EP0812391B1 - Kraftstoffeinspritzventil für brennkraftmaschinen - Google Patents

Kraftstoffeinspritzventil für brennkraftmaschinen Download PDF

Info

Publication number
EP0812391B1
EP0812391B1 EP96924779A EP96924779A EP0812391B1 EP 0812391 B1 EP0812391 B1 EP 0812391B1 EP 96924779 A EP96924779 A EP 96924779A EP 96924779 A EP96924779 A EP 96924779A EP 0812391 B1 EP0812391 B1 EP 0812391B1
Authority
EP
European Patent Office
Prior art keywords
valve
valve body
head piece
fuel injection
sealing surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96924779A
Other languages
English (en)
French (fr)
Other versions
EP0812391A1 (de
Inventor
Heinz Stutzenberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0812391A1 publication Critical patent/EP0812391A1/de
Application granted granted Critical
Publication of EP0812391B1 publication Critical patent/EP0812391B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/047Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series the valves being formed by deformable nozzle parts, e.g. flexible plates or discs with fuel discharge orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series

Definitions

  • the invention relates to a fuel injection valve for Internal combustion engines according to the preamble of claim 1 out.
  • a fuel injection valve for Internal combustion engines according to the preamble of claim 1 out.
  • known fuel injector is the valve member fixed to the valve body and lies with a Valve sealing surface under axial preload on one Valve seat of the valve body.
  • a membrane trained valve member is in the known Fuel injection valve is disc-shaped, wherein the radially outer area between a spacer sleeve and a clamping nut clamped against the valve body is.
  • the membrane disc also has a central bore on whose ring edge facing the valve body Forms valve sealing surface with which the valve membrane on one conical valve seat surface, which rests on an axial Pin of the valve body is formed.
  • a Pressure channel provided in the valve body with a Injection line of a fuel injection pump connected GB 100 445 also discloses a fuel injection valve known in which a membrane-shaped, circular valve member in the form of a head piece limits a pressure space, connected to a central inlet channel running in the valve body and can be filled with fuel under pressure.
  • the head piece is resilient and rests under tension a valve sealing surface. The head piece becomes due to the fuel pressure lifted against its internal stress from the valve sealing surface and releases an injection cross section.
  • the membrane-shaped head piece is fixed at its edge to the valve body by a clamping nut and formed in one piece without openings. and that in a limited by the valve membrane Pressure chamber opens.
  • valve sealing surface on the valve seat of the Valve body adjacent valve member is during the Injection phase due to the high fuel pressure from the valve seat lifted off and gives an injection cross section in the Combustion chamber of the internal combustion engine to be supplied is free.
  • the known fuel injection valve the disadvantage that due to the relatively complicated Construction and use of a variety of components Manufacture of the known fuel injection valve is complex and costly. It also needs that known fuel injector due to the variety of Components an increased space, especially on his end near the combustion chamber, which shows the installation flexibility at the Restricts internal combustion engine.
  • Another disadvantage is the shape of the injection opening in the combustion chamber of the internal combustion engine to be supplied, the is ring-shaped in the known injection valve, which is an exact jet alignment of the injection jet difficult.
  • the fuel injection valve according to the invention for internal combustion engines with the characterizing features of claim 1 has in contrast the advantage that by directly attaching the as Head piece trained valve member on the valve body by a Welded connection only two components are required. Through this the manufacturing and assembly costs can be very simple the fuel injector significantly reduce, so that the manufacturing cost over the known injector can be reduced. It’s not another fastener, for example a clamping nut, necessary to the valve member in the the intended location.
  • the weld on the outer radial Edge of the head piece advantageously causes the valve member is resilient in the middle. To do the axial preload To reach the valve member, it is under high axial Contact pressure welded to the valve body.
  • Another advantageous way of securing the axial preload is achieved by thermal treatment during assembly, at which the valve body heats up to a high temperature becomes. Now weld the cold head piece to the heated valve body at the lower end of the valve sealing surface facing away Head piece, turns up after cooling or temperature compensation between the components due to the contraction of the valve body the axial preload between the head piece and valve body on. This can be done either via the axial contact pressure or the Degree of thermal treatment during the assembly of the components adjust the axial preload force with which the head piece formed valve member bears on the valve seat of the valve body, what in turn directly determines the opening pressure at the injection valve. A further possibility of setting the opening pressure and the course the opening movement of the acting as a resilient membrane End face of the head piece is through the formation of this end face possible.
  • the cone angle of the conical Valve seat surface and the conical valve sealing surface slightly deviate from each other so that a sealing edge seat is formed.
  • the head piece is particularly advantageous to design the head piece as a pot-shaped one Form hollow body, the closed, the valve body facing End face forms the resilient membrane and that at its radial outer area is non-detachably connected to the valve body.
  • Another advantage of the fuel injection valve according to the invention represents the provision of freely selectable injection openings, through which the jet position of the injected fuel is adjustable is.
  • the head piece its radially outer area facing the valve body Face is welded to the valve body, the beam path by the cone angle of the valve sealing surface and the locations of the Interruptions in the circumferential weld seam determined.
  • the cup-shaped Head piece is inserted into a receiving opening of the valve body, are the injection openings through freely selectable recesses in the Wall of the valve body in the area of the overlap with the valve sealing surface educated.
  • Fuel injection valves for internal combustion engines are in of the drawing and are shown in the following Description explained in more detail.
  • FIG. 1 shows a first exemplary embodiment in FIG 2 shows a longitudinal section through the injection valve
  • FIG. 2 shows an enlarged section from FIG. 1 a section through the injection valve of Figure 2 along the valve seat surface of the valve body
  • the figure 4 a second embodiment analogous to the representation of the figure 2
  • Figure 5 shows a section through the valve body of the Figure 4 along the injection openings and Figures 6A up to 6F different design options for the head piece of the two embodiments.
  • the first embodiment shown in Figure 1 has a preferably rotationally symmetrical valve body 1 on which in the combustion chamber of the to be supplied Internal combustion engine protruding lower end one Valve member forming head 3 is attached.
  • Valve body 1 On his Valve body 1 has an upper end remote from the combustion chamber Pipe connection 5 to which one, the valve body 1 in Longitudinal penetrating pressure channel 7 connects at the end of the valve body 1 near the combustion chamber at its lower end End face opens.
  • valve seat surface 9 which is conical is trained.
  • valve seat surface 9 acts upper end face of the valve body 1 Head piece 3 together, which has a valve sealing surface 11 forms, which is also conical.
  • valve sealing surface 11 forms, which is also conical.
  • the head piece 3 In order to form a resilient valve member, the head piece 3 on its outer radial edge of the valve body 1 facing end face 11 forming the valve sealing face with the lower end of the valve body on the combustion chamber side 1 welded.
  • the head 3 is during the Welding at high pressure axially against the valve body 1 pressed so that the valve sealing surface 11 under tension rests on valve seat 9.
  • the two components are welded together not over the entire scope, but as in the Figure 3 shown on several, four in the embodiment Areas interrupted.
  • These recesses 15 the circumferential weld 17 form the Injection ports through which the fuel enters the combustion chamber the internal combustion engine emerges.
  • the injection jet angle is determined by the cone angle of the conical valve seat and valve sealing surface 9, 11 and the jet width through the Width of the recesses 15 predetermined.
  • Exemplary embodiment has the valve body 1 on its lower receiving end projecting into the combustion chamber 21, in which the head piece 3 is fully inserted.
  • the upper end face of the head piece 3 forms again a valve sealing surface 11 and the lower ring end face of the Valve body 1 a valve seat 9, which also are conical and slightly different have a different cone angle.
  • the educated can Sealing edge 13 in the second embodiment both inside as well as being located outside.
  • valve body 1 is heated to a high temperature, then the cold head piece 3 in the receiving opening 21 of the Valve body 1 used and when the Valve sealing surface 11 on the valve seat 9 on the lower, end facing the combustion chamber with the wall of the receiving opening 21 of the valve body 1 welded. After this Temperature compensation of the two components 1, 3 results due to the contraction of the valve body 1 when Cooling an axial bracing of the head piece 3 against the Valve body 1.
  • the injection openings are, as in FIG. 5 removable, in the second embodiment as Recesses 23 formed in the wall of the valve body 1, over the coverage area with the Extend valve sealing surface 11 and their arrangement and geometric shape shape the injection jet.
  • Head piece 3 as shown in Figures 6A to 6F as Hollow body formed. Only FIG. 6B shows one Design variant of the head piece 3 as a funnel-shaped Disc, the use of which however only in the first, in the Figures 1 to 3 embodiment shown advantageous is.
  • the fuel injection valve for internal combustion engines works in the following way: At the beginning of the injection phase, fuel under high pressure flows via the injection line into the pressure channel 7 and acts on the valve sealing surface 11 of the head piece 3 in the opening direction. From a certain fuel pressure, the compressive force acting in the opening direction exceeds the pretensioning force on the head piece 3, with which the valve sealing surface 11 is braced axially against the valve seat 9, and the valve sealing surface 11 lifts resiliently from the valve seat 9.
  • the fuel flows in the first exemplary embodiment into the annular gap between the valve seat surface 9 and the valve sealing surface 11 and exits at the cutouts 15 of the weld seam 17 into the combustion chamber of the internal combustion engine.
  • the fuel flows to the recesses 23 in the wall of the valve body 1 and from there into the combustion chamber.
  • the inventive works Fuel injector very quickly and reliably because almost no moving masses occur.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

Stand der Technik
Die Erfindung geht von einem Kraftstoffeinspritzventil für Brennkraftmaschinen nach der Gattung des Patentanspruchs 1 aus. Bei einem derartigen, aus dem DE-Gbm. 93 204 337 bekannten Kraftstoffeinspritzventil ist das Ventilglied ortsfest am Ventilkörper befestigt und liegt mit einer Ventildichtfläche unter axialer Vorspannung an einem Ventilsitz des Ventilkörpers an. Das als Membran ausgebildete Ventilglied ist dabei beim bekannten Kraftstoffeinspritzventil scheibenförmig ausgebildet, wobei der radial äußere Bereich zwischen einer Distanzhülse und einer Spannmutter ortsfest gegen den Ventilkörper verspannt ist. Die Membranscheibe weist ferner eine zentrale Bohrung auf, deren dem Ventilkörper zugewandte Ringkante die Ventildichtfläche bildet, mit der die Ventilmembran an einer konischen Ventilsitzfläche anliegt, die an einem axialen Zapfen des Ventilkörpers gebildet ist. Zur Druckzuführung des Kraftstoffhochdruckes an die Ventilmembran ist ein Druckkanal im Ventilkörper vorgesehen, der mit einer Einspritzleitung einer Kraftstoffeinspritzpumpe verbunden Aus der Schrift GB 100 445 ist darüber hinaus ein Kraftstoffeinspritzventil bekannt, bei dem ein membranförmiges, kreisrundes Ventilglied in Form eines Kopfstücks einen Druckraum begrenzt, der mit einem im Ventilkörper verlaufenden, zentralen Zulaufkanal verbunden ist und über diesen mit Kraftstoff unter Druck befüllt werden kann. Das Kopfstück ist federnd ausgebildet und liegt unter Vorspannung an einer Ventildichtfläche an. Durch den Kraftstoffdruck wird das Kopfstück gegen seine Eigenspannung von der Ventildichtfläche abgehoben und gibt einen Einspritzquerschnitt frei. Das membranförmige Kopfstück ist an seinem Rand durch eine Spannmutter am Ventilkörper fixiert und einstückig ohne Öffnungen ausgebildet. ist und der in einen von der Ventilmembran begrenzten Druckraum mündet.
Das mit der Ventildichtfläche am Ventilsitz des Ventilkörpers anliegende Ventilglied wird dabei während der Einspritzphase durch den Kraftstoffhochdruck vom Ventilsitz abgehoben und gibt einen Einspritzquerschnitt in den Brennraum der zu versorgenden Brennkraftmaschine frei.
Dabei weist das bekannte Kraftstoffeinspritzventil jedoch den Nachteil auf, daß infolge des relativ komplizierten Aufbaus und der Verwendung einer Vielzahl von Bauteilen die Herstellung des bekannten Kraftstoffeinspritzventils aufwendig und kostenintensiv ist. Zudem benötigt das bekannte Kraftstoffeinspritzventil aufgrund der Vielzahl der Bauteile einen erhöhten Bauraum, insbesondere an seinem brennraumnahen Ende, was die Einbauflexibilität an der Brennkraftmaschine einschränkt.
Ein weiterer Nachteil ist die Form der Einspritzöffnung in den Brennraum der zu versorgenden Brennkraftmaschine, die beim bekannten Einspritzventil ringförmig ausgebildet ist, was eine exakte Strahlausrichtung des Einspritzstrahls erschwert.
Vorteile der Erfindung
Das erfindungsgemäße Kraftstoffeinspritzventil für Brennkraftmaschinen mit den kennzeichnenden Merkmalen des Patentanspruchs 1 hat demgegenüber den Vorteil, daß durch die direkte Befestigung des als Kopfstück ausgebildeten Ventilgliedes am Ventilkörper durch eine Schweißverbindung nur noch zwei Bauteile benötigt werden. Durch diesen sehr einfachen Aufbau läßt sich der Herstellungs- und Montageaufwand des Kraftstoffeinspritzventils erheblich reduzieren, so daß die Fertigungskosten gegenüber dem bekannten Einspritzventil verringert werden können. Es ist kein weiteres Befestigungselement, beispielsweise eine Spannmutter, nötig, um das Ventilglied in der vorgesehenen Lage zu halten. Die Verschweißung am äußeren radialen Rand des Kopfstücks bewirkt in vorteilhafter Weise, daß das Ventilglied in der Mitte federnd ausgebildet ist. Um dabei die axiale Vorspannung des Ventilgliedes zu erreichen, wird es unter hohem axialen Anpreßdruck am Ventilkörper verschweißt.
Eine weitere vorteilhafte Möglichkeit der Sicherung der axialen Vorspannkraft wird durch eine Thermobehandlung während der Montage erreicht, bei der der Ventilkörper auf eine hohe Temperatur erhitzt wird. Verschweißt man nun das kalte Kopfstück am erhitzten Ventilkörper an dem der Ventildichtfläche abgewandten unteren Ende des Kopfstückes, stellt sich nach dem Abkühlen bzw. dem Temperaturausgleich zwischen den Bauteilen aufgrund des Zusammenziehens des Ventilkörpers die axiale Vorspannung zwischen Kopfstück und Ventilkörper ein. Dabei läßt sich sowohl über die axiale Anpreßkraft oder den Grad der Thermobehandlung während des Zusammenfügens der Bauteile die axiale Vorspannkraft einstellen, mit der das durch das Kopfstück gebildete Ventilglied am Ventilsitz des Ventilkörpers anliegt, was wiederum direkt den Öffnungsdruck am Einspritzventil bestimmt. Eine weitere Möglichkeit des Einstellens des Öffnungsdruckes und des Verlaufs der Öffnungsbewegung der als federnde Membran wirkenden Stirnfläche des Kopfstückes ist durch die Ausbildung dieser Stirnfläche möglich.
Um einen sicheren Dichtsitz am Einspritzventil zu gewährleisten ist dieser zudem konisch ausgeführt, wobei die Kegelwinkel der konischen Ventilsitzfläche und der konischen Ventildichtfläche geringfügig voneinander abweichen, so daß ein Dichtkantensitz gebildet ist. Dabei ist es besonders vorteilhaft, das Kopfstück als topfförmigen Hohlkörper auszubilden, dessen geschlossene, dem Ventilkörper zugewandte Stirnfläche die federnde Membran bildet und das an seinem radial äußeren Bereich unlösbar mit dem Ventilkörper verbunden ist.
Ein weiterer Vorteil des erfindungsgemäßen Kraftstoffeinspritzventils stellt das Vorsehen von frei wählbaren Einspritzöffnungen dar, durch die die Strahllage des eingespritzten Kraftstoffes einstellbar ist. In einem ersten Ausführungsbeispiel, bei dem das Kopfstück an seinem radial äußeren Bereich der dem Ventilkörper zugewandten Stirnfläche mit dem Ventilkörper verschweißt ist, wird der Strahlverlauf durch den Kegelwinkel der Ventildichtfläche und die Orte der Unterbrechungen der umlaufenden Schweißnaht bestimmt. Bei einem zweiten beschriebenen Ausführungsbeispiel, bei dem das topfförmige Kopfstück in eine Aufnahmeöffnung des Ventilkörpers eingesetzt ist, sind die Einspritzöffnungen durch frei wählbare Aussparungen in der Wand des Ventilkörpers im Bereich der Überdeckung mit der Ventildichtfläche gebildet.
Weitere Vorteile und vorteilhafte Ausgestaltungen des Gegenstandes der Erfindung sind der Beschreibung der Ausführungsbeispiele, der Zeichnung und den Ansprüchen entnehmbar.
Zeichnung
Zwei Ausführungsbeispiele des erfindungsgemäßen Kraftstoffeinspritzventils für Brennkraftmaschinen sind in der Zeichnung dargestellt und werden in der folgenden Beschreibung näher erläutert.
Es zeigen die Figur 1 ein erstes Ausführungsbeispiel in einem Längsschnitt durch das Einspritzventil, die Figur 2 einen vergrößerten Ausschnitt aus der Figur 1, die Figur 3 einen Schnitt durch das Einspritzventil nach Figur 2 entlang der Ventilsitzfläche des Ventilkörpers, die Figur 4 ein zweites Ausführungsbeispiel analog zur Darstellung der Figur 2, die Figur 5 einen Schnitt durch den Ventilkörper der Figur 4 entlang der Einspritzöffnungen und die Figuren 6A bis 6F verschiedene Ausführungsmöglichkeiten des Kopfstückes der beiden Ausführungsbeispiele.
Beschreibung der Ausführungsbeispiele
Das in der Figur 1 dargestellte erste Ausführungsbeispiel weist einen vorzugsweise rotationssymmetrischen Ventilkörper 1 auf, an dessen in den Brennraum der zu versorgenden Brennkraftmaschine ragenden, unteren Ende ein ein Ventilglied bildendes Kopfstück 3 befestigt ist. An seinem oberen, brennraumfernen Ende weist der Ventilkörper 1 einen Rohranschluß 5 auf, an den sich ein, den Ventilkörper 1 in Längsrichtung durchdringender Druckkanal 7 anschließt, der am brennraumnahen Ende des Ventilkörpers 1 an dessen untere Stirnfläche mündet. An den Rohranschluß 5 ist eine nicht näher dargestellte Kraftstoffeinspritzleitung zu einer Kraftstoffeinspritzpumpe angeschlossen, die das Einspritzventil mit unter hohem Druck stehenden Kraftstoff beliefert.
Die untere, brennraumseitige Ringstirnfläche des Ventilkörpers 1 bildet, wie in der Figur 2 vergrößert dargestellt, eine Ventilsitzfläche 9, die konisch ausgebildet ist. Mit dieser Ventilsitzfläche 9 wirkt eine obere, dem Ventilkörper 1 zugewandte Stirnfläche des Kopfstückes 3 zusammen, die eine Ventildichtfläche 11 bildet, die ebenfalls konisch ausgebildet ist. Dabei sind die Kegelwinkel der Ventilsitzfläche 9 und der Ventildichtfläche 11 derart geringfügig unterschiedlich ausgebildet, daß eine Dichtkante an an der inneren Ringkante der Ventilsitzfläche 9 gebildet wird.
Um ein federndes Ventilglied zu bilden, ist das Kopfstück 3 an seinem äußeren radialen Rand der dem Ventilkörper 1 zugewandten, die Ventildichtfläche bildenden Stirnfläche 11 mit dem unteren, brennraumseitigen Ende des Ventilkörpers 1 verschweißt. Dabei wird das Kopfstück 3 während des Verschweißens mit hohem Druck axial gegen den Ventilkörper 1 gedrückt, so daß die Ventildichtfläche 11 unter Vorspannung am Ventilsitz 9 anliegt.
Die Verschweißung der beiden Bauteile miteinander erfolgt dabei nicht über den gesamten Umfang, sondern ist wie in der Figur 3 dargestellt an mehreren, im Ausführungsbeispiel vier Bereichen unterbrochen. Diese Aussparungen 15 der umlaufenden Schweißnaht 17 bilden dabei die Einspritzöffnungen, an denen der Kraftstoff in den Brennraum der Brennkraftmaschine austritt. Der Einspritzstrahlwinkel ist dabei durch die Kegelwinkel der konischen Ventilsitz- und Ventildichtfläche 9, 11 und die Strahlbreite durch die Breite der Aussparungen 15 vorgegeben.
Bei dem in der Figur 4 dargestellten zweiten Ausführungsbeispiel weist der Ventilkörper 1 an seinem unteren, in den Brennraum ragenden Ende eine Aufnahmeöffnung 21 auf, in die das Kopfstück 3 vollständig eingesetzt ist. Dabei bilden die obere Stirnfläche des Kopfstückes 3 wieder eine Ventildichtfläche 11 und die untere Ringstirnfläche des Ventilkörpers 1 eine Ventilsitzfläche 9, die ebenfalls konisch ausgebildet sind und einen geringfügig voneinander abweichenden Kegelwinkel aufweisen. Dabei kann die gebildete Dichtkante 13 beim zweiten Ausführungsbeispiel sowohl innen als auch außenliegend angeordnet sein.
Die Erzeugung der Vorspannung der Ventildichtfläche 11 am Ventilsitz 9 erfolgt beim zweiten Ausführungsbeispiel durch eine Thermobehandlung bei der Montage. Dabei wird zunächst der Ventilkörper 1 auf eine hohe Temperatur erhitzt, dann wird das kalte Kopfstück 3 in die Aufnahmeöffnung 21 des Ventilkörpers 1 eingesetzt und bei Anlage der Ventildichtfläche 11 am Ventilsitz 9 am unteren, brennraumzugewandten Ende mit der Wand der Aufnahmeöffnung 21 des Ventilkörpers 1 verschweißt. Nach dem Temperaturausgleich der beiden Bauteile 1, 3 ergibt sich infolge des Zusammenziehens des Ventilkörpers 1 beim Abkühlen eine axiale Verspannung des Kopfstückes 3 gegen den Ventilkörper 1.
Die Einspritzöffnungen sind, wie auch der Figur 5 entnehmbar, beim zweiten Ausführungsbeispiel als Ausnehmungen 23 in der Wand des Ventilkörpers 1 ausgebildet, die sich über den Überdeckungsbereich mit der Ventildichtfläche 11 erstrecken und deren Anordnung und geometrische Form den Einspritzstrahl formen.
Um eine möglichst gute federnde Membranwirkung an der Ventildichtfläche des Kopfstückes 3 zu erzielen ist das Kopfstück 3 wie in den Figuren 6A bis 6F dargestellt als Hohlkörper ausgebildet. Lediglich die Figur 6B zeigt eine Ausführungsvariante des Kopfstückes 3 als trichterförmige Scheibe, deren Verwendung jedoch nur beim ersten, in den Figuren 1 bis 3 gezeigten Ausführungsbeispiel vorteilhaft ist.
Bei den in den übrigen Ausführungsbeispielen der Figur 6 gezeigten Hohlkörperformen des Kopfstückes 3 ist es besonders wichtig, daß die obere, die Ventildichtfläche bildende Stirnfläche 11 gut nach innen einfederbar ist, wobei diese Federfunktion neben dem verwendeten Werkstoff durch die Formgebung der oberen Stirnfläche 11 einstellbar ist.
Das erfindungsgemäße Kraftstoffeinspritzventil für Brennkraftmaschinen arbeitet in folgender Weise:
Am Beginn der Einspritzphase strömt unter hohem Druck stehender Kraftstoff über die Einspritzleitung in den Druckkanal 7 und beaufschlagt die Ventildichtfläche 11 des Kopfstückes 3 in Öffnungsrichtung. Dabei übersteigt ab einem bestimmten Kraftstoffdruck die in Öffnungsrichtung wirkende Druckkraft die Vorspannkraft am Kopfstück 3, mit der die Ventildichtfläche 11 axial gegen den Ventilsitz 9 verspannt ist und die Ventildichtfläche 11 hebt federnd vom Ventilsitz 9 ab. In Folge des geöffneten Querschnitts am Dichtsitz strömt der Kraftstoff im ersten Ausführungsbeispiel in den Ringspalt zwischen der Ventilsitzfläche 9 und der Ventildichtfläche 11 und tritt an den Aussparungen 15 der Schweißnaht 17 in den Brennraum der Brennkraftmaschine aus. Im zweiten Ausführungsbeispiel strömt der Kraftstoff nach Passieren des geöffneten Dichtquerschnitts zu den Ausnehmungen 23 in der Wand des Ventilkörpers 1 und gelangt von dort in den Brennraum.
Das Einspritzende erfolgt in bekannter Weise durch die Beendigung der Hochdruckzufuhr zum Einspritzventil, in dessen Folge der am Ventilglied anliegende Öffnungsdruck wieder unter die notwendige Öffnungskraft sinkt, so daß die federnde Ventildichtfläche 11 von der diese in Schließrichtung beaufschlagenden Vorspannkraft erneut in Anlage an den Ventilsitz 9 gebracht wird.
Dabei arbeitet das erfindungsgemäße Kraftstoffeinspritzventil sehr schnell und zuverlässig, da nahezu keine bewegten Massen auftreten.

Claims (9)

  1. Kraftstoffeinspritzventil für Brennkraftmaschinen mit einem Ventilkörper (1), an dessen brennraumseitigen Ende eine Ventilsitzfläche (9) vorgesehen ist, an der ein ortsfest gegenüber dem Ventilkörper (1) angeordnetes als Kopfstück (3) ausgebildetes Ventilglied unter axialer Vorspannung mit einer Ventildichtfläche (11) anliegt, wobei die dem Ventilkörper (1) zugewandte Stirnfläche des Kopfstücks (3) die Ventildichtfläche (11) bildet, mit einem den Ventilkörper (1) in Längsrichtung durchdringenden Druckkanal (7), der in einen vom Ventilsitz (9) begrenzten, die Stirnfläche des Kopfstücks (3) in Öffnungsrichtung beaufschlagenden Druckraum mündet, und mit wenigstens einer sich stromabwärts an die Ventilsitzfläche (9) anschließenden Einspritzöffnung in den Brennraum der zu versorgenden Brennkraftmaschine, dadurch gekennzeichnet, daß das Kopfstück (3) an seinem äußeren radialen Rand durch eine Schweißverbindung unlösbar direkt am brennraumseitiger Ende des Ventilkörpers (1) befestigt ist.
  2. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, daß das Kopfstück (3) im Bereich der Ventildichtfläche (11) als federnde Membran ausgebildet ist, die unter Beaufschlagung mit Kraftstoffhochdruck vom Ventilsitz (9) abhebbar ist.
  3. Kraftstoffeinspritzventil nach Anspruch 2, dadurch gekennzeichnet, daß das Kopfstück (3) als Hohlkörper ausgebildet ist, dessen dem Ventilkörper (1) zugewandte geschlossene Stirnfläche die Ventildichtfläche (11) bildet.
  4. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, daß die Ventilsitzfläche (9) am Ventilkörper (1) und die Ventildichtfläche (11) am Kopfstück (3) konisch ausgebildet sind.
  5. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, daß das Kopfstück (3) am radial äußeren Bereich seiner dem Ventilkörper (1) zugewandten Stirnfläche (11) mit der brennraumseitigen, die Ventilsitzfläche (9) bildenden Stirnfläche des Ventilkörpers (1) verschweißt ist.
  6. Kraftstoffeinspritzventil nach Anspruch 5, dadurch gekennzeichnet, daß die umlaufende Schweißnaht (17) eine Vielzahl von Aussparungen (15) aufweist, die bei Abheben der Ventildichtfläche (11) vom Ventilsitz (9) eine Einspritzöffnung bilden.
  7. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, daß das Kopfstück (3) in eine Aufnahmeöffnung (21) am brennraumseitigen Ende des Ventilkörpers (1) eingesetzt ist, wobei im Bereich der Überdeckung mit der Ventildichtfläche (11) des Kopfstückes (3) Ausnehmungen (23) in der Wand des Ventilkörpers (1) vorgesehen sind, die die Einspritzöffnungen bilden.
  8. Kraftstoffeinspritzventil nach Anspruch 7, dadurch gekennzeichnet, daß das Kopfstück (3) an seiner unteren brennraumseitigen Kante zwischen der Mantelfläche und der unteren Ringstirnfläche mit der Wand der Aufnahmeöffnung (21) des Ventilkörpers (1) verschweißt ist.
  9. Verfahren zum Herstellen eines Kraftstoffeinspritzventils nach Anspruch 7, gekennzeichnet durch folgende Verfahrensschritte:
    Erhitzen des Ventilkörpers (1) auf eine hohe Temperatur
    Einsetzen des kalten Kopfstückes (3) in die Aufnahmeöffnung (21) des Ventilkörpers (1)
    Verschweißen des Kopfstückes (3) in der Aufnahmeöffnung (21) des Ventilkörpers (1).
EP96924779A 1995-12-16 1996-07-30 Kraftstoffeinspritzventil für brennkraftmaschinen Expired - Lifetime EP0812391B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19547169A DE19547169A1 (de) 1995-12-16 1995-12-16 Kraftstoffeinspritzventil für Brennkraftmaschinen
DE19547169 1995-12-16
PCT/DE1996/001409 WO1997022800A1 (de) 1995-12-16 1996-07-30 Kraftstoffeinspritzventil für brennkraftmaschinen

Publications (2)

Publication Number Publication Date
EP0812391A1 EP0812391A1 (de) 1997-12-17
EP0812391B1 true EP0812391B1 (de) 2001-11-07

Family

ID=7780409

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96924779A Expired - Lifetime EP0812391B1 (de) 1995-12-16 1996-07-30 Kraftstoffeinspritzventil für brennkraftmaschinen

Country Status (6)

Country Link
EP (1) EP0812391B1 (de)
JP (1) JPH11501101A (de)
KR (1) KR19980702177A (de)
BR (1) BR9607297A (de)
DE (2) DE19547169A1 (de)
WO (1) WO1997022800A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006003668A1 (de) * 2006-01-26 2007-08-02 Bayerische Motoren Werke Ag Brennstoffeinspritzventil mit nach aussen öffnender Düsennadel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB100445A (en) * 1915-05-07 1917-01-25 Oscar Robert Groenkwist Means for Injecting Liquid Fuel, and other Liquids into Explosions Motors, Furnaces, and the like.
GB565999A (en) * 1943-06-03 1944-12-07 Henry Franz Pulitzer Improvements in or relating to atomising nozzles for liquids
JPS62255571A (ja) * 1986-04-30 1987-11-07 Nippon Denso Co Ltd 燃料噴射ノズル
DE9320433U1 (de) * 1993-04-10 1994-09-29 Robert Bosch Gmbh, 70469 Stuttgart Kraftstoffeinspritzdüse für Brennkraftmaschinen

Also Published As

Publication number Publication date
DE19547169A1 (de) 1997-06-19
JPH11501101A (ja) 1999-01-26
DE59608147D1 (de) 2001-12-13
WO1997022800A1 (de) 1997-06-26
BR9607297A (pt) 1997-11-25
EP0812391A1 (de) 1997-12-17
KR19980702177A (ko) 1998-07-15

Similar Documents

Publication Publication Date Title
DE19547423B4 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE69406783T2 (de) Zusammenbau einer filterpatrone für ein oberseitig gespeistes kraftstoffeinspritzventil
EP1119703B1 (de) Brennstoffeinspritzventil
EP0937201A1 (de) Elektromagnetisch betätigbares ventil
EP1370765B1 (de) Brennstoffeinspritzventil
DE19623713A1 (de) Einspritzventil, insbesondere zum direkten Einspritzen von Kraftstoff in einen Brennraum eines Verbrennungsmotors
DE10055483B4 (de) Brennstoffeinspritzventil
DE19634933A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE3412625A1 (de) Verfahren zum steuern des ausflussquerschnittes von einspritzduesen fuer direkt einspritzende brennkraftmaschinen und einspritzduese zur durchfuehrung des verfahrens
DE19536330A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP0812391B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE10027669A1 (de) Befestigungsmittel für ein Brennstoffeinspritzventil
DE10063260A1 (de) Brennstoffeinspritzventil
DE10063261B4 (de) Brennstoffeinspritzventil
EP0811119B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP0927303B1 (de) Brennstoffeinspritzventil
EP1209353B1 (de) Brennstoffeinspritzventil
DE10059263B4 (de) Verfahren zur Herstellung bzw. zur Montage eines Brennstoffeinspritzventils
DE602004003212T3 (de) Einspritzventil mit Mittel, um Ventilnadelrotation zu verhindern
DE10052146A1 (de) Brennstoffeinspritzventil
WO2002029243A1 (de) Brennstoffeinspritzventil
AT500011B1 (de) Einspritzinjektor für brennkraftmaschinen
EP3303817B1 (de) Common-rail-injektor
DE19638339A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE102020215215A1 (de) Brennstoffeinspritzventil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19971229

17Q First examination report despatched

Effective date: 20000119

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 59608147

Country of ref document: DE

Date of ref document: 20011213

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020208

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030625

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040730

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040730

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050916

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060719

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070731