EP0819837B1 - Kühlkreislauf einer Brennkraftmaschine - Google Patents

Kühlkreislauf einer Brennkraftmaschine Download PDF

Info

Publication number
EP0819837B1
EP0819837B1 EP97109470A EP97109470A EP0819837B1 EP 0819837 B1 EP0819837 B1 EP 0819837B1 EP 97109470 A EP97109470 A EP 97109470A EP 97109470 A EP97109470 A EP 97109470A EP 0819837 B1 EP0819837 B1 EP 0819837B1
Authority
EP
European Patent Office
Prior art keywords
combustion engine
cooling
cylinder
slot
internal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97109470A
Other languages
English (en)
French (fr)
Other versions
EP0819837A1 (de
Inventor
Antonius Rehr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dr Ing HCF Porsche AG
Original Assignee
Dr Ing HCF Porsche AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dr Ing HCF Porsche AG filed Critical Dr Ing HCF Porsche AG
Publication of EP0819837A1 publication Critical patent/EP0819837A1/de
Application granted granted Critical
Publication of EP0819837B1 publication Critical patent/EP0819837B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/02Cylinders; Cylinder heads  having cooling means
    • F02F1/10Cylinders; Cylinder heads  having cooling means for liquid cooling
    • F02F1/14Cylinders with means for directing, guiding or distributing liquid stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/143Controlling of coolant flow the coolant being liquid using restrictions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/027Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B2075/1804Number of cylinders
    • F02B2075/1824Number of cylinders six
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/24Multi-cylinder engines with cylinders arranged oppositely relative to main shaft and of "flat" type
    • F02B75/243Multi-cylinder engines with cylinders arranged oppositely relative to main shaft and of "flat" type with only one crankshaft of the "boxer" type, e.g. all connecting rods attached to separate crankshaft bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/02Cylinders; Cylinder heads  having cooling means
    • F02F1/10Cylinders; Cylinder heads  having cooling means for liquid cooling
    • F02F2001/104Cylinders; Cylinder heads  having cooling means for liquid cooling using an open deck, i.e. the water jacket is open at the block top face

Definitions

  • the invention relates to a cooling circuit of an internal combustion engine according to the preamble of claim 1 .
  • a generic internal combustion engine is described in DE 43 22 030 A1, in the cooling circuit of the cooling water jacket of a cylinder block and the Cooling water channels of a cylinder head via cooling water channels with a Cooling water pump are connected.
  • the cooling water channels are inside the Cylinder block of the internal combustion engine arranged and as a feed or Return channels formed.
  • the cooling water channels are partly as Bores formed in the cylinder block, which in a main channel Cooling water flow open. These holes serve to supply the Cooling water channels in the cylinder head.
  • Problematic with such a cooling circuit is the connection of the cooling water jacket in the cylinder block to the holes Main channels.
  • a cylinder block is also known, in which two Rows of cylinders are arranged V-shaped to each other.
  • the cooling water flow to the Cooling water jackets within the cylinder blocks take place via a longitudinal channel, which in the Gusset of the V-shaped cylinder is integrated.
  • the connection of the The longitudinal channel to the cylinder blocks is made directly via relatively wide, cast-in Indentations.
  • the invention is based on the object, a generic To improve the cooling circuit of an internal combustion engine so that the Connection between the cooling water jacket within the cylinder block and the Cooling water guides can be manufactured easily and reliably and for one Series production is suitable.
  • fluidically relevant should Areas (throttling points, transitions) with a high degree of accuracy with regard to their Location and assignment to individual sections of the cooling circuit can be produced.
  • the simplest possible adjustment of the flow rates within of the cooling circuit may be possible.
  • a high degree of accuracy in the coordination of the cooling water flow is advantageous Way reached when the depth of the slot to connect the cooling water jacket and the cooling water supply is larger than its width.
  • the influence of the post-processing of the cast blank on the Cross-sectional area of the slots is minimized when the width B of the slots is on Dimension is reduced that (just) can still be produced reliably.
  • the depth T of the respective slot is therefore relative large, so that the influence of the removal rate in the post-processing of the Flange area is minimized.
  • a uniform flow around the cylinder is particularly advantageous achieved when the slot connected to the cooling water jacket is approximately radial to the adjacent cylinder takes place.
  • the flow through the cooling water jacket is also clear once again more even if there is one inlet and one outlet slot per cylinder are provided.
  • Crossflow cooling can thus be carried out in a particularly simple manner be formed within the cylinder block. This cross flow cooling becomes very even if the input and output slots are diametrical are arranged.
  • Such a cooling water guide with cast slots for connecting Cooling water jacket and cooling water channels within the cylinder block are suitable in a particularly advantageous manner for cylinder blocks that are constructed in an open-deck design are.
  • the internal combustion engine shown in this embodiment has two Rows of cylinders at a V-angle of 180 degrees and have one vertically along one Partition level E - E separate crankcase with two halves 1, 2, which Cylinder blocks 3, 4 include.
  • a longitudinal axis A runs in this division plane E-E, which is also the axis of rotation of a crankshaft, not shown. This is over Connecting rod 5 connected to piston 6, which is in a horizontal plane H - H move.
  • Each cylinder bank is assigned a cylinder head 7, which in one Partition plane T-T on a crankcase half 1, 2 or on the respective Cylinder block 3.4 is placed.
  • the cylinder heads 7 have not shown Gas exchange valves provided inlet and outlet channels 8 and 9.
  • the Cylinder blocks of each row of cylinders have cooling water jackets 10 and the cylinder heads 7 cooling water channels 11.
  • a cooling water pump not shown, arranged. This promotes over two outflow openings 14 cooling water to the cylinder rows 1, 2.
  • One of these Outflow openings 14 are used as inlet openings 15 in a main feed channel 16 trained, which is assigned to the cylinder bank 1.
  • the other outflow opening is in a downward discharge flange 17 is formed.
  • a second Main feed channel 20 is the one that is spaced apart from the cooling water pump Cylinder row 2 assigned and by means of a connecting channel 21 to the Outflow flange 17 connected.
  • the two main feed channels run adjacent to the respective parting plane T - T below and parallel to the longitudinal axis A in a lower wall 18, 19 of the respective cylinder block 3, 4.
  • a section 22 of the channel 21 is designed as a heat exchanger tube 23 and does not extend with it cooling fins shown on its outer jacket provided in an oil pan 24 of the Internal combustion engine.
  • the heat exchanger tube 23 bridges the division plane E - E and is connected to a further, formed in the lower wall 19 section 25 of the Connection channel 21 connected.
  • the main feed and return channels 16, 20 and 28, 29, the transverse channel 31 and the section 25 of the connecting channel 21 are in the walls 18, 19, 26, 27 poured.
  • the further construction of the cooling circuit is only shown here using the example the cylinder row 2 shown on the right in FIG. 1 is explained.
  • the one in the left Part of the cooling circuit formed in cylinder bank 1 is designed in an analogous manner.
  • In the main feed channel 20 opens one of the each cylinder of the cylinder bank Flange surface 33 (parting plane T-T) outgoing channel 34a to 34c.
  • These channels 34a to 34c are cast technology and cylindrical in this embodiment and serve to connect the main feed channel 20 to the cooling water channels 11 of the cylinder head 7.
  • the cooling water channels 11 of the cylinder head have each Cylinder has a cast-in inlet section 35, which in the region of the flange surface 33 via a cylinder head gasket, not shown, with the respective assigned channel 34a to 34c is connected.
  • Return sections 37 in the cylinder head 7 connected to the cooling water channels 11 are.
  • the channels 34a to 34c and 36a to 36c run at a distance from the Cooling water jacket 10, i.e. they have a larger radial distance from the Cylinder axis 38 as the adjacent section of the cooling water jacket 10.
  • Der Cooling water jacket 10 is in each cylinder via a slot 39a to 39c with the associated channel 34a to 34c connected.
  • the Cooling water jacket 10 On the opposite side is the Cooling water jacket 10 with a respective slot 40a to 40c each connected to one of the channels 36a to 36c.
  • the slots 39a to 39c go from of the flange surface 33 and extend in the direction of the cylinder axis 38 and are like the channels 34a to 34c and 36a to 36c in the same casting process manufactured.
  • the cooling water jacket 10 is in the area through the slots 39a to 39c each cylinder via the channels 34a to 34c with the main supply channel 20 of the Cooling circuit connected.
  • the Cooling water jacket 10 per cylinder via the slots 40a to 40c and the channels 36a to 36c connected to the main return duct 29. In operation of the internal combustion engine A cross flow can thus occur in the area of the cylinder block.
  • the entrance areas are the Slots 39a to 39c (on their side facing the respective channel 34a to 34c) rounded, i.e. provided with inlet radii.
  • the slots 39a to 39c on the input side radially to the cylinder axis.
  • the outlet slots 40a to 40c arranged diametrically to it and also run radially to Cylinder axis.
  • the inlet and outlet slots on each cylinder are for Achieving a uniform cross-flow cooling arranged so that they each in the middle of the cylinder (based on the length of the cylinder block) opposite, i.e. their connecting line, not shown, is at right angles for the longitudinal extension of the cylinder block.
  • the cooling water pump delivers along the directional arrows drawn in Fig. 1 a cooling water flow over the Inlet opening 15 or the connecting duct 21 into the main feed ducts 16 and 20, of which the water flow from the end face 12 along the axis A on the is divided into two rows of cylinders.
  • the channels 34a to 34c on the input side and the outlet-side channels 36a to 36c become the cooling water channels 11 in FIG Flows through cylinder heads 7.
  • the cooling water flow can be coordinated. It is especially the distance of the respective cylinder from the cooling water pump consider.
  • the cooling water flow is sensibly coordinated either uniformly on the upstream or downstream side.
  • each channel determines the proportion of each cylinder assigned partial flow.
  • An even distribution of the partial flows per cylinder can be adapted to the respective pressure losses
  • Cross-sectional dimensions of the channels take place. This is advantageously carried out Coordination of the partial flows per cylinder on the input side, since the tolerance-related deviations of the individual pressure losses at this point are relatively small.
  • the dimensions of the drain-side channels become Reduction of throttling losses usefully kept larger.
  • each partial stream of the water cycle is switched on branched off further partial flow, which is used to supply the respective section of the Cooling water jacket 10 is used.
  • the flow cross section of the respective slot thus determines the cylinder-related distribution of the cooling water partial flow to the Cylinder head on the one hand and the cylinder block on the other hand, during the Flow cross section of the respective channel the cylinder-related total partial flow (Cylinder head + cylinder block) determined.
  • the A defined division of the flow cross-section of the respective slots takes place cylinder-related partial flow on the cylinder head and the cylinder block. This too The division takes place in a sensible manner by coordinating the flow cross sections the input side, i.e. through coordinated dimensioning of the flow cross-sections of slots 39a to 39c.
  • the flow cross-sections of the slots on the outlet side 40a to 40c are correspondingly larger in order to make one as possible to enable throttle-free return.
  • the slots are like this formed that its depth T is greater than its width B. The influence of Removal rate when machining the flange surface 33 can thus be kept low become.

Description

Die Erfindung betrifft einen Kühlkreislauf einer Brennkraftmaschine nach der Gattung des Patentanspruches 1.
In der DE 43 22 030 A1 ist eine gattungsgemäße Brennkraftmaschine beschrieben, in deren Kühlkreislauf der Kühlwassermantel eines Zylinderblockes und die Kühlwasserkanäle eines Zylinderkopfes über Kühlwasserführungen mit einer Kühlwasserpumpe verbunden sind. Die Kühlwasserführungen sind innerhalb des Zylinderblockes der Brennkraftmaschine angeordnet und als Zuführ- oder Rückführkanäle ausgebildet. Dabei sind die Kühlwasserführungen zum Teil als Bohrungen im Zylinderblock ausgebildet, die in einen Hauptkanal der Kühlwasserführung münden. Diese Bohrungen dienen zur Versorgung der Kühlwasserkanäle im Zylinderkopf. Problematisch bei einem derartigen Kühlkreislauf ist die Anbindung des Kühlwassermantels im Zylinderblock über die Bohrungen an die Hauptkanäle. Da die Hauptkanäle als Teil der Kühlwasserführungen im Zylinderblock integriert und gußtechnisch erstellt sind, ergeben sich hinsichtlich ihrer Lage relativ große Toleranzen, die durch Lageabweichungen zwischen einzelnen Teilen des Gießwerkzeuges während des Gießvorganges verursacht werden. Durch die sich innerhalb einer herstellungsbedingten Toleranzbandbreite einstellenden Lageabweichungen der gegossenen Teile der Kühlwasserführung ist eine genaue Zuordnung der Bohrung zum entsprechenden Mündungsgebiet innerhalb der Kühlwasserführung nicht immer gegeben. Eine ausreichende Prozeßsicherheit für eine Serienfertigung ist dabei nicht immer zu erzielen. Darüber hinaus bedeutet das Herstellen von Bohrungen innerhalb eines gegossenen Zylinderblockes einen zusätzlichen zeit- und kostenintensiven Aufwand.
Aus der US-A-4,530,315 ist darüber hinaus ein Zylinderblock bekannt, bei dem zwei Zylinderreihen V-förmig zueinander angeordnet sind. Die Kühlwasserführung zu den Kühlwassermänteln innerhalb der Zylinderblöcke erfolgt über einen Längskanal, der im Zwickel der V-förmig angeordneten Zylinder integriert ist. Die Anbindung des Längskanals an die Zylinderblöcke erfolgt direkt über relativ breite, eingegossene Vertiefungen.
Der Erfindung liegt demgegenüber die Aufgabe zugrunde, einen gattungsgemäßen Kühlkreislauf einer Brennkraftmaschine dahingehend zu verbessern, daß die Verbindung zwischen dem Kühlwassermantel innerhalb des Zylinderblockes und der Kühlwasserführungen einfach und prozeßsicher hergestellt werden kann und für eine Serienfertigung geeignet ist. Dabei sollen insbesondere strömungstechnisch relevante Bereiche (Drosselstellen, Übergänge) mit einer hohen Genauigkeit im Hinblick auf ihre Lage und Zuordnung zu einzelnen Abschnitten des Kühlkreislaufes herstellbar sein. Weiterhin soll eine möglichst einfache Abstimmung der Durchflußmengen innerhalb des Kühlkreislaufes möglich sein.
Diese Aufgabe wird erfindungsgemäß mit den kennzeichnenden Merkmalen des Hauptanspruches gelöst. Eine einfach herzustellende und prozeßsichere Anbindung des Kühlwassermantels innerhalb des Zylinderblockes an die als Zuführ- oder Rückführkanäle ausgebildeten Abschnitte der Kühlwasserführungen ergibt sich, wenn diese Verbindung in Form eines von der Flanschfläche ausgehenden in den Zylinderblock eingegossenen Schlitzes besteht. Dieser Schlitz wird aufgrund seiner gießtechnischen Herstellung lagesicher und damit prozeßsicher durch entsprechende Ausbildung des Gießwerkzeuges angeordnet bzw. positioniert. Lageabweichungen der gegossenen Kühlwasserführung bleiben durch die werkzeuggebundene direkte Mitausbildung der Verbindung ohne Einfluß. Darüber hinaus kann durch die gießtechnische Herstellung der Verbindung auf einen zusätzlichen Arbeitsschritt verzichtet werden, der sonst zur Erstellung einer Bohrung notwendig wäre. Zusätzlich kann auf besonders vorteilhafte Weise bei der gießtechnisch erstellten Verbindung zwischen dem Kühlwassermantel und der Kühlwasserführung eine Abstimmung des Kühlwasserflusses durch die angepaßte Geometrie des eingegossenen Schlitzes erfolgen.
Eine hohe Genauigkeit bei der Abstimmung des Kühlwasserflusses wird auf vorteilhafte Weise erreicht, wenn die Tiefe des Schlitzes zur Verbindung des Kühlwassermantels und der Kühlwasserführung größer als dessen Breite ist. Nach der Fertigstellung des Gußrohlings des Zylinderblockes wird in einem nächsten Arbeitsschritt die Flanschfläche durch Abtragen von Material bearbeitet. Aufgrund der herstellungsbedingten Toleranzen sind die Abtragungsdicken an der Flanschfläche von Bauteil zu Bauteil unterschiedlich. Wird nun bei der Erstellung des verbindenden Schlitzes dessen Tiefe größer als dessen Breite gewählt, ist selbst bei unterschiedlichen Abtragungsraten der Einfluß auf die senkrecht zur Flanschfläche stehende Querschnittsfläche des Schlitzes geringer als bei einer relativ breiten Ausbildung des Schlitzes. Der Einfluß der Nachbearbeitung des Gußrohlings auf die Querschnittsfläche der Schlitze wird minimiert, wenn die Breite B der Schlitze auf ein Maß reduziert wird, daß (gerade) noch prozeßsicher herstellbar ist. Um eine definierte Querschnittsfläche zu erzielen, wird daher die Tiefe T des jeweiligen Schlitzes relativ groß, so daß der Einfluß der Abtragungsrate bei der Nachbearbeitung der Flanschfläche minimiert wird.
Die Ausbildung des Kühlkreislaufes und die Herstellung des Zylinderblockes der Brennkraftmaschine werden besonders einfach und kostengünstig, wenn der Kühlwassermantel sowohl eingangs- als auch ausgangsseitig über jeweils mindestens einen Schlitz mit der Kühlwasserführung (Zuführkanal und Rückführkanal) verbunden ist.
Eine gleichmäßige Umströmung des Zylinders wird auf besonders vorteilhafte Weise erzielt, wenn der mit dem Kühlwassermantel verbundene Schlitz etwa radial zu dem angrenzenden Zylinder erfolgt.
Die Durchströmung des Kühlwassermantels wird darüber hinaus noch einmal deutlich gleichmäßiger, wenn je Zylinder ein eingangs- und ein ausgangsseitiger Schlitz vorgesehen sind. Damit kann auf besonders einfache Weise eine Querstromkühlung innerhalb des Zylinderblockes ausgebildet werden. Diese Querstromkühlung wird sehr gleichmäßig, wenn der eingangsseitige und der ausgangsseitige Schlitz diametral angeordnet sind.
Insbesondere bei mehrzylindrigen Brennkraftmaschinen kann auf besonders vorteilhafte Weise eine Abstimmung der Kühlwasserdurchströmung erfolgen, wenn die den Kühlwassermantel und die Kühlwasserführungen verbindenden Schlitze geometrisch abgestimmt werden, so daß ihr Querschnitt und damit insbesondere ihre Tiefe in Abhängigkeit vom Druckgefälle (Entfernung zur Kühlwasserpumpe) bemessen werden. Durch Abstimmung der Geometrie aller Schlitze kann ein gleichmäßiger Kühlwasserstrom bezogen auf jeden einzelnen Zylinder eingestellt wird.
Eine derartige Kühlwasserführung mit eingegossenen Schlitzen zur Verbindung von Kühlwassermantel und Kühlwasserführungen innerhalb des Zylinderblockes eignet sich in besonders vorteilhafter Weise für Zylinderblöcke, die in open-deck Bauweise erstellt sind.
Weitere Vorteile und vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen und der Beschreibung.
Ein Ausführungsbeispiel der Erfindung ist in der nachfolgenden Beschreibung und Zeichnung näher erläutert. Letztere zeigt in
Fig. 1
einen stark vereinfacht dargestellten Querschnitt durch eine Brennkraftmaschine im Bereich einer ihrer Stirnseiten,
Fig. 2
eine Draufsicht auf die dem Zylinderkopf zugewandte Flanschfläche eines Zylinderblockes und
Fig. 3
einen Schnitt entlang der Linie III-III gemäß Fig. 2.
Die in diesem Ausführungsbeispiel dargestellte Brennkraftmaschine hat zwei Zylinderreihen in einem V-Winkel von 180° Grad und weist ein vertikal entlang einer Teilungsebene E - E getrenntes Kurbelgehäuse mit zwei Hälften 1, 2 auf, welche Zylinderblöcke 3, 4 umfassen. In dieser Teilungsbene E - E verläuft eine Längsachse A, die zugleich Rotationsachse einer nicht gezeigten Kurbelwelle ist. Diese ist über Pleuel 5 mit Kolben 6 verbunden, welche sich in einer horizontalen Ebene H - H bewegen. Jeder Zylinderreihe ist ein Zylinderkopf 7 zugeordnet, welcher in einer Trennebene T- T auf eine Kurbelgehäusehälfte 1, 2 bzw. auf den jeweiligen Zylinderblock 3,4 aufgesetzt ist. Die Zylinderköpfe 7 weisen mit nicht dargestellten Gaswechselventilen versehene Einlaß- und Auslaßkanäle 8 und 9 auf. Die Zylinderblöcke jeder Zylinderreihe weisen Kühlwassermäntel 10 und die Zylinderköpfe 7 Kühlwasserkanäle 11 auf.
An einer Stirnseite 12 ist an dem einen Zylinderblock 3 eine Vertiefung 13 zur Aufnahme einer nicht gezeigten Kühlwasserpumpe angeordnet. Diese fördert über zwei Abströmöffnungen 14 Kühlwasser zu den Zylinderreihen 1, 2. Eine dieser Abströmöffnungen 14 ist als Eintrittsöffnung 15 in einen Hauptzuführkanal 16 ausgebildet, der der Zylinderreihe 1 zugeordnet ist. Die andere Abströmöffnung ist in einem abwärts gerichteten Abströmflansch 17 ausgebildet. Ein zweiter Hauptzuführkanal 20 ist der beabstandet zur Kühlwasserpumpe liegenden Zylinderreihe 2 zugeordnet und mittels eines Verbindungskanales 21 an den Abströmflansch 17 angeschlossen. Die beiden Hauptzuführkanäle verlaufen benachbart zur jeweiligen Trennebene T - T unterhalb und parallel zur Längsachse A in einer unteren Wandung 18, 19 des jeweiligen Zylinderblockes 3, 4. Ein Abschnitt 22 des Kanals 21 ist als Wärmetauscherrohr 23 ausgebildet und verläuft mit nicht näher dargestellten Kühlrippen an seinem Außenmantel versehen in einer Ölwanne 24 der Brennkraftmaschine. Das Wärmetauscherrohr 23 überbrückt die Teilungsebene E - E und ist an einen weiteren, in der unteren Wandung 19 ausgebildeten Abschnitt 25 des Verbindungskanales 21 angeschlossen.
Parallel zur Längsachse A verlaufen in oberen Wandungen 26, 27 der Kurbelgehäusehälften 1, 2 bw. der Zylinderblöcke 3, 4 entsprechende Hauptrückführkanäle 28, 29, die - wie nachfolgend beschrieben - mit den Kühlwassermänteln 10 der Zylinderblöcke 3, 4 und den Kühlwasserkanälen 11 der Zylinderköpfe 7 verbunden sind. Im Bereich der Stirnseite 12 ist ein als Querkanal 31 ausgebildeter Sammelkanal in den Wandungen 26, 27 angeordnet, welcher über einen Abströmstutzen 32 mit einem nicht gezeigten Wasser/Luft-Wärmetauscher verbunden ist.
Die Hauptzuführ- und Hauptrückführkanäle 16,20 und 28, 29, der Querkanal 31 und der Abschnitt 25 des Verbindungskanals 21 sind in die Wandungen 18, 19, 26, 27 eingegossen.
Der weitere Aufbau des Kühlkreislaufes wird hier der Einfachheit halber nur am Beispiel der in Fig. 1 rechts dargestellten Zylinderreihe 2 erläutert. Der in der linken Zylinderreihe 1 ausgebildete Teil des Kühlkreislaufes ist in analoger Weise ausgebildet. In den Hauptzuführkanal 20 mündet je Zylinder der Zylinderreihe ein von der Flanschfläche 33 (Trennebene T-T) ausgehender Kanal 34a bis 34c. Diese Kanäle 34a bis 34c sind gießtechnisch und in diesem Ausführungsbeispiel zylindrisch hergestellt und dienen zur Verbindung des Hauptzuführkanals 20 mit den Kühlwasserkanälen 11 des Zylinderkopfes 7. Die Kühlwasserkanäle 11 des Zylinderkopfes haben dazu je Zylinder einen eingegossenen Zulaufabschnitt 35, der im Bereich der Flanschfläche 33 über eine nicht dargestellte Zylinderkopfdichtung mit dem jeweils zugeordneten Kanal 34a bis 34c verbunden ist. In den Hauptrückführkanal 29 münden entsprechend drei von der Flanschfläche 33 ausgehend eingegossene Kanäle 36a bis 36c, die über Rücklaufabschnitte 37 im Zylinderkopf 7 mit den Kühlwasserkanälen 11 verbunden sind. Die Kanäle 34a bis 34c sowie 36a bis 36c verlaufen mit Abstand zum Kühlwassermantel 10, d.h. sie haben einen größeren radialen Abstand von der Zylinderachse 38 als der benachbarte Abschnitt des Kühlwassermantels 10. Der Kühlwassermantel 10 ist je Zylinder über einen Schlitz 39a bis 39c mit dem jeweils zugeordneten Kanal 34a bis 34c verbunden. Auf der gegenüberliegenden Seite ist der Kühlwassermantel 10 über jeweils einen entsprechenden Schlitz 40a bis 40c mit jeweils einem der Kanäle 36a bis 36c verbunden. Die Schlitze 39a bis 39c gehen von der Flanschfläche 33 aus und erstrecken sich in Richtung der Zylinderachse 38 und sind ebenso wie die Kanäle 34a bis 34c bzw. 36a bis 36c im gleichen Gießvorgang hergestellt. Durch die Schlitze 39a bis 39c ist der Kühlwassermantel 10 im Bereich jedes Zylinders über die Kanäle 34a bis 34c mit dem Hauptzuführkanal 20 des Kühlkreislaufes verbunden. Auf der gegenüberliegenden Seite ist der Kühlwassermantel 10 je Zylinder über die Schlitze 40a bis 40c und die Kanäle 36a bis 36c mit dem Hauptrückführkanal 29 verbunden. Im Betrieb der Brennkraftmaschine kann sich somit im Bereich des Zylinderblockes eine Querströmung einstellen.
Zur Vermeidung von Drosselverlusten und Turbulenzen sind die Eingangsbereiche der Schlitze 39a bis 39c (auf ihrer dem jeweiligen Kanal 34a bis 34c zugewandten Seite) abgerundet, d.h. mit Einlaufradien versehen. Um eine gleichmäßige Aufteilung der Zylinderumströmung innerhalb des Kühlwassermantels zu erreichen, verlaufen die eingangsseitigen Schlitze 39a bis 39c radial zur Zylinderachse. Zusätzlich sind zur weiteren Vergleichmäßigung der Zylinderumströmung die ausgangsseitigen Schlitze 40a bis 40c diametral dazu angeordnet und verlaufen ebenfalls radial zur Zylinderachse. Die eingangsseitigen und ausgangsseitigen Schlitze je Zylinder sind zur Erzielung einer gleichmäßigen Querstromkühlung so angeordnet, daß sie sich jeweils in der Zylindermitte (bezogen auf die Längserstreckung des Zylinderblockes) gegenüberliegen, d.h. ihre nicht dargestellte Verbindungslinie verläuft rechtwinkelig zur Längserstreckung des Zylinderblockes.
Im Betrieb der Brennkraftmaschine fördert die nicht dargestellte Kühlwasserpumpe entlang der in Fig. 1 eingezeichneten Richtungspfeile einen Kühlwasserstrom über die Eintrittsöffnung 15 bzw. den Verbindungskanal 21 in die Hauptzuführkanäle 16 und 20, von welchen der Wasserstrom von der Stirnseite 12 aus entlang der Achse A auf die beiden Zylinderreihen aufgeteilt wird. Über die eingangsseitigen Kanäle 34a bis 34c und die ausgangsseitigen Kanäle 36a bis 36c werden die Kühlwasserkanäle 11 der Zylinderköpfe 7 durchströmt. Über zugeordnete Querschnittsbemessungen dieser Kanäle kann eine Abstimmung des Kühlwasserstromes erfolgen. Dabei ist insbesondere der Abstand des jeweiligen Zylinders von der Kühlwasserpumpe zu berücksichtigen. Die Abstimmung des Kühlwasserstromes erfolgt sinnvollerweise entweder einheitlich auf der Zuströmseite oder der Abströmseite. Die Querschnitte jedes einzelnen Kanals bestimmen dabei den Anteil des dem jeweiligen Zylinder zugeordneten Teilstromes. Eine gleichmäßige Aufteilung der Teilströme je Zylinder kann dabei durch an die jeweiligen Druckverluste angepaßten Querschnittsabmessungen der Kanäle erfolgen. Vorteilhafterweise erfolgt die Abstimmung der Teilströme je Zylinder auf der Eingangsseite, da die toleranzbedingten Abweichungen der einzelnen Druckverluste an dieser Stelle noch relativ gering sind. Die Abmessungen der ablaufseitigen Kanäle werden zur Verminderung von Drosselverlusten sinnvollerweise größer gehalten.
Über die Schlitze 39a bis 39c wird von jedem Teilstrom des Wasserkreislaufes ein weiterer Teilstrom abgezweigt, der zur Versorgung des jeweiligen Abschnittes des Kühlwassermantels 10 dient. Der Strömungsquerschnitt des jeweiligen Schlitzes bestimmt damit die zylinderbezogene Aufteilung des Kühlwasserteilstromes auf den Zylinderkopf einerseits und den Zylinderblock andererseits, während der Strömungsquerschnitt des jeweiligen Kanales den zylinderbezogenen Gesamtteilstrom (Zylinderkopf + Zylinderblock) bestimmt. Über entsprechende Abstimmung des Strömungsquerschnittes der jeweiligen Schlitze erfolgt eine definierte Aufteilung des zylinderbezogenen Teilstromes auf den Zylinderkopf und den Zylinderblock. Auch diese Aufteilung erfolgt sinnvoller Weise durch Abstimmung der Strömungsquerschnitte auf der Eingangsseite, d.h. durch abgestimmte Bemessung der Strömungsquerschnitte der Schlitze 39a bis 39c. Die Strömungsquerschnitte der ausgangsseitigen Schlitze 40a bis 40c werden entsprechend größer ausgebildet, um einen möglichst drosselfreien Rücklauf zu ermöglichen.
Um fertigungsbedingte Toleranzen bei der Bemessung der Strömungsquerschnitte der Schlitze 39a bis 39c und 40a bis 40c möglichst gering zu halten, sind die Schlitze so ausgebildet, daß ihre Tiefe T größer als ihre Breite B ist. Der Einfluß der Abtragungsrate bei der Bearbeitung der Flanschfläche 33 kann somit gering gehalten werden.

Claims (12)

  1. Kühlkreislauf einer Brennkraftmaschine mit einem gegossenen Zylinderblock (3, 4) mit einem Kühlwassermantel (10), einem Zylinderkopf (7) mit Kühlwasserkanälen (11), einer gemeinsamen Flanschfläche (33) zwischen Zylinderkopf und Zylinderblock, sowie mit Kühlwasserführungen (16, 20, 28, 29, 34a bis 34c, 36a bis 36c) innerhalb des Zylinderblocks, die als Zufuhr- oder Rückführkanäle ausgebildet sind, von denen mindestens eine Kühlwasserführung (34a bis 34c, 36a bis 36c) in die Flanschfläche mündet und über einen zumindest teilweise von der Flanschfläche ausgehenden Verbindungskanal (39a bis 39c, 40a bis 40c) mit dem Kühlwassermantel verbunden ist, dadurch gekennzeichnet, daß der Verbindungskanal zwischen dem Kühlwassermantel und mindestens einer der Kühlwasserführungen als ein von der Flanschfläche ausgehender, in den Zylinderblock eingegossener Schlitz (39a bis 39c und 40a bis 40c) ausgebildet ist.
  2. Brennkraftmaschine nach Anspruch 1, dadurch gekennzeichnet, daß die Tiefe T des Schlitzes (39a bis 39c, 40a bis 40c) größer als dessen Breite B ist.
  3. Kühlkreislauf einer Brennkraftmaschine nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß der Kühlwassermantel (10) über mindestens einen eingangsseitigen Schlitz (39a bis 39c) mit einem Zuführkanal (16, 20, 34a bis 34c) und über mindestens einen ausgangsseitigen Schlitz (40a bis 40c) mit einem Rückführkanal (28, 29, 36a bis 36c) verbunden ist.
  4. Kühlkreislauf einer Brennkraftmaschine nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß der Schlitz (39a bis 39c, 40a bis 40c) etwa radial zu einem Zylinder verläuft.
  5. Kühlkreislauf einer Brennkraftmaschine nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß je Zylinder ein eingangsseitiger (39a bis 39c) und ein ausgangsseitiger (40a bis 40c) Schlitz vorgesehen ist.
  6. Kühlkreislauf einer Brennkraftmaschine nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß der eingangsseitige (39a bis 39c) und der ausgangsseitige (40a bis 40c) Schlitz bezogen auf einen Zylinder diametral angeordnet sind.
  7. Kühlkreislauf einer Brennkraftmaschine nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Verbindungslinie zwischen dem eingangseitigen (39a bis 39c) und dem ausgangsseitigen (40a bis 40c) Schlitz je Zylinder etwa rechtwinklig zur Längserstreckung des Zylinderblockes verläuft.
  8. Kühlkreislauf einer Brennkraftmaschine nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß diese mindestens zwei in einer Reihe angeordnete Zylinder aufweist, daß je Zylinder ein eingangsseitiger Schlitz (39a bis 39c) vorgesehen ist, und daß die Tiefe T der Schlitze zur Abstimmung des Kühlwasserflusses unterschiedlich ist.
  9. Kühlkreislauf einer Brennkraftmaschine nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß diese mindestens zwei in einer Reihe angeordnete Zylinder aufweist, daß je Zylinder ein ausgangsseitiger Schlitz (40a bis 40c) vorgesehen ist, und daß die Tiefe T der Schlitze zur Abstimmung des Kühlwasserflusses unterschiedlich ist.
  10. Kühlkreislauf einer Brennkraftmaschine nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die an einer Seite des Zylinderblockes (3, 4) angeordneten Schlitze (39a bis 39c, 40a bis 40c) jeweils mit einem in Längsrichtung des Zylinderblockes verlaufenden Hauptkanal (16, 20, 28, 29) verbunden sind.
  11. Kühlkreislauf einer Brennkraftmaschine nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die eingangsseitigen Schlitze (39a bis 39c) auf ihrer dem Kühlwassermantel (10) abgewandeten Seite mit mindestens einem Einlaufradius versehen sind.
  12. Kühlkreislauf einer Brennkraftmaschine nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß der Zylinderblock (3, 4) in open-deck Bauweise ausgebildet ist.
EP97109470A 1996-07-17 1997-06-11 Kühlkreislauf einer Brennkraftmaschine Expired - Lifetime EP0819837B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19628762A DE19628762A1 (de) 1996-07-17 1996-07-17 Kühlkreislauf einer Brennkraftmaschine
DE19628762 1996-07-17

Publications (2)

Publication Number Publication Date
EP0819837A1 EP0819837A1 (de) 1998-01-21
EP0819837B1 true EP0819837B1 (de) 2001-12-05

Family

ID=7800034

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97109470A Expired - Lifetime EP0819837B1 (de) 1996-07-17 1997-06-11 Kühlkreislauf einer Brennkraftmaschine

Country Status (5)

Country Link
US (1) US5915346A (de)
EP (1) EP0819837B1 (de)
JP (1) JP3941979B2 (de)
KR (1) KR100426765B1 (de)
DE (2) DE19628762A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19803885B4 (de) * 1998-01-31 2013-02-07 Bayerische Motoren Werke Aktiengesellschaft Kühlkreisanordnung für eine flüssigkeitsgekühlte Brennkraftmaschine
DE10021525A1 (de) 2000-05-03 2001-11-15 Porsche Ag Kühlkreislauf für eine mehrzylindrige Brennkraftmaschine
JP3924446B2 (ja) * 2001-09-25 2007-06-06 株式会社クボタ 縦型多気筒エンジン
DE10260535A1 (de) * 2002-12-21 2004-07-08 Mtu Aero Engines Gmbh Verfahren zur Herstellung von aus Halbrohren oder Rohren bestehenden Wärmetauscherrohren für Rekuperativ-Abgaswärmetauscher
JP4305118B2 (ja) * 2003-10-10 2009-07-29 日産自動車株式会社 内燃機関のシリンダブロック
JP5903002B2 (ja) * 2012-06-08 2016-04-13 富士重工業株式会社 エンジンの冷却装置
DE102015013202B4 (de) 2015-10-09 2020-09-10 Deutz Aktiengesellschaft Fluidkreislauf einer Brennkraftmaschine
DE102015014514B4 (de) 2015-11-11 2023-10-26 Deutz Aktiengesellschaft "Common-Rail" Wassermantel
DE112019006640T5 (de) * 2019-01-10 2021-10-07 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Motor und inverter-integrierte rotierbare elektrische maschine
FR3105649B1 (fr) * 2019-12-19 2021-11-26 Valeo Equip Electr Moteur Machine électrique tournante refroidie

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD51736A (de) *
US2713332A (en) * 1953-03-27 1955-07-19 Int Harvester Co Internal combustion engine cooling system
BE755473A (fr) * 1970-01-05 1971-02-01 Outboard Marine Corp Systeme de controle de la temperature d'un moteur
US4284037A (en) * 1978-12-18 1981-08-18 Cummins Engine Company, Inc. Internal combustion engine coolant system
US4346676A (en) * 1979-08-06 1982-08-31 Brunswick Corporation Two-cycle V-engine with integrally cast exhaust manifold
US4312304A (en) * 1979-08-06 1982-01-26 Brunswick Corporation V-Engine cooling system particularly for outboard motors
DE3326317A1 (de) * 1983-07-21 1985-01-31 Dr.Ing.H.C. F. Porsche Ag, 7000 Stuttgart Zylinderblock
US4601265A (en) * 1985-06-28 1986-07-22 Cummins Engine Company, Inc. Internal combustion engine with improved coolant arrangement
US4729347A (en) * 1986-10-27 1988-03-08 Schmitz Donald L Internal combustion chamber
US4984539A (en) * 1989-05-15 1991-01-15 Honda Giken Kogyo Kabushiki Kaisha Liquid cooled internal combustion engine
DE4001140C1 (en) * 1990-01-17 1991-04-11 Mercedes-Benz Aktiengesellschaft, 7000 Stuttgart, De Cylinder block for liquid cooled IC engine - has coolant channels in internal angle of V=shaped block
FR2683263A1 (fr) * 1991-10-31 1993-05-07 Smh Management Services Ag Moteur a combustion interne avec circuit de refroidissement perfectionne.
DE4322030A1 (de) * 1993-07-02 1995-01-12 Porsche Ag Brennkraftmaschine mit zwei Zylinderreihen
JPH09189226A (ja) * 1995-12-30 1997-07-22 Sanshin Ind Co Ltd 船外機の妨蝕装置

Also Published As

Publication number Publication date
DE59705629D1 (de) 2002-01-17
KR980009798A (ko) 1998-04-30
DE19628762A1 (de) 1998-01-22
JP3941979B2 (ja) 2007-07-11
KR100426765B1 (ko) 2004-06-16
JPH1077832A (ja) 1998-03-24
EP0819837A1 (de) 1998-01-21
US5915346A (en) 1999-06-29

Similar Documents

Publication Publication Date Title
DE2950905C2 (de) Zylinderkopf für einen mehrzylindrigen Verbrennungsmotor
DE2756006C2 (de)
DE3543747C2 (de)
DE2839199C2 (de) Im Druckgießverfahren herstellbarer Zylinderkopf für wassergekühlte Brennkraftmaschinen
EP1510681A1 (de) Zylinderkopfdichtung
DE2420051A1 (de) Zylinderkopfblock
EP1516113B1 (de) Gekühlter zylinderkopf für eine kolbenbrennkraftmaschine
DE10344834B4 (de) Motorkühlsystem
EP0268988B1 (de) Dieselbrennkraftmaschine
DE102017206716B4 (de) Zylinderblock eines Verbrennungsmotors
EP3379063A1 (de) Flüssigkeitsgekühlter verbrennungsmotor
EP0838585B1 (de) Zylinderkopf einer Mehrzylinder-Brennkraftmaschine
EP0819837B1 (de) Kühlkreislauf einer Brennkraftmaschine
WO2020011926A1 (de) Zylinderkopf und kurbelgehäuse für eine brennkraftmaschine
DE3020517C2 (de)
DE19961092B4 (de) Verbrennungsmotor mit Hochleistungs-Kühlsystem
CH615980A5 (de)
DE102009008237B4 (de) Brennkraftmaschine mit getrennten Kühlmittelräumen im Zylinderkopf
DE3326317A1 (de) Zylinderblock
DE3435386A1 (de) Luftgekuehlte mehrzylinder-brennkraftmaschine
EP1664513B1 (de) Vorrichtung zur medienführung in einem zylinderkurbelgehäuse
DE60131487T2 (de) Zylinderkopfkühlwasserstruktur und Verfahren zur Herstellung
WO2019057408A1 (de) Verbrennungsmotorgehäuse mit zylinderkühlung
DE3408624A1 (de) Luftgekuehlte hubkolbenbrennkraftmaschine
EP1972772A2 (de) Zylinderkopf für eine flüssigkeitsgekühlte Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19980605

AKX Designation fees paid

Free format text: DE FR GB IT

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20000804

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20011205

REF Corresponds to:

Ref document number: 59705629

Country of ref document: DE

Date of ref document: 20020117

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100706

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100625

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100618

Year of fee payment: 14

Ref country code: DE

Payment date: 20100527

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20110310 AND 20110316

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20110331 AND 20110406

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110611

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120229

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59705629

Country of ref document: DE

Effective date: 20120103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120103

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110611