EP0823120A1 - Drahtlackformulierung mit internem gleitmittel - Google Patents

Drahtlackformulierung mit internem gleitmittel

Info

Publication number
EP0823120A1
EP0823120A1 EP96914118A EP96914118A EP0823120A1 EP 0823120 A1 EP0823120 A1 EP 0823120A1 EP 96914118 A EP96914118 A EP 96914118A EP 96914118 A EP96914118 A EP 96914118A EP 0823120 A1 EP0823120 A1 EP 0823120A1
Authority
EP
European Patent Office
Prior art keywords
wire enamel
polyethylene wax
wire
wetting agent
lubricant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96914118A
Other languages
English (en)
French (fr)
Other versions
EP0823120B1 (de
Inventor
Klaus-Wilhelm Lienert
Irmgart Gebert
Helmut Lehmann
Michael W. MÜLLER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altana Electrical Insulation GmbH
Original Assignee
Dr Beck & Co AG
Beck & Co AG Dr
Dr Beck & Co AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dr Beck & Co AG, Beck & Co AG Dr, Dr Beck & Co AG filed Critical Dr Beck & Co AG
Publication of EP0823120A1 publication Critical patent/EP0823120A1/de
Application granted granted Critical
Publication of EP0823120B1 publication Critical patent/EP0823120B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/308Wires with resins

Definitions

  • the present invention relates to a wire enamel formulation containing components known per se with an internal lubricant.
  • Lacquered copper wires are coated with a lubricant to improve their processability.
  • Classic lubricants consist of a 0.5 to 2% solution of paraffins or waxes in a volatile solvent. When applied to the wire, the solvent evaporates and the paraffin or wax film remains.
  • a disadvantage of this method is that the solvents commonly used can cause surface cracks in the wire enamel film.
  • DE 32 37 022A describes a lubricant which consists of an aliphatic hydrocarbon mixture as solvent and 1% paraffin wax and 1% hydrogenated triglyceride.
  • the paraffin wax has a melting point of 50-52 ° C.
  • the hydrogenated triglyceride is a commercial product with a melting point of 47 ° C to 50 ° C.
  • This solution is applied to a wire coated with a polyamideimide.
  • An internal lubricant can also be used. This is added to the polyamideimide in a concentration of 1%.
  • the internal lubricant consists of tall oil fatty acid esters. No information is given on the friction coefficients achieved.
  • EP 00 72 178A describes the modification of wire enamel binders in which a C21 hydrocarbon chain is incorporated into the polymer. This chain leads to an improved coefficient of friction for the enamelled wires. There is no information in the script about the thermal properties. It can be assumed that the softening of the lacquer film and the dielectric loss factor suffer from the introduction of the hydrocarbon chain.
  • EP 0 103 307A describes conventionally applied lubricants which tend to reduce outgassing on the wires in relays. This is achieved by substituting the terminal hydrogen in a polypropylene glycol with an organic residue.
  • JP 0524 7374A Another document (JP 0524 7374A) describes how the use of dispersions of fluorinated waxes in conventional wire enamels improves the lubricity of the wires produced therewith. However, such systems tend to separate the phases.
  • JP 0 521 7427A describes the use of a polyethylene wax dispersion in a polyamideimidic wire enamel. Experience shows that these systems are not stable in storage.
  • an optimal lubricant must be an internal lubricant.
  • the additive that improves lubricity should be a polymeric material and the formulation should be stable on storage.
  • the internal lubricant contains a polyethylene wax, preferably with a molecular weight [Mw] of 3000 to 6000 [g / mol], and a wetting agent, preferably fatty alcohol ethoxylate.
  • the lubricant can also consist exclusively of the polyethylene wax and the wetting agent.
  • wire enamels with a polyesterimide can be used as a binder.
  • polyesterimide resins are known and are described, for example, in DE-OS 1445263 and DE-OS 14 95 100.
  • the polyesterimides are prepared in a known manner by esterifying the polyhydric carboxylic acids with the polyhydric alcohols, optionally with the addition of oxycarboxylic acids, and using starting materials containing imide groups. Instead of the free acids and or alcohols, their reactive derivatives can also be used.
  • Terephthalic acid is preferably used as the carboxylic acid component, and ethylene glycol, glycerol and tris (2-hydroxyethyl) isocyanurate (THEIC) are preferably used as polyhydric alcohols, the latter being particularly preferred.
  • TEEIC 2,2-hydroxyethyl) isocyanurate
  • the use of tris (2-hydroxyethyl) isocyanurate leads to an increase in the softening temperature of the paint film obtained.
  • the starting materials containing imide groups can be obtained, for example, by reaction between compounds, one of which must have a five-membered, cyclic carboxylic anhydride group and at least one further functional group, while the other contains at least one further functional group in addition to a primary amino group.
  • These further functional groups are primarily carboxyl groups or hydroxyl groups, but they can also be further primary amino groups or carboxylic anhydride groups.
  • Carboxylic anhydride grouping with a further functional group are, above all, pyromellitic dianhydride and trimellitic anhydride.
  • aromatic carboxylic acid anhydrides are also possible, for example the naphthalene tetracarboxylic acid dianhydrides or dianhydrides of tetracarboxylic acids with two benzene nuclei in the molecule, in which the carboxyl groups are in the 3,3'-, 4- and 4'-position.
  • Examples of compounds having a primary amino group and a further functional group are, in particular, diprimeric diamines, for example ethylenediamine, tetramethylene diamine, hexamethylene diamine, nonamethylene diamine and other aliphatic diprimeric diamines.
  • diprimeric diamines for example ethylenediamine, tetramethylene diamine, hexamethylene diamine, nonamethylene diamine and other aliphatic diprimeric diamines.
  • Aromatic diprimary diamines such as benzidine, are also suitable.
  • Amino alcohol-containing compounds with a further functional group are also amino alcohols, z.
  • monoethanolamine or monopropanolamines furthermore amino carboxylic acids such as glycine, aminopropionic acids, aminocaproic acids or aminobenzoic acids.
  • polyesterimide resins for example heavy metal salts such as lead acetate, zinc acetate, organic titanates, cerium compounds and organic acids, such as, for. B. para-toluenesulfonic acid.
  • heavy metal salts such as lead acetate, zinc acetate, organic titanates, cerium compounds and organic acids, such as, for. B. para-toluenesulfonic acid.
  • Solvents suitable for the production of the polyesterimide wire enamels are cresolic and non-cresolic organic solvents such as, for example, cresol, phenol, glycol ethers such as, for. B. methyl glycol, ethyl glycol, isopropyl glycol, butyl glycol, methyl diglycol, ethyl diglycol, butyl diglycol; Glycol ether esters, such as methyl glycol acetate,
  • Aromatic solvents can also be used, if appropriate in combination with the solvents mentioned. Examples of such solvents are xylene, solvent naphtha®, toluene, ethylbenzene, cumene, heavy benzene, various types of Solvesso® and Shellsol® as well as Deasol®.
  • wire enamels with a polyamideimide can also be used as a binder.
  • polyamide-imides used in wire enamels are known and are described, for example, in US Pat. Nos. 3,554,984, DE-A-2441 020, DE-A-25 56 523, DE-A-1266427 and DE-A-1956512.
  • the polyamideimides are prepared in a known manner from polycarboxylic acids or their anhydrides, in which 2 carboxyl groups are in the vicinal position and which must have at least one further functional group, and from polyamines with at least one primary amino group capable of imid ring formation or from compounds with at least 2 Isocyanate groups.
  • the polyamideimides can also be obtained by reacting polyamides, polyisocyanates which contain at least 2 NCO groups and cyclic dicarboxylic anhydrides which contain at least one further group capable of condensation or addition.
  • a tricarboxylic anhydride can first be reacted with a diprimary diamine to give the corresponding diimidocarboxylic acid, which then reacts with a diisocyanate to give the polyamideimide.
  • Tricarboxylic acids or their anhydrides are preferably used for the preparation of the polyamideimides.
  • the corresponding aromatic tricarboxylic acid anhydrides e.g. Trimellitic anhydride, naphthalene tricarboxylic acid anhydrides, bisphenyltricarboxylic acid anhydrides and further tricarboxylic acids with 2 benzene nuclei in the molecule and 2 vicinal carboxyl groups, such as the examples listed in DE-OS 19 56 512.
  • Trimellitic anhydride is very particularly preferably used.
  • the diprimary diamines already described for the polyamido carboxylic acids can be used as the amine component.
  • Aromatic diamines containing a thiadiazole ring such as e.g. 2,5-bis- (4-aminophenyl) -1, 3,4-thiadiazole, 2,5-bis- (3-aminophenyl) -3,3,4-thiadiazole, 2- (4-amino ⁇ henyl) -5- (3-aminophenyl) -1, 3,4-thiadiazole and mixtures of the different isomers.
  • Suitable diisocyanates for the preparation of the polyamideimides are aliphatic diisocyanates, such as, for example, tetramethylene, hexamethylene, heptamethylene and trimethylhexamethylene diisocyanates; cycloaliphatic diisocyanates such as isophorone diisocyanate, ⁇ , ⁇ '-diisocyanate-1, 4-dimethylcyclohexane, cyclohexane-1, 3-, cyclohexane-1, 4-, 1-methylcyclohexane-2,4- and dicyclohexylmethane-4,4'- diisocyanate; aromatic diisocyanates such as phenylene, toluene, naphthylene and xylylene diisocyanates and substituted aromatic systems such as diphenyl ether, diphenyl sulfide, diphenyl sulfone and diphenyl methane diisocyanates; mixed aromatic-
  • 4,4'-Diphenylmethane diisocyanate, 2,4- and 2,6-tolylene diisocyanate and hexamethylene diisocyanate are preferably used.
  • Suitable polyamides are those polyamides which have been obtained by polycondensation of dicarboxylic acids or their derivatives with diamines or of aminocarboxylic acids and their derivatives, such as lactams.
  • polyamides may be mentioned by way of example: dimethylene succinic acid amide, pentamethylene pimelic acid amide, undecanemethylene tridecanedicarboxylic acid amide, hexamethylene adipic acid amide, polycaproic acid amide. Hexamethylene adipic acid amide and polycaproic acid amide are particularly preferred.
  • Heavy metal salts soluble in the wire enamels can be used as crosslinking catalysts in the curing of the polyamideimides.
  • Zinc octoate, cadmium octoate, tetraisopropyl titanate or tetrabutyl titanate in an amount of up to 3% by weight, based on the binder, can be used.
  • the internal lubricant is preferably composed of 0.1 to 4.5% by weight of polyethylene wax and 0.1 to 2.0% by weight of wetting agent. 1.0 to 2.2% by weight of polyethylene wax are very particularly preferred and 0.2 to 1.2 wt% wetting agent. The stated amounts are based on the binder content in the wire enamel.
  • polyethylene waxes which can be used according to the invention are commercially available under the name Luwax®. These polyethylene waxes are characterized by a narrow molar mass distribution. In addition, high hardness and high crystallinity can be specifically set.
  • phase separation takes place.
  • wetting agent is added, the phase separation can be suppressed to different extents.
  • wetting agents are accordingly added to the wire enamel formulation.
  • fatty alcohol ethoxylates are advantageously used for this.
  • Emulan® AF a product from BASF AG, is particularly well suited to stabilizing the polyethylene waxes described in a wire enamel.
  • the tested and approved wetting agents also include the BASF products Emulan® EL, Emulan® PO and Pluronic® 8100.
  • the present invention further relates to a method for producing the wire enamel formulation described.
  • a polyethylene wax preferably with a molecular mass of 3000 to 6000 [g / mol]
  • solvent Preferably 5 to 25% by weight of solvent based on the polyethylene wax are added.
  • a proportion of solvent of 8 to 11% by weight is particularly preferred. 10% by weight is very particularly preferred.
  • Can be used as a solvent especially aromatic fractions are used.
  • Xylene and toluene are particularly preferred.
  • polyethylene wax and solvent are heated, preferably to 70 to 100 ° C. A temperature of approximately 80 ° C. is very particularly preferred. After the polyethylene wax has completely dissolved, it is cooled again to room temperature.
  • a wetting agent preferably fatty alcohol ethoxylate, is then added.
  • the proportions are chosen so that preferably 0.1 to 4.5% by weight of polyethylene wax and 0.1 to 2.0% by weight of wetting agent, based in each case on the binder content in the wire enamel, are used. 1.0 to 2.2% by weight of polyethylene wax and 0.2 to 1.2% by weight of wetting agent are very particularly preferred.
  • wire enamel containing components known per se is mixed with the dispersion thus obtained.
  • wire enamels are particularly suitable which contain polyesterimides or polyesteramideimides described above as binders.
  • wire enamels according to the invention thus produced are used in particular in the coating of electrical conductors.
  • a polyamideimide is produced from 38.5 parts of trimellitic acid and 60.0 parts of diphenylmethane diisocyanate by the method described in DE-AS 12 66 427.
  • the wire enamel is a 25% solution of this polyamideimide in a mixture of 65 parts of N-methylpyrrolidone and 35 parts of xylene. This wire enamel has a viscosity of 230 mPas at 23 ° C.
  • Example 5 Production of a Polvesterimid wire enamel with internal lubricant
  • Example 6 Production of a polvamidimide wire enamel with internal lubricant
  • Example 2 1000 g of wire enamel from Example 2 are mixed with 50 g of dispersion from Example 4.
  • the lacquer thus produced is lacquered as a topcoat over a commercially available THEIC polyester base lacquer.
  • the wires from Examples 5 and 6 were each operated as follows: A twist is produced from a piece of wire of approximately 750 mm in length, as described in IEC 851-5 / 4.3. 240 mm are cut out of the twist. This section has 10 turns. The opposite ends of the twist wires are clamped in a Lloyd M30K tearing machine. The force is measured in Newtons to pull the twist apart at a speed of 200 m / min.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Insulated Conductors (AREA)
  • Paints Or Removers (AREA)
  • Lubricants (AREA)
  • Organic Insulating Materials (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Metal Extraction Processes (AREA)

Description

Drahtlackformulierung mit internem Gleitmittel
Die vorliegende Erfindung betrifft eine Drahtlackformulierung enthaltend an sich bekannte Komponenten mit einem internen Gleitmittel.
Lackierte Kupferdrähte werden mit einem Gleitmittel überzogen um ihre Verarbeitbarkeit zu verbessern. Klassische Gleitmittel bestehen aus einer 0.5 bis 2%igen Lösung von Paraffinen oder Wachsen in einem leicht flüchtigen Lösemittel. Bei der Applikation auf den Draht verdunstet das Lösemittel und zurück bleibt der Paraffin- oder Wachsfilm. Ein Nachteil dieses Verfahrens ist, daß die üblichen verwendeten Lösemittel Oberflächenrisse im Drahtlackfilm verursachen können.
Diese und andere Nachteile entfallen, wenn interne Gleitmittel verwendet werden. Derartige Gleitmittel werden dem Lack beigemischt. Nach der Aushärtung des Drahtlackes sind sie mit dem Drahtlack unverträglich. Sie wandern an die Oberfläche und bilden hier eine Schicht, die eine verbesserte Gleitfähigkeit hat.
Das Problem ist, daß viele dieser internen Gleitmittel mit dem flüssigen Lack unverträglich sind und zu Phasenseparation oder Ausfällungen führen. In der DE 32 37 022A wird eine Gleitmittel beschrieben, das aus einem aliphatischen Kohlenwasserstoffgemisch als Lösemittel und 1 % Paraffinwachs sowie 1 % hydriertem Triglycerid besteht. Das Paraffinwachs hat einen Schmelzpunkt von 50-52°C. Das hydrierte Triglycerid ist ein kommerzielles Produkt mit einem Schmelzpunkt von 47°C bis 50°C. Diese Lösung wird auf einen mit einem Polyamidimid beschichteten Draht aufgebracht. Zusätzlich kann auch ein internes Gleitmittel verwendet werden. Dieses wird in einer Konzentration von 1% dem Polyamidimid zugesetzt. Das interne Gleitmittel besteht aus Tallölfettsäureestem. Angaben zu den erzielten Reibungskoeffizienten werden nicht gemacht.
In der EP 00 72 178A wird die Modifizierung von Drahtlackbindemitteln beschrieben, bei der in das Polymer eine C21 Kohlenwasserstoffkette eingebaut wird. Diese Kette führt bei den Lackdrähten zu einem verbesserten Reibungskoeffizienten. Es gibt in der Schrift keine Angaben zu den thermischen Eigenschaften. Es ist zu vermuten, daß die Erweichung des Lackfilmes und der dielektrische Verlustfaktor durch die Einführung der Kohlenwasserstoffkette leiden.
In der EP 0 103 307A werden konventionell aufgebrachte Gleitmittel beschrieben, die auf den Drähten in Relais zu einer reduzierten Ausgasung neigen. Dieses wird erreicht durch die Substitution des terminalen Wasserstoffes in einem Polypropylenglycol durch einen organischen Rest.
In der EP 0 267 736 werden Vergleiche zwischen paraffinischen und polymeren Gleitmitteln beschrieben. Die polymeren Gleitmittel schneiden in dem Zuverlässigkeitstest von Relais erheblich besser ab. Keine Informationen werden gegeben über die Stabilität der verarbeiteten Mischungen Polymer-Drahtlack.
In einer anderen Schrift (JP 0524 7374A) wird beschrieben, wie durch die Verwendung von Dispersionen von fluorierten Wachsen in konventionellen Drahtlacken die Gleitfähigkeit der damit hergestellten Drähte verbessert wird. Solche Systeme neigen allerdings zur Separation der Phasen.
In der JP 0 521 7427A wird der Einsatz einer Polyethylenwachsdispersion in einem polyamidimidischen Drahtlack beschrieben. Die Erfahrung zeigt, daß diese Systeme nicht lagerstabil sind.
Aus den aufgeführten Beispielen geht hervor, daß ein optimales Gleitmittel ein internes Gleitmittel sein muß. Außerdem sollte der Zusatz, der die Gleitfähigkeit verbessert, ein polymeres Material sein und die Formulierung sollte lagerstabil sein.
Aufgabe der vorliegenden Erfindung war es demgemäß, eine Drahtlackformulierung enthaltend an sich bekannte Komponenten und ein internes Gleitmittel zu Verfügung zu stellen, die die genannten Anforderungen erfüllt.
Diese Aufgabe wird überraschender Weise dadurch gelöst, daß das interne Gleitmittel ein Polyethylenwachs, vorzugsweise mit einer Molekularmasse [Mw] von 3000 bis 6000 [g/mol], und ein Netzmittel, vorzugsweise Fettalkoholethoxylat, enthält.
Erfindungsmäß kann das Gleitmittell auch ausschließlich aus dem Polyethylenwachs und dem Netzmittel bestehen. Erfindungsgemäß können Drahtlacke mit einem Polyesterimid als Bin¬ demittel verwendet werden. Solche Polyesterimidharze sind bekannt und beispielsweise in DE-OS 1445263 und DE-OS 14 95 100 beschrieben.
Die Herstellung der Polyesterimide erfolgt in bekannter Weise durch Veresterung der mehrwertigen Carbonsäuren mit den mehrwertigen Alkoholen, gegebenenfalls unter Zusatz von Oxycarbonsäuren, und unter Verwendung von imidgruppenhaltigen Ausgangsstoffen. Anstelle der freien Säuren und oder Alkohole können auch deren reaktionsfähige Derivate eingesetzt werden. Als Carbonsäurekomponente wird vorzugsweise Terephthalsäure eingesetzt, und als mehrwertige Alkohole werden bevorzugt Ethylenglykol, Glycerin und Tris-(2-hydroxyethyl)-isocyanurat (THEIC), wobei letzteres besonders bevorzugt ist, eingesetzt. Die Verwendung von Tris-(2-hydroxyethyl)-isocyanurat führt zu einer Erhöhung der Erweichungstemperatur des erhaltenen Lackfilms.
Die imidgruppenhaltigen Ausgangsstoffe können beispielsweise durch Reaktion zwischen Verbindungen erhalten werden, von denen die eine eine fünfgliedrige, cyclische Carbonsäureanhydridgruppierung sowie mindestens noch eine weitere funktionelle Gruppe besitzen muß, während die andere außer einer primären Aminogruppe noch mindestens eine weitere funktionelle Gruppe enthält. Diese weiteren funktionellen Gruppen sind vor allem Carboxylgruppen oder Hydroxylgruppen, es können jedoch auch weitere primäre Aminogruppen oder Carbonsäureanhydridgruppen sein.
Beispiele für Verbindungen mit einer cyclischen
Carbonsäureanhydridgruppierung mit einer weiteren funktionellen Gruppe sind vor allem Pyromellithsäuredianhydrid und Trimellithsäureanhydrid. Es kommen jedoch auch andere aromatische Carbonsäureanhydride in Frage, beispielsweise die Naphthalintetracarbonsäuredianhydride oder Dianhydride von Tetracarbonsäuren mit zwei Benzolkernen im Molekül, bei denen die Carboxylgruppen in 3,3'-, 4- und 4'-Stellung stehen.
Beispiele für Verbindungen mit einer primären Aminogruppe sowie einer weiteren funktionellen Gruppe sind insbesondere diprimäre Diamine, z, B. Ethylendiamin, Tetramethylendiamin, Hexamethylendiamin, Nonamethylendiamin und andere aliphatische diprimäre Diamine. Ferner kommen in Betracht aromatische diprimäre Diamine, wie Benzidin,
Diaminodiphenylmethan, Diaminodiphenylketon, -sulfon, -sulfoxyd, -ether und -thioether, Phenylendiamine, Toluylendiamine, Xylylendiamine sowie auch Diamine mit drei Benzolkernen im Molekül, wie Bis-(4-aminophenyl)- α,α'-p-xylol oder Bis(4-aminophenoxy)-1 ,4-benzol, und schließlich cycloaliphatische Diamine, wie das 4,4'-Dicyclohexylmethandiamin. Als aminogruppenhaltige Verbindungen mit einer weiteren funktionellen Gruppe sind ferner auch Aminoalkohole verwendbar, z. B. Monoethanolamin oder Monopropanolamine, weiterhin Aminocarbonsäuren, wie Glycin, Aminopropionsäuren, Aminocapronsäuren oder Aminobenzoesäuren.
Zur Herstellung der Polyesterimidharze werden bekannte Umesterungs- katalysatoren verwendet, beispielsweise Schwermetallsalze, wie Bleiacetat, Zinkacetat, weiterhin organische Titanate, Cerverbindungen sowie organische Säuren, wie z. B. para-Toluolsulfonsäure. Als
Vernetzungskatalysatoren bei der Aushärtung der Polyesterimide können die gleichen Umesterungskatalysatoren - zweckmäßigerweise in einem Anteil bis zu 3 Gew.-%, bezogen auf das Bindemittel, - verwendet werden. Für die Herstellung der Polyesterimid-Drahtlacke geeignete Lösungsmittel sind kresolische und nicht-kresolische organische Lösungsmittel wie beispielsweise Kresol, Phenol, Glykolether wie z. B. Methylglykol, Ethylglykol, Isopropylglykol, Butylglykol, Methyldiglykol, Ethyldiglykol, Butyldiglykol; Glykoletherester, wie z.B. Methylglykolacetat,
Ethylglykolacetat, Butylglykolacetat und 3-Methoxy-n-butylacetat; cyclische Carbonate, wie z. B. Propylencarbonat; cyclische Ester wie z. B. γ-Butyrolacton sowie beispielsweise Dimethylformamid und N- Methylpyrrolidon. Weiterhin können noch aromatische Lösungsmittel, ggf. in Kombination mit den genannten Lösungsmitteln, eingesetzt werden, Beispiele für derartige Lösungsmittel sind Xylol, Solventnaphtha®, Toluol, Ethylbenzol, Cumol, Schwerbenzol, verschiedene Solvesso®- und Shellsol®-Typen sowie Deasol®.
Erfindungsgemäß können ferner Drahtlacke mit einem Polyamidimid als Bindemittel verwendet werden. Solche in Drahtlacken verwendeten Polyamidimide sind bekannt und beispielsweise in US-A-3, 554,984, DE- A-2441 020, DE-A-25 56 523, DE-A-1266427 und DE-A-1956512 beschrieben.
Die Herstellung der Polyamidimide erfolgt in bekannter Weise aus Polycarbonsäuren oder deren Anhydriden, bei denen 2 Carboxylgruppen in vicinaler Stellung stehen und die mindestens noch eine weitere funktionelle Gruppe besitzen müssen und aus Polyaminen mit wenigstens einer primären, zur Imidringbildung fähigen Aminogruppe oder aus Verbindungen mit wenigstens 2 Isocyanatgruppen. Die Polyamidimide können auch durch Umsetzung von Polyamiden, Polyisocyanaten, die mindestens 2 NCO-Gruppen enthalten, und cyclischen Dicarbonsäureanhydriden, die mindestens eine weitere kondensations- oder additionsfähige Gruppe enthalten, gewonnen werden. Weiterhin ist es auch möglich, die Polyamidimide aus Diisocyanaten oder Diaminen und Dicarbonsäuren herzustellen, wenn eine der Komponenten bereits die Imidgruppe enthält. So kann insbesondere zuerst ein Tricarbonsäureanhydrid mit einem diprimären Diamin zu der entsprechenden Diimidocarbonsäure umgesetzt werden, die dann mit einem Diisocyanat zu dem Polyamidimid reagiert.
Für die Herstellung der Polyamidimide werden bevorzugt Tricarbonsäuren bzw. ihre Anhydride eingesetzt, bei denen 2 Carboxylgruppen in vicinaler Stellung stehen. Bevorzugt sind die entsprechenden aromatischen Tricarbonsäureanhydride, wie z.B. Trimellithsäureanhydrid, Naphthalintricarbonsäureanhydri-de, Bisphenyltricarbonsäureanhydride sowie weitere Tricarbonsäuren mit 2 Benzolkernen im Molekül und 2 vicinalen Carboxylgruppen, wie die in DE-OS 19 56 512 aufgeführten Beispiele. Ganz besonders bevorzugt wird Trimellithsäureanhydrid eingesetzt. Als Aminkomponente können die bei den Polyamido- carbonsäuren bereits beschriebenen diprimären Diamine eingesetzt werden. Weiterhin können auch aromatische Diamine eingesetzt werden, die einen Thiadiazolring enthalten, wie z.B. 2,5-Bis-(4- aminophenyl)-1 ,3,4-thiadiazol, 2,5-Bis-(3-aminophenyl)-3,3,4-thiadiazol, 2-(4-aminoρhenyl)-5-(3-aminophenyl)-1 ,3,4-thiadiazol sowie Gemische der verschiedenen Isomeren.
Geeignete Diisocyanate für die Herstellung der Polyamidimide sind aliphatische Diisocyanate, wie z.B. Tetramethylen-, Hexamethylen-, Heptamethylen- und Trimethylhexamethylendiisocyanate; cycloaliphatische Diisocyanate, wie z.B. Isophorondiisocyanat, ω,ω'- Diisocyanat-1 ,4-dimethylcyclohexan, Cyclohexan-1 ,3-, Cyclohexan-1 ,4-, 1-Methylcyclohexan-2,4- und Dicyclohexylmethan-4,4'-diisocyanat; aromatische Diisocyanate, wie z.B. Phenylen-, Toluylen-, Naphthylen- und Xylylendiisocyanate sowie substituierte aromatische Systeme, wie z.B. Diphenylether-, Diphenylsulfid-, Diphenylsulfon- und Diphenylmethandiisocyanate; gemischt aromatisch-aliphatische und aromatisch-hydroaromatische Diisocyanate, wie z.B. 4-
Phenylisocyanatmethylisocyanat, Tetrahydronaphthylen-1 ,5-, Hexahydrobenzidin-4,4'-diisocyanat. Vorzugsweise werden 4,4'- Diphenylmethandiisocyanat, 2,4- und 2,6-Toluylendiisocyanat sowie Hexamethylendiisocyanat eingesetzt.
Als Polyamide eignen sich diejenigen Polyamide, die durch Polykondensation von Dicarbonsäuren oder deren Derivaten mit Diaminen oder von Aminocarbonsäuren und ihren Derivaten, wie Lactamen, erhalten worden sind.
Beispielhaft seien folgende Polyamide genannt: Dimethylenbemsteinsäureamid, Pentamethylenpimelinsäureamid, Undecanmethylentridecandicarbonsäureamid, Hexamethylenadipinsäureamid, Polycapronsäureamid. Besonders bevorzugt sind Hexamethylenadipinsäureamid und Polycapronsäureamid.
Als Vernetzungskatalysatoren bei der Aushärtung der Polyamidimide können in den Drahtlacken lösliche Schwermetallsalze, wie z.B. Zinkoktoat, Cadmiumoktoat, Tetraisopropyltitanat oder Tetrabutyltitanat in einer Menge von bis zu 3 Gew.-%, bezogen auf das Bindemittel, eingesetzt werden.
Erfindungsgemäß setzt sich das interne Gleitmittel vorzugsweise aus 0,1 bis 4,5 Gew.-% Polyethylenwachs und 0,1 bis 2,0 Gew.-% Netzmittel . Ganz besonders bevorzugt sind 1 ,0 bis 2,2 Gew.-% Polyethylenwachs und 0,2 bis 1,2 Gew.-% Netzmittel. Die angegebenen Mengen sind jeweils auf den Bindemittelanteil im Drahtlack bezogen .
Die erfindungsgemäß einsetzbaren Polyethylenwachse sind im Handel unter der Bezeichnung Luwax® erhältlich. Diese Polyethylenwachse zeichnen sich durch ein enge Molmassenverteilung aus. Darüber hinaus lassen sich eine hohe Härte und eine hohe Kristallinität gezielt einstellen.
Wird eine Polyethylenwachs-Dispersion, z. B. Luwax® in Xylol zu einer N- methylpyrrolidonhaltige Lösung der oben beschriebenen Bindemittel gegossen, findet eine Phasentrennung statt. Wird dagegen Netzmittel zugegeben, so läßt sich die Phasentrennung unterschiedlich stark unterdrücken.
Erfindungsgemäß werden demgemäß der Drahtlackformulierung Netzmittel zugesetzt. Vorteilhafter Weise kommen hierfür insbesondere Fettalkoholethoxylate zum Einsatz. Emulan® AF, ein Produkt der BASF AG, ist besonders gut geeignet, die beschriebenen Polyethylenwachse in einem Drahtlack zu stabilisieren. Zu den ausgeprüften und für gut befundenen Netzmitteln zählen auch die BASF Produkte Emulan® EL, Emulan® PO und Pluronic® 8100.
Die vorliegende Erfindung betrifft ferner ein Verfahren zur Herstellung der beschriebenen Drahtlackformulierung. Hierbei wird zunächst ein Polyethylenwachs, vorzugsweise mit einer Molekularmasse von 3000 bis 6000 [g/mol] mit Lösemittel versetzt. Vorzugsweise werden 5 bis 25 Gew.% Lösemittel bezogen auf das Polyethylenwachs zugegeben. Besonders bevorzugt ist ein Anteil an Lösemittel von 8 bis 11 Gew.%. Ganz besonders bevorzugt sind 10 Gew.%. Als Lösemittel können insbesondere aromatische Fraktionen zum Einsatz kommen. Bevorzugt sind vor allem Xylol und Toluol .
In einem weiteren Schritt werden Polyethylenwachs und Lösemittel erwärmt, vorzugsweise auf 70 bis 100 °C. Ganz besonders bevorzugt ist eine Temperatur von ca. 80°C. Nachdem das Polyethylenwachs vollständig gelöst ist, wird wieder auf Raumtemperatur abgekühlt.
Anschließend wird ein Netzmittel, vorzugsweise Fettalkoholethoxylat zugegeben.
Die Mengenverhältnisse werden so gewählt, daß vorzugsweise 0, 1 bis 4,5 Gew.% Polyethylenwachs und 0,1 bis 2,0 Gew.-% Netzmittel , jeweils bezogen auf den Bindemittelanteil im Drahtlack, eingesetzt werden. Ganz besonders bevorzugt sind 1 ,0 bis 2,2 Gew.-% Polyethylenwachs und 0,2 bis 1 ,2 Gew.-% Netzmittel.
Schließlich wird ein Drahtlack enthaltend an sich bekannte Komponenten mit der so erhaltenen Dispersion versetzt. Hier kommen insbesondere Drahtlacke in Betracht, die als Bindemittel oben beschriebene Polyesterimide oder Polyesteramidimide enthalten.
Die so hergestellten erfindungsgemäßen Drahtlacke finden insbesondere Verwendung bei der Beschichtung von elektrischen Leitern.
Im folgenden wird die Erfindung anhand von Beispielen näher beschrieben:
Beispiele
Beispiel 1 : Herstellung eines Polvesterimid-Drahtlackes
Durch Reaktion von 3.9 Teilen Ethylenglykol, 8.7 Teilen Dimethyl- terephthalat, 10.2 Teilen Tris-(2-hydroxyethyl)-isocyanurat, 11.5 Teilen Trimellithsäureanhydrid und 5.9 Teilen 4,4'-Diaminodiphenylmethan wird in Gegenwart von 0.04 Teilen Tetra-n-butyltitanat ein Polyesterimid hergestellt. Dieses Polyesterimid wird in 56 Teilen einer Mischung aus Kresol/Solventnaphtha® im Verhältnis 2:1 gelöst und mit 0.7 % auf die Gesamtrezeptur, eines handelsüblichen Titankatalysators versetzt. Der so erhaltene Drahtlack hat bei einer Viskosität von 800 mPas (23°C) einen Festkörpergehalt von 39 % (1g/1h/180°C).
Beispiel 2: Herstellung eines Polvamidimid-Drahtlack
Ein Polyamidimid wird nach der in der DE-AS 12 66 427 beschriebenen Methode aus 38.5 Teilen Trimellithsäure und 60.0 teilen Diphe- nylmethandiisocyanat hergestellt. Der Drahtlack ist eine 25%ige Lösung dieses Polyamidimids in einer Mischung aus 65 Teilen N-Methylpyrrolidon und 35 Teilen Xylol. Dieser Drahtlack weist bei 23°C eine Viskosität von 230 mPas auf.
Beispiel 3: Herstellung einer Luwax® AH6 Dispersion in Xylol
900 g Xylol und 100 g Luwax® AH6 werden auf 80°C erwärmt. Nachdem das Wachs in Lösung gegangen ist, wird abgekühlt. Zur erkalteten Dispersion werden 20 g Emulan® AF zugegeben. Beispiel 4: Herstellung einer Luwax® A Dispersion in Xylol
900 g Xylol und 100 g Luwax® A werden auf 80°C erwärmt. Nachdem das Wachs in Lösung gegangen ist, wird abgekühlt. Zur erkalteten Dispersion werden 20 g Emulan AF zugegeben.
Beispiel 5: Herstellung eines Polvesterimid-Drahtlackes mit internem Gleitmittel
1000g Drahtlack aus Beispiel 1 werden mit 50 g Dispersion aus Beispiel 3 versetzt. Der so hergestellte Lack wird lackiert.
Lackierbedingungen - Einschichtlackierung
Ofen: MAG AW/1A
Temperatur: 520°C
Auftragssystem: Düsen Drahtdurchmesser: 0.71 mm Abzugsgeschwindigkeit: 30 m/min Zahl der Durchzüge: 10
Zunahmegrad: 2L
Beispiel 6: Herstelluno eines Polvamidimid-Drahtlackes mit internem Gleitmittel
1000g Drahtlack aus Beispiel 2 werden mit 50 g Dispersion aus Beispiel 4 versetzt. Der so hergestellte Lack wird als Decklack über einen handelsüblichen THEIC-Polyester-Grundlack lackiert.
Lackierbedingungen - Zweischichtlackierung Ofen: MAG AW/1A
Temperatur: 520°C
Auftragssystem: Düsen
Drahtdurchmesser: 0.71 mm
Abzugsgeschwindigkeit: 30 m/min
Zahl der Durchzüge:
Grundlack 8
Decklack 2
Zunahmegrad: 2L
Mit den Drähten aus Beispiel 5 und 6 wurde jeweils wie folgt verfahren: Aus einem Drahtstück von ca. 750 mm Längen wird, wie in IEC 851-5/4.3 beschrieben ein Twist hergestellt. Aus dem Twist werden 240 mm herausgeschnitten. Dieses Teilstück hat 10 Windungen. Die entgegengesetzten Enden der Drähte aus dem Twist werden in eine Zerreißmaschine Lloyd M30K eingespannt. Es wird die Kraft in Newton gemessen um den Twist mit einer Geschwindigkeit von 200 m/min auseinander zu ziehen.
Für jeden Lack wurden fünf Twiste hergestellt und ausgeprüft. Gleichzeitig wurden auch fünf Twiste eines Drahtes geprüft der mit einem konventionellen paraffinischen Gleitmittel beschichtet war.
Für einen Standarddraht wurde eine mittlere Kraft von 2.5 Newton gemessen. Für den Draht aus Beispiel 5 wurden 1.5 Newton und für den Draht aus Beispiel 6 wurden 1.9 Newton gefunden.

Claims

Patentansprüche
1. Drahtlackformulierung enthaltend an sich bekannte Komponenten und wenigstens ein internes Gleitmittel, dadurch gekennzeichnet, daß das Gleitmittel ein
Polyethylenwachs, vorzugsweise mit einer Molekularmasse von 3000 bis 6000 [g/mol], und ein Netzmittel, vorzugsweise Fettalkoholethoxylat, enthält.
2. Drahtlackformulierung nach Anspruch 1 , dadurch gekennzeichnet, daß das Gleitmittel aus 0,1 bis 4,5, vorzugsweise 1,0 bis 2,2 Gew.-% Polyethylenwachs und 0,1 bis 2,0, vorzugsweise 0,2 bis 1 ,2 Gew.-% Netzmittel besteht, wobei die Gew.-% auf den Bindemittelanteil im Drahtlack bezogen sind.
3. Drahtlackformulierung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß sie als Bindemittel Polyesterimid oder Polyesteramidimid enthält.
4. Verfahren zur Herstellung einer Drahtlackformulierung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß a) ein Polyethylenwachs, vorzugsweise mit einer Molekularmasse von 3000 bis 6000 [g/mol], mit einem Lösemittel, vorzugsweise in einer Menge von 5 bis 25 Gew.% bezogen auf das Polyethylenwachs, versetzt , b) erwärmt, vorzugsweise auf 70 bis 100 ° C, c) nachdem das Polyethylenwachs vollständig gelöst ist, abgekühlt, d) ein Netzmittel, vorzugsweise Fettalkoholethoxyiat, zugesetzt und e) der Drahtlack enthaltend an sich bekannte Komponenten mit der so erhaltenen Dispersion versetzt wird.
5. Verfahren nach Anspruch 4 dadurch gekennzeichnet, daß der Anteil der dem Polyethylenwachs zugesetzten Lösemittel 8 bis 11, vorzugsweise 10 Gew.% beträgt.
6. Verfahren nach einem der Ansprüche 4 oder 5 dadurch gekennzeichnet, daß als Lösemittel Xylol oder Toluol eingesetzt werden.
7. Verfahren nach einem der Ansprüche 4 bis 6 dadurch gekennzeichnet, daß in Schritt b) auf ca.80 °C erwärmt wird.
8. Verfahren nach einem der Ansprüche 4 bis 7 dadurch gekennzeichnet, daß ein Gleitmittel bestehend aus 0,1 bis 4,5, vorzugsweise 1 ,0 bis 2,2 Gew.-% Polyethylenwachs und 0,1 bis 2,0, vorzugsweise 0,2 bis 1,2 Gew.-% Netzmittel, jeweils bezogen auf den Bindemittelanteil im Drahtlack, eingesetzt wird.
9. Verfahren nach einem der Ansprüche 4 bis 8, dadurch gekennzeichnet, daß ein Drahtlack enthaltend als Bindemittel Polyesterimid oder Polyesteramidimid eingesetzt wird.
10. Verwendung des Drahtlackes nach Anspruch 6 oder 7 zur Beschichtung von elektrischen Leitern.
EP96914118A 1995-04-26 1996-04-25 Drahtlackformulierung mit internem gleitmittel Expired - Lifetime EP0823120B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19515263A DE19515263A1 (de) 1995-04-26 1995-04-26 Drahtlackformulierung mit internem Gleitmittel
PCT/EP1996/001723 WO1996034399A1 (de) 1995-04-26 1996-04-25 Drahtlackformulierung mit internem gleitmittel
DE19515263 1998-04-04

Publications (2)

Publication Number Publication Date
EP0823120A1 true EP0823120A1 (de) 1998-02-11
EP0823120B1 EP0823120B1 (de) 2001-08-08

Family

ID=7760366

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96914118A Expired - Lifetime EP0823120B1 (de) 1995-04-26 1996-04-25 Drahtlackformulierung mit internem gleitmittel

Country Status (10)

Country Link
US (1) US6022918A (de)
EP (1) EP0823120B1 (de)
JP (1) JPH11504156A (de)
KR (1) KR100382621B1 (de)
AT (1) ATE204093T1 (de)
BR (1) BR9608294A (de)
DE (2) DE19515263A1 (de)
ES (1) ES2163626T3 (de)
TW (1) TW315387B (de)
WO (1) WO1996034399A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012020067A1 (de) 2010-08-10 2012-02-16 Schwering & Hasse Elektrodraht Gmbh Elektroisolierlacke aus modifizierten polymeren und daraus hergestellte elektrische leiter mit verbesserter gleitfähigkeit
DE102010039169A1 (de) 2010-08-10 2012-02-16 Universität Paderborn Selbststrukturierende Oberflächen durch PDMS-Phasentrennungen in harten Polymerbeschichtungen
EP4307322A1 (de) * 2022-07-13 2024-01-17 Siemens Aktiengesellschaft Lackisolierter runddraht, verfahren zur herstellung und verwendung dazu

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19648830A1 (de) * 1996-11-26 1998-05-28 Beck & Co Ag Dr Verfahren zur Herstellung carboxyl- und hydroxylgruppenhaltiger Polyesterimide und deren Verwendung in Drahtlacken
US6392000B1 (en) 2000-10-26 2002-05-21 E. I. Du Pont De Nemours And Company Binder for a coating composition for electrical conductors
US7099627B2 (en) * 2003-06-11 2006-08-29 Acco Brands Usa Llc Systems and methods for a wireless network connection point locator
US7396395B1 (en) * 2007-05-08 2008-07-08 Everest Textile Co., Ltd. Composition of a water-repellent agent
US10406791B2 (en) 2011-05-12 2019-09-10 Elantas Pdg, Inc. Composite insulating film
US10253211B2 (en) 2011-05-12 2019-04-09 Elantas Pdg, Inc. Composite insulating film

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4450258A (en) * 1975-01-02 1984-05-22 General Electric Company Coating compositions
US4146499A (en) * 1976-09-18 1979-03-27 Rosano Henri L Method for preparing microemulsions
JPS5826409A (ja) * 1981-08-07 1983-02-16 住友電気工業株式会社 絶縁電線
US4390590A (en) * 1981-10-19 1983-06-28 Essex Group, Inc. Power insertable polyamide-imide coated magnet wire
US4605917A (en) * 1982-09-14 1986-08-12 Nec Corporation Coil wire
DE3635141C1 (de) * 1986-10-15 1988-03-03 Pelikan Ag Thermocarbonband mit einer kunststoffgebundenen Aufschmelzfarbe sowie ein Verfahren zur Herstellung dieses Bandes
DE3765390D1 (de) * 1986-11-11 1990-11-08 Sumitomo Electric Industries Wickeldraht und diesen verwendendes elektromagnetisches relais.
JPH05217427A (ja) * 1992-02-04 1993-08-27 Furukawa Electric Co Ltd:The 自己潤滑性絶縁電線
JPH05247374A (ja) * 1992-03-03 1993-09-24 Fujikura Ltd 潤滑塗料およびこれを用いた自己潤滑絶縁電線
DE4330342A1 (de) * 1993-09-08 1995-03-09 Basf Ag Stabile wäßrige Polyolefinwachsdispersionen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9634399A1 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012020067A1 (de) 2010-08-10 2012-02-16 Schwering & Hasse Elektrodraht Gmbh Elektroisolierlacke aus modifizierten polymeren und daraus hergestellte elektrische leiter mit verbesserter gleitfähigkeit
DE102010039169A1 (de) 2010-08-10 2012-02-16 Universität Paderborn Selbststrukturierende Oberflächen durch PDMS-Phasentrennungen in harten Polymerbeschichtungen
WO2012020068A2 (de) 2010-08-10 2012-02-16 Universität Paderborn Selbststrukturierende oberflächen durch pdms-phasentrennungen in harten polymerbeschichtungen
DE102010039168A1 (de) 2010-08-10 2012-02-16 Schwering & Hasse Elektrodraht Gmbh Elektroisolierlacke aus modifizierten Polymeren und daraus hergestellte elektrische Leiter mit verbesserter Gleitfähigkeit
EP4307322A1 (de) * 2022-07-13 2024-01-17 Siemens Aktiengesellschaft Lackisolierter runddraht, verfahren zur herstellung und verwendung dazu
WO2024012906A1 (de) * 2022-07-13 2024-01-18 Siemens Aktiengesellschaft Lackisolierter runddraht, verfahren zur herstellung und verwendung dazu

Also Published As

Publication number Publication date
DE59607451D1 (de) 2001-09-13
EP0823120B1 (de) 2001-08-08
KR100382621B1 (ko) 2005-05-24
ATE204093T1 (de) 2001-08-15
ES2163626T3 (es) 2002-02-01
US6022918A (en) 2000-02-08
WO1996034399A1 (de) 1996-10-31
TW315387B (de) 1997-09-11
DE19515263A1 (de) 1996-10-31
KR19990008063A (ko) 1999-01-25
BR9608294A (pt) 1999-05-11
JPH11504156A (ja) 1999-04-06

Similar Documents

Publication Publication Date Title
WO2015144663A1 (de) Neues lösemittel für polyamidimide und polyimide
DE1925875A1 (de) Loesliche polymere UEberzugsverbindungen
EP1311588B1 (de) Polyamidimidharzlösung und ihre verwendung zur herstellung von drahtlacken
EP2398837B1 (de) Umweltfreundlicher lötbarer drahtlack
DE102010039168A1 (de) Elektroisolierlacke aus modifizierten Polymeren und daraus hergestellte elektrische Leiter mit verbesserter Gleitfähigkeit
EP0813580B1 (de) Drahtbeschichtungsmittel sowie verfahren zu dessen herstellung
EP0918829B1 (de) Drahtlacke, enthaltend polyesterimide und/oder polyamidimide mit polyoxyalkylendiaminen als molekulare bausteine
EP0823120B1 (de) Drahtlackformulierung mit internem gleitmittel
DE102010039169A1 (de) Selbststrukturierende Oberflächen durch PDMS-Phasentrennungen in harten Polymerbeschichtungen
EP0502858B1 (de) Drahtlacke sowie verfahren zum kontinuierlichen beschichten von drähten
DE1495100B2 (de) Verfahren zur herstellung von polyesterimiden
EP0384505B1 (de) Verfahren zum kontinuierlichen Beschichten von Drähten sowie die Verwendung der so hergestellten Drähte
EP0941273B1 (de) Verfahren zur herstellung carboxyl- und hydroxylgruppenhaltiger polyesterimide und deren verwendung in drahtlacken
DE2032075C3 (de) Mehrschichtisolierstoffe
DE1924859A1 (de) Vernetztes aromatisches Amid-Imid-Polymeres,insbesondere zur Verwendung fuer hochtemperaturbestaendige Drahtlacke
DE60125684T2 (de) Bindemittel für eine Beschichtungszusammensetzung für elektrische Leiter
DE3121306A1 (de) Verfahren zur herstellung waessriger hitzehaertbarer elektroisolierlacke und deren verwendung
DE102008004926A1 (de) Hochtemperaturbeständiger Elektroisolierlack
DE2822610A1 (de) Lack auf polyester- oder polyesterimidharzbasis

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971105

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE ES FR GB IT LI NL PT SE

17Q First examination report despatched

Effective date: 20000127

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB IT LI NL PT SE

REF Corresponds to:

Ref document number: 204093

Country of ref document: AT

Date of ref document: 20010815

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59607451

Country of ref document: DE

Date of ref document: 20010913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011108

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SCHENECTADY INTERNATIONAL, INC.

ET Fr: translation filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2163626

Country of ref document: ES

Kind code of ref document: T3

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: SCHENECTADY INTERNATIONAL, INC.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020712

NLS Nl: assignments of ep-patents

Owner name: SCHENECTADY INTERNATIONAL, INC.

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: BASF COATINGS AKTIENGESELLSCHAFT;BASF PROJEKTENTWI

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: ALTANA ELECTRICAL INSULATION GMBH

Free format text: DR. BECK & CO. AKTIENGESELLSCHAFT#GROSSMANNSTRASSE 105#20539 HAMBURG-ROTHENBURGSORT (DE) -TRANSFER TO- ALTANA ELECTRICAL INSULATION GMBH#ABELSTRASSE 45#46483 WESEL (DE)

Ref country code: CH

Ref legal event code: NV

Representative=s name: R. A. EGLI & CO. PATENTANWAELTE

NLS Nl: assignments of ep-patents

Owner name: ALTANA ELECTRICAL INSULATION GMBH

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20110502

Year of fee payment: 16

Ref country code: AT

Payment date: 20110428

Year of fee payment: 16

Ref country code: GB

Payment date: 20110428

Year of fee payment: 16

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20121101

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 204093

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120425

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120425

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121101

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20150427

Year of fee payment: 20

Ref country code: DE

Payment date: 20150327

Year of fee payment: 20

Ref country code: ES

Payment date: 20150522

Year of fee payment: 20

Ref country code: SE

Payment date: 20150429

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150422

Year of fee payment: 20

Ref country code: FR

Payment date: 20150430

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59607451

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20160426