accordance with the original optical pass of the inspecting light L, as shown in the solid lines, thus the emission light of the inspecting light L is not incident on the image pickup unit 25.
  • a plurality of slits S are provided in the above example.
  • the inspecting lights L irradiated to the bottle 22 from a plurality of slits S it is possible to expand the range of the location of the bottle for inspection wherein the inspection can be carried out for the bottle.
  • the accuracy of the location of the bottle for the inspection is not required so strictly, resulting in the simplification of the construction of the inspecting apparatus.
  • the inspecting principle of the above-mentioned inspecting apparatus 21 is as follows:
  • the relationship between the diameter of the pinhole in the coating layer (which corresponds to a deteriorating situation of the coating layer) and the amount of the scattered light passing through the bottle is memorized in advance in the control unit 27, the inspection of the deteriorating situation of the coating layer is carried out by comparing the detected amount of the scattered light in the bottle 22 to be inspected with the memorized relationship.
  • the inspecting light emitting unit 24 irradiates the inspecting light L from the slit S provided on the side facing the conveyer 23 toward the image pickup unit 25.
  • the inspecting light L mentioned above is irradiated to the bottle 22.
  • the location detecting signal D is outputted from the location sensor 28 to the control unit 27. Then the control unit 27 starts operating the deteriorating situation of the coating layer through the location detecting signal D inputted therein.
  • the inspecting light L incident on the bottle 22 produce a scattered light correspondingly to the deteriorating situation of the coating layer (i.e., the situation of the pinhole formed therein), and then, the scattered light is incident on the image pickup unit 25.
  • Fig. 8 illustrates images of the scattered light taken by the image pickup unit 25.
  • FIG. 8 (A-1) to (A-3) show diagrammatic images of the bottle 22 with the surface thereof dried, and (B-1) to (B-3) show diagrammatic images of the bottle 22 with the surface thereof wetted.
  • the images (A-1) and (B-1) are those in which the coating layer is not deteriorated or the deterioration is smaller. As is shown, there is observed almost no scattered light near the central portion of the images which is indicated by the cross in the drawings.
  • the images (A-2) and (B-2) are those in which the deterioration of the coating layer is in the medium degree. As is shown, there is observed the scattered light near the central portion of the image in Fig. 8 (A-2), while there is not observed the scattered light near the central portion of the image in Fig. 8 (B-2) in which the bottle is in a wetted situation. This is because the pinhole formed in the coating layer is masked by the water to function as if the diameter of the pinhole becomes smaller, as shown in Fig. 9, thus reducing the scattered light.
  • the images (A-3) and (B-3) are those in which the deterioration of the coating layer progress to the extent that the diameter of the pinhole becomes so large that the bottle has to be discarded. As is shown, there is observed the scattered light near the central portion of the respective images in both situations in which the respective surfaces of the bottles is in either the dried or wetted situation.
  • the portion in which the scattered light is detected becomes wider in the image.
  • the control unit 27 operates the inspecting data, when the location detecting signal D is inputted from the location sensor 28 by taking therein the image pickup signal V inputted from the image pickup unit 25, making the image pickup signal V binary coded, and then, carrying out the various operations such as distribution analysis of the scattered light on the basis of the image pickup signal V which is made binary coded.
  • control unit 27 operates the deteriorating situation of the coating layer in the bottle 22 to be inspected by comparing the obtained inspecting data with the standard data memorized in advance (which is described later in detail).
  • the operating results of the coating layer and the pickup image of the scattered light at that time are displayed on the displaying device 26.
  • the control unit 27 outputs a rejecting signal to a rejecting apparatus (not shown) provided at the downstream side of the conveyer 23 to exclude the bottle 22.
  • the inspection of the coating layer can be automatically and continuously carried out without producing unreliable inspecting results by means of easily and objectively grasping the external appearance, which is produced as a result of the deterioration of the coating layer in a micron order on the basis of the amount or distribution of the scattered light at the time the light passes through the bottle.
  • the standard data which is memorized in advance in the control unit 27, mentioned above, can be obtained by the following process.
  • the deteriorating degree of the coating layer of the bottle to be inspected are classified to the six grades (from grade 0 to grade 5) by observation with eyes. More specifically, the situation in which the coating layer is not deteriorated is defined as grade 0, the situation in which the coating layer is deteriorated to the extent for the bottle to be discarded is defined as grade 5, and then, the situations therebetween are classified to five grades.
  • the numeral value of the deteriorating situation of the bottle in the grade 0 is established as 50
  • the numeral value of the deteriorating situation of the bottle in the grade 5 is established as 100.
  • the bottles classified to each grades by the observation with eyes are prepared so as to have plural bottles in each grades, each of the bottles is imaged by the measuring device shown in Fig. 10, and the numeral value indicating the deteriorating situation of the respective bottles is operated by comparing the pickup image with the image of the bottle the deteriorating situation of which is thus converted into the numeral values.
  • Fig. 11 is the table showing the mean value of the results inspected in each grades.
  • Fig. 12 is the graph based on the table in Fig. 11.
  • control unit 27 operates the deteriorating situation of the coating layer by comparing the image pickup data obtained by imaging the bottle to be inspected with the standard data to differentiate the bottles to be inspected to each grades. Then, the bottle 22 over the grade defined in advance are identified as a bad quality.
  • Figs. 11 and 12 there are shown the respective measured results in both situations of the bottle with the surface thereof dried as well as the bottle with the surface thereof wetted.
  • the measured result in the situation of the bottle with the surface thereof dried is compared with those in the situation of the bottle with the surface thereof wetted, it is realized that there is almost no difference between two measured results in relation to the grade 0, however, the measured results in the situation of the bottle with the surface thereof dried are larger by 11 to 14 than those in the situation of the bottle with the surface thereof wetted in relation to the grades 1 to 5.
  • the measuring conditions in the measuring device in Fig. 10 are as follows:
  • a fluorescent lamp is used as a light source, two slits S are provided with the interval between two slits being 50 mm, the slit width being 8 mm, the distance from the slit S to the bottle 22 being 250 mm, and the distance from the bottle to the color CCD camera 25 as the image pickup unit being 300 mm.
  • the bottle to be inspected is a brown beer bottle.
  • the inspection according to the inspecting apparatus 21 can be carried out not only to the brown bottle but also to a white or green bottle, only when the standard data is changed to the corresponding standard data to the color of the bottle to be inspected.
  • the apparatus of the present invention for inspecting a coating layer is applied to inspect a thickness or a deteriorating situation of a coating layer formed on a surface of a bottle like a beer bottle for the purpose of lightening in weight. It is effective in use to prevent a bottle not holding a prescribed strength or a bottle with a largely damaged external appearance due to a deterioration of the coating layer from shipping to a market.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Mathematical Physics (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)

Claims (18)

  1. Vorrichtung zur Bestimmung der Dicke einer Überzugsschicht, die auf der Oberfläche einer Glasflasche (4) ausgebildet ist, wobei die Vorrichtung die folgenden Teile umfaßt: Lichtbestrahlungsmittel (3), um eine Glasflasche (4) mit einer darauf befindlichen Überzugsschicht mit Licht zu bestrahlen, das eine vorbestimmte spektrale Zusammensetzung besitzt;
       Bildabnahmemittel (5), die so angeordnet sind, daß sie das von der Glasflasche (4) reflektierte Bestrahlungslicht empfangen und das reflektierte Licht in ein Bildabnahmesignal umwandeln, und
       Bestimmungsmittel (6), um die Dicke der auf der Glasflasche (4) erzeugten Überzugsschicht zu bestimmen, indem das Bildabnahmesignal eingegeben wird und indem die Bildabnahmedaten, die repräsentativ sind für das Bildabnahmesignal, mit vorgemerkten Standarddaten verglichen werden;
       die Bildabnahmedaten umfassen Daten, die eine spektrale Zusammensetzung des reflektierten Lichtes anzeigen, und
       die Standarddaten umfassen Daten, die eine vorher gemessene Standard-Spektralzusammensetzung anzeigen, entsprechend einer vorbestimmten Dicke der Überzugsschicht;
       wobei die Dicke der Überzugsschicht durch Vergleich der spektralen Zusammensetzung der Bildabnahmedaten mit der Standardspektralzusammensetzung, die durch die Standarddaten angezeigt werden, bestimmt wird.
  2. Vorrichtung nach Anspruch 1, bei welcher der Winkel des Lichts der Lichtbestrahlungsmittel gegenüber der Überzugsschicht der Glasflasche (4) zwischen 30° und 60° liegt.
  3. Vorrichtung nach Anspruch 2, bei welcher die Lichtbestrahlungsmittel (3) einen Oberflächen-Leuchtkörper aufweisen und bei welcher eine Farbtemperatur des Bestrahlungslichtes auf einen im wesentlichen konstanten Wert fixiert ist.
  4. Vorrichtung nach Anspruch 1, welche außerdem Lageerfassungsmittel (18) aufweist, um eine transportierte Glasflasche (4) zu erfassen, die an einer vorbestimmten Stelle plaziert ist und um ein Erfassungssignal zu liefern; wobei die Bestimmungsmittel (6) die Dicke der Überzugsschicht bestimmen, indem das von den Blidabnahmemitteln (5) ausgegebene Bildabnahmesignal empfangen wird, nachdem das Erfassungssignal, welches von den Lageerfassungsmitteln (18) geliefert wird, eingegeben ist.
  5. Vorrichtung zur Bestimmung einer Qualitätsminderung einer Überzugsschicht, die auf einer Oberfläche einer Glasflasche (4) ausgebildet ist, mit den folgenden Merkmalen:
    Lichtbestrahlungsmittel (3), um eine Glasflasche (4), die mit einer Überzugsschicht versehen ist, mit Licht zu bestrahlen;
    Bildabnahmemittel (5), um ein Transmissionslicht des von den Lichtbestrahlungsmitteln (3) abgestrahlten Lichtes zu empfangen, das durch die Glasflasche (4) hindurchgetreten ist, und um das Transmissionslicht in ein Bildabnahmesignal umzuwandeln, wobei die Bildabnahmemittel an einer Stelle angeordnet sind, an der sie ein Streulicht empfangen, das nach der Transmission des von den Lichtbestrahlungsmitteln (3) erzeugten Lichts durch die Glasflasche (4) erzeugt wurde; und
    Erfassungsmittel (6), um eine Qualitätsverminderung der Überzugsschicht auf der Glasflasche (4) zu bestimmen, indem das Bildabnahmesignal, welches von den Bildabnahmemitteln (5) geliefert wird, eingegeben wird und indem die Bildabnahmedaten, die durch das Bildabnahmesignal angezeigt werden, mit vorgemerkten Standarddaten verglichen werden;
    die Bildabnahmedaten umfassen Daten, die einen Betrag des gestreuten Lichts, welches von den Bildabnahmemitteln empfangen wurde, anzeigen, wobei die Standarddaten Daten umfassen, die eine Qualitätsverminderung der Überzugsschicht entsprechend einer vorher fixierten Qualitätsverminderung der Überzugsschicht anzeigen;
    die Qualitätsverminderung der Überzugsschicht der Glasflasche (4) wird bestimmt, indem der Betrag des Streulichtes, welcher durch die Bildabnahmedaten angezeigt wird, mit Standarddaten verglichen wird.
  6. Vorrichtung nach Anspruch 5, bei welcher die Bildabnahmemittel (5) so angeordnet sind, daß sie nur Streulicht und kein Licht, das durch die Glasflasche (4) ohne die Erzeugung von Streulicht hindurchgetreten ist, empfangen.
  7. Vorrichtung nach Anspruch 5, bei welcher die Lichtbestrahlungsmittel (3) eine Lichtquelle und einen zwischen der Lichtquelle und der Glasflasche (4) angeordneten Körper aufweisen, der mit einem Schlitz versehen ist.
  8. Vorrichtung nach Anspruch 7, bei welcher der Körper mehrere Schlitze aufweist.
  9. Vorrichtung nach Anspruch 5, welche weiter Ortserfassungsmittel (18) aufweist, um eine transportierte Glasflasche zu erfassen, die an einer vorbestimmten Stelle liegt und um ein Erfassungssignal auszugeben, und
       wobei die Bestimmungsmittel (6) eine Qualitätsverminderung der Überzugsschicht dadurch bestimmen, daß das von den Bildabnahmemitteln (5) gelieferte Bildabnahmesignal aufgenommen wird, nachdem das von den Lageerfassungsmitteln (18) gelieferte Erfassungssignal eingegeben wurde.
  10. Verfahren zur Bestimmung der Dicke einer Überzugsschicht auf der Oberfläche einer Glasflasche (4) mit den folgenden Schritten: es wird eine mit einer Überzugsschicht auf einer Oberfläche versehene Glasflasche (4) mit einem Licht bestrahlt, das eine vorbestimmte spektrale Zusammensetzung aufweist;
       es wird ein Bild des von der Glasflasche (4) reflektierten Bestrahlungslichtes durch Bildabnahmemittel (5) erzeugt, die das reflektierte Licht empfangen und das reflektierte Licht in ein Bildabnahmesignal umwandeln, und
       es wird die Dicke der Überzugsschicht auf der Glasflasche (4) bestimmt, indem die Bildabnahmedaten, die von dem Bildabnahmesignal des reflektierten in dem Bildabnahmeschritt umgewandelten Lichtes angezeigt werden, mit vorbestimmten Standarddaten verglichen werden;
       die Bildabnahmedaten umfassen Daten, die eine spektrale Zusammensetzung des reflektierten Lichtes anzeigen, und
       die Standarddaten umfassen Daten, die eine Standard-Spektralzusammensetzung entsprechend der Dicke einer Überzugsschicht umfassen,
       wobei die Dicke der Überzugsschicht bestimmt wird durch Vergleich der spektralen Zusammensetzung, die durch die Bildabnahmedaten angezeigt wird mit der Standard-Spektralzusammensetzung, die durch die Standard-Spektralzusammensetzung angegeben wird.
  11. Verfahren zur Bestimmung der Dicke einer Überzugsschicht gemäß Anspruch 10, bei welchem der Winkel des Bestrahlungslichtes auf die Überzugsschicht der Glasflasche (4) im Bereich zwischen 30° bis 60° liegt.
  12. Verfahren zur Bestimmung der Dicke einer Überzugsschicht gemäß Anspruch 10, bei welchem
       im Lichtbestrahlungsschritt eine Lichtquelle eins Oberflächen-Lichtquelle ist und die Farbtemperatur des von der Oberflächen-Lichtquelle abgestrahlten Lichtes einen im wesentlichen konstanten Wert hat.
  13. Verfahren zur Bestimmung der Dicke einer Überzugsschicht gemäß Anspruch 10, bei welchem
       in dem Bestimmungsschritt eine transportierte Glasflasche, plaziert an einer vorbestimmten Stelle, erfaßt wird und die Dicke der Überzugsschicht auf der Basis des Bildabnahmesignals bestimmt wird, das von den Bildabnahmemitteln (5) ausgegeben wird, nachdem die Glasflasche (4) an einer vorbestimmten Stelle erfaßt wurde.
  14. Verfahren zur Bestimmung einer Qualitätsverminderung einer Überzugsschicht auf einer Oberfläche einer Glasflasche (4) mit den folgenden Schritten:
    in einem Bestrahlungsschritt wird eine mit Überzugsschicht auf einer Oberfläche versehene Glasflasche (4) mit einem Licht bestrahlt;
    in einem Bildabnahmeschritt wird durch die Abnahmemittel (5) ein Transmissionslicht des Lichtes empfangen, das in dem Lichtbestrahlungsschritt abgestrahlt wurde und durch die Glasflasche (4) hindurchgetreten ist, und es wird das Licht in ein Bildabnahmesignal umgewandelt, wobei die Bildabnahmemittel (5) an einer Stelle angeordnet sind, an der Streulicht empfangen wird, das nach Transmission des Lichtes durch die Glasflasche (4) erhalten wurde, und
    ein Bestimmungsschritt, um die Qualitätsverminderung der auf der Glasflasche (4) erzeugten Überzugsschicht zu bestimmen, indem die Bildabnahmedaten, die durch das Bildabnahmesignal des Transmissionslichtes angezeigt und im Bildabnahmeschritt konvertiert wurden, mit vorbestimmten Standarddaten verglichen werden,
       wobei die Bildabnahmedaten Daten umfassen, die einen Betrag des Streulichtes anzeigen, welcher durch die Abnahmemittel (5) empfangen wurde;
       wobei die Standarddaten Daten umfassen, die einen Betrag des Streulichtes angeben, der einer Qualitätsverminderung der Überzugsschicht entspricht,
       wobei die Qualitätsverminderung der Überzugsschicht der Glasflasche (4) dadurch bestimmt wird, daß der Betrag des Streulichtes, der von den Bildabnahmedaten angezeigt wird, mit dem Streulicht verglichen wird, das durch die Standarddaten angezeigt wird.
  15. Verfahren nach Anspruch 14, bei welchem bei dem Lichtbestrahlungsschritt ein schlitzartiges Licht abgestrahlt wird, indem das Licht durch einen Schlitz geschickt wird, der zwischen einer Lichtquelle und einer Glasflasche (4) liegt.
  16. Verfahren nach Anspruch 15, bei welchem in dem Beleuchtungsschritt mehrere Schlitze vorhanden sind.
  17. Verfahren nach Anspruch 14, bei welchem in dem Bildabnahmeschritt die Bildabnahmemittel (5) an einer Stelle angeordnet werden, an der nur Streulicht und kein Licht empfangen wird, das beim Durchlaufen der Glasflasche nicht gestreut wurde.
  18. Verfahren nach Anspruch 15, bei welchem
       in dem Bestimmungsschritt eine transportierte Glasflasche an einer vorbestimmten Stelle erfaßt wird und eine Qualitätsverminderung auf der Basis des Bildabnahmesignals bestimmt wird, das von den Bildabnahmemitteln (5) ausgegeben wird, nachdem die Glasflasche (4) an der vorbestimmten Stelle erfaßt wurde.
EP96917648A 1995-06-14 1996-06-12 Verfahren und vorrichtungen zur prüfung von beschichtungen Expired - Lifetime EP0833126B1 (de)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP147752/95 1995-06-14
JP14775295 1995-06-14
JP14775295A JPH08338815A (ja) 1995-06-14 1995-06-14 びん検査装置及びびん検査方法
JP20601395A JP3304239B2 (ja) 1995-08-11 1995-08-11 びんのコーティング膜厚測定装置及びコーティング膜厚測定方法
JP206013/95 1995-08-11
JP20601395 1995-08-11
PCT/JP1996/001586 WO1997000423A1 (fr) 1995-06-14 1996-06-12 Appareil et methode pour le controle d'une pellicule de revetement

Publications (3)

Publication Number Publication Date
EP0833126A1 EP0833126A1 (de) 1998-04-01
EP0833126A4 EP0833126A4 (de) 1998-09-30
EP0833126B1 true EP0833126B1 (de) 2003-04-09

Family

ID=26478206

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96917648A Expired - Lifetime EP0833126B1 (de) 1995-06-14 1996-06-12 Verfahren und vorrichtungen zur prüfung von beschichtungen

Country Status (7)

Country Link
US (1) US5991018A (de)
EP (1) EP0833126B1 (de)
KR (1) KR100418069B1 (de)
AT (1) ATE237122T1 (de)
AU (1) AU6014996A (de)
DE (1) DE69627328T2 (de)
WO (1) WO1997000423A1 (de)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5896195A (en) * 1997-05-15 1999-04-20 Owens-Brockway Glass Container Inc. Container sealing surface area inspection
US6190432B1 (en) 1999-02-26 2001-02-20 Donaldson Company, Inc. Filter arrangement; sealing system; and methods
US6256095B1 (en) 2000-01-21 2001-07-03 Owens-Brockway Glass Container Inc. Container sealing surface area inspection
NL1018427C2 (nl) * 2001-06-29 2003-01-07 Fountain Tech Bv Werkwijze en inrichting voor het controleren van producten met labels.
US6998147B2 (en) * 2002-07-08 2006-02-14 Dimension Bond Corporation Method for simultaneously coating and measuring parts
US6995377B2 (en) * 2002-08-02 2006-02-07 Plastipak Packaging, Inc. Process and apparatus for testing bottles
FR2849180A1 (fr) * 2002-12-20 2004-06-25 Atofina Procede et appareil pour la mesure sans contact de l'epaisseur d'un revetement sur un substrat
DE102004037555B4 (de) * 2004-08-03 2012-09-06 Erlus Aktiengesellschaft Verfahren zur berührungslosen und/oder zerstörungsfreien Prüfung einer photokatalytischen Oberflächenbeschichtung
US20070110280A1 (en) * 2005-10-28 2007-05-17 Weldon Lisa M Methods for Determining Coating Thickness of a Prosthesis
KR100912220B1 (ko) * 2007-08-30 2009-08-14 재단법인서울대학교산학협력재단 코팅 스트레스 측정장치
KR100891934B1 (ko) * 2007-09-03 2009-04-08 한국도로공사 영상처리 기법을 이용한 강교의 도막검사 시스템의 처리방법
WO2010082335A1 (ja) * 2009-01-15 2010-07-22 トヨタ自動車株式会社 塗工膜の幅の検査方法および該検査方法に用いる検査装置
MX2012001478A (es) * 2009-08-05 2012-02-29 Sidel Spa Sistema para orientacion y deteccion angular de recipientes en maquinas etiquetadoras.
GB0919059D0 (en) * 2009-10-30 2009-12-16 Sencon Europ Ltd Application and inspection system
GB2491151B (en) * 2011-05-24 2017-11-15 Qioptiq Ltd Methods and apparatuses for inferring or predicting the thickness distribution of a layer of coating material deposited or to be deposited on a curved surface
US9074874B2 (en) * 2012-02-24 2015-07-07 Litesentry Corporation Coating detection on transparent sheet material
KR101191828B1 (ko) * 2012-06-14 2012-10-16 김만수 전자제품 케이스용 지그 재활용을 위한 도료 제거장치와 이를 이용한 제거방법
EP3362128A4 (de) * 2015-10-16 2019-04-03 Zebrasci, Inc. Kalibrierung und detektion von silikonöl in spritzenzylinder
US10788314B2 (en) * 2016-01-07 2020-09-29 Arkema Inc. Object position independent method to measure the thickness of coatings deposited on curved objects moving at high rates
US11125549B2 (en) 2016-01-07 2021-09-21 Arkema Inc. Optical intensity method to measure the thickness of coatings deposited on substrates
WO2017120160A1 (en) * 2016-01-07 2017-07-13 Arkema Inc. Optical method to measure the thickness of coatings deposited on substrates
FR3053791A1 (fr) * 2016-07-05 2018-01-12 Sidel Participations Procede de controle par colorimetrie de la qualite d'un recipient pourvu d'une couche barriere interne
RU2718483C2 (ru) * 2016-09-23 2020-04-08 Общество с ограниченной ответственностью "Гардиан Стекло Сервиз" Система и/или способ распознавания покрытия для стекла
US10422755B2 (en) * 2016-12-07 2019-09-24 Applied Vision Corporation Identifying defects in transparent containers
EP3531067A1 (de) * 2018-02-21 2019-08-28 Schneider GmbH & Co. KG Vorrichtung und verfahren zum vermessen mindestens eines optisch wirksamen gegenstands
EP3911493A4 (de) 2019-01-14 2022-10-12 AGR International, Inc. Verfahren und vorrichtung zur inspektion von flüssigkeitsgefüllten transparenten hohlkörpern
CN111208136B (zh) * 2020-01-16 2023-04-07 东莞维科电池有限公司 一种在线检查涂层隔膜朝向的方法及装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3749923A (en) * 1971-09-30 1973-07-31 Acurex Corp Optical label inspecting apparatus
US4017194A (en) * 1975-09-22 1977-04-12 Anchor Hocking Corporation Apparatus and method for differentiating between polymer coated glass containers and uncoated containers
JPS608726B2 (ja) * 1978-10-09 1985-03-05 石塚硝子株式会社 ガラス等の表面に施された金属あるいは酸化金属被膜の厚さ測定装置
US4693376A (en) * 1981-05-26 1987-09-15 National Can Corporation Apparatus for inspecting containers
JPS58178206A (ja) * 1982-04-13 1983-10-19 Canon Inc 薄膜下引層の膜厚検査法
JPS58184537A (ja) * 1982-04-22 1983-10-28 Meidensha Electric Mfg Co Ltd 硝子ビンのきず検出装置
ATE36194T1 (de) * 1982-05-27 1988-08-15 I2S Verfahren und vorrichtung zur automatischen kontrolle von behaeltern durch transparenzvergleich.
JPS61155941A (ja) * 1984-12-28 1986-07-15 Suntory Ltd 容器の検査装置
JPS6242006A (ja) * 1985-08-19 1987-02-24 Nippon Soken Inc 光学薄膜の膜厚測定装置
JPS62135707A (ja) * 1985-12-09 1987-06-18 Nisshin Steel Co Ltd クロメ−ト処理鋼板のクロメ−ト皮膜付着量測定方法
US4791287A (en) * 1987-11-27 1988-12-13 American Glass Research, Inc. Apparatus and an associated method for detecting haze or pearlescence in containers
JPH01145555A (ja) * 1987-12-01 1989-06-07 Nippon Taisanbin Kogyo Kk 光学的検査装置
US5139406A (en) * 1987-12-16 1992-08-18 Dai Nippon Insatsu Kabushiki Kaisha Apparatus and system for inspecting wall thickness of synthetic resin containers
US4859863A (en) * 1988-01-11 1989-08-22 Sonoco Products Company Label inspection apparatus sensing reflectivity values
JPH0663968B2 (ja) * 1988-11-16 1994-08-22 日本真空技術株式会社 光学モニタ装置
JPH02310405A (ja) * 1989-05-25 1990-12-26 Nippon Steel Corp 薄膜厚み分布測定方法
JP2672391B2 (ja) * 1989-07-26 1997-11-05 麒麟麦酒 株式会社 ガラス壜とその製造法
NL8902916A (nl) * 1989-11-24 1991-06-17 Heuft Qualiplus Bv Inspectie-inrichting op basis van donkerveld-belichting.
US5755335A (en) * 1995-07-26 1998-05-26 Steinmetz Machine Works, Inc. Apparatus and method for centralized indexed inspection and rejection of products

Also Published As

Publication number Publication date
WO1997000423A1 (fr) 1997-01-03
KR100418069B1 (ko) 2004-07-01
EP0833126A1 (de) 1998-04-01
KR19990022912A (ko) 1999-03-25
DE69627328D1 (de) 2003-05-15
DE69627328T2 (de) 2004-02-12
ATE237122T1 (de) 2003-04-15
EP0833126A4 (de) 1998-09-30
US5991018A (en) 1999-11-23
AU6014996A (en) 1997-01-15

Similar Documents

Publication Publication Date Title
EP0833126B1 (de) Verfahren und vorrichtungen zur prüfung von beschichtungen
CA1065436A (en) Method and apparatus for video inspection of articles of manufacture
US4278353A (en) Optical inspection of gold surfaces
US3992100A (en) Paper machine optical monitoring device with integral standardizing optical window
US20020162966A1 (en) Method and apparatus for detecting surface defects in a plastic container
US20070115463A1 (en) Oblique transmission illumination inspection system and method for inspecting a glass sheet
JPH0513257B2 (de)
HU226346B1 (en) Optical inspection of transparent containers using infrared and polarized visible light
US7317524B2 (en) Method and device for detecting surface defects on the neck ring of a transparent or translucent container of revolution
CA2283519C (en) Device for detecting diffusely scattered impurities in transparent receptacles
WO1995022755A1 (en) Spectral detection of contaminants in containers
US6628379B1 (en) Method and apparatus for inspection of rubber product
CN109313144A (zh) 检查用于玻璃容器的光学检验的设备的方法和系统
JP2006189348A (ja) 表面検査方法および表面検査装置
EP0047612A1 (de) Einrichtung zur Detektion von Fehlern in der Innenbeschichtung bewegter, offener Behälter
JPH0953920A (ja) びんのコーティング膜厚測定装置及びコーティング膜厚測定方法
JPH08338815A (ja) びん検査装置及びびん検査方法
KR20030063428A (ko) 시료 표면의 결함 측정 및 평가 방법
JP4379037B2 (ja) 表面検査方法及び表面検査装置
JPH0695077B2 (ja) ガラス壜の底面検査装置
JPH02103453A (ja) 透明容器検査装置
JP2000229695A (ja) 容器製品検査装置
JPH11160151A (ja) 測色計を用いた膜質評価方法及び装置
JP3607163B2 (ja) びん検査装置およびびん検査方法
KR910005047A (ko) 인산염 피복 표면의 인산염 층 두께 및 조성의 비접촉, 오란인 판단방법 및 장치

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980107

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: AMINO, YOSHITO

Inventor name: TAKE, YOSHIMOTO

Inventor name: AMANO, TSUTOMU

Inventor name: IMAIZUMI, JUNJIROU

A4 Supplementary search report drawn up and despatched

Effective date: 19980811

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 19981022

RTI1 Title (correction)

Free format text: APPARATUS AND METHODS FOR INSPECTING COATING FILM

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030409

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030409

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030409

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030409

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030409

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030409

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030612

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030709

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030709

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030709

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030709

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030709

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031030

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030709

26N No opposition filed

Effective date: 20040112

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070830

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070518

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070615

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080612

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630