EP0806610B1 - Verfahren zum Betrieb eines Gasbrenners - Google Patents
Verfahren zum Betrieb eines Gasbrenners Download PDFInfo
- Publication number
- EP0806610B1 EP0806610B1 EP97105850A EP97105850A EP0806610B1 EP 0806610 B1 EP0806610 B1 EP 0806610B1 EP 97105850 A EP97105850 A EP 97105850A EP 97105850 A EP97105850 A EP 97105850A EP 0806610 B1 EP0806610 B1 EP 0806610B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- signal
- gas
- burner
- control
- ionisation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 37
- 239000007789 gas Substances 0.000 claims description 168
- 238000002485 combustion reaction Methods 0.000 claims description 32
- 230000008859 change Effects 0.000 claims description 21
- 238000011156 evaluation Methods 0.000 claims description 16
- 238000012544 monitoring process Methods 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 12
- 239000000567 combustion gas Substances 0.000 claims description 3
- 230000003247 decreasing effect Effects 0.000 claims description 3
- 230000033228 biological regulation Effects 0.000 abstract description 9
- 230000008569 process Effects 0.000 description 13
- 230000007547 defect Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 230000007257 malfunction Effects 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 5
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 5
- 239000013641 positive control Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000013642 negative control Substances 0.000 description 4
- 241001156002 Anthonomus pomorum Species 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N1/00—Regulating fuel supply
- F23N1/02—Regulating fuel supply conjointly with air supply
- F23N1/022—Regulating fuel supply conjointly with air supply using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/02—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
- F23N5/12—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
- F23N5/123—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2225/00—Measuring
- F23N2225/26—Measuring humidity
- F23N2225/30—Measuring humidity measuring lambda
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2227/00—Ignition or checking
- F23N2227/20—Calibrating devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2231/00—Fail safe
- F23N2231/30—Representation of working time
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2233/00—Ventilators
- F23N2233/06—Ventilators at the air intake
- F23N2233/08—Ventilators at the air intake with variable speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2235/00—Valves, nozzles or pumps
- F23N2235/12—Fuel valves
- F23N2235/16—Fuel valves variable flow or proportional valves
Definitions
- the invention relates to a method to operate a gas burner with the features of Preamble of claim 1.
- DE 195 02 901 C1 is another Control device for a gas burner known. There is based on the fact that the intensity of the Flames always fluctuate, so a flickering picture of flames consists. It is recognized that the amplitudes of this Fluctuations in the gas-air ratio (lambda value) of the Depending on the combustion gas. A Safety flame monitoring for gas shutdown at Flame failure is not mentioned.
- DE 43 09 454 A1 describes an ionization flame monitor known in which a charged to an operating voltage Capacitor is discharged by the ionization current.
- the ionization flame monitor can be used during operation checked for function by means of a test signal become.
- the ionization electrode itself and its Connection cable and in certain malfunctions of the Capacitor cannot be checked.
- the flame is only monitored indirectly.
- the flame detector is only in by the test signal periodically recurring periods checked.
- the object of the invention is to provide an improved method and a device of the type mentioned to propose low-emission combustion to guarantee different operating states.
- the above object is achieved by the features of the characterizing part of claim 1. It is thereby achieved that the gas burner can be operated with low emissions at least in the Wobbeiere range of natural gas (10 kWh / m 3 to 15.6 kWh / m 3 ). It is also achieved that the control does not undesirably affect the desired heat output to be provided by the gas heater working with the gas burner, so that the gas heater can cover the heat requirement with the requested heat output.
- the control circuit regulates depending on Ionization signal the gas quantity valve so that the Combustion with one for low-emission operation desired lambda setpoint> 1, in particular between 1.1 and 1.35.
- the control circuit itself serves not dependent on the heat demand Performance adjustment.
- An adjustment of the heating power of the burner as a function of a power setpoint takes place in a manner known per se by means of Automatic control unit, the fan speed two or multi-stage or infinitely variable. With fast Changes in the performance target and accordingly There may be rapid changes in fan speed erratic control deviations on the control circuit come. These could lead to instabilities in the Control circuit.
- the reserve share for the Control signal of the gas flow valve regardless of the Control circuit or derived in parallel to this. The The control circuit then only has to be fine-tuned make comparatively small control deviation.
- the lead portion of the control signal is easily too win because of the device-specific power control signal characteristic is known by the manufacturer and so that it can be stored in the evaluation circuit.
- the power control signal characteristic curve is preferred defines a tolerance band and it becomes when that Actual control signal leaves the tolerance band, on Shutdown signal generated for the burner.
- the tolerance band is dimensioned so that it is in the normal operation of the Gas blower burner of the gas heater is not left and it will leave if in the course of operating the Gas heaters characteristic curves of the sensors, especially the Ionization electrode and / or the measured value recording, or the actuator system, especially the gas flow valve or the Air path of the fan or the exhaust path or the Change the burner, for example due to contamination.
- the tolerance band will also fluctuate strongly Wobble payments of the gas, fluctuating strongly Gas supply pressure or fluctuating air resistance or if the control malfunctions. In all such cases, a shutdown signal for the Burner generated so that this is not in one for one low emission combustion unfavorable area continues to work.
- This switch-off signal can be the same or, preferably, if the tolerance band for a certain period of time, for example 5 s, is left to take effect. It is thus safe and low-emission operation of the Brenners guaranteed even after many hours of operation.
- the control circuit itself can also switch off signals generate if the specified lambda setpoint is not is observable.
- the switch switches on a certain time after the switch-off signal Automatic control switch on the gas fan burner again. Do that Switch-off signal several times afterwards, a Lockout may be provided according to which Gas-blown burners only again through service measures can be switched on. By defining the tolerance band other, so far common No need for safety devices.
- the tolerance band can be symmetrical or asymmetrical or a desired function according to the Power control signal characteristic curve can be laid.
- a Throttle shutdown signal occurs both when the flame does not exist, and also occurs when a defect consists of a deceptive ionization signal produces a similar signal, such a defect the entire functional range of the Ionization electrode up to a monitoring circuit can be present.
- This configuration becomes a characteristic Flame pattern that affects the ionization signal to Monitoring used.
- Amplitude fluctuations are preferably evaluated. However, it can also, especially when targeted Modulation instead or in addition, the phase or Frequency can be evaluated.
- the gas cut-off signal that blocks the gas supply not only occurs when the flame goes out. It also occurs if as a result of any technical defect on the real ionization signal there is a deceptively similar signal.
- the gas cut-off signal only occurs when the characteristic fluctuations in the flame pattern and not the ionization signal derived from it available. A technical defect in the facility, the the characteristic fluctuations in the flame pattern pretends is excluded in practice.
- the gas shutdown signal occurs independently on whether the pretending the ionization signal Defect in the ionization electrode itself or its Connection line or the monitoring circuit or otherwise where is in the system. This makes it a very high one System security achieved, even over the previous ones Safety regulations goes beyond.
- the safety flame monitoring is also carried out monitoring for technical defects constantly during burner operation, i.e. with a burning flame. It can So it does not happen that a longer one after a defect There is time for unburned gas to escape. in the If the modulation is specifically applied to the flame it suffices if the modulation signal generates periodically , the time between two consecutive Modulation signals are dimensioned so short that at one No dangerous amount of gas defective during this time emanates unburned.
- the ionization signal does not have to be alone or separately for the safety flame monitoring must be generated. It can serve at the same time the combustion control, which in the DE 44 33 425 A1 or DE 195 02 901 C1 is.
- a blower is connected to a burner (1) of a gas heater (2) and a gas line (3) connected in the one Gas solenoid valve (4) or another gas control valve is located.
- There is one in the flame area of the burner (1) Ionization electrode (5) arranged on a Evaluation circuit (6) for the in burner operation between the burner (1) and the ionization electrode (5) flowing Electricity is connected.
- the evaluation circuit (6) has especially one connected to the AC mains voltage Capacitor (C) and a resistor (R).
- the Evaluation circuit (6) forms from that of the combustion dependent ionization current an ionization voltage (Ui), which is connected to a control circuit (7).
- the Evaluation circuit (6) can also be used in the control circuit (7) be integrated.
- the control circuit (7) controls by means of a control signal (J), especially control current, the degree of opening of the Gas solenoid valve (4).
- the power supply is due to the Control circuit (7) the AC mains voltage. It captures also the network frequency and the network amplitude.
- the Control circuit (7) is, for example, by a digital PI controller, e.g. Microprocessor, realized.
- an automatic control device 9 is provided as it is for example under the trade name "Furimat" is known on the market.
- a Safety valve (10) can be switched on and off, whereas with the gas solenoid valve (4) the gas volume flow is infinitely variable is adjustable.
- a Setpoint generator (8) connected, one of a Target room temperature and / or one Heating flow temperature and / or one Heating return temperature and an outside temperature dependent signal on the control automat (9).
- a gas pressure switch (11) is located in the gas line (3) via the control automat (9) during the burning operation switches off insufficient gas pressure.
- Gas pressure switch (11) In series with Gas pressure switch (11) is in the control circuit (7) Switch (12) integrated, which in the case of the closer below described control shutdowns and Fault shutdowns the burning operation over the Control automat (9) interrupts.
- a line (13) gives the control automat (9) to everyone Switching on an ignition pulse to an ignition electrode (14) the burner (1).
- the Ionization electrode (5) placed on the control automat (9) (Line 15).
- On operated with the mains voltage Safety valve (10) is tapped and connected to the Control circuit (7) laid (line 16).
- On Speed control signal of the fan (2) is above a Line (17) on the control automat (9) and the Control circuit (7).
- the evaluation circuit (6), the control circuit (7) and the Control machine (9) can also be in a single Switchgear can be integrated.
- the device of Figure 1 is advantageous because of proven control automat (9) with its control and Safety functions for the burner (1) and the fan (2) can continue to be used.
- the control circuit (7) only needs to control the gas solenoid valve (4).
- the of her generated shutdown signals are from the Control automats (9) evaluated. It is possible Already existing control automatons (9) Retrofit gas heaters with the control circuit (7).
- FIG. 2a shows the evaluation circuit (6), the Ionization electrode (5) with its equivalent circuit diagram as Resistor (Ri) and diode (D) is shown. Parallel to Ionization electrode (5 or Ri, D) is inserted Voltage divider made up of resistors (R1, R2). Between the Mains connection (N) and the voltage divider (R1, R2) and the Ionization electrode (5; Ri, D) is the capacitor (C).
- the AC line voltage (Un) is one DC voltage component (Ug) to voltage (Ub) (see Fig. 2b), which is detected via the voltage divider (R1, R2) as Uc.
- the DC voltage component (Ug) is then determined using a Low pass or filtered out by averaging and forms the ionization voltage (Ui).
- the low pass or Devices for averaging are in the figures not shown. You can in the evaluation circuit (6) or be provided in the control circuit (7). In addition can be provided, the ionization voltage (Ui) according to a possible deviation of the Correct the AC mains voltage from the standard value (230 V).
- the use of the AC line voltage on the Evaluation circuit (6) is cheap because the AC mains voltage is present anyway. However, it could another sufficiently large AC voltage be used.
- FIG. 3 shows the course of the ionization voltage in Dependence on the air ratio Lambda (l) des Combustion state.
- substoichiometric combustion (l ⁇ 1) and with overstoichiometric combustion (l> 1) decreases the ionization voltage (Ui).
- Control range (RB) for the ionization voltage (Ui) with an upper limit (Uio) and a lower limit Limit value (Uiu) specified.
- the upper limit (Uio) is below the maximum value (Uim).
- the lower Limit value (Uiu) lies above the final value (Uie), which occurs when the lambda value (l) is much smaller than 1, the air-gas mixture is therefore due to maximum Gas supply or minimal air supply is so rich that the Combustion is no longer low in emissions.
- the ionization voltage (Ui) is very short Time intervals, for example every 50 to 1000 ms, preferably about 100 ms newly acquired. It is with it achieved that the ionization voltage (Ui) never long can be outside the control range (RB), causing over seen every combustion process a low emissions Burning is guaranteed. Move in normal operation the values of the ionization voltage (Ui) in the permitted control range, i.e. between Uio and Uiu, see above that the lambda value (l) correspondingly in the range (lo to lu) is regulated to the lambda setpoint (ls).
- the control circuit (7) opens the control signal (J) continues the gas solenoid valve (4), causing the combustion towards the Lambda setpoint (ls) is controlled. Will the Ionization voltage setpoint (Uis) exceeded, then the control circuit (7) controls the gas solenoid valve (4) in this way indicates that the gas supply is reduced, whereby the Lambda value is regulated again to the lambda setpoint (ls). This applies to the control area (RB) and also to Combustion states outside the control range (RB).
- the gas solenoid valve (4) is opened to to reach the Lambda setpoint (ls) again.
- the Ionization voltage (Ui) within that of the timer predetermined duration, for example 3 s to 10 s, especially 5 s, then back in the control range (RB) nothing else happens.
- the burner (1) continues to run and the timer is reset.
- control circuit (7) there is a starting gas ramp given (see Fig. 4), according to which in a Safety time (T) by controlling the gas quantity valve (4) each time the burner (1) starts, the gas pressure or Gas volume flow is continuously increased from pmin to pmax.
- pmin and pmax are dimensioned in such a way that with each Wobbe number the gas family in question, for example natural gas, the Burner starts safely.
- the control circuit (7) works as, preferably digital, PI controller, which uses the ionization voltage a sampling period of, for example, those mentioned above 100 ms detected and with the same frequency the new one Value for the control signal (J) calculated.
- the respective Control signal change (dJ) consists of the by the I control part caused changes and that compared to last control value changed P control portion together.
- the situation is similar when the burner (1) in a performance level (S1) higher performance and in one Power level (S2) of lower power through appropriate Fan speed setting should be operated (see Fig.5b).
- the control circuit (7) detects the Fan speed or determines the load from the position of the connected gas solenoid valve (4) via the Line (17) and provides the same Ionization voltage setpoint (Uis) in the larger Power level (S1) higher values of the control signal (J) than in the lower power level (S2) (see Fig.5b).
- Figure 6 shows the control signal change (dJ) in Dependence on the control deviation (d) of the respective Ionization voltage (Ui) from the target ionization voltage (Uis). It can be seen that with the same size positive and negative control deviations (d) the Control signal change (dJ) with positive control deviations (above dp1) is greater than with the same negative Control deviations (below dn1). Figure 6 also shows that the P control part only starts from a certain positive or negative control deviation (dp1, dn1) becomes active. There is no difference between the control deviations (dnl and dp1) Control signal change (dJ).
- the P control component is shown in dotted lines in FIG. 6.
- the I control component is with a solid line indicated. In the event of negative system deviations, the I control component for a longer reset time than for positive control deviations.
- the modulation current (J) is an alternating current, for example with the network frequency of the Control circuit (7) superimposed.
- the amplitude of the superimposed AC component is much smaller as the control signal (J) as such, for example is between 30 mA and 150 mA.
- Through the overlaid AC component is due to the mechanical structure of the gas solenoid valve (4) conditional valve hysteresis reduced so that the gas solenoid valve (4) Control signal changes (dJ) quickly in both directions appeals.
- the burner becomes a very low calorific gas delivered and the fan speed can not be lower to maintain full load, then it can even when the gas solenoid valve is opened to the maximum (4) or maximum control signal (J) that the Combustion is switched off. To avoid this, so Maintaining the heating operation is for one a higher value of the air ratio is permitted for a limited time. Accordingly, the control circuit for the ionization voltage setpoint (Uis) for a limited time.
- the relationships are shown in FIG. 7. In the Control circuit (7) are threshold values (J1, J2) for the Control signal (J) specified.
- the control circuit (7) first increases that Control signal (J) in the manner described to the Increase gas supply accordingly. However, the top Threshold (J1) is reached, then the Control circuit (7) the ionization voltage setpoint Uisn (a in Fig. 7). This is a minor one Linked to increase in lambda, however it is ensures that the burner (1) continues to burn. The Control signal (J) will then move towards the decrease the lower threshold (J2) if the gas is not becomes even lower calorific (arrow b in Fig. 7), which leads to a control shutdown or a lockout would lead. Then the lower threshold (J2) reached, then the control circuit (7) switches (see c in Fig.7) back to the original Ionization voltage setpoint (Uis) back.
- the relationships between the Ionization electrode (5) and that of the gas solenoid valve (4) set gas flow, for example by Combustion residues on the ionization electrode (5) and / or their bending and / or wear or Move deposits in the gas quantity valve (4). It is therefore a calibration function in the control circuit (7) integrated.
- the calibration function is in regular Intervals, through an event counter, for example Counter of the switch-on or switch-off processes, or by a Operating hours counter activated.
- the control function described is switched off.
- the Calibration is preferably not done by itself changing speed of the fan (2) to the influence of Fan (2) to suppress the combustion. Cheap is to calibrate at a medium speed perform so as not to turn on during calibration Modulation limits of the control signal (J).
- the Calibration can also be done while switching the Blower (2) from one power level to the other Power level take place because the speed change in Compared to the calibration process is slow, so that the Speed virtually constant during the calibration process is.
- the calibration process is carried out at time (t1) (see Fig. 8) from the event or operating hours counter during the transition from the full load level to the partial load level of the blower (2) started when the decreasing modulation current (J) reached a low value (Jk). This value is from the control circuit. It is then from the Control circuit (7) the modulation current (J) and thus over the gas solenoid valve (4) increases the gas supply, causing the Ionization voltage (Ui) increases accordingly. To the At time (t2) the ionization voltage (Ui) reaches one predetermined value, for example 0.9 Uimax.
- the Time period (t1 to t2) serves to start the preheating the ionization electrode (5). From the time (t2) until the time (t3) the modulation current (J) remains constant held. During this period (t2 to t3) it heats up the ionization electrode (5) to a stable temperature and thereby guarantees reproducible measured values.
- the modulation current (J) is increased further until the Ionization voltage (Ui) again about 10% below that Uimax value, which is in Figure 8 at time (t4) Case is.
- the lambda value is in the period (t3 to t4) the incineration itself is unfavorable, but this does not ins Weight drops because this time span is at most a few Takes seconds.
- the control circuit (7) switches including the previously saved Modulation current (JK) again on the above described Control process back. This starts when the Time (t5) the ionization voltage (Ui), the Modulation current (J) and the gas pressure (p) stabilized to have.
- Measured values obtained are directed by the control circuit (7) a correspondingly adjusted new setpoint for the Ionization voltage (Uis).
- Control circuit (7) will also change in the period (t3 to t4) result in a series of measured values. Compared to the other measured values of the series strongly differing measured values are suppressed because they rely on external electrical Interference may be based.
- the first transfer criterion detects a sudden one Change all components of the control loop. It is fulfilled if the deviation of the new calibration value is sufficiently small from the previous calibration values.
- the second handover criterion records a "creeping Drift "of the system (burner control), which in the event of deviation sufficient from the values provided by the manufacturer is small.
- the control unit (9) switches the safety valve (10) and the blower (2) depending on the heat requirement and the gas pressure in the usual way ("normal Control shutdown ").
- the repeated shutdowns are controlled by counters detected.
- the counters for the control shutdown a, b, or Lockouts f, g, are caused by any "normal Control shutdown "of the control automat (9) reset.
- the counter for the control shutdowns c, d, e, or Lockout h, is with a valid calibration reset.
- the lockout can also be initiated by that the control circuit (7) by means of the gas solenoid valve (4) of the minimum value of the control signal (J) closes.
- the Contact of the gas pressure switch (11) initially remains closed.
- the control unit (9) then provides the Line (15) an extinguishing of the burner flame firmly, whereupon he closes the safety valve (10).
- the tax automat (9) then tries to ignite the burner (1) again, whereby the safety valve (10) is connected to the mains voltage, which also through the line (16) Control circuit (7) is transmitted.
- the attempt to ignite can not succeed because the gas solenoid valve (4) closed is.
- the ignition controller (9) opens in vain attempts to ignite "Fault" and reports "Ignition not possible".
- the Control circuit (7) counts the ignition attempts of the Control automaton (9) and then opens after a certain one Time, for example 10s after the end of the fourth Try the switch (12) so that the control unit (9) now for safety also the safety valve (10) closes. It is therefore a high level of operational security reached, the existing in the control automat (9) Security features are exploited.
- a blower is connected to a burner (1) of a gas heater (2) and a gas line (3) connected in the one Gas solenoid valve (4) as a gas quantity valve.
- a burner (1) of a gas heater (2) and a gas line (3) connected in the one Gas solenoid valve (4) as a gas quantity valve in the Flame area of the burner (1) is one Ionization electrode (5) arranged on a Control circuit (7) is connected.
- About the Line (6 ') is the signal of the ionization electrode (5) also to those described in more detail below Automatic burner controls (9).
- the control circuit (7) controls in Dependence on one in the burning operation over the 'Ionization electrode (5) flowing current and a preset lambda setpoint using a Control signal (J), especially control current, the degree of opening the gas solenoid valve (4).
- the control circuit (7) is for example a digital PI controller that realized, for example, by a microprocessor is. Through the control circuit (7) is a low emissions Combustion, for example with a lambda setpoint between 1.1 and 1.35, preferably at 1.15, guaranteed.
- the fan speed is controlled by an automatic control unit (9) provided, as for example under the trade name "Furimat” is known on the market.
- a safety valve (10) can be switched on and off, whereas with the gas solenoid valve (4) the gas volume flow is continuously adjustable.
- a setpoint generator (8) connected, one of a Target room temperature and / or one Heating flow temperature and / or one Heating return temperature and an outside temperature dependent signal on the control automat (9).
- a gas pressure switch (11) is located in the gas line (3) via the control automat (9) during the burning operation switches off insufficient gas pressure.
- a switch (12) is integrated, which over the Control unit (9) interrupts the burning operation when the desired lambda setpoint cannot be guaranteed.
- the control automat (9) gives each Switching on an ignition pulse to an ignition electrode (14) the burner (1).
- On the speed of the fan (2) determining signal is from the control machine (9) via a line (17 ') on the one hand to the blower (2) and on the other hand, placed on an evaluation circuit (18).
- the device-specific is in the evaluation circuit (18) Speed, i.e. Power control signal characteristic curve (K) filed.
- This characteristic curve - regardless of the respective setting of the control circuit (7) - the Connection between the at a respective Fan speed for reaching the desired one Burner output necessary opening degree of Gas solenoid valve (4).
- the evaluation circuit (18) generates a reference signal according to the characteristic (K) (J '). It detects the change in a circuit part (19) of the reference signal (J ') against the previous one Status. This corresponds to the change in speed Change (dJ ') has a positive or negative impact on you Adders (20) to the control signal (J) as a reserve component. This makes the control signal (J) corresponding to the Speed change parallel to the control circuit (7) to the desired power or the fan speed adjusted.
- the gas solenoid valve (4) is one of the desired Change in service approximately corresponding amount further opened or closed.
- the control circuit (7) must therefore change the desired performance itself do not process. It regulates the respective Power setting the gas solenoid valve (4) to the for a low-emission combustion necessary lambda setpoint.
- the reference signal (J ') and that around the reserve component (dJ') changed control signal (J) are sent to a comparator (21) placed.
- This is connected to a correlator (22) in which is a tolerance band with an upper tolerance limit (To) and a lower tolerance limit (Tu) is stored (see Fig. 2).
- the correlator (22) detects whether the respective value still within the tolerance band (To, Tu) lies, or migrated outside the tolerance band is. Is the respective value of the reserve share (dJ ') changed control signal (J) from the by Characteristic curve (K) hiked tolerance band, then this is a sign that due to any Malfunctions a low-emission combustion in the desired Dimensions is no longer guaranteed.
- the automatic control unit (9) after a certain time after switching off the burner (1) starts again. Then the shutdown signal from Correlator (22) several times, for example three times, then the automatic control unit (9) is switched to malfunction, so that the burner (1) only again by service personnel can be switched on.
- the functions of the evaluation circuit (18) with the Storage of the characteristic (K), the circuit part (19), the Adder (20), the comparator (21) and the correlator (22) can be implemented in a microprocessor that at the same time the functions of the control circuit (7) takes over.
- the characteristic curve (K) is shown in FIG. 10, in which Point I the blower (2) at a speed (D1) for one low power level is running. This corresponds ideally Case - without the necessary by the control circuit (7) Readjustment - a control signal reference signal (J'1). At a higher speed (D2) for a larger one The power level results from the characteristic curve (K) (cf. Point II) corresponding to a reference signal (J'2). Between points I and II the characteristic (K) runs in essentially linear. But this does not necessarily have to be rather, it can also have a kinking curve. This is above and below the characteristic curve (K) Tolerance band with its upper tolerance limit (To) and its lower tolerance limit (Tu). Within the Tolerance limits are that of the control circuit (7) dominant control range. The tolerance band does not have to run symmetrically to the characteristic (K). It can vary the specific device properties also asymmetrical or even spread or according to special functions be defined.
- the Correlator (22) no switch-off signal. Comes this value however at the speed (D1) or the speed (D2) or an intermediate speed outside the Tolerance band, then the shutdown signal is initiated.
- gas burner (1) for a gas heater Gas line (3) connected in which a switchable and adjustable gas valve (4), for example solenoid valve, lies.
- a switchable and adjustable gas valve (4) for example solenoid valve
- At the gas burner (1) are an air connection (2 ') and possibly an air-promoting, speed-controllable Blower (2) arranged.
- the blower (2) is not in everyone Case necessary; it can also be one act atmospheric gas burner.
- Ionization electrode (5) One protrudes into the flame area of the gas burner (1) Ionization electrode (5).
- Ionization electrode (5) On the ionization electrode (5) is a via a capacitive coupling element (27) AC voltage, preferably the mains AC voltage (U), activated.
- the coupling element (27) consists of a Capacitor and a resistor.
- the coupling link (27) is connected via a resistor (28), like the gas burner (1), electrically to earth.
- a voltage divider (29) connected to the voltage that occurs, for example, reduced by a factor of 10. With the Voltage divider (29) is connected to a filter (210) the frequency of the coupled AC voltage (50 Hz) sieves.
- ionization voltage Uio ionization voltage
- the ionization signal inevitably fluctuates accordingly flickering flames (fluctuations in Flame intensity) around an average (M). in the Fluctuation curve occur weaker one after the other Fluctuations caused by the bandwidth (S1) in Figure 12 are indicated, and stronger fluctuations due to the bandwidth (S2) are shown in Figure 12.
- FIG. 1 An example of a decreasing temporal is in FIG The course of the mean (M) is shown, which is at a change in the excess air (lambda value) of the the respective combustion process and the respective lambda value is proportional.
- the output (213) of the first function block (212) is on second function block (214) downstream, the one around the mean (M) lying amplitude tolerance band generated, the width of which is denoted by B in FIG.
- the tolerance range (B) is such that it is smaller than the smallest bandwidth (S1) Fluctuations.
- the output (215) of the function block (214) is at one Comparator function block (216), on which the Exit (211) is.
- the comparator function block (216) is on the output side. at a reset input of a Timer (217) which is based on a control device (218) for the gas valve (4) acts.
- a control device (218) is common as a "burner control”.
- Control device (218) only the output signal of the Timer (217) in a shutdown signal for the Convert the gas valve (4).
- the comparator function block (216) constantly compares whether an amplitude fluctuation in the ionization signal (Ui) occurs that the amplitude tolerance band (B) over or falls below. Such an amplitude fluctuation occurs on, the comparator function block (216) inputs Reset signal to the timer (217).
- the timer (217) is activated by each reset signal of the Comparator function blocks (216) set to zero and then starts counting again and again. Is that on Timer (217) preset duration, for example 5 s, has expired and is not in this period Reset signal occurred, then the timer (217) a gas shutdown signal to the controller (218) that then the gas valve (4) closes.
- the said The time period is set in such a way that undisturbed burner operation an amplitude fluctuation of the Ionization signal occurs safely. To the It is also possible to avoid making the sensitivity too high be provided that the gas valve is only switched off if some, for example two or three Sequence of gas cut-off signals.
- FIG. 11 there is an output (213) Control circuit (219 or 7), such as in the DE 44 33 425 A1 is described. With this it will Gas valve (4) and / or the blower (2) regulated so that different gas qualities and different environmental conditions Combustion at a desired lambda setpoint results.
- the control circuit (219) and the components described (29 to 217) can be in a microcontroller or Realize microprocessor. The effort for that Safety flame monitoring is therefore low.
- Figure 14 shows a further embodiment schematically.
- Figure 11 corresponding parts are with the provided there reference numerals.
- a modulator (220) connected to the gas valve (4) . This modulates the Gas supply to the gas burner (1) so that fluctuations in the Flame intensity result. Such deliberate fluctuations the flame intensity can also be achieved that the air supply, for example by means of the blower (2) (see Fig. 11), is specifically modulated.
- the modulation can be continuous or periodic, for example every 5 s to 10 s during one in contrast, a short time, for example 1 s to 3 s, respectively.
- periodic modulation ensures that over the burn time seen the Modulation has only a slight influence on the lambda value of the combustion process.
- the control circuit (219 or 7) is not in FIG. 14 shown. You can also in this embodiment to be available. The control circuit works with one Microprocessor or microcontroller, then can also this embodiment, the function of the safety flame monitoring simply be integrated into it.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Regulation And Control Of Combustion (AREA)
- Control Of Combustion (AREA)
- Gas Burners (AREA)
- Feeding And Controlling Fuel (AREA)
Description
Claims (17)
- Verfahren zum Betrieb eines Gasbrenners, insbesondere Gasgebläsebrenners(1), wobei von einer Regelschaltung(7) ein von einer im Flammenbereich angeordneten Ionisationselektrode(5) abgeleitetes Ionisationssignal(Ui) erfaßt wird und das Gas-Luftverhältnis(Lambda I) durch Änderung des dem Brenner(1) zugeführen Gas- und/oder Luftvolumenstroms auf einen Lambdasollwert >1 geregelt wird, dem ein Sollwert(Uis) des Ionisationssignals entspricht,
dadurch gekennzeichnet,
daß ein zugelassener Regelbereich(RB) des Ionisationssignals(Ui) festgelegt wird, dessen oberer Grenzwert(Uio) kleiner als der Maximalwert(Uim) des Ionisationssignals (Ui) ist und dessen unterer, noch einen emissionsarmen Betrieb gewährleistender Grenzwert(Uiu) über einem Endwert(Uie) liegt, bei welchem die Verbrennung nicht mehr emissionsarm ist, und daß von der Regelschaltung(7) ein Abschaltsignal für den Brenner(1) erzeugt wird, wenn das Ionisationssignal(Ui) länger als eine vorgegebene Zeitdauer den zugelassenen Regelbereich (RB) verläßt, und daß beim Unterschreiten des unteren Grenzwerts(Uiu) des Ionisationssignals(Ui) und beim Unterschreiten des Sollwerts(Uis) des Ionisationssignals(Ui) bei einem Lambdawert <1 infolge Mitkopplung der Regelschaltung(7) der Gasvolumenstrom erhöht bzw. der Luftvolumenstrom gedrosselt wird und zwar bis zu dem Endwert(le bzw. Uie), bei welchem die Verbrennung nicht mehr emissionsarm ist und bei dessen Erreichen ein weiteres Abschaltsignal von der Regelschaltung(7) für den Brenner (1) erzeugt wird. - Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
daß nach dem Abschaltsignal die Regelschaltung(7) den Brenner(1) erneut startet und daß dann, wenn mehrmals nacheinander eine solche Regelabschaltung erfolgt, die Regelschaltung(7) eine Störabschaltung vornimmt. - Verfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet, daß ein die vorgegebene Zeitdauer bestimmende Zeitglied zurückgesetzt wird, wenn das Ionisationssignal(Ui) innerhalb der vorgegebenen Zeitdauer in den Regelbereich(RB) zurückkommt. - Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß der Endwert ein Maximalwert und/oder Minimalwert eines Steuersignals(J) für das Gasmagnetventil(4) ist. - Verfahren nach Anspruch 4,
dadurch gekennzeichnet,
daß bei Erreichen des Minimalwertes des Steuersignals(J) des Gasmagnetventils(4) dies elektronisch erfaßt, und der Brenner(1) durch Schließen eines Sicherheits-Gasventils(10) abgeschaltet wird. - Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß bei einem Startsignal für den Brenner(1) der Gasvolumenstrom bei konstanter Gebläsedrehzahl rampenförmig erhöht wird, bis der Brenner zündet und danach bis zum Ablauf einer vorgegebenen Sicherheitszeit(T) der Gasvolumenstrom konstant gehalten wird. - Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, daß beim Erreichen eines oberen Schwellwerts(J1) des Steuersignals(J) die Regelschaltung(7) auf einen niedrigen Sollwert(Uisn) des Ionisationssignals(Ui) umschaltet und danach bei Erreichen eines unteren Schwellwerts(J2) des Steuersignals(j) auf den vorherigen Sollwert(Uis) des Ionisationssignals(Ui) zurückschaltet. - Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß die Regelschaltung(7) in regelmäßigen Intervallen auf einen Kalibriervorgang für das Ionisationssignal(Ui) umschaltet. - Verfahren nach Anspruch 8,
dadurch gekennzeichnet,
daß in jedem Kalibriervorgang das Steuersignal(J) für das Gasmagnetventil(4) zunächst auf einen für eine Vorerhitzung der Ionisationselektrode(5) geeigneten Wert gebracht wird und danach das Steuersignal(J) erhöht wird, bis der Maximalwert des Ionisationssignals(Ui) durchfahren ist und der sich ergebende Wert zur Kalibrierung ausgewertet wird. - Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß zur Steuerung des Gasbrenners(1) ein an sich bekannter Steuerautomat(9) mit Sicherheitsventil(10) und Gasdruckwächter(11) vorgesehen ist, und daß die Regelschaltung(7) ein Gasmagnetventil(4) steuert und das von ihr erzeugte Abschaltsignal an den Steuerautomaten(9) gelegt ist. - Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß ein Steuerautomat(9) die Gebläsedrehzahl entsprechend einem Leistungssollwert steuert und daß von einer Auswerteschaltung(18) aus der jeweiligen Änderung der Gebläsedrehzahl ein Vorhalteanteil(dJ') für das Steuersignal(J) erzeugt wird, wobei der Vorhalteanteil (dJ') bei zunehmender Gebläsedrehzahl das Steuersignal(J) in Richtung eines größeren Gasvolumenstromes und bei abnehmender Gebläsedrehzahl in Richtung eines kleineren Gasvolumenstromes ändert. - Verfahren nach Anspruch 11,
dadurch gekennzeichnet,
daß um eine Leistungs-Steuersignal-Kennlinie ein Toleranzband definiert wird und daß dann, wenn ein Ist-Steuersignal das Toleranzband verläßt, ein Abschaltsignal für den Brenner erzeugt wird. - Verfahren nach einem der vorhergehenden Ansprüche, zur Sicherheits-Flammenüberwachung bei einem Gasbrenner(1) mit der Ionisationselektrode (5) im Flammenbereich, von der während des Brennerbetriebs ein Ionisationssignal (Ui) abgeleitet wird,
dadurch gekennzeichnet,
daß während des Brennerbetriebs die sich aus Schwankungen der Flammenintensität ergebenden Schwankungen des daraus abgeleiteten elektrischen Ionisationssignals (Ui) überwacht werden, und daß dann, wenn solche Schwankungen des Ionisationssignals (Ui) nicht auftreten, ein Gasabschaltsignal ausgelöst wird. - Verfahren nach Anspruch 13,
dadurch gekennzeichnet,
daß das Ionisationssignal (Ui) auch zur Regelung der Verbrennung auf einen Lambda-Sollwert (ls) ausgewertet wird. - Verfahren nach Anspruch 13 oder 14,
dadurch gekennzeichnet,
daß die überwachten Schwankungen solche Schwankungen des Ionisationssignals (Ui) sind, die sich aus einer der Verbrennungsgas- und/oder Verbrennungsluftzufuhr aufgeprägten Modulation ergeben. - Verfahren nach einem der vorhergehenden Ansprüche 13 bis 15,
dadurch gekennzeichnet,
daß ein erster Funktionsblock(12) die Schwankungen des Ionisationssignals(Ui) unterdrückt bzw. gleichrichtet, daß ein nachgeschalteter zweiter Funktionsblock(14) ein Amplituden-Toleranzband(B) um das Ausgangssignal des ersten Funktionsblocks(12) erzeugt, wobei das Amplituden-Toleranzband(B) so bemessen ist, daß es kleiner ist als die im Ionisationssignal(Ui) immer wiederkehrenden Amplitudenschwankungen, daß das Ausgangssignal des zweiten Funktionsblocks(14) und das die Schwankungen enthaltende Ionisationssignal(Ui ) an einen Komparator-Funktionsblock(16) gelegt sind, der dann ein Rücksetzsignal an einen Zeitgeber(17) gibt, wenn eine Amplitudenschwankung des Ionisationssignals (Ui) über oder unter das Amplituden-Toleranzband(B) hinausgeht, und daß der Zeitgeber(17), wenn er nicht nach einer voreingestellten Zeitdauer ein Rücksetzsignal erhält, dann das Gasabschaltsignal auslöst. - Verfahren nach Anspruch 15,
dadurch gekennzeichnet,
daß in der Verbrennungsgas- und/oder Verbrennungsluftzufuhr des Gasbrenners(1) ein Modulator(20) angeordnet ist, dem ein Demodulator(21) für das Ionisationssignal(Ui ) zugeordnet ist, der das Gasabschaltsignal auslöst, wenn er das Modulationssignal nicht erkennt.
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19618573 | 1996-05-09 | ||
DE19618573A DE19618573C1 (de) | 1996-05-09 | 1996-05-09 | Verfahren und Einrichtung zum Betrieb eines Gasbrenners |
DE19627857 | 1996-07-11 | ||
DE19627857A DE19627857C2 (de) | 1996-07-11 | 1996-07-11 | Verfahren zum Betrieb eines Gasgebläsebrenners |
DE19631821A DE19631821C2 (de) | 1996-08-07 | 1996-08-07 | Verfahren und Einrichtung zur Sicherheits-Flammenüberwachung bei einem Gasbrenner |
DE19631821 | 1996-08-07 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0806610A2 EP0806610A2 (de) | 1997-11-12 |
EP0806610A3 EP0806610A3 (de) | 1998-04-15 |
EP0806610B1 true EP0806610B1 (de) | 2001-07-04 |
Family
ID=27216215
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97105850A Expired - Lifetime EP0806610B1 (de) | 1996-05-09 | 1997-04-09 | Verfahren zum Betrieb eines Gasbrenners |
Country Status (7)
Country | Link |
---|---|
US (1) | US5899683A (de) |
EP (1) | EP0806610B1 (de) |
AT (1) | ATE202837T1 (de) |
CA (1) | CA2204689C (de) |
DE (1) | DE59703939D1 (de) |
DK (1) | DK0806610T3 (de) |
ES (1) | ES2158400T3 (de) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005024763B3 (de) * | 2005-05-31 | 2006-06-08 | Stiebel Eltron Gmbh & Co. Kg | Heizgerät und Verfahren zum Steuern eines Heizgerätes |
DE102006006964A1 (de) * | 2006-02-14 | 2007-08-23 | Ebm-Papst Landshut Gmbh | Verfahren zum Starten einer Feuerungseinrichtung bei unbekannten Rahmenbedingungen |
DE102008005216B3 (de) * | 2008-01-18 | 2009-07-23 | Honeywell Technologies Sarl | Verfahren zum Betreiben eines Gasbrenners |
US11231174B2 (en) | 2017-03-27 | 2022-01-25 | Siemens Aktiengesellschaft | Detecting blockage of a duct of a burner assembly |
Families Citing this family (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19831648B4 (de) * | 1998-07-15 | 2004-12-23 | Stiebel Eltron Gmbh & Co. Kg | Verfahren zur funktionalen Adaption einer Regelelektronik an ein Gasheizgerät |
EP1026446B1 (de) * | 1999-02-03 | 2004-09-15 | Riello S.p.a. | Gas Regelanlage |
DE19936696A1 (de) * | 1999-08-04 | 2001-02-08 | Ruhrgas Ag | Verfahren zum Betreiben eines Vormischbrenners |
US6299433B1 (en) * | 1999-11-05 | 2001-10-09 | Gas Research Institute | Burner control |
DE10003819C1 (de) * | 2000-01-28 | 2001-05-17 | Honeywell Bv | Verfahren zum Betreiben eines Gasbrenners |
DE10025769A1 (de) | 2000-05-12 | 2001-11-15 | Siemens Building Tech Ag | Regeleinrichtung für einen Brenner |
DE10040358B4 (de) * | 2000-08-16 | 2006-03-30 | Honeywell B.V. | Regelungsverfahren für Gasbrenner |
DE10113468A1 (de) * | 2000-09-05 | 2002-03-14 | Siemens Building Tech Ag | Regeleinrichtung für einen Luftzahlgeregelten Brenner |
ES2346399T3 (es) * | 2000-09-21 | 2010-10-15 | Abb Schweiz Ag | Configuracion de un sistema de control de una instalacion electrica. |
EP1207340B1 (de) * | 2000-11-18 | 2005-01-12 | BBT Thermotechnik GmbH | Verfahren zur Regelung eines Gasbrenners |
DE10057233C2 (de) * | 2000-11-18 | 2003-04-10 | Buderus Heiztechnik Gmbh | Gasbrenner für ein Heizgerät |
DE10125574A1 (de) * | 2001-05-25 | 2002-11-28 | Siemens Building Tech Ag | Flammenüberwachungsvorrichtung |
EP1304527B1 (de) * | 2001-10-18 | 2004-12-15 | Honeywell B.V. | Verfahren zur Regelung eines Boilers |
DE10214879A1 (de) * | 2002-04-04 | 2003-10-16 | Solo Kleinmotoren Gmbh | Verfahren zur Überwachung eines Gasgeräts, insbesondere eines Wärmeerzeugers, mit überwiegend flammloser Oxidation und Überwachungsmodul zur Durchführung des Verfahrens |
DE10322217B4 (de) * | 2003-05-16 | 2005-03-10 | Miele & Cie | Einstelleinrichtung für ein Gaskochgerät und Gaskochgerät |
DE10341543A1 (de) * | 2003-09-09 | 2005-04-28 | Honeywell Bv | Regelungsverfahren für Gasbrenner |
DK1522790T3 (da) * | 2003-10-08 | 2012-03-19 | Vaillant Gmbh | Fremgangsmåde til regulering af en gasbrænder, navnlig ved varmeinstallationer med blæser |
DE102004055716C5 (de) * | 2004-06-23 | 2010-02-11 | Ebm-Papst Landshut Gmbh | Verfahren zur Regelung einer Feuerungseinrichtung und Feuerungseinrichtung (Elektronischer Verbund I) |
DE102004058087A1 (de) * | 2004-12-01 | 2006-06-08 | G. Kromschröder AG | Verfahren zum Brennerstart eines Gasheizgeräts |
EP1741979A1 (de) * | 2005-07-05 | 2007-01-10 | Betronic Design B.V. | Flammenüberwachungssystem |
ITMO20050204A1 (it) | 2005-08-02 | 2007-02-03 | Merloni Termosanitari Spa | Metodo di controllo della combustione a ricerca guidata del set point |
US7051683B1 (en) | 2005-08-17 | 2006-05-30 | Aos Holding Company | Gas heating device control |
US9228746B2 (en) * | 2006-05-31 | 2016-01-05 | Aos Holding Company | Heating device having a secondary safety circuit for a fuel line and method of operating the same |
KR100805630B1 (ko) * | 2006-12-01 | 2008-02-20 | 주식회사 경동나비엔 | 가스보일러의 연소장치 |
US8751173B1 (en) | 2007-03-28 | 2014-06-10 | LDARtools, Inc. | Management of response to triggering events in connection with monitoring fugitive emissions |
DK2020572T3 (da) * | 2007-07-31 | 2013-04-08 | Sit La Precisa Spa | Automatisk indretning til tænding og regulering af et gasapparat og tilhørende fremgangsmåde til drift |
US7927095B1 (en) * | 2007-09-30 | 2011-04-19 | The United States Of America As Represented By The United States Department Of Energy | Time varying voltage combustion control and diagnostics sensor |
US8274402B1 (en) | 2008-01-24 | 2012-09-25 | LDARtools, Inc. | Data collection process for optical leak detection |
NL1035791C2 (nl) * | 2008-08-05 | 2009-06-10 | Philip Emanuel Bosma | Meetmethode welke door middel van een elektrische stroom via twee elektroden door een vlam heen kontroleert of de brander van een gasgestookt apparaat de brandstof daadwerkelijk verbrandt zodat deze na de ontsteking blijft branden. |
DE102010008908B4 (de) * | 2010-02-23 | 2018-12-20 | Robert Bosch Gmbh | Verfahren zum Betreiben eines Brenners und zum Luftzahl-geregelten Modulieren einer Brennerleistung |
DE102010046954B4 (de) * | 2010-09-29 | 2012-04-12 | Robert Bosch Gmbh | Verfahren zur Kalibrierung, Validierung und Justierung einer Lambdasonde |
US8587319B1 (en) * | 2010-10-08 | 2013-11-19 | LDARtools, Inc. | Battery operated flame ionization detector |
US8821154B2 (en) * | 2010-11-09 | 2014-09-02 | Purpose Company Limited | Combustion apparatus and method for combustion control thereof |
US9249988B2 (en) * | 2010-11-24 | 2016-02-02 | Grand Mate Co., Ted. | Direct vent/power vent water heater and method of testing for safety thereof |
AT510002B1 (de) * | 2010-12-20 | 2012-01-15 | Vaillant Group Austria Gmbh | Verfahren zur regelung eines gas-/luftgemisches |
DE102010055567B4 (de) * | 2010-12-21 | 2012-08-02 | Robert Bosch Gmbh | Verfahren zur Stabilisierung eines Betriebsverhaltens eines Gasgebläsebrenners |
EP2667097B1 (de) * | 2012-05-24 | 2018-03-07 | Honeywell Technologies Sarl | Verfahren zum Betrieb eines Gasbrenners |
EP3073195B1 (de) * | 2015-03-23 | 2019-05-08 | Honeywell Technologies Sarl | Verfahren zur kalibrierung eines gasbrenners |
ITUB20152534A1 (it) * | 2015-07-28 | 2017-01-28 | Sit Spa | Metodo per il monitoraggio e controllo della combustione in apparecchi bruciatori a gas combustibile e sistema di controllo della combustione operante in accordo con tale metodo |
ITUB20159682A1 (it) * | 2015-12-23 | 2017-06-23 | Idea S P A | Metodo e dispositivo di controllo della combustione di un bruciatore |
EP3228936B1 (de) | 2016-04-07 | 2020-06-03 | Honeywell Technologies Sarl | Verfahren zum betrieb eines gasbrennergeräts |
DE102016123041B4 (de) * | 2016-11-29 | 2023-08-10 | Webasto SE | Brennstoffbetriebenes Fahrzeugheizgerät und Verfahren zum Betreiben eines brennstoffbetriebenen Fahrzeugheizgerätes |
DE102016225752A1 (de) * | 2016-12-21 | 2018-06-21 | Robert Bosch Gmbh | Verfahren zur Kontrolle eines Brennstoff-Luft-Verhältnisses in einem Heizsystem sowie eine Steuereinheit und ein Heizsystem |
CN106907735B (zh) * | 2017-02-22 | 2019-05-17 | 大唐国际发电股份有限公司陡河发电厂 | 200mw机组送风机和吸风机跳闸rb控制方法 |
US10948192B2 (en) * | 2018-05-03 | 2021-03-16 | Grand Mate Co., Ltd. | Gas appliance and control method thereof |
EP3814685A4 (de) * | 2018-06-28 | 2022-03-23 | ClearSign Technologies Corporation | Sensor für gasgemisch mit variabler zusammensetzung |
US10801722B2 (en) * | 2018-07-16 | 2020-10-13 | Emerson Electric Co. | FFT flame monitoring for limit condition |
DE102019107367A1 (de) * | 2019-03-22 | 2020-09-24 | Vaillant Gmbh | Verfahren zum Prüfen des Vorhandenseins einer Rückschlagklappe in einer Heizungsanlage |
DE102020102117A1 (de) * | 2020-01-29 | 2021-07-29 | Ebm-Papst Landshut Gmbh | Verfahren zur Optimierung eines Toleranzbereichs einer Regelungskennlinie einer elektronischen Gemischregelung bei einem Gasheizgerät |
CN116898296B (zh) * | 2023-09-13 | 2023-12-15 | 广东万和电气有限公司 | 一种小火防风烤炉及点火方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DD41519A (de) * | ||||
US2324821A (en) * | 1939-02-08 | 1943-07-20 | Gen Electric | Measuring and control method and apparatus |
JPS56157725A (en) * | 1980-05-07 | 1981-12-05 | Hitachi Ltd | Proportional combustion device |
US4588372A (en) * | 1982-09-23 | 1986-05-13 | Honeywell Inc. | Flame ionization control of a partially premixed gas burner with regulated secondary air |
DE3630177A1 (de) * | 1986-09-04 | 1988-03-10 | Ruhrgas Ag | Verfahren zum betreiben von vormischbrennern und vorrichtung zum durchfuehren dieses verfahrens |
FR2638819A1 (fr) * | 1988-11-10 | 1990-05-11 | Vaillant Sarl | Procede et un dispositif pour la preparation d'un melange combustible-air destine a une combustion |
US5049063A (en) * | 1988-12-29 | 1991-09-17 | Toyota Jidosha Kabushiki Kaisha | Combustion control apparatus for burner |
JPH03158918A (ja) * | 1989-11-17 | 1991-07-08 | Ricoh Co Ltd | 電子フアイリング装置のカーソル制御装置 |
DE4309454C2 (de) * | 1993-03-24 | 1997-03-06 | Dungs Karl Gmbh & Co | Ionisationsflammenwächter |
GB9400289D0 (en) * | 1994-01-08 | 1994-03-09 | Carver & Co Eng | Burner control apparatus |
US5472337A (en) * | 1994-09-12 | 1995-12-05 | Guerra; Romeo E. | Method and apparatus to detect a flame |
DE4433425C2 (de) * | 1994-09-20 | 1998-04-30 | Stiebel Eltron Gmbh & Co Kg | Regeleinrichtung zum Einstellen eines Gas-Verbrennungsluft-Gemisches bei einem Gasbrenner |
-
1997
- 1997-04-09 ES ES97105850T patent/ES2158400T3/es not_active Expired - Lifetime
- 1997-04-09 DE DE59703939T patent/DE59703939D1/de not_active Expired - Lifetime
- 1997-04-09 EP EP97105850A patent/EP0806610B1/de not_active Expired - Lifetime
- 1997-04-09 DK DK97105850T patent/DK0806610T3/da active
- 1997-04-09 AT AT97105850T patent/ATE202837T1/de active
- 1997-05-02 US US08/850,789 patent/US5899683A/en not_active Expired - Lifetime
- 1997-05-07 CA CA002204689A patent/CA2204689C/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005024763B3 (de) * | 2005-05-31 | 2006-06-08 | Stiebel Eltron Gmbh & Co. Kg | Heizgerät und Verfahren zum Steuern eines Heizgerätes |
DE102006006964A1 (de) * | 2006-02-14 | 2007-08-23 | Ebm-Papst Landshut Gmbh | Verfahren zum Starten einer Feuerungseinrichtung bei unbekannten Rahmenbedingungen |
DE102006006964B4 (de) * | 2006-02-14 | 2012-09-06 | Ebm-Papst Landshut Gmbh | Verfahren zum Starten einer Feuerungseinrichtung bei unbekannten Rahmenbedingungen |
DE102008005216B3 (de) * | 2008-01-18 | 2009-07-23 | Honeywell Technologies Sarl | Verfahren zum Betreiben eines Gasbrenners |
US11231174B2 (en) | 2017-03-27 | 2022-01-25 | Siemens Aktiengesellschaft | Detecting blockage of a duct of a burner assembly |
Also Published As
Publication number | Publication date |
---|---|
EP0806610A3 (de) | 1998-04-15 |
ES2158400T3 (es) | 2001-09-01 |
DK0806610T3 (da) | 2001-10-15 |
DE59703939D1 (de) | 2001-08-09 |
CA2204689C (en) | 2003-09-09 |
EP0806610A2 (de) | 1997-11-12 |
US5899683A (en) | 1999-05-04 |
ATE202837T1 (de) | 2001-07-15 |
CA2204689A1 (en) | 1997-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0806610B1 (de) | Verfahren zum Betrieb eines Gasbrenners | |
DE19618573C1 (de) | Verfahren und Einrichtung zum Betrieb eines Gasbrenners | |
EP0770824B1 (de) | Verfahren und Schaltung zur Regelung eines Gasbrenners | |
DE102010055567B4 (de) | Verfahren zur Stabilisierung eines Betriebsverhaltens eines Gasgebläsebrenners | |
DE19539568C1 (de) | Verfahren und Schaltung zur Regelung eines Gasbrenners | |
EP1154202B2 (de) | Regeleinrichtung für einen Brenner | |
DE10113468A1 (de) | Regeleinrichtung für einen Luftzahlgeregelten Brenner | |
DE19831648A1 (de) | Verfahren zur funktionalen Adaption einer Regelelektronik an ein Gasgerät | |
DE19627857C2 (de) | Verfahren zum Betrieb eines Gasgebläsebrenners | |
DE19839160B4 (de) | Verfahren und Schaltung zur Regelung eines Gasbrenners | |
EP0614047B1 (de) | Elektronische Steuer-und Regeleinrichtung für Gasbrenner von Heizungsanlagen | |
EP2408272A2 (de) | Schaltungsanordnung und Verfahren zum betreiben mindestens einer Entladungslampe | |
DE4312801A1 (de) | Verfahren zur Steuerung eines Gas-Gebläsebrenners | |
EP1843645B1 (de) | Schaltungsanordnung für Hochdruck-Gasentladungslampen | |
EP1207340A2 (de) | Verfahren zur Regelung eines Gasbrenners | |
DE19501749C2 (de) | Verfahren und Vorrichtung zum Steuern eines Gas-Gebläsebrenners | |
DE19601517B4 (de) | Regelung eines Gasheizgeräts | |
DE19631821A1 (de) | Verfahren und Einrichtung zur Sicherheits-Flammenüberwachung bei einem Gasbrenner | |
EP0614051B1 (de) | Feuerungsautomat | |
DE69708990T2 (de) | Sicherheitsvorrichtung eines Brenners zur Zündung der Flamme, Detektion der Flamme und Steuerung der Gaszufuhr | |
DE10057233C2 (de) | Gasbrenner für ein Heizgerät | |
DE4038925C2 (de) | ||
DE19805801A1 (de) | Lampen-Steuerschaltung | |
DE19726169C2 (de) | Regeleinrichtung für einen Gasbrenner | |
CH615497A5 (en) | Control and monitoring device for an oil or gas burner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE |
|
AX | Request for extension of the european patent |
Free format text: LT PAYMENT 970409;LV PAYMENT 970409;SI PAYMENT 970409 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE |
|
AX | Request for extension of the european patent |
Free format text: LT PAYMENT 970409;LV PAYMENT 970409;SI PAYMENT 970409 |
|
17P | Request for examination filed |
Effective date: 19980429 |
|
17Q | First examination report despatched |
Effective date: 19991220 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
RTI1 | Title (correction) |
Free format text: METHOD FOR OPERATING A GAS BURNER |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE |
|
AX | Request for extension of the european patent |
Free format text: LT PAYMENT 19970409;LV PAYMENT 19970409;SI PAYMENT 19970409 |
|
LTIE | Lt: invalidation of european patent or patent extension | ||
REF | Corresponds to: |
Ref document number: 202837 Country of ref document: AT Date of ref document: 20010715 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: KIRKER & CIE SA Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 59703939 Country of ref document: DE Date of ref document: 20010809 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2158400 Country of ref document: ES Kind code of ref document: T3 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20010911 |
|
ITF | It: translation for a ep patent filed | ||
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R084 Ref document number: 59703939 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R084 Ref document number: 59703939 Country of ref document: DE Effective date: 20150327 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20160422 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20160420 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20160421 Year of fee payment: 20 Ref country code: CH Payment date: 20160420 Year of fee payment: 20 Ref country code: ES Payment date: 20160413 Year of fee payment: 20 Ref country code: GB Payment date: 20160421 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20160421 Year of fee payment: 20 Ref country code: BE Payment date: 20160420 Year of fee payment: 20 Ref country code: IT Payment date: 20160427 Year of fee payment: 20 Ref country code: DK Payment date: 20160420 Year of fee payment: 20 Ref country code: SE Payment date: 20160420 Year of fee payment: 20 Ref country code: AT Payment date: 20160421 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59703939 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EUP Effective date: 20170409 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MK Effective date: 20170408 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20170408 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK07 Ref document number: 202837 Country of ref document: AT Kind code of ref document: T Effective date: 20170409 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20170408 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20180508 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20170410 |