EP0832958A1 - Procédé et installation pour la production d'essences de craquage catalytique à faible teneur en soufre - Google Patents

Procédé et installation pour la production d'essences de craquage catalytique à faible teneur en soufre Download PDF

Info

Publication number
EP0832958A1
EP0832958A1 EP97402088A EP97402088A EP0832958A1 EP 0832958 A1 EP0832958 A1 EP 0832958A1 EP 97402088 A EP97402088 A EP 97402088A EP 97402088 A EP97402088 A EP 97402088A EP 0832958 A1 EP0832958 A1 EP 0832958A1
Authority
EP
European Patent Office
Prior art keywords
zone
light
cut
pipe
hydrotreatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97402088A
Other languages
German (de)
English (en)
Other versions
EP0832958B1 (fr
Inventor
Thierry Chapus
Christian Marcilly
Blaise Didillon
Charles Cameron
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0832958A1 publication Critical patent/EP0832958A1/fr
Application granted granted Critical
Publication of EP0832958B1 publication Critical patent/EP0832958B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline

Definitions

  • the present invention relates to a method and an installation for the production low sulfur catalytic cracking gasolines.
  • the patent US-5,318,690 proposes a process with a fractionation of gasoline, a softening of the light fraction, while the heavy fraction is hydrodesulfurized, then converted to ZSM-5 and redesulfurized under mild conditions.
  • This technique is based on a separation of the raw petrol in order to obtain a light cut practically free of sulfur compounds other than mercaptans, so as to treat the cut only with softening to remove the mercaptans.
  • the heavy cut contains a relatively large amount of olefins which are in part saturated during hydrotreatment.
  • the patent recommends cracking on ZSM-5 in order to produce olefins, but at detriment to performance.
  • these olefins can be reconstituted in the presence of H2S to form mercaptans, which has the disadvantage of calling a additional softening, or desulfurization.
  • the applicant has sought a process for producing gasoline with a low sulfur content at from catalytic cracking, which makes it possible to recover the entire petrol cut, reduce the sulfur content of the petrol cut to very low levels, without loss of petrol yield, and minimizing octane loss.
  • the filler is a catalytic cracking gasoline, the range of boiling points of which typically extends from C5 to 220 ° C.
  • the end point of the gasoline cut depends of course on the refinery and market constraints, but generally remains within the limits indicated above.
  • the sulfur content of these gasoline cuts produced by catalytic cracking (FCC) depends on the sulfur content of the feed treated with FCC, as well as the end point of the cut. Light fractions naturally have a lower sulfur content than heavier cuts. Generally, the sulfur contents of the entire gasoline cut from the FCC are greater than 100 ppm by weight and most of the time greater than 500 ppm by weight.
  • the sulfur contents are often greater than 1000 ppm by weight, possibly even in certain cases reaching values of the order of 4000 to 5000 ppm by weight.
  • the crude petrol obtained from catalytic cracking is fractionated into at least one light cut and at least one heavy cut. Light cutting to a final boiling point less than or equal to 210 ° C, advantageously less than or equal to 180 ° C, preferably less than or equal to 160 ° C and even more preferably less than or equal to 145 ° C.
  • the light fraction of the gasoline fraction contains relatively few sulfur compounds, which are present mainly in the form of mercaptans, while the sulfur compounds of the heavier fractions are present in the form of substituted or unsubstituted thiophenes, or of heterocyclic compounds such as benzothiophene , which, unlike mercaptans, cannot be removed by extractive processes. These sulfur compounds are therefore removed by hydrotreatment.
  • the light cut is relatively rich in olefins, and the sulfur is mainly present in the form of mercaptans, while the heavier cut is relatively poor in olefins and is characterized by significantly higher sulfur contents. More generally, and unlike the prior art, the cutting point is chosen so as to maximize the olefin content in the light cut.
  • the gasoline catalytic cracking (FCC) cut is thus split into at least two fractions, which are then subjected to different desulfurization treatments.
  • the light fraction undergoes a desulfurization treatment consisting of hydrogenation sweet, possibly preceded by a selective hydrogenation of the diolefins.
  • the hydrogenation conditions are chosen mild to minimize saturation of high octane olefins.
  • Desulfurization is therefore not complete, but it eliminates virtually all sulfur compounds other than mercaptans from so that the mercaptans essentially stay in the cut. They are then softened.
  • This softening step can be a softening extractive, or softening by catalytic oxidation of mercaptans in a fixed bed.
  • the hydrogenation of the dienes is an optional but advantageous step which makes it possible to eliminate practically all of the dienes present in the light fraction before the mild hydrotreatment. It generally takes place in the presence of a catalyst comprising at least one metal from group VIII (and preferably Pt, Pd or Ni) and a support, at a temperature of 50-250 ° C under a pressure of 4-50 bar. This step does not necessarily cause softening. It is particularly advantageous to operate under conditions such that at least partial softening of the gasoline is obtained, that is to say with the reduction of the mercaptan content.
  • a catalyst comprising 0.1 to 1% of palladium deposited on a support operating under a pressure of 4-25 bar, at a temperature of 50-250 ° C., with an hourly space velocity of the liquid ( LHSV) from 1 to 10 h -1 .
  • the catalyst comprises palladium (0.1 to 1% by weight, and preferably 0.2-0.5% weight) deposited on an inert support such as alumina, silica, silica-alumina, or a support containing at least 50% alumina.
  • an inert support such as alumina, silica, silica-alumina, or a support containing at least 50% alumina.
  • Another metal can be combined to form a bimetallic catalyst, such as nickel (1-20% by weight, and preferably 5-15% by weight) or gold (Au / Pd expressed by weight greater than or equal to 0.1 and less than 1, and preferably between 0.2 and 0.8).
  • a bimetallic catalyst such as nickel (1-20% by weight, and preferably 5-15% by weight) or gold (Au / Pd expressed by weight greater than or equal to 0.1 and less than 1, and preferably between 0.2 and 0.8).
  • the choice of operating conditions is particularly important. We will operate the most generally under pressure in the presence of a small amount of hydrogen by compared to the stoichiometric value necessary to hydrogenate the diolefins.
  • the hydrogen and the charge to be treated are injected in ascending or descending currents in a reactor preferably with a fixed bed of catalyst.
  • the temperature is included on more generally between 50 and 200 ° C, and preferably between 80 and 200 ° C, and preferably between 150 and 170 ° C.
  • the pressure is sufficient to maintain more than 80% by weight, and preferably more than 95% by weight, of the gasoline to be treated in the liquid phase in the reactor, namely the most generally between 4 and 50 bar and preferably above 10 bar.
  • a pressure advantageous is between 10-30 bar, and preferably between 12-25 bar.
  • the space speed is in these conditions established between 1-10 h -1 , preferably between 4-10 h-1.
  • the light fraction of the catalytic cracking gasoline fraction may contain around 1% by weight of diolefins.
  • the diolefin content is reduced to less than 3000 ppm, or even less than 2500 ppm and better still less than 1500 ppm. In some cases it can be obtained less than 500 ppm.
  • the content of dienes after selective hydrogenation can even be reduced to less than 250 ppm.
  • the hydrogenation step takes place in a catalytic hydrogenation reactor which comprises a catalytic reaction zone traversed by the entire charge and the quantity of hydrogen necessary to carry out the desired reactions.
  • the hydrogenation stage takes place in a catalytic hydrogenation reactor which is arranged in a particular manner, namely at least two catalytic zones, the first being crossed by the liquid charge (and a amount of hydrogen lower than the stoichiometry necessary to convert all the diolefins into mono-olefins), the second receiving the liquid charge coming from the first zone (as well as the rest of the hydrogen i.e. an amount of sufficient hydrogen to convert the remaining diolefins into mono-olefins and to at least partially isomerize the primary and secondary olefins into tertiary olefins) for example injected through a side tube and dispersed using an appropriate diffuser.
  • the proportion of the first zone (by volume) is at most equal to 75% of the sum of the 2 zones and preferably from 15 to 30%.
  • Another advantageous embodiment comprises a hydrogenation of the dienes on a catalyst different from Pd, a mild hydrotreatment and a final oxidative softening.
  • the purpose of the mild hydrodesulfurization of the light fraction of the FCC gasoline fraction is, using a conventional hydrotreatment catalyst under mild conditions of temperature and pressure, to convert the sulfur compounds of the fraction other than H 2 S mercaptans, so as to obtain an effluent containing as sulfur compounds only mercaptans.
  • the resulting cut has the same distillation range, and a slightly lower octane number due to the inevitable partial saturation of the olefins.
  • the conditions of the hydrotreatment reactor must be adjusted to reach the desired level of desulphurization, and above all to minimize the loss of octane resulting from the saturation of the olefins.
  • the temperature of the mild hydrotreatment stage is generally between 160 ° C and 380 ° C, preferably between 180 ° C and 360 ° C, and more preferably between 180 ° C and 320 ° C.
  • Low to moderate pressures are generally sufficient, between 5 and 50 bar, preferably between 10 and 45 bar, and more preferably between 10 and 30 bar.
  • the LHSV space speed is between 0.5 and 10 h -1, preferably between 1 and 6 h -1.
  • the catalyst (s) used in the mild hydrotreatment reactor is a conventional hydrodesulfurization catalyst, comprising at least one group VI metal and / or at least one group VIII metal, on a suitable support .
  • the group VI metal is generally molybdenum or tungsten
  • the group VIII metal is generally nickel or cobalt. Combinations such as Ni-Mo or Co-Mo are typical.
  • the catalyst support is usually a porous solid such as alumina, silica-alumina or other porous solids such as magnesia, silica or TiO2, alone or as a mixture with alumina or silica-alumina.
  • the lighter fraction of the gasoline fraction is then subjected to a non-hydrogenating desulfurization aiming to remove the sulfur compounds remaining in the form of mercaptans.
  • a non-hydrogenating desulfurization aiming to remove the sulfur compounds remaining in the form of mercaptans.
  • It can be an extractive softening process using sodium or potassium soda or cresylate. Extractive processes are sufficient as long as the treated cut does not contain high molecular weight mercaptans.
  • Softening can also be carried out by catalytic oxidation of the mercaptans to disulfides.
  • This catalytic oxidation of the mercaptans to disulfides can be carried out simply by mixing the gasoline to be treated with an aqueous solution of an alkaline base, such as sodium hydroxide, in which a catalyst based on a metal chelate is added, in the presence of an oxidizing agent.
  • an alkaline base such as sodium hydroxide
  • a catalyst based on a metal chelate is added
  • an oxidizing agent In the case where the mercaptans content of the gasoline is high, it is preferable to bring the section into contact with a fixed bed of supported catalyst, in the presence of an alkaline base and an oxidizing agent.
  • the alkaline base is not incorporated into the catalyst.
  • the reaction medium usually soda in aqueous solution; it is introduced into the reaction medium either continuously or intermittently, to maintain the alkalinity conditions and the aqueous phase necessary for the oxidation reaction.
  • the oxidizing agent generally air, is advantageously mixed with the petrol cut to be softened.
  • the metal chelate used as catalyst is generally a metal phthalocyanine, such as cobalt phthalocyanine for example.
  • the reaction takes place at a pressure between 1 and 30 bar, at a temperature between 20 and 100 ° C, and preferably 20 and 80 ° C.
  • the alkaline base can be incorporated into the catalyst by introducing an alkaline ion into a mixed oxide structure essentially consisting of combined aluminum and silicon oxides.
  • aluminosilicates of alkali metals are used, characterized by an atomic Si / Al ratio of their structure less than or equal to 5 (that is to say a molar ratio SiO 2 / Al 2 O 3 less than or equal to 10), and which are intimately associated with activated carbon and a metal chelate and exhibit optimal catalytic performances in softening when the hydration rate of the catalyst is between 0.1 and 40% and preferably between 1 and 25% by weight thereof.
  • alkaline aluminosilicates In addition to their superior catalytic performance, these alkaline aluminosilicates have the advantage of very low solubility in aqueous medium, which allows their prolonged use in the hydrated state to treat petroleum fractions to which a little water is regularly added, or optionally, alkaline solution.
  • This softening step (preferably carried out in a fixed bed) of the light petrol fraction containing mercaptans can therefore be defined as comprising the passage, under oxidation conditions, of the petrol to be treated (stabilized) in contact with a porous catalyst.
  • it comprises from 10 to 98%, preferably from 50 to 95% by weight, of at least one inorganic solid phase consisting of an alkaline aluminosilicate having an atomic ratio Si / Al less than or equal to 5, preferably less than or equal to 3, from 1 to 60% by weight of activated carbon, from 0.02 to 2% by weight of at least one metal chelate and from 0 to 20% by weight at least one mineral or organic binder.
  • at least one inorganic solid phase consisting of an alkaline aluminosilicate having an atomic ratio Si / Al less than or equal to 5, preferably less than or equal to 3, from 1 to 60% by weight of activated carbon, from 0.02 to 2% by weight of at least one metal chelate and from 0 to 20% by weight at least one mineral or organic binder.
  • This porous catalyst has a basicity determined according to standard ASTM 2896 greater than 20 milligrams of potassium hydroxide per gram and a total BET surface area greater than 10 m 2 / g, and contains within its porosity a permanent aqueous phase representing 0, 1 to 40%, preferably 1 to 25%, by weight of the dry catalyst.
  • said alkaline aluminosilicate is obtained by reaction in the medium aqueous of at least one clay (kaolinite, halloysite, montmorillonite, etc ...) with at at least one compound (hydroxide, carbonate, acetate, nitrate, etc.) of at least one metal alkaline, in particular sodium, and potassium, this compound preferably being hydroxide, followed by heat treatment at a temperature between 90 and 600 ° C, preferably between 120 and 350 ° C.
  • the clay can also be heat treated and ground before being brought into contact with the alkaline solution.
  • Kaolinite and all of its thermal transformation products metalakaolin, reverse spinel phase, mullite can be used according to the invention.
  • any chelate used for this purpose in the prior art in particular phthalocyanines, porphyrins or metal corrines, can be deposited on the support.
  • phthalocyanines in particular phthalocyanines, porphyrins or metal corrines
  • cobalt phthalocyanine and vanadium phthalocyanine are particularly preferred.
  • Metallic phthalocyanine is preferably used in the form of a derivative of the latter, with particular preference for its commercially available sulfonates, such as, for example, cobalt phthalocyanine mono- or disulfonate and mixtures thereof. this.
  • water can be added in adequate quantity to the cut petroleum, upstream of the catalyst continuously or discontinuously to maintain the degree of hydration within the desired range, i.e. the water content of the support is maintained between 0.1 and 40% by weight of the support, and preferably between 1 and 25%.
  • the temperature of the feed is fixed at a sufficient value, less than 80 ° C., to dissolve the reaction water resulting from the transformation of the mercaptans into disulfides.
  • the temperature of the load is thus chosen so as to maintain the water content of the support between 0.1 and 40% by weight of the support and, preferably, between 1 and 25% by weight of the latter. This range of predetermined values of water contents of the support will depend, of course, on the very nature of the catalytic support used during the softening reaction.
  • this softening step can be eliminated when the light cut has been selectively hydrogenated to remove the dienes and that at the same time softening has been obtained.
  • the softening yield may be such that the final step of softening with an oxidizing agent may no longer be necessary.
  • This case is well verified with a palladium-based catalyst as described above.
  • the presence of this treatment step with a palladium catalyst can also make it possible to modify the softening step, for example by increasing the hourly speed, hence increased productivity, or by reducing the quantity of catalyst, hence a reduced investment.
  • a selective hydrogenation step of the dienes can be used which is not softening.
  • Hydrodesulfurization of the heaviest fraction of FCC gasoline is conducted following the same process as that used for the light fraction.
  • the catalyst contains also at least one metal from G VIII and / or from group VI, deposited on a support. Only the operating conditions are adjusted, in order to obtain the level of desulphurization desired, on this cut richer in sulfur.
  • the temperature used is generally between 200 ° C and 420 ° C, preferably between 220 ° C and 400 ° C.
  • the pressures operating procedures are generally between 20 and 80 bar and preferably between 30 and 50 bar.
  • the effluent obtained is stripped to remove H2S and is sent to the pool essence.
  • the invention also relates to an installation for implementing the method according to the invention.
  • the softening zone is located after stripping and the installation also comprises a zone for the selective hydrogenation of the dienes situated between the fractionation column and the zone for mild hydrotreatment, said hydrogenation zone comprising a pipe for the introduction of the light cut and a pipe for the exit of the dedicated light cut.
  • the installation also comprises a zone (15) for hydrotreating the heavy fraction, provided with a line (4) for the introduction of the heavy cut coming from the column (1), a line ( 16) for the outlet of the hydrotreated section and a pipe (17) bringing the hydrogen to the level of the charge or the zone, said zone being followed by a stripping column (18) provided with a pipe for the introduction of the hydrotreated section, a pipe (19) for the outlet of H 2 S and a pipe (20) for the outlet of the hydrotreated section.
  • the cuts coming out through the pipes (20) and (13) can be sent to petrol storage via a pipe (21).
  • the light cut of FCC essence is rich in olefins and contains almost all of the mercaptans.
  • the heavier fraction, richer in sulfur, contains sulfur compounds essentially in the form of thiophenic derivatives.
  • Table 2 below indicates the operating conditions used for the hydrotreatment of heavy gasoline, as well as the characteristics of the heavy gasoline thus desulfurized.
  • the catalyst used is a CoMo supported alumina (HR 306C sold by the company Procatalyse). Characteristics of heavy petrol hydrodesulfurization.
  • Table 3 shows the characteristics of light gasoline which is desulfurized and then softened.
  • the temperature is 280 ° C
  • the pressure is 20 bar
  • the catalyst is LD 145 based on NiMo sold by the company Procatalyse followed by a CoMo catalyst (HR306 C sold by the company Procatalyse). Characteristics of the initial light essence, after gentle hydrotreatment then after softening.
  • the softening is carried out on a catalyst comprising sodalite (alkaline aluminosilicate) and 20% of activated carbon, impregnated with an oxidizing agent such as sulfonated cobalt phthalocyamine (impregnation of PeCo: 60 kg (m 3 of cat) prepared as described in patent EP-A-638,628).
  • an oxidizing agent such as sulfonated cobalt phthalocyamine (impregnation of PeCo: 60 kg (m 3 of cat) prepared as described in patent EP-A-638,628).
  • the method and the installation according to the invention thus make it possible to obtain essences of FCC containing less than 50 ppm of sulfur, responding negatively to the "doctor test" and this with a loss in octane barrel index (RON + MON) / 2 of less than 8 points per compared to the same cut of raw FCC gasoline before treatment, and preferably less than or equal to 6 points.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

L'invention concerne un procédé de traitement des essences de craquage catalytique comprenant : un fractionnement de la coupe essence brute en deux coupes; une éventuelle hydrogénation sélective des diènes de la coupe légère, puis un hydrotraitement doux et un strippage; un adoucissement de la coupe légère qui a lieu avant l'hydrotraitement doux, par contact avec un catalyseur supporté à 0,1-1% de palladium, ou bien qui a lieu après l'hydrotraitement doux et qui est alors un adoucissement extractif ou par un catalyseur avec base alcaline incorporée ou non et un agent oxydant. La fraction essence lourde est éventuellement désulfurée dans une unité d'hydrotraitement. L'essence légère désulfurée et adoucie peut être versée au pool essence, directement ou en mélange avec la coupe essence lourde désulfurée. L'invention concerne également une installation pour mettre en oeuvre ce procédé. <IMAGE>

Description

La présente invention concerne un procédé et une installation pour la production d'essences de craquage catalytique à faible teneur en soufre.
La production d'essence reformulée répondant aux nouvelles normes d'environnement nécessite notamment que l'on diminue leur concentration en oléfines et/ou en aromatiques (surtout le benzène) et en soufre (dont les mercaptans).
Les essences de craquage catalytique présentent des teneurs en oléfines élevées, et le soufre présent dans le pool essence est imputable à près de 90 % à l'essence de FCC.
L'hydrotraitement de la charge envoyée au craquage catalytique permet d'atteindre des essences contenant typiquement 100 ppm de soufre. Les unités d'hydrotraitement de charges FCC opèrent cependant dans des conditions sévères de température et de pression, ce qui suppose un effort d'investissement important.
L'hydrotraitement des essences de craquage catalytique permet à la fois de réduire la teneur en soufre et en oléfines de la coupe. Cependant, ceci présente l'inconvénient majeur d'entraíner une perte très importante en octane baril de la coupe, en raison de la saturation de l'ensemble des oléfines.
Il a été déjà proposé des procédés d'hydrotraitement des essences FCC. Par exemple, le brevet US-5,290,427 décrit un procédé consistant à fractionner l'essence, désulfurer les fractions et convertir la fraction essence sur une zéolithe ZSM-5.
Le brevet US-5,318,690 propose un procédé avec un fractionnement de l'essence, un adoucissement de la fraction légère, tandis que la fraction lourde est hydrodésulfurée, puis convertie sur ZSM-5 et redésulfurée dans des conditions douces. Cette technique est basée sur une séparation de l'essence brute de façon à obtenir une coupe légère pratiquement dépourvue de composés soufrés autres que les mercaptans, de façon à traiter la coupe uniquement avec un adoucissement pour enlever les mercaptans. De ce fait, la coupe lourde contient une quantité relativement importante d'oléfines qui sont en partie saturées lors de l'hydrotraitement. Pour éviter cette perte d'indice d'octane, le brevet préconise un craquage sur ZSM-5 de façon à produire des oléfines, mais au détriment du rendement. De plus, ces oléfines peuvent se reconstituer en présence d'H2S pour former des mercaptans, ce qui a pour inconvénient d'appeler un adoucissement supplémentaire, ou une désulfuration.
Un autre moyen couramment utilisé par le raffineur pour traiter ce problème du soufre dans les essences est de séparer la fraction à point d'ébullition d'au moins 180°C qui contient l'essentiel des composés soufrés autres que les mercaptans. Cette fraction est alors déclassée avec le LCO (light cycle oil) et n'est en général pas valorisée, ou elle est utilisée comme diluant de charge.
Le déposant a recherché un procédé de production d'essences à faible teneur en soufre à partir du craquage catalytique, qui permet de valoriser la totalité de la coupe essence, de réduire la teneur en soufre de la coupe essence à de très faibles niveaux, sans perte de rendement essence, et en minimisant la perte en octane.
Plus précisément dans le procédé selon l'invention, l'essence brute est fractionnée en au moins une coupe légère à point d'ébullition inférieur ou égal à 210°C contenant la majeure partie des oléfines et des mercaptans, et au moins une fraction lourde. La coupe légère est soumise à un hydrotraitement doux, en présence d'hydrogène, avec un catalyseur contenant au moins un métal du groupe VIII et/ou au moins un métal du groupe VI, à une température de 160-380°C, sous une pression de 5-50 bar, et l'effluent obtenu est strippé pour éliminer H2S. La fraction légère est soumise à un adoucissement qui est réalisé par au moins l'un des procédés suivants :
  • traitement de la coupe légère avant l'hydrotraitement doux, en présence d'hydrogène avec un catalyseur contenant 0,1-1% de palladium déposé sur un support, à une température de 50-250°C, sous une pression de 4-50 bar;
  • adoucissement extractif de l'effluent obtenu après hydrotraitement doux et strippage;
  • adoucissement avec un agent oxydant, un catalyseur et une base alcaline incorporée ou non au catalyseur, de l'effluent obtenu après hydrotraitement doux et strippage.
La charge est une essence de craquage catalytique, dont la gamme de points d'ébullition s'étend typiquement des C5 jusqu'à 220°C. Le point final de la coupe essence dépend bien sûr de la raffinerie et des contraintes du marché, mais reste généralement dans les limites indiquées ci-avant.
La teneur en soufre de ces coupes essences produites par craquage catalytique (FCC) dépend de la teneur en soufre de la charge traitée au FCC, ainsi que du point final de la coupe. Les fractions légères ont naturellement une teneur en soufre plus faible que les coupes plus lourdes. Généralement, les teneurs en soufre de l'intégralité de la coupe essence provenant du FCC sont supérieures à 100 ppm poids et la plupart du temps supérieures à 500 ppm poids. Pour des essences ayant des points finaux supérieurs à 200°C, les teneurs en soufre sont souvent supérieures à 1000 ppm poids, pouvant même dans certains cas atteindre des valeurs de l'ordre de 4000 à 5000 ppm poids.
Selon l'invention, l'essence brute provenant du craquage catalytique est fractionnée en au moins une coupe légère et au moins une coupe lourde.
La coupe légère à un point d'ébullition final inférieur ou égal à 210°C, avantageusement inférieur ou égal à 180°C, de préférence inférieur ou égal à 160°C et encore plus préféré inférieur ou égal à 145°C.
La fraction légère de la coupe essence contient relativement peu de composés soufrés, qui sont présents en majorité sous forme de mercaptans, tandis que les composés soufrés des fractions plus lourdes sont présents sous forme de thiophènes substitués ou non, ou de composés hétérocycliques tels le benzothiophène, qui, contrairement aux mercaptans, ne peuvent pas être éliminés par les procédés extractifs. Ces composés soufrés sont par conséquent éliminés par hydrotraitement. La coupe légère est relativement riche en oléfines, et le soufre est essentiellement présent sous forme de mercaptans, tandis que la coupe plus lourde est relativement pauvre en oléfines et est caractérisée par des teneurs en soufre nettement plus élevées.
De façon plus générale, et contrairement à l'art antérieur le point de coupe est choisi de façon à maximiser la teneur en oléfines dans la coupe légère.
La coupe essence de craquage catalytique (FCC) est ainsi fractionnée en au moins deux fractions, qui sont ensuite soumises à des traitements de désulfuration différents. La fraction légère subit un traitement de désulfuration constitué par une hydrogénation douce, éventuellement précédée d'une hydrogénation sélective des dioléfines. Les conditions d'hydrogénation sont choisies douces pour minimiser la saturation des oléfines de haut indice d'octane. La désulfuration n'est donc pas complète mais elle permet d'éliminer pratiquement tous les composés soufrés autres que les mercaptans de façon à ce que restent dans la coupe essentiellement les mercaptans. Ils sont ensuite éliminés par adoucissement. Cette étape d'adoucissement peut être un adoucissement extractif, ou un adoucissement par oxydation catalytique des mercaptans en lit fixe.
• Hydrogénation des diènes
L'hydrogénation des diènes est une étape optionnelle mais avantageuse qui permet d'éliminer pratiquement la totalité des diènes présents dans la fraction légère avant l'hydrotraitement doux. Elle se déroule généralement en présence d'un catalyseur comprenant au moins un métal du groupe VIII (et de préférence Pt, Pd ou Ni) et un support, à une température de 50-250°C sous une pression de 4-50 bar. Cette étape ne provoque pas forcément l'adoucissement. Il est particulièrement avantageux d'opérer dans des conditions telles qu'un adoucissement, au moins partiel, de l'essence soit obtenu, c'est-à-dire avec la réduction de la teneur en mercaptans.
Pour ce faire, on emploiera avantageusement un catalyseur comprenant 0,1 à 1% de palladium déposé sur un support opérant sous une pression de 4-25 bar, à une température de 50-250 °C, avec une vitesse spatiale horaire du liquide (LHSV) de 1 à 10 h-1.
Le catalyseur comporte du palladium (0,1 à 1 % poids, et de préférence 0,2-0,5 % poids) déposé sur un support inerte tel que l'alumine, la silice, la silice-alumine, ou un support contenant au moins 50 % d'alumine.
Un autre métal peut être associé pour former un catalyseur bimétallique, tel que le nickel (1-20 % poids, et de préférence 5-15 % poids) ou l'or (Au/Pd exprimé en poids supérieur ou égal à 0,1 et inférieur à 1, et de préférence compris entre 0,2 et 0,8).
Le choix des conditions opératoires est particulièrement important. On opèrera le plus généralement sous pression en présence d'une quantité d'hydrogène en faible excès par rapport à la valeur stoechiométrique nécessaire pour hydrogéner les dioléfines. L'hydrogène et la charge à traiter sont injectés en courants ascendants ou descendants dans un réacteur de préférence à lit fixe de catalyseur. La température est comprise le plus généralement entre 50 et 200 °C, et de préférence entre 80 et 200°C, et de préférence entre 150 et 170 °C.
La pression est suffisante pour maintenir plus de 80% poids, et de préférence plus de 95% poids, de l'essence à traiter en phase liquide dans le réacteur à savoir le plus généralement entre 4 et 50 bar et de préférence au-dessus de 10 bar. Une pression avantageuse est comprise entre 10-30 bar, et de préférence entre 12-25 bar.
La vitesse spatiale est dans ces conditions établie entre 1-10 h-1, de préférence entre 4-10h-1.
La fraction légère de la coupe essence de craquage catalytique peut contenir de l'ordre de 1% poids de dioléfines. Après hydrogénation, la teneur en dioléfines est réduite à moins de 3 000 ppm, voire moins de 2 500 ppm et mieux moins de 1 500 ppm. Dans certains cas il peut être obtenu moins de 500 ppm. La teneur en diènes après hydrogénation sélective peut même être réduite à moins de 250 ppm.
Selon une réalisation de l'invention, l'étape d'hydrogénation se déroule dans un réacteur catalytique d'hydrogénation qui comprend une zone réactionnelle catalytique traversée par la totalité de la charge et la quantité d'hydrogène nécessaire pour effectuer les réactions désirées.
Selon une réalisation préférée de l'invention, l'étape d'hydrogénation se déroule dans un réacteur catalytique d'hydrogénation qui est agencé de manière particulière, à savoir au moins deux zones catalytiques, la première étant traversée par la charge liquide (et une quantité d'hydrogène inférieure à la stoechiométrie nécessaire pour convertir toutes les dioléfines en mono-oléfines), la seconde recevant la charge liquide provenant de la première zone (ainsi que le reste de l'hydrogène c'est-à-dire une quantité d'hydrogène suffisante pour convertir les dioléfines restantes en mono-oléfines et pour isomériser au moins en partie les oléfines primaires et secondaires en oléfines tertiaires) par exemple injectée par une tubulure latérale et dispersée à l'aide d'un diffuseur approprié.
La proportion de la première zone (en volume) est tout au plus égale à 75 % de la somme des 2 zones et de préférence de 15 à 30 %.
Un autre mode de réalisation avantageux comprend une hydrogénation des diènes sur un catalyseur différent du Pd, un hydrotraitement doux et un adoucissement oxydant final.
• Hydrotraitement doux
L'hydrodésulfuration douce de la fraction légère de la coupe essence de FCC a pour but , en utilisant un catalyseur d'hydrotraitement conventionnel dans des conditions douces de température et de pression, de convertir en H2S les composés soufrés de la coupe autres ques les mercaptans, de façon à obtenir un effluent ne contenant comme composés soufrés que les mercaptans. La coupe ainsi produite possède le même intervalle de distillation, et un indice d'octane un peu plus faible du fait de la saturation partielle inévitable des oléfines.
Les conditions du réacteur d'hydrotraitement doivent être ajustées pour atteindre le niveau de désulfuration désiré, et surtout pour minimiser la perte en octane résultant de la saturation des oléfines. On convertit généralement au plus 90 % des oléfines (les dioléfines étant totalement ou pratiquement totalement hydrogénées), et de préférence sont converties au plus 80-85 % des oléfines.
La température de l'étape d'hydrotraitement doux est généralement comprise entre 160°C et 380°C, de préférence entre 180°C et 360°C, et plus préférentiellement entre 180°C et 320°C. Des pressions faibles à modérées sont généralement suffisantes, comprises entre 5 et 50 bar, de préférence entre 10 et 45 bar, et plus préférentiellement entre 10 et 30 bar. La vitesse spatiale LHSV est comprise entre 0.5 et 10 h-1, de préférence entre 1 et 6 h-1.
Le(s) catalyseur(s) utilisé(s) dans le réacteur d'hydrotraitement doux est un catalyseur conventionnel d'hydrodésulfuration, comprenant au moins un métal du groupe VI et/ou au moins un métal du groupe VIII, sur un support approprié. Le métal du groupe VI est généralement du molybdène ou du tungstène, et le métal du groupe VIII est généralement du nickel ou du cobalt. Des combinaisons telles que Ni-Mo ou Co-Mo sont typiques.Le support du catalyseur est habituellement un solide poreux tel qu'une alumine, une silice-alumine ou d'autres solides poreux tels que la magnésie, la silice ou TiO2, seuls ou en mélange avec l'alumine ou la silice-alumine.
• Adoucissement
La fraction la plus légère de la coupe essence est ensuite soumise à une désulfuration non-hydrogénante visant à éliminer les composés soufrés restant sous forme de mercaptans.
Il peut s'agir d'un procédé d'adoucissement extractif utilisant de la soude ou du crésylate de sodium ou de potassium. Les procédés extractifs sont suffisants tant que la coupe traitée ne contient pas de mercaptans de haut poids moléculaire.
L'adoucissement peut également être réalisée par oxydation catalytique des mercaptans en disulfures. Cette oxydation catalytique des mercaptans en disulfures peut être réalisée simplement en mélangeant l'essence à traiter à une solution aqueuse d'une base alcaline, telle la soude, dans laquelle on ajoute un catalyseur à base d'un chélate métallique, en présence d'un agent oxydant.
Dans le cas où la teneur en mercaptans de l'essence est importante, il est préférable de réaliser la mise au contact de la coupe avec un lit fixe de catalyseur supporté, en présence d'une base alcaline et d'un agent oxydant. Dans une première variante, la base alcaline n'est pas incorporée au catalyseur. Il s'agit habituellement de la soude en solution aqueuse; elle est introduite dans le milieu réactionnel soit en continu, soit par intermittence, pour maintenir les conditions d'alcalinité et la phase aqueuse nécessaires à la réaction d'oxydation. L'agent oxydant, généralement de l'air, est avantageusement mélangé à la coupe essence à adoucir. Le chélate métallique utilisé comme catalyseur est généralement une phtalocyanine métallique, telle la phtalocyanine de cobalt par exemple. La réaction a lieu à une pression comprise entre 1 et 30 bar, à une température comprise entre 20 et 100°C, et de préférence 20 et 80°C. Il convient de renouveler la solution sodique qui s'épuise, d'une part en raison des impuretés provenant de la charge, d'autre part en raison de la variation de la concentration de la base, qui diminue du fait de l'apport d'eau par la charge et de la transformation des mercaptans en disulfures.
Dans une seconde variante préférée, la base alcaline peut être incorporée au sein du catalyseur en introduisant un ion alcalin dans une structure oxyde mixte constituée essentiellement d'oxydes d'aluminium et de silicium combinés.
Avantageusement, on emploie des aluminosilicates de métaux alcalins, plus particulièrement de sodium et de potassium, caractérisés par un rapport atomique Si/Al de leur structure inférieur ou égal à 5 (c'est à dire un rapport molaire SiO2/Al2O3 inférieur ou égal à 10), et qui sont associés intimement à du charbon actif et à un chélate métallique et présentent des performances catalytiques optimales en adoucissement lorsque le taux d'hydratation du catalyseur est compris entre 0,1 et 40% et de préférence entre 1 et 25% en poids de celui-ci. Outre leurs performances catalytiques supérieures, ces aluminosilicates alcalins présentent l'avantage d'une très faible solubilité en milieu aqueux, ce qui permet leur utilisation prolongée à l'état hydraté pour traiter des coupes pétrolières auxquelles on ajoute régulièrement un peu d'eau ou, éventuellement, de solution alcaline.
Cette étape d'adoucissement (de préférence réalisée en lit fixe) de la fraction essence légère contenant des mercaptans peut donc être définie comme comprenant le passage, dans des conditions d'oxydation, de l'essence à traiter (stabilisée) au contact d'un catalyseur poreux. De préférence, selon le brevet EP-A-638.628, il comprend de 10 à 98%, de préférence de 50 à 95% en poids, d'au moins une phase solide minérale constituée d'un aluminosilicate alcalin ayant un rapport atomique Si/Al inférieur ou égal à 5, de préférence inférieur ou égal à 3, de 1 à 60% en poids de charbon actif, de 0,02 à 2% en poids d'au moins un chélate métallique et de 0 à 20% en poids d'au moins un liant minéral ou organique. Ce catalyseur poreux présente une basicité déterminée selon la norme ASTM 2896 supérieure à 20 milligrammes de potasse par gramme et une surface totale BET supérieure à 10 m2/g, et contient à l'intérieur de sa porosité une phase aqueuse permanente représentant de 0,1 à 40%, de préférence de 1 à 25%, en poids du catalyseur sec.
Parmi les phases minérales basiques du type aluminosilicates (principalement de sodium et/ou de potassium) qui conviennent particulièrement bien, on peut citer un grand nombre de phases:
  • lorsque l'alcalin est majoritairement le potassium :
  • la kaliophilite : K2O, Al2O3, SiO2(1,8 < < 2,4).
  • le feldspathoïde appelé leucite : K2O, Al2O3, SiO2 (3,5 < < 4,5).
  • les zéolithes du type :
    • philipsite : (K, Na)O, Al2O3, SiO2 (3,0 < < 5,0).
    • érionite ou offrétite : (K, Na, Mg, Ca)O, Al2O3, SiO2 (4 < < 8).
    • mazzite ou zéolithe Oméga : (K, Na, Mg, Ca)O, Al2O3, SiO2 (4 < < 8).
    • zéolithe L : (K, Na)O, Al2O3, SiO2 (5 < < 8).
  • lorsque l'alcalin est le sodium :
  • les aluminosilicates de sodium amorphes dont l'organisation cristalline ne peut être détectée par diffraction X et dont le rapport atomique Si/Al est inférieur ou égal à 5, et de préférence inférieur ou égal à 3.
  • la sodalite Na2O, A12O3, SiO2 (1,8 < < 2,4). La sodalite peut contenir différents ions ou sels alcalins dans sa structure, comme par exemple Cl-, Br-, ClO3-, BrO3-, IO3-, NO3-, OH-, CO3--, SO3--, CrO4--, MoO4--, PO4---, etc... , sous forme de sels acalins, principalement de sodium. Ces différentes variétés conviennent pour la présente invention. Les variétés préférées pour la présente invention sont celles contenant l'ion OH- sous forme de NaOH et l'ion S-- sous forme de Na2S.
  • la néphéline Na2O, Al2O3, SiO2 (1,8 < < 2,4).
  • les tectosilicates du type analcime, natrolite, mesolite, thomsonite, clinoptilolite, stilbite, zéolithe Na-P1, dachiardite, chabasite, gmelinite, cancrinite, la faujasite comprenant les zéolithes synthétiques X et Y, la zéolithe A.
D'une façon préférée, ledit aluminosilicate alcalin est obtenu par réaction en milieu aqueux d'au moins un argile (kaolinite, halloysite, montmorillonite, etc...) avec au moins un composé (hydroxyde, carbonate, acétate, nitrate, etc...) d'au moins un métal alcalin, notamment le sodium, et le potassium, ce composé étant de préférence l'hydroxyde, suivie d'un traitement thermique à une température entre 90 et 600°C, de préférence entre 120 et 350°C.
L'argile peut aussi être traitée thermiquement et broyée avant d'être mis au contact de la solution alcaline. Ainsi, la kaolinite et tous ses produits de transformation thermique (métakaolin, phase spinelle inverse, mullite) peuvent être utilisés selon le procédé de l'invention.
Lorsque l'argile considérée est le kaolin, la kaolinite et/ou le métakaolin constituent les réactifs chimiques de base préférés.
Comme chélate métallique, on pourra déposer sur le support tout chélate utilisé dans ce but dans la technique antérieure, en particulier les phtalocyanines, les porphyrines ou les corrines métalliques. On préfère particulièrement la phtalocyanine de cobalt et la phtalocyanine de vanadium. On utilise, de préférence, la phtalocyanine métallique sous forme d'un dérivé de cette dernière, avec une préférence particulière pour ses sulfonates disponibles dans le commerce, comme par exemple le mono- ou le disulfonate de phtalocyanine de cobalt et des mélanges de ceux-ci.
Les conditions réactionnelles mises en oeuvre pour réaliser cette seconde variante de l'étape d'adoucissement se caractérisent par l'absence de base aqueuse, une température et une vitesse spatiale horaire plus élevées. Les conditions adoptées sont généralement les suivantes :
  • Température: 20 à 100°C, de préférence 20 à 80°C.
  • Pression: 105 à 30.105 Pascal.
  • Quantité d'agent oxydant air: 1 à 3 kg/kg de mercaptans.
  • Vitesse spatiale horaire en VVH (volume de charge par volume de catalyseur et par heure): 1 à 10h-1 dans le cadre du procédé de l'invention.
La teneur en eau du catalyseur à base alcaline utilisé dans l'étape d'adoucissement oxydant de la présente invention peut varier en cours d'opération dans deux directions opposées:
  • 1) Si la coupe pétrolière à adoucir est préalablement séchée, elle peut entraíner progressivement, en la dissolvant, l'eau présente à l'intérieur de la porosité du catalyseur. Dans ces conditions, la teneur en eau de ce dernier diminue régulièrement et peut ainsi descendre en dessous de la valeur limite de 0,1 % en poids.
  • 2) Inversement, si la coupe pétrolière à adoucir est saturée en eau et compte tenu du fait que la réaction d'adoucissement s'accompagne de la production d'une molécule d'eau par molécule de disulfure formée, la teneur en eau du catalyseur peut augmenter et atteindre des valeurs supérieures à 25% et surtout 40% en poids, valeurs auxquelles les performances du catalyseur se dégradent.
  • Dans le premier cas, de l'eau peut être ajoutée, en quantité adéquate, à la coupe pétrolière, en amont du catalyseur de manière continue ou discontinue pour maintenir le degré d'hydratation à l'intérieur de l'intervalle désiré, c'est-à-dire que la teneur en eau du support est maintenue entre 0,1 et 40% pds du support, et de préférence entre 1 et 25%.
    Dans le second cas, il suffit que la température de la charge soit fixée à une valeur suffisante, inférieure à 80°C, pour solubiliser l'eau de réaction résultant de la transformation des mercaptans en disulfures. La température de la charge est ainsi choisie de manière à maintenir la teneur en eau du support entre 0,1 et 40% en poids du support et, de préférence, entre 1 et 25% en poids de celui-ci.
    Cet intervalle de valeurs prédeterminées de teneurs en eau du support dépendra, bien entendu, de la nature même du support catalytique utilisé lors de la réaction d'adoucissement. En effet, le demandeur a constaté, conformément au brevet FR-2.651.791, que si de nombreux supports catalytiques sont susceptibles d'être utilisés sans soude (ou sans base) aqueuse, leur activité ne se manifestera que lorsque leur teneur en eau (également appelée taux d'hydratation du support) est maintenue dans un intervalle de valeurs relativement étroit, variable suivant les supports, mais apparemment lié à la teneur du support en silicate et à la structure de ses pores.
    Le déposant a pu constater que, de façon particulièrement avantageuse, cette étape d'adoucissement peut être éliminée lorsque la coupe légère a été hydrogénée sélectivement pour éliminer les diènes et que dans le même temps un adoucissement a été obtenu. Le rendement en adoucissement peut être tel que l'étape finale d'adoucissement par un agent oxydant peut n'être plus nécessaire. Ce cas se vérifie bien avec un catalyseur à base de palladium tel que décrit précédemment.
    La présence de cette étape de traitement avec un catalyseur au palladium peut permettre également de modifier l'étape d'adoucissement, par exemple en augmentant la vitesse horaire, d'où une productivité accrue, ou en réduisant la quantité de catalyseur, d'où un investissement réduit.
    Lorsque l'étape finale d'adoucissement est employée, on peut utiliser une étape d'hydrogénation sélective des diènes qui ne soit pas adoucissante.
    • Hydrodésulfuration de la fraction lourde
    L'hydrodésulfuration de la fraction la plus lourde de l'essence de FCC est conduite suivant le même procédé que celui utilisé pour la fraction légère. Le catalyseur contient également au moins un métal du G VIII et/ou du groupe VI, déposé sur un support. Seules les conditions opératoires sont ajustées, afin d'obtenir le niveau de désulfuration désiré, sur cette coupe plus riche en soufre. La température utilisée est généralement comprise entre 200°C et 420°C, de préférence entre 220°C et 400°C. Les pressions opératoires utilisées sont généralement comprises entre 20 et 80 bar et de préférence entre 30 et 50 bar.L'effluent obtenu est strippé pour éliminer H2S et est envoyé au pool essence.
    L'invention concerne également.une installation pour mettre en oeuvre le procédé selon l'invention.
    Elle comprend:
    • une colonne (1) de fractionnement munie d'une conduite (2) pour l'introduction de l'essence brute provenant du craquage catalytique et comportant au moins 2 conduites, l'une (3) dans la partie haute de la colonne pour la sortie de la coupe légère, et une autre (4) dans la partie basse de la colonne pour la sortie de la coupe lourde ;
    • une zone (5) d'hydrotraitement en présence d'hydrogène comportant un lit catalytique, une conduite (6) pour l'entrée de la coupe d'essence légère à traiter, ladite conduite étant reliée soit à la colonne (1) de fractionnement, soit à la zone de traitement (7) sur catalyseur au palladium, ladite zone d'hydrotraitement comportant également une conduite (8) pour la sortie de l'effluent hydrotraité,
    • une zone (9) de strippage comportant une conduite pour l'introduction de l'essence légère hydrotraitée, une conduite (10) pour l'évacuation de H2S et une conduite (11) pour la sortie de l'essence légère strippée,
    et ladite installation comportant également l'une au moins des zones suivantes d'adoucissement :
    • une zone (12) d'adoucissement située après la zone de strippage comportant une conduite pour l'introduction de l'essence légère strippée et une conduite (14) pour amener l'agent oxydant au niveau de ladite zone ;
    • une zone (7) de traitement située avant la zone d'hydrotraitement et comportant une conduite (3) pour l'introduction de la coupe d'essence légère issue de la colonne de fractionnement, une conduite pour la sortie de la coupe d'essence légère traitée, ladite zone comportant également au moins un lit d'un catalyseur à 0,1-1% de palladium déposé sur un support, et ladite installation comportant en outre une conduite (13) pour la sortie de l'essence légère strippée et adoucie hors de l'installation, et reliée soit à la zone (9) soit à la zone (12) lorsqu'elle existe.
    Selon une variante, la zone d'adoucissement est située après le strippage et l'installation comporte en outre une zone d'hydrogénation sélective des diènes située entre la colonne de fractionnement et la zone d'hydrotraitement doux, ladite zone d'hydrogénation comportant une conduite pour l'introduction de la coupe légère et une conduite pour la sortie de la coupe légère dédiénisée.
    Dans un mode préféré, l'installation comporte également une zone (15) d'hydrotraitement de la fraction lourde, munie d'une conduite (4) pour l'introduction de la coupe lourde provenant de la colonne (1) , une conduite (16) pour la sortie de la coupe hydrotraitée et une conduite (17) amenant l'hydrogène au niveau de la charge ou de la zone, ladite zone étant suivie d'une colonne (18) de strippage munie d'une conduite pour l'introduction de la coupe hydrotraitée, d'une conduite (19) pour la sortie de H2S et d'une conduite (20) pour la sortie de la coupe hydrotraitée. Les coupes sortant par les canalisations (20) et (13) peuvent être envoyées au stockage essence par une canalisation (21).
    Les chiffres se rapportent aux figures 1 et 2. Sur la figure 1, l'installation pour le traitement de la coupe légère est représenté avec en pointillé les zones d'adoucissements. On comprendra que les trois modes de réalisations suivants peuvent être utilisés :
    • premier mode, avec la zone (7) d'adoucissant mais sans la zone (12);
    • deuxième mode, avec la zone (12) mais sans la zone (7);
    • et troisième mode, avec les zones (12) et (7).
    Sur la figure 2, on a ajouté le traitement de la coupe lourde.
    On n'a pas représenté les conduites pour amener l'hydrogène, qui alourdiraient les schémas, mais il est bien évident qu'en présence de la zone (7) ou d'une zone d'hydrogénation des diènes, il y a une conduite pour amener l'hydrogène au niveau de la coupe légère ou dans le réacteur directement. En l'absence de telles zones, la conduite débouche directement dans la zone d'hydrotraitement ou dans la coupe légère.
    Exemple 1
    L'exemple ci-après illustre le procédé, dans le cas où la coupe essence brute est fractionnée en une coupe légère C5 moins del80°C, et une fraction plus lourde 180-220°C. Le tableau 1 indique les caractéristiques de ces différentes coupes.
    Caractéristiques des différentes coupes essence FCC
    Coupe Essence totale (C5-220°C) Fraction légère (C5-180°C) Fraction lourde (180-220°C)
    (% pds) (100) (70) (30)
    Teneur oléfines (% pds) 44.0 56.4 10.0
    Teneur aromatiques (% pds) 23.0 4.6 66.0
    Indice de brome 68 90 16
    Soufre total (ppm pds) 200 154 307
    Soufre mercaptans (ppm pds) 106 74 0
    RON 92.0 92.5 90.8
    MON 80.0 80.7 78.4
    (RON + MON)/2 86.0 86.6 84.6
    La coupe légère de l'essence de FCC est riche en oléfines et contient la quasi-totalité des mercaptans. La fraction plus lourde, plus riche en soufre, contient des composés soufrés essentiellement sous forme de dérivés thiophéniques.
    Le tableau 2 ci-après indique les conditions opératoires utilisées pour l'hydrotraitement de l'essence lourde, ainsi que les caractéristiques de l'essence lourde ainsi désulfurée.
    Le catalyseur utilisé est un CoMo supporté alumine (HR 306C vendu par la société Procatalyse).
    Caractéristiques de l'hydrodésulfuration de l'essence lourde.
    Caractéristiques de l'essence lourde désulfurée
    Caractéristiques essence lourde Charge avant désulfuration Essence lourde désulfurée
    Intervalle de distillation (°C) 180 - 220 180 - 220
    Teneur oléfines (% pds) 10.0 2.6
    Indice de brome 16 4.2
    Soufre total (ppm pds) 307 10
    Soufre mercaptans (ppm pds) 0 0
    RON 90.8 88.8
    MON 78.4 77.0
    Conditions opératoires
    Température (°C) 300
    Pression (bar) 30
    Le tableau 3 ci-après indique les caractéristiques de l'essence légère désulfurée puis adoucie. Lors de l'étape d'hydrotraitement doux, la température est de 280°C, la pression est de 20 bar, LHV de 8h-1 et le catalyseur est le LD 145 à base de NiMo vendu par la société Procatalyse suivi d'un catalyseur CoMo (HR306 C vendu par la société Procatalyse).
    Caractéristiques de l'essence légère initiale, après hydrotraitement doux puis après adoucissement.
    Caractéristiques essence légère Charge essence légère Essence légère désulfurée Essence légère désulfurée et adoucie
    Intervalle de distillation (°C) C5 - 180 C5 - 180 C5 - 180
    MAV 4
    Teneur oléfines (% pds) 56.4 30.0 30.0
    Indice de brome 90 47 47
    Soufre total (ppm pds) 154 19 19
    Soufre mercaptans (ppm pds) 74 19 < 5
    RON 92.5 86.5 86.5
    MON 80.7 77.0 77.0
    L'adoucissement est effectué sur un catalyseur comportant de la sodalite (aluminosilicate alcalin) et 20% de charbon actif, imprégné avec un agent oxydant tel la phtalocyamine de cobalt sulfonnée (imprégnation de PeCo : 60 kg (m3 de cata) préparé tel que decrit dans le brevet EP-A-638.628).
    Le procédé et l'installation selon l'invention permettent ainsi d'obtenir des essences de FCC contenant moins de 50 ppm de soufre, répondant négativement au "doctor test" et ce avec une perte en indice d'octane baril (RON + MON)/2 inférieure à 8 points par rapport à la même coupe d'essence brute de FCC avant traitement, et de préférence inférieure ou égale à 6 points.

    Claims (12)

    1. Procédé pour la production d'essence à faible teneur en soufre à partir d'essence brute de craquage catalytique contenant des oléfines, des mercaptans et des composés soufrés autres que les mercaptans, procédé dans lequel :
      1) l'essence brute est fractionnée en au moins une coupe légère à point d'ébullition inférieur ou égal à 210°C contenant la majeure partie des oléfines et des mercaptans, et au moins une fraction lourde,
      2) la coupe légère est soumise à un hydrotraitement doux, en présence d'hydrogène, avec un catalyseur contenant au moins un métal du groupe VIII et/ou au moins un métal du groupe VI, à une température de 160-380°C, sous une pression de 5-50 bar, et l'effluent obtenu est strippé pour éliminer H2S,
      3) la fraction légère est soumise à un adoucissement qui est réalisé par au moins l'un des procédés suivants :
      traitement de la coupe légère avant l'hydrotraitement doux, en présence d'hydrogène avec un catalyseur contenant 0,1-1% de palladium déposé sur un support, à une température de 50-250°C, sous une pression de 4-50 bar ;
      adoucissement extractif de l'effluent obtenu après hydrotraitement doux et strippage ;
      adoucissement avec un agent oxydant, un catalyseur et une base alcaline incorporée ou non au catalyseur, de l'effluent obtenu après hydrotraitement doux et strippage.
    2. Procédé selon la revendication 1, dans lequel la fraction lourde est soumise à un hydrotraitement, en présence d'hydrogène avec un catalyseur contenant au moins un métal du groupe VI et/ou au moins un métal du groupe VIII, à une température de 200-420°C, sous une pression de 20-80 bar, et l'effluent obtenu est strippé pour éliminer H2S.
    3. Procédé selon l'une des revendications précédentes, dans lequel la coupe légère présente un point final d'ébullition inférieur ou égal à 180°C.
    4. Procédé selon l'une des revendications précédentes, dans lequel la coupe légère présente un point final d'ébullition inférieur ou égal à 160°C.
    5. Procédé selon l'une des revendications précédentes, dans lequel la coupe légère présente un point final d'ébullition inférieur ou égal à 145°C.
    6. Procédé selon l'une des revendications précédentes, dans lequel la coupe légère est soumise, avant hydrotraitement doux, à une hydrogénation sélective des diènes et la coupe hydrotraitée et strippée est soumise à un adoucissement.
    7. Procédé selon l'une des revendications précédentes, dans lequel le traitement de la coupe légère, avant hydrotraitement doux, est réalisé avec un catalyseur contenant 0,1-1% de palladium et 1-20% pds de nickel.
    8. Procédé selon l'une des revendications 1 à 6, dans lequel le traitement de la coupe légère, avant l'hydrotraitement doux, est réalisé avec un catalyseur contenant 0,1-1% de palladium et de l'or, dans le rapport pondéral Au/Pd d'au moins 0,1 et inférieur à 1.
    9. Procédé selon l'une des revendications précéden tes, dans lequel l'adoucissement extractif ou avec un agent oxydant est réalisé à 20-100°C sous une pression de 1-30 bar.
    10. Installation pour la production d'essences à faible teneur en soufre à partir d'essence de craquage catalytique, comprenant :
      une colonne (1) de fractionnement munie d'une conduite (2) pour l'introduction de l'essence brute provenant du craquage catalytique et comportant au moins 2 conduites, l'une (3) dans la partie haute de la colonne pour la sortie de la coupe légère, et une autre (4) dans la partie basse de la colonne pour la sortie de la coupe lourde ;
      une zone (5) d'hydrotraitement en présence d'hydrogène comportant un lit catalytique, une conduite (6) pour l'entrée de la coupe d'essence légère à traiter, ladite conduite étant reliée soit à la colonne (1) de fractionnement, soit à la zone de traitement (7) sur catalyseur au palladium, ladite zone d'hydrotraitement comportant également une conduite (8) pour la sortie de l'effluent hydrotraité,
      une zone (9) de strippage comportant une conduite pour l'introduction de l'essence légère hydrotraité, une conduite (10) pour l'évacuation de H2S et une conduite (11) pour la sortie de l'essence légère strippée,
      et ladite installation comportant également l'une au moins des zones suivantes d'adoucissement :
      une zone (12) d'adoucissement située après la zone de strippage comportant une conduite pour l'introduction de l'essence légère strippée et une conduite (14) pour l'amenée de l'agent oxydant au niveau de ladite zone ;
      une zone (7) de traitement située avant la zone d'hydrotraitement et comportant une conduite (3) pour l'introduction de la coupe d'essence légère issue de la colonne de fractionnement, une conduite pour la sortie de la coupe d'essence légère traitée, ladite zone comportant également au moins un lit d'un catalyseur à 0,1-1% de palladium déposé sur un support, et ladite installation comportant en outre une conduite (13) pour la sortie de l'essence légère strippée et adoucie hors de l'installation, reliée à la zone (12) ou à la zone (9).
    11. Installation selon la revendication 10, comportant la zone d'adoucissement (12) située après le strippage et l'installation comportant en outre une zone d'hydrogénation sélective des diènes située entre la colonne de fractionnement et la zone d'hydrotraitement doux, ladite zone d'hydrogénation comportant une conduite pour l'introduction de la coupe légère et une conduite pour la sortie de la coupe légère dédiénisée.
    12. Installation selon l'une des revendications 10 ou 11, comportant également une zone (15) d'hydrotraitement de la fraction lourde, munie d'une conduite (4) pour l'introduction de la coupe lourde provenant de la colonne, une conduite (16) pour la sortie de la coupe hydrotraitée et une conduite (17) amenant l'hydrogène au niveau de la charge ou de la zone, ladite zone étant suivie d'une colonne (18) de strippage munie d'une conduite pour l'introduction de la coupe hydrotraitée, d'une conduite (19) pour la sortie de H2S et d'une conduite (20) pour la sortie de la coupe hydrotraitée.
    EP97402088A 1996-09-24 1997-09-08 Procédé et installation pour la production d'essences de craquage catalytique à faible teneur en soufre Expired - Lifetime EP0832958B1 (fr)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR9611691A FR2753717B1 (fr) 1996-09-24 1996-09-24 Procede et installation pour la production d'essences de craquage catalytique a faible teneur en soufre
    FR9611691 1996-09-24

    Publications (2)

    Publication Number Publication Date
    EP0832958A1 true EP0832958A1 (fr) 1998-04-01
    EP0832958B1 EP0832958B1 (fr) 2005-08-17

    Family

    ID=9496062

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP97402088A Expired - Lifetime EP0832958B1 (fr) 1996-09-24 1997-09-08 Procédé et installation pour la production d'essences de craquage catalytique à faible teneur en soufre

    Country Status (6)

    Country Link
    US (2) US6007704A (fr)
    EP (1) EP0832958B1 (fr)
    JP (1) JP4006483B2 (fr)
    KR (1) KR100456209B1 (fr)
    DE (1) DE69733985T2 (fr)
    FR (1) FR2753717B1 (fr)

    Cited By (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1077247A1 (fr) * 1999-08-19 2001-02-21 Institut Francais Du Petrole Procédé de production d'essences à faible teneur en soufre
    EP1138749A1 (fr) * 2000-03-29 2001-10-04 Institut Francais Du Petrole Procédé de desulfuration d'essence comprenant une desulfuration des fractions lourde et intermediaire issues d'un fractionnement en au moins trois coupes
    EP1247857A2 (fr) * 2001-04-03 2002-10-09 Chevron U.S.A. Inc. Procédé d'hydrotraitement/extraction doux pour la préparation d'un combustible à teneur en soufre réduite pour les piles à combustibles
    CN102443433A (zh) * 2010-10-15 2012-05-09 中国石油化工股份有限公司 一种生产低硫汽油的方法
    CN102465031A (zh) * 2010-11-04 2012-05-23 中国石油化工股份有限公司 一种重烃原料加氢处理方法
    CN110643380A (zh) * 2019-08-22 2020-01-03 中科合成油工程股份有限公司 一种将煤热解产物转化为汽油、柴油和氢气的方法

    Families Citing this family (40)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19626126C2 (de) * 1996-06-28 1998-04-16 Fraunhofer Ges Forschung Verfahren zur Ausbildung einer räumlichen Chipanordnung und räumliche Chipanordung
    US6649043B1 (en) 1996-08-23 2003-11-18 Exxonmobil Research And Engineering Company Regeneration of hydrogen sulfide sorbents
    WO2000000456A1 (fr) * 1998-06-30 2000-01-06 Eastman Chemical Company Preparation d'un aldol au moyen d'un catalyseur d'argile a base modifiee
    US6692635B2 (en) * 1999-02-24 2004-02-17 Institut Francais Du Petrole Process for the production of gasolines with low sulfur contents
    US6599417B2 (en) * 2000-01-21 2003-07-29 Bp Corporation North America Inc. Sulfur removal process
    US6602405B2 (en) * 2000-01-21 2003-08-05 Bp Corporation North America Inc. Sulfur removal process
    US6596157B2 (en) * 2000-04-04 2003-07-22 Exxonmobil Research And Engineering Company Staged hydrotreating method for naphtha desulfurization
    CA2407066A1 (fr) * 2000-04-18 2001-10-25 Exxonmobil Research And Engineering Company Hydrocraquage et elimination selectifs de mercaptans
    US6656877B2 (en) 2000-05-30 2003-12-02 Conocophillips Company Desulfurization and sorbents for same
    US6946068B2 (en) * 2000-06-09 2005-09-20 Catalytic Distillation Technologies Process for desulfurization of cracked naphtha
    FR2811328B1 (fr) * 2000-07-06 2002-08-23 Inst Francais Du Petrole Procede comprenant deux etapes d'hydrodesulfuration d'essence et une elimination intermediaire de l'h2s forme au cours de la premiere etape
    JP4991083B2 (ja) * 2000-09-22 2012-08-01 バスフ・カタリスツ・エルエルシー 構造的に強化された分解用触媒
    US6610197B2 (en) * 2000-11-02 2003-08-26 Exxonmobil Research And Engineering Company Low-sulfur fuel and process of making
    US20020148754A1 (en) * 2001-02-08 2002-10-17 Gong William H. Integrated preparation of blending components for refinery transportation fuels
    US6960291B2 (en) * 2001-06-19 2005-11-01 Exxonmobil Research And Engineering Company Naphtha desulfurization method
    FR2834515B1 (fr) 2002-01-10 2006-03-10 Atofina Vapocraquage de naphta modifie
    US8158843B2 (en) * 2002-02-12 2012-04-17 The Penn State Research Foundation Deep desulfurization of hydrocarbon fuels
    JP4336308B2 (ja) * 2002-05-22 2009-09-30 株式会社ジャパンエナジー 石油留分を脱硫するための吸着脱硫剤、それを用いた脱硫方法及び該脱硫方法を含む軽油の製造方法
    TW200513320A (en) * 2003-06-16 2005-04-16 Shell Int Research A process and catalyst for the selective hydrogenation of diolefins contained in an olefin containing stream and for the removal of arsenic therefrom and a method of making such catalyst
    FR2857973B1 (fr) * 2003-07-25 2008-02-22 Inst Francais Du Petrole Procede de desulfuration des essences par adsorption
    JP4932257B2 (ja) * 2003-11-07 2012-05-16 Jx日鉱日石エネルギー株式会社 無鉛ガソリン組成物及びその製造方法
    US8084383B2 (en) * 2004-03-16 2011-12-27 W.R. Grace & Co.-Conn. Gasoline sulfur reduction catalyst for fluid catalytic cracking process
    US7752659B2 (en) * 2005-02-14 2010-07-06 Lenovo (Singapore) Pte. Ltd. Packet filtering in a NIC to control antidote loading
    JP5219247B2 (ja) * 2005-05-06 2013-06-26 Jx日鉱日石エネルギー株式会社 低硫黄分解ガソリン基材の製造方法および無鉛ガソリン組成物
    JP5280624B2 (ja) * 2005-12-01 2013-09-04 Jx日鉱日石エネルギー株式会社 無鉛ガソリン組成物
    JP5280625B2 (ja) * 2005-12-01 2013-09-04 Jx日鉱日石エネルギー株式会社 無鉛ガソリン組成物
    JP5280623B2 (ja) * 2005-12-01 2013-09-04 Jx日鉱日石エネルギー株式会社 無鉛ガソリン組成物
    FR2900157B1 (fr) * 2006-04-24 2010-09-24 Inst Francais Du Petrole Procede de desulfuration d'essences olefiniques comprenant au moins deux etapes distinctes d'hydrodesulfuration
    FR2908781B1 (fr) * 2006-11-16 2012-10-19 Inst Francais Du Petrole Procede de desulfuration profonde des essences de craquage avec une faible perte en indice d'octane
    EP2236583A4 (fr) * 2007-11-09 2013-01-30 Ranfeng Ding Système et procédé de fabrication d'essence de qualité élevée par recombinaison catalytique d'hydrocarbures
    WO2009094934A1 (fr) * 2008-01-29 2009-08-06 Beijing Grand Golden-Bright Engineering & Technologies Co., Ltd Système et procédé pour la production d'essence de haute qualité
    JP5706126B2 (ja) * 2010-10-07 2015-04-22 出光興産株式会社 吸着剤の再生方法
    WO2012066572A2 (fr) 2010-11-19 2012-05-24 Indian Oil Corporation Ltd. Procédé de désulfuration profonde d'essence de craquage à perte d'octane minimale
    CN102041086A (zh) * 2011-01-17 2011-05-04 江苏佳誉信实业有限公司 一种高硫、高烯烃催化汽油的选择性加氢脱硫方法
    CN103087771B (zh) * 2011-11-07 2015-06-03 中国石油化工股份有限公司 一种汽油深度脱硫的加氢方法
    CN107236571B (zh) * 2016-03-29 2019-01-08 中国石油化工股份有限公司 一种生产催化裂化原料油的方法
    CN107880934A (zh) * 2017-11-02 2018-04-06 中石化炼化工程(集团)股份有限公司 催化裂化柴油利用的方法及高辛烷值汽油或高辛烷值汽油调和组分
    CN107903943A (zh) * 2017-11-02 2018-04-13 中石化炼化工程(集团)股份有限公司 催化裂化柴油利用的方法及高辛烷值汽油或高辛烷值汽油调和组分
    CN109097104B (zh) * 2018-09-11 2019-11-08 福州大学 一种fcc汽油改质方法
    US11643608B2 (en) 2018-11-07 2023-05-09 Exxonmobil Chemical Patents Inc. Process for C5+ hydrocarbon conversion

    Citations (10)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB967879A (en) * 1961-07-06 1964-08-26 Engelhard Ind Inc Improvements in or relating to the hydrogenation of olefins in the presence of aromatic hydrocarbons
    DE1470487A1 (de) * 1961-11-24 1968-12-19 British Petroleum Co Verfahren zur Entschwefelung von kohlenwasserstoffhaltigen Materialien
    DE1645689A1 (de) * 1968-03-19 1971-07-01 Air Prod & Chem Verfahren zur Behandlung eines ungesaettigten Kohlenwasserstoffdestillates
    FR2104631A1 (fr) * 1967-04-28 1972-04-21 Universal Oil Prod Co
    GB1565754A (en) * 1978-03-08 1980-04-23 British Petroleum Co Selective hydrogenation
    US5064525A (en) * 1991-02-19 1991-11-12 Uop Combined hydrogenolysis plus oxidation process for sweetening a sour hydrocarbon fraction
    US5290427A (en) * 1991-08-15 1994-03-01 Mobil Oil Corporation Gasoline upgrading process
    US5318690A (en) * 1991-08-15 1994-06-07 Mobil Oil Corporation Gasoline upgrading process
    EP0685552A1 (fr) * 1994-06-01 1995-12-06 Institut Francais Du Petrole Procédé et installation pour le traitement par hydrogénation sélective d'une essence de craquage catalytique
    EP0708167A1 (fr) * 1994-10-22 1996-04-24 Krupp Koppers GmbH Procédé de production d'un produit précurseur contenant des hydrocurbures aromatiques pour la récupération d'aromates à partir de benzène brut de cokerie

    Family Cites Families (20)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US2025255A (en) * 1934-02-07 1935-12-24 Shell Dev Method of treating cracked oil distillates
    US2270667A (en) * 1940-05-20 1942-01-20 Shell Dev Process for extraction
    US2983669A (en) * 1958-12-30 1961-05-09 Houdry Process Corp Hydrodesulfurization of selected gasoline fractions
    US3161586A (en) * 1962-12-21 1964-12-15 Universal Oil Prod Co Hydrorefining of coke-forming hydrocarbon distillates
    US3424673A (en) * 1966-03-07 1969-01-28 Sun Oil Co Process for hydrodesulfurizing the lower boiling fraction of a cracked gas oil blend
    US3457163A (en) * 1967-06-16 1969-07-22 Universal Oil Prod Co Method for selective hydrogenation of diolefins with separation of gum formers prior to the reaction zone
    US3902991A (en) * 1973-04-27 1975-09-02 Chevron Res Hydrodesulfurization process for the production of low-sulfur hydrocarbon mixture
    US3847800A (en) * 1973-08-06 1974-11-12 Kvb Eng Inc Method for removing sulfur and nitrogen in petroleum oils
    US3957625A (en) * 1975-02-07 1976-05-18 Mobil Oil Corporation Method for reducing the sulfur level of gasoline product
    US4113603A (en) * 1977-10-19 1978-09-12 The Lummus Company Two-stage hydrotreating of pyrolysis gasoline to remove mercaptan sulfur and dienes
    FR2410038A1 (fr) * 1977-11-29 1979-06-22 Inst Francais Du Petrole Procede d'hydrogenation selective d'essences contenant a la fois des composes generateurs de gommes et des composes indesirables du soufre
    FR2473542B1 (fr) * 1980-01-12 1986-04-11 Jgc Corp Procede pour desulfurer et raffiner des fractions d'hydrocarbures contenant des quantites importantes de constituants aromatiques
    FR2523149A1 (fr) * 1982-03-15 1983-09-16 Catalyse Soc Prod Francais Nouveau catalyseur supporte palladium-or, sa preparation et son utilisation dans les reactions d'hydrogenation selective d'hydrocarbures diolefiniques et/ou acetyleniques
    US4897175A (en) * 1988-08-29 1990-01-30 Uop Process for improving the color and color stability of a hydrocarbon fraction
    US4908122A (en) * 1989-05-08 1990-03-13 Uop Process for sweetening a sour hydrocarbon fraction
    US4990242A (en) * 1989-06-14 1991-02-05 Exxon Research And Engineering Company Enhanced sulfur removal from fuels
    US5503734A (en) * 1991-08-15 1996-04-02 Mobil Oil Corporation Hydrocarbon upgrading process
    FR2689517B1 (fr) * 1992-04-02 1995-07-28 Inst Francais Du Petrole Procede d'hydrogenation selective des hydrocarbures.
    JP3443474B2 (ja) * 1995-02-03 2003-09-02 新日本石油株式会社 接触分解ガソリンの脱硫処理方法
    JP3450940B2 (ja) * 1995-06-08 2003-09-29 新日本石油株式会社 接触分解ガソリンの脱硫方法

    Patent Citations (10)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB967879A (en) * 1961-07-06 1964-08-26 Engelhard Ind Inc Improvements in or relating to the hydrogenation of olefins in the presence of aromatic hydrocarbons
    DE1470487A1 (de) * 1961-11-24 1968-12-19 British Petroleum Co Verfahren zur Entschwefelung von kohlenwasserstoffhaltigen Materialien
    FR2104631A1 (fr) * 1967-04-28 1972-04-21 Universal Oil Prod Co
    DE1645689A1 (de) * 1968-03-19 1971-07-01 Air Prod & Chem Verfahren zur Behandlung eines ungesaettigten Kohlenwasserstoffdestillates
    GB1565754A (en) * 1978-03-08 1980-04-23 British Petroleum Co Selective hydrogenation
    US5064525A (en) * 1991-02-19 1991-11-12 Uop Combined hydrogenolysis plus oxidation process for sweetening a sour hydrocarbon fraction
    US5290427A (en) * 1991-08-15 1994-03-01 Mobil Oil Corporation Gasoline upgrading process
    US5318690A (en) * 1991-08-15 1994-06-07 Mobil Oil Corporation Gasoline upgrading process
    EP0685552A1 (fr) * 1994-06-01 1995-12-06 Institut Francais Du Petrole Procédé et installation pour le traitement par hydrogénation sélective d'une essence de craquage catalytique
    EP0708167A1 (fr) * 1994-10-22 1996-04-24 Krupp Koppers GmbH Procédé de production d'un produit précurseur contenant des hydrocurbures aromatiques pour la récupération d'aromates à partir de benzène brut de cokerie

    Cited By (14)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1077247A1 (fr) * 1999-08-19 2001-02-21 Institut Francais Du Petrole Procédé de production d'essences à faible teneur en soufre
    FR2797639A1 (fr) * 1999-08-19 2001-02-23 Inst Francais Du Petrole Procede de production d'essences a faible teneur en soufre
    EP2169032A1 (fr) 1999-08-19 2010-03-31 Institut Français du Pétrole Catalyseur permettant de décomposer ou d'hydrogéner au moins partiellement les composes soufres insaturés
    US6896795B2 (en) 1999-08-19 2005-05-24 Institut Francais Du Petrole Process for the production of gasolines with low sulfur contents
    US6830678B2 (en) 2000-03-29 2004-12-14 Institut Francais Dupetrole Process of desulphurizing gasoline comprising desulphurization of the heavy and intermediate fractions resulting from fractionation into at least three cuts
    FR2807061A1 (fr) * 2000-03-29 2001-10-05 Inst Francais Du Petrole Procede de desulfuration d'essence comprenant une desulfuration des fractions lourde et intermediaire issues d'un fractionnement en au moins trois coupes
    EP1138749A1 (fr) * 2000-03-29 2001-10-04 Institut Francais Du Petrole Procédé de desulfuration d'essence comprenant une desulfuration des fractions lourde et intermediaire issues d'un fractionnement en au moins trois coupes
    EP1247857A3 (fr) * 2001-04-03 2003-03-19 Chevron U.S.A. Inc. Procédé d'hydrotraitement/extraction doux pour la préparation d'un combustible à teneur en soufre réduite pour les piles à combustibles
    EP1247857A2 (fr) * 2001-04-03 2002-10-09 Chevron U.S.A. Inc. Procédé d'hydrotraitement/extraction doux pour la préparation d'un combustible à teneur en soufre réduite pour les piles à combustibles
    CN102443433A (zh) * 2010-10-15 2012-05-09 中国石油化工股份有限公司 一种生产低硫汽油的方法
    CN102443433B (zh) * 2010-10-15 2014-07-30 中国石油化工股份有限公司 一种生产低硫汽油的方法
    CN102465031A (zh) * 2010-11-04 2012-05-23 中国石油化工股份有限公司 一种重烃原料加氢处理方法
    CN102465031B (zh) * 2010-11-04 2014-07-23 中国石油化工股份有限公司 一种重烃原料加氢处理方法
    CN110643380A (zh) * 2019-08-22 2020-01-03 中科合成油工程股份有限公司 一种将煤热解产物转化为汽油、柴油和氢气的方法

    Also Published As

    Publication number Publication date
    FR2753717A1 (fr) 1998-03-27
    DE69733985T2 (de) 2006-01-26
    EP0832958B1 (fr) 2005-08-17
    KR100456209B1 (ko) 2005-01-27
    JP4006483B2 (ja) 2007-11-14
    JPH10102070A (ja) 1998-04-21
    KR19980024831A (ko) 1998-07-06
    US6838060B1 (en) 2005-01-04
    FR2753717B1 (fr) 1998-10-30
    US6007704A (en) 1999-12-28
    DE69733985D1 (de) 2005-09-22

    Similar Documents

    Publication Publication Date Title
    EP0832958B1 (fr) Procédé et installation pour la production d&#39;essences de craquage catalytique à faible teneur en soufre
    EP1138749B1 (fr) Procédé de desulfuration d&#39;essence comprenant une desulfuration des fractions lourde et intermediaire issues d&#39;un fractionnement en au moins trois coupes
    EP1002853B1 (fr) Procédé de production d&#39;essences à faible teneur en soufre
    EP2169032B1 (fr) Catalyseur permettant de décomposer ou d&#39;hydrogéner au moins partiellement les composes soufres insaturés
    EP1174485B1 (fr) Procédé comprenant deux étapes d&#39;hydrodesulfuration d&#39;essence avec élimination intermediaire de L&#39;H2S
    EP2256179B1 (fr) Procédé de production d&#39;une coupe hydrocarbonnée à haut indice d&#39;octane et faible teneur en soufre
    KR100493874B1 (ko) 촉매의 노화를 지연시키는 고도 모양 선택적 탈왁스 방법
    EP1931751B1 (fr) Procede de desulfuration des essences comportant une desulfuration par adsorption de la fraction legere et une hydrodesulfuration de la fraction lourde
    EP1849850A1 (fr) Procédé de désulfuration d&#39;essences oléfiniques comprenant au moins deux étapes distinctes d&#39;hydrodésulfuration
    CA2299152C (fr) Procede de production d&#39;essences a faible teneur en soufre
    RU2186831C2 (ru) Способ гидрообессеривания и способ повышения качества углеводородного сырья
    EP1370627B1 (fr) Procede de production d&#39;essence a faible teneur en soufre
    EP0831140B1 (fr) Procédé de purification d&#39;essences brutes de craquage catalytique
    CA2440189C (fr) Procede de production d&#39;une essence desulfuree a partir d&#39;une coupe essence contenant de l&#39;essence de craquage
    EP1370629B1 (fr) Procede de production d&#39;essence a faible teneur en soufre

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE FR GB IT NL

    17P Request for examination filed

    Effective date: 19981001

    AKX Designation fees paid

    Free format text: DE FR GB IT NL

    RBV Designated contracting states (corrected)

    Designated state(s): DE FR GB IT NL

    17Q First examination report despatched

    Effective date: 20021202

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB IT NL

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 69733985

    Country of ref document: DE

    Date of ref document: 20050922

    Kind code of ref document: P

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20050912

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20060518

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: CD

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 69733985

    Country of ref document: DE

    Owner name: IFP ENERGIES NOUVELLES, FR

    Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, HAUTS-DE-SEINE, FR

    Effective date: 20110331

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20150924

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20150915

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20151001

    Year of fee payment: 19

    Ref country code: IT

    Payment date: 20150930

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20150921

    Year of fee payment: 19

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 69733985

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: MM

    Effective date: 20161001

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20160908

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20161001

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20170531

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160930

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160908

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20170401

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160908