EP0802267B1 - Surfaces d'aluminium avec des couleurs d'interférence - Google Patents

Surfaces d'aluminium avec des couleurs d'interférence Download PDF

Info

Publication number
EP0802267B1
EP0802267B1 EP19960810245 EP96810245A EP0802267B1 EP 0802267 B1 EP0802267 B1 EP 0802267B1 EP 19960810245 EP19960810245 EP 19960810245 EP 96810245 A EP96810245 A EP 96810245A EP 0802267 B1 EP0802267 B1 EP 0802267B1
Authority
EP
European Patent Office
Prior art keywords
layer
interference
partially transparent
thickness
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19960810245
Other languages
German (de)
English (en)
Other versions
EP0802267A1 (fr
Inventor
Paul Hänggi
Walter Hotz
Roman Fuchs
Volkmar Gillich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3A Composites International AG
Original Assignee
Alusuisse Lonza Services Ltd
Alusuisse Technology and Management Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to PT96810245T priority Critical patent/PT802267E/pt
Application filed by Alusuisse Lonza Services Ltd, Alusuisse Technology and Management Ltd filed Critical Alusuisse Lonza Services Ltd
Priority to DK96810245T priority patent/DK0802267T3/da
Priority to AT96810245T priority patent/ATE188517T1/de
Priority to ES96810245T priority patent/ES2141460T3/es
Priority to EP19960810245 priority patent/EP0802267B1/fr
Priority to DE59604113T priority patent/DE59604113D1/de
Priority to US08/832,295 priority patent/US5904989A/en
Priority to CA 2202603 priority patent/CA2202603C/fr
Publication of EP0802267A1 publication Critical patent/EP0802267A1/fr
Application granted granted Critical
Publication of EP0802267B1 publication Critical patent/EP0802267B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • the present invention relates to an interference layer as a coloring surface layer of aluminum bodies containing an aluminum oxide layer and one deposited thereon semi-transparent layer.
  • the invention further relates to a method of manufacture the interference layer according to the invention.
  • Interference layers which certain length waves of the incident light by interference eliminate are known in optics as so-called filters.
  • the manufacture of such filters usually happens by applying a high-purity, thin metal layer Glass, by subsequent deposition of a dielectric layer, and by the further Apply a semi-transparent metal layer.
  • the deposition of the individual layers is usually done using PVD (physical vapor deposition) methods, like sputtering or vapor deposition.
  • the high-purity, thin metal layer is made of aluminum, for example.
  • Al 2 O 3 or SiO x layers are usually used as dielectric layers. Because of the small layer thickness, PVD-Al layers generally cannot be anodized, so that PVD-Al 2 O 3 or PVD-SiO 2 are mostly used as dielectric layers. However, the application of PVD-Al 2 O 3 layers or PVD-SiO 2 layers is expensive. In addition, dielectric layers which are applied to the aluminum surface by means of PVD methods sometimes have insufficient adhesion. Metals, such as high-purity aluminum, are usually used for the semi-transparent layers.
  • the known GS method ie the anodic oxidation of the aluminum surface with direct current in a sulfuric acid electrolyte, can also be used to produce a dielectric layer on an aluminum surface.
  • the resulting protective layer usually shows a high porosity due to the method.
  • the production of large surface layers with homogeneous coloring requires a correspondingly large constant layer thickness of the interference layer.
  • the anodic oxide layers produced in sulfuric acid are only on pure aluminum and AlMg or AlMgSi alloys based on pure aluminum (Al ⁇ 99.85% by weight) colorless and crystal clear.
  • alloy components such as Fe or Si-rich intermetallic Phases are built into the oxide layer, which then become uncontrollable Light absorption and / or lead to light scattering and thus more or less clouded Layers, or layers with an uncontrollable coloring result.
  • the object of the present invention is to provide an interference layer which can be produced inexpensively to be specified as the coloring surface layer of aluminum bodies, which the previous avoids the disadvantages mentioned and enables the lightfast coloring of aluminum surfaces, or can be used as a selective reflector surface.
  • the aluminum oxide layer is an anodically produced, transparent and pore-free barrier layer with a barrier layer thickness d preselected according to the desired surface color of the interference layer, the barrier layer thickness d being between 20 and 900 nm (nanometers) and the partially transparent layer being one has wavelength-dependent transmission ⁇ ( ⁇ ) that is greater than 0.01 and less than 1.
  • the interference layers according to the invention can, for example, on surfaces of General cargo, strips, sheets or foils made of aluminum, as well as aluminum cover layers of bodies made of composite materials, in particular aluminum cover layers of composite panels, or on any material with a - for example electrolytically - deposited Aluminum layer can be applied.
  • aluminum is of all purity levels in the present text as well as all aluminum alloys.
  • the term aluminum includes everything Rolling, kneading, casting, forging and pressing alloys made of aluminum.
  • there is pure aluminum material surface to be provided with the interference layer according to the invention With a degree of purity equal to or greater than 98.3% by weight of Al or aluminum alloys from this aluminum with at least one of the elements from the series of Si, Mg, Mn, Cu, Zn or Fe.
  • Aluminum surfaces made from high-purity are further preferred Aluminum alloys with a purity of 99.99% by weight Al and higher, for example made of plated material, or a purity of 99.5 to 99.99 wt .-% Al.
  • the aluminum surfaces can have any shape and can optionally also be structured. In the case of rolled aluminum surfaces, these can be used, for example Be treated high gloss or designer rollers.
  • a preferred use of structured Aluminum surfaces can be found, for example, for applications in daylight lighting, for example for decorative lights, mirrors or decorative surfaces from Ceiling or wall elements, or for applications in vehicle construction, for example Decorative parts or closures.
  • structured surfaces with structure sizes are obtained from expediently 1 nm to 1 mm and preferably from 50 nm to 100 ⁇ m to use.
  • the barrier layer thickness corresponds to the desired one Coloring is produced in a controlled manner.
  • the barrier layer must also be non-porous. So that will Diffuse light scattering that is difficult to control and thus uneven color development avoided.
  • the term non-porous does not mean absolute freedom from pores Roger that. Rather, the barrier layer of the interference layer according to the invention is in the essentially non-porous.
  • the anodized aluminum oxide layer has essentially no process-related porosity. Under a procedural Porosity becomes, for example, the use of an aluminum oxide dissolving electrolyte Roger that.
  • the pore-free barrier layer preferably has a porosity of less than 1% and in particular less than 0.5%.
  • the dielectric constant ⁇ of the barrier layer depends, among other things. of those used to make the barrier layer used process parameters during the anodic oxidation. Conveniently the dielectric constant ⁇ of the barrier layer is at a temperature of 20 ° C between 6 and 10.5 and preferably between 8 and 10.
  • the color of the aluminum surface provided with an interference layer according to the invention depends, for example, on the surface quality of the aluminum surface, on the angle of incidence of the light striking the interference layer surface, the viewing angle, the thickness of the barrier layer, the composition and the layer thickness of the partially transparent layer and the transmission ⁇ ( ⁇ ) of the partially transparent one Layer.
  • the interference layer according to the invention has a transmission ⁇ ( ⁇ ) between 0.3 and 0.7.
  • the layer thickness of the barrier layer is in accordance with the invention Interference layers preferably in the layer thickness range between 30 and 800 nm and particularly preferably between 35 and 500 nm.
  • the barrier layers of the interference layers can - over the entire interference layer surface seen - have a locally different layer thickness, so that for example optical color patterns arise on the interference layer surface.
  • the area of the individual color sample components i.e. Subareas of the interference layer surface with the same Barrier layer thickness, can range from submicron to - in relation to whole interference layer surface - large areas are sufficient.
  • all reflective materials are suitable as partially transparent layer materials.
  • the coating of the barrier layer with the partially transparent layer can, for example by physical methods, such as vapor deposition or sputtering, by chemical methods, such as CVD (chemical vapor deposition) or direct chemical deposition, or by electrochemical methods happen.
  • physical methods such as vapor deposition or sputtering
  • chemical methods such as CVD (chemical vapor deposition) or direct chemical deposition, or by electrochemical methods happen.
  • the partially transparent layer can be applied to the barrier layer over the entire surface or only Affect partial areas of the interference layer surface.
  • the sub-areas also form a grid-like network.
  • partially transparent layers only partial areas of the interference layer surface, submicron structures are preferred.
  • the partially transparent layer can have a uniform layer thickness or a structured, i.e. a locally different layer thickness over the partially transparent layer demonstrate. In the latter case, for example, even with a uniformly thick barrier layer Color samples are generated.
  • the layer thickness of the partially transparent layer is expediently over the whole Interference layer surface from 0.5 to 100 nm, preferably from 1 to 80 nm and in particular from 2 to 30 nm.
  • the partially transparent layer can also preferably be a sol-gel layer with a layer thickness of 0.5 to 250 ⁇ m and in particular from 0.5 to 150 ⁇ m with embedded reflective Represent particles, the dimensions of the reflecting particles preferably in the micron or submicron range and in particular in the submicron range.
  • reflective Particles are preferably suitable metal particles and in particular those made of Ag, Al, Au, Cr, Cu, Nb, Ni, Pt, Pd, Rh, Ta, Ti, or from metal alloys containing at least one of these aforementioned elements.
  • the reflective particles can be uniform in the Sol-gel layer can be distributed or essentially all in one to the barrier layer surface parallel plane.
  • the partially transparent sol-gel layer especially if it is essentially uniform has reflective particles distributed in the sol-gel layer, a locally different one Layer thickness. This can result in interference layers with optical color patterns.
  • the locally different layer thickness of the partially transparent sol-gel layer can, for example be produced by roll embossing, possibly after a previous one Heat treatment in which the sol-gel layer is at least partially polymerized or cured becomes.
  • the protective layer can be any transparent layer that offers mechanical and / or chemical protection to the partially transparent layer.
  • the transparent layer is a lacquer, oxide or sol-gel layer.
  • the lacquer layer is understood to mean, for example, a colorless, transparent, organic protective layer.
  • Layers made of SiO 2 , Al 2 O 3 , TiO 2 or CeO 2 are preferred as oxide layers.
  • sol-gel layers are layers that are produced using a sol-gel process.
  • the layer thickness of such a transparent protective layer is, for example, 0.5 to 250 ⁇ m, suitably 1 to 200 ⁇ m and preferably 1 to 150 ⁇ m.
  • the transparent one Protective layer can, for example, serve as the front end of the interference layer Protection against the effects of weather or liquids that favor corrosion (acidic Rain, bird droppings, etc.) can be applied.
  • the sol-gel layers have a glass-like character.
  • Sol-gel layers contain, for example, polymerization products from organically substituted alkoxysiloxanes of the general formula Y n Si (OR) 4-n where Y is for example a non-hydrolyzable monovalent organic group and R is for example an alkyl, aryl, alkaryl or aralkyl group, and n is a natural number from 0 to 3. If n is 1 or 2, R can be a C 1 -C 4 alkyl group. Y can be a phenyl group, n can be 1 and R can be a methyl group.
  • the sol-gel layer can be a polymerization product of organically substituted alkoxy compounds of the general formula X n AR 4-n where A is Si, Ti, Zr or Al, X is HO, alkyl-O or Cl-, R is phenyl, alkyl, alkenyl, vinyl ester or epoxy ether and n is a number of 1, 2 or 3 means.
  • the sol-gel layers are advantageous directly or indirectly through a sol-gel process applied to the interference layer.
  • a sol-gel process applied to the interference layer.
  • alkoxides and halosilanes mixed and in the presence of water and suitable catalysts hydrolyzed and condensed. After removal of water and solvent, it forms a sol that is applied to the interference layer by immersion, spinning, spraying, etc. , whereby the sol converts into a gel film, for example under influence of temperature and / or radiation.
  • silanes are used to form the sol, it is also possible to partially replace the silanes with compounds which instead of silicon contain titanium, zircon or aluminum. So that the hardness, density and the refractive index of the sol-gel layer can be varied.
  • the hardness of the sol-gel layer can also be controlled using various silanes, for example by forming an inorganic network to control hardness and thermal Stability or by using an organic network to control elasticity.
  • a sol-gel layer between the inorganic and organic polymers can be classified via the sol-gel process through targeted hydrolysis and Condensation of alkoxides, mainly of silicon, aluminum, titanium and zircon the interference layers are applied. The process turns it into an inorganic Network built up and over correspondingly derivatized silicic acid esters can additionally organic groups are built in, on the one hand for functionalization and on the other can be used to form defined organic polymer systems.
  • the sol-gel film can also be electro-coated according to the cataphoretic principle Deposition of an amine and organically modified ceramic can be deposited.
  • interference layers according to the invention are preferably suitable for lighting technology Applications, for example for creating surfaces with intense colors and / or colors dependent on the illumination and / or viewing angle for, for example decorative lights, mirrors or decorative surfaces of ceiling or wall elements.
  • Corresponding interference layers can also be used as forgery-proof surfaces everyday objects, such as packaging or containers, be used.
  • Such interference layers are also preferred as Surfaces of auto parts, in particular body parts, profiles or facade elements used for the construction industry, or for interior furnishings.
  • the present invention also relates to a method for producing the previously described Interference layer as a coloring surface layer of an aluminum body.
  • this is achieved in that the surface of the aluminum body is oxidized electrolytically in an electrolyte which does not redissolve the aluminum oxide, and the desired layer thickness d of the oxide layer formed, measured in nm, by choosing a constant electrolysis DC voltage U in volts, which is determined by d /1.6 ⁇ U ⁇ d /1.1 is selected, is set, and the aluminum oxide layer formed in this way is provided with a partially transparent layer on its free surface.
  • interference layers according to the invention requires a clean aluminum surface, i.e. the aluminum surface to be electrolytically oxidized usually has to prior to the method of surface treatment according to the invention, the so-called Pretreatment.
  • the aluminum surfaces usually have a naturally occurring oxide layer, which is often contaminated by foreign substances due to its history.
  • Foreign substances can, for example, residues of rolling aids, transport protection oils, Corrosion products or pressed-in foreign particles and the like.
  • Cleaning agents that exert a certain pickling attack are chemically pretreated.
  • alkaline degreasing agents are particularly suitable based on polyphosphate and borate.
  • a cleaning with moderate to strong Material removal involves pickling or etching using strongly alkaline or acid pickling solutions, such as. Sodium hydroxide solution or a mixture of nitric acid and hydrofluoric acid.
  • a cleaning without Surface erosion is the degreasing of the surfaces by using organic solvents or aqueous or alkaline cleaner.
  • Such surface pretreatment can be done, for example, by grinding, Blasting, brushing or polishing are done and, if necessary, by chemical aftertreatment be supplemented.
  • Aluminum surfaces show a very high reflectivity in the bare metal state for light and heat rays. The smoother the surface, the higher the level Reflection and the more shiny the surface appears. You get the highest shine Pure aluminum and on special alloys, such as AlMg or AlMgSi.
  • a highly reflective surface is achieved, for example, by polishing, milling, or rolling with highly polished rollers in the last rolling pass, by chemical or electrolytic Shine, or by combining the aforementioned surface treatment processes reached.
  • Polishing can be done with buffing wheels made of a soft cloth, for example and if necessary done using a polishing paste.
  • polishing through Rolling can take place in the last rolling pass, for example by means of engraved or etched steel rolls or by a predetermined structure and between the rolls and the rolling stock arranged means additionally a predetermined surface structure in the aluminum surface be impressed.
  • the chemical shine happens through, for example Use of a highly concentrated mixture of acids at usually high temperatures of approx. 100 ° C. Acidic or alkaline electrolytes can be used for electrolytic shining are used, usually acidic electrolytes being preferred.
  • the barrier layers of the interference layers according to the invention point to aluminum surfaces a purity of 99.5 to 99.98 wt .-% no significant changes in lighting technology the surface properties of the original aluminum surfaces, i.e. the Surface condition of the aluminum surfaces, such as that present after the shine is largely retained after the application of the barrier layer. It is however, take into account that the metal purity of the surface layer, for example the glossy result of an aluminum surface can very well have an influence.
  • the aluminum surface to be oxidized with a with regard to the desired color or with regard to the desired color structure provided predetermined surface condition and then electrically conductive liquid, the electrolyte, and as an anode to a DC voltage source connected, usually stainless steel, graphite, Lead or aluminum is used.
  • the electrolyte is such that that it does not chemically dissolve the aluminum oxide formed during the electrolysis process, i.e. there is no redissolution of the aluminum oxide.
  • hydrogen gas develops at the cathode and oxygen gas at the anode.
  • the one at the Oxygen formed on the aluminum surface forms a reaction with the aluminum increasingly thicker oxide layer during the process. Since the sheet resistance with the increasing thickness of the barrier layer increases rapidly, the current flow decreases accordingly quickly and the layer growth stops.
  • the electrolytic production of barrier layers according to the present invention permits precise control of the resulting barrier layer layer thickness.
  • the maximum layer thickness in nanometers (nm) achieved with the method according to the invention corresponds in a first approximation to the voltage applied and measured in volts (V), ie the maximum layer thickness achieved is linearly dependent on the anodizing voltage.
  • the exact value of the maximum layer thickness as a function of the applied DC voltage U can be determined by a simple preliminary test and is 1.1 to 1.6 nm / V, the exact values of the layer thickness depending on the voltage applied being dependent on the electrolyte used, ie its composition and its temperature, and the material composition of the surface layer of the aluminum body.
  • the measurement of the color tint of the interference layer surface can be done, for example, by means of a spectrometer.
  • the barrier layers are almost non-porous, i.e. any pores that occur result, for example, from contamination in the Electrolytes or from structural defects in the aluminum surface layer, however only insignificant due to dissolution of the aluminum oxide in the electrolyte.
  • non-redissolving electrolytes can be used in the process according to the invention organic or inorganic acids, usually diluted with water, with a pH of 2 and larger, preferably 3 and larger, in particular 4 and larger and 8.5 and smaller, preferably 7 and smaller, in particular 5.5 and smaller, can be used.
  • processable electrolytes are particularly preferred or organic acids, such as sulfuric or phosphoric acid in low concentrations, Boric acid, adipic acid, citric acid or tartaric acid, or mixtures thereof, or Solutions of ammonium or sodium salts of organic or inorganic acids, in particular the named acids and their mixtures.
  • the Solutions preferably have a total concentration of 100 g / l or less, in particular 2 to 70 g / l of ammonium or sodium salt dissolved in the electrolyte. Very particularly preferred be solutions of ammonium salts of citric or tartaric acid or Sodium salts of phosphoric acid.
  • a very particularly preferred electrolyte contains 1 to 5% by weight of tartaric acid, to which, for example, an amount of ammonium hydroxide (NH 4 OH) corresponding to the desired pH value can be added.
  • NH 4 OH ammonium hydroxide
  • the electrolytes are usually aqueous solutions.
  • the optimum electrolyte temperature for the method according to the invention depends on the one used Electrolytes off; but is generally for the quality of the barrier layer obtained of minor importance. Temperatures are used for the method according to the invention from 15 to 97 ° C and especially those between 18 and 50 ° C preferred.
  • the precise control of the barrier layer thickness with the method according to the invention allows, for example by means of appropriately designed, tip-shaped or plate-shaped cathodes, that is to say by controlling the locally acting anodizing potential, the production of locally different but predetermined barrier layer thicknesses, as a result of which, for example, interference layer surfaces are formed with predefined color patterns can.
  • the DC electrolysis voltage U applied during the anodic oxidation of the aluminum surface is chosen to be different locally, so that after the partially transparent layer has been applied, a structured coloring or a color pattern with, for example, intensive colors is obtained.
  • the locally different anodizing potential required for the production of color samples is preferably achieved by choosing a predetermined cathode shape.
  • the process according to the invention is particularly suitable for continuous production of interference layers through continuous electrolytic oxidation of the aluminum surface and / or continuous application of the partially transparent layer in a continuous system, preferably in an anodic strip anodizing and coating system.
  • Aluminum body with a purity of 99.90% by weight Al with a high gloss surface and Aluminum body with a purity of 99.85% by weight Al with an electrochemically roughened High-gloss surfaces are electrolytically polished and provided with a barrier layer, the electrochemically roughened high-gloss surface is also referred to as a matt gloss Surface is called.
  • the anodizing voltage in the range from 60 to 280 V barrier layers with layer thicknesses of 78 to 364 nm are produced. Samples are provided with an approximately 10 nm thick partially transparent layer of Au or Pt. the resulting interference layer surfaces show the Al surface texture, and colors depending on the viewing angle and the thickness of the barrier layer.
  • Tables 1 and 2 show the results of the micro-color measurements according to DIN 5033 for High-gloss surfaces produced, different thickness barrier layers, with an approximately 10 nm thick, partially transparent metal layer are provided, in Table 1 the corresponding Values for a partially transparent layer made of Au and in Table 2 the values for a partially transparent one Layer of Pt are listed.
  • micro-color measurements according to DIN 5033 are non-directional on the interference layer surface incident light.
  • the direction of observation is against the Interference layer surface normal inclined by 8 °.
  • L *, a * and b * are color numbers.
  • L * represents the brightness, where 0 means absolutely black and 100 absolutely white.
  • a * denotes a value on the Red-green axis, where positive a * values indicate red and negative a * values green colors.
  • b * shows the position of the hue on the yellow-blue axis, with positive b * values yellow and negative b * values denote blue colors.
  • the location of a hue in the a * -b * Level thus provides information about its hue and its saturation.
  • Anodizing voltage [V] Junction thickness [nm] Color (according to RAL) Micro-color measurements 0 ° 70 ° L * a * b * 60 78 Golden yellow Cadmium yellow 62.0 24.8 49.9 80 104 Heather violet Beige brown 53.9 32.7 -46.3 100 130 Light blue Red purple 77.2 -31.0 -23.4 180 234 Beige red Cadmium yellow 72.0 32.8 13.3 200 260 Heather violet Honey yellow 65.1 55.9 -32.4 220 286 Blue purple Blue purple 66.3 14.7 -30.5 240 312 Emerald green Heather violet 77.5 -57.1 17.7 260 338 Light green Blue purple 82.8 -44.3 61.4 280 364 Ocher yellow Emerald green 81.9 9.1 28.4 Anodizing voltage [V] Junction thickness [nm] Color (according to RAL) Micro-color measurements 0 ° 70 ° L * a *
  • Tables 3 and 4 show the results of the micro-color measurements according to DIN 5033 for barrier layers of various thicknesses produced on matt glossy surfaces, which are provided with a 10 nm thick, partially transparent metal layer, in Table 3 the corresponding values for a partially transparent layer Au and in Table 4 the values for a partially transparent layer of Pt are listed.
  • Table 5 shows the comparison of results of the micro-color measurements according to DIN 5033 for interference layers with and without a partially transparent layer for selected junction thickness values.
  • Junction thickness [nm] Matt surface not steamed Au-steamed Pt-vaporized L * a * b * L * a * b * L * a * b * 104 90.6 -1.2 -6.4 57.8 40.5 -26.1 55.0 13.2 -8.5 234 93.1 3.7 0.3 81.3 16.9 55.8 75.9 8.2 22.6 364 94.4 -0.3 3.1 86.0 -12.6 59.0 84.0 -6.9 39.3
  • Junction thickness [nm] High gloss surface not steamed Au-steamed Pt-vaporized L * a * b * L * a * b * L * a * b * 104 88.0 -3.7 -5.5 53.9 32.7 -46.3 60.2 11.3 -17.1 234 87.4 3.1 -4.4 72.0 32.8 13.3 59.4 21.0 2.7
  • An aluminum foil with an electrolytically polished high-gloss aluminum surface is selected by choosing the anodizing voltage in the range from 30 to 380 V according to the invention Provide barrier layers with layer thicknesses of 39 to 494 nm.
  • the barriers will continue with a partially transparent chrome layer with a uniform for all samples Layer thickness, which is in the layer thickness range of 1 to 5 nm, provided.
  • the application The chrome layer is made by sputtering in a belt process, the belt speed is about 25 m / min.
  • Table 6 shows the results of the micro-color measurements according to DIN 5033 for the interference layers described above. The comments made in Example 1 apply to the micro-color measurements.
  • the additional color specifications according to RAL in Table 6 relate to the visually perceptible colors at a viewing angle of 0 ° and 80 ° with respect to the interference layer surface normals.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Dental Preparations (AREA)
  • Eyeglasses (AREA)

Claims (16)

  1. Couche d'interférence en tant que couche superficielle donnant la couleur de pièces en aluminium, contenant une couche d'oxyde d'aluminium ainsi qu'une couche partiellement transparente déposée sur cette dernière, caractérisée en ce que la couche d'oxyde d'aluminium est une couche barrière transparente et exempte de pores, produite par voie anodique, avec une épaisseur d de la couche barrière choisie au préalable en fonction de la couleur de surface souhaitée pour la couche d'interférence, l'épaisseur d de la couche barrière mesurant de 20 à 900 nm, et en ce que la couche partiellement transparente présente un coefficient de transmission τ (λ) dépendant de la longueur d'onde qui est supérieur à 0,01 et inférieur à 1.
  2. Couche d'interférence selon la revendication 1, caractérisée en ce que la couche barrière a une épaisseur d de 30 à 800 nm, notamment de 35 à 500 nm.
  3. Couche d'interférence selon la revendication 1 ou la revendication 2, caractérisée en ce que la couche barrière présente une épaisseur de couche localement variable prédéterminée en conséquence pour produire une teinte structurée ou former un motif de couleur.
  4. Couche d'interférence selon l'une des revendications 1 à 3, caractérisée en ce que la couche partiellement transparente est en métal, notamment en Ag, Al, Au, Cr, Cu, Nb; Ni, Pt, Pd, Rh, Ta, Ti ou en un alliage métallique contenant au moins l'un des éléments précités.
  5. Couche d'interférence selon l'une des revendications 1 à 4, caractérisée en ce que la couche partiellement transparente a une épaisseur de couche de 0,5 à 100 nm, de préférence de 1 à 80 nm et notamment de 2 à 30 nm.
  6. Couche d'interférence selon l'une des revendications 1 à 5, caractérisée en ce que la couche partiellement transparente présente une épaisseur de couche localement variable prédéterminée en conséquence pour produire une teinte structurée ou former un motif de couleur.
  7. Couche d'interférence selon l'une des revendications 1 à 6, caractérisée en ce que la couche partiellement transparente constitue un réseau en forme de grille, l'entraxe des lignes du réseau en forme de grille se situant de préférence dans le domaine submicronique.
  8. Couche d'interférence selon la revendication 1 ou la revendication 3, caractérisé en ce que la couche partiellement transparente est constituée d'une couche de sol-gel ayant de préférence une épaisseur de couche de 0,5 à 250 µm avec des particules réfléchissantes incluses, la taille des particules réfléchissantes se situant de préférence dans le domaine micronique ou submicronique, notamment dans le domaine submicronique.
  9. Couche d'interférence selon la revendication 8, caractérisée en ce que la couche de sol-gel partiellement transparente, contenant de préférence des particules réfléchissantes essentiellement réparties de manière uniforme, présente une structure avec une épaisseur de couche localement variable pour produire un motif de couleur optique.
  10. Couche d'interférence selon l'une des revendications 1 à 9, caractérisée en ce que la face de la couche partiellement transparente opposée à la couche barrière est protégée contre les influences mécaniques et chimiques par une couche de protection transparente.
  11. Couche d'interférence selon la revendication 10, caractérisée en ce que la couche de protection transparente est une couche de laque, une couche de sol-gel, ou une couche mince d'oxyde, de préférence de SiO2, Al2O3 ou TiO2.
  12. Procédé de production d'une couche d'interférence selon l'une des revendications 1 à 9, caractérisé en ce que l'on oxyde la surface de la pièce en aluminium par voie électrolytique, dans un électrolyte qui ne redissout par l'oxyde d'aluminium, et on ajuste l'épaisseur de couche d souhaitée pour la couche d'oxyde ainsi obtenue, mesurée en nm, en choisissant une tension continue d'électrolyse U constante en volts qui respecte la relation d/1,6 ≤ Ud/1,1    et on dote la couche d'oxyde d'aluminium ainsi formée d'une couche partiellement transparente sur sa surface libre.
  13. Procédé selon la revendication 12, caractérisé en ce que l'on utilise comme électrolyte non redissolvant des solutions contenant des acides organiques ou inorganiques et en ce que ces solutions présentent un pH de 2 à 8,5.
  14. Procédé selon la revendication 13, caractérisé en ce que l'électrolyte non redissolvant est une solution de sels d'ammonium ou de sodium d'acides organiques ou inorganiques ou bien une solution contenant des sels d'ammonium ou de sodium d'acides organiques ou inorganiques et les acides organiques ou inorganiques correspondants.
  15. Procédé selon l'une des revendications 12 à 14, caractérisée en ce que l'oxydation électrolytique de la surface de l'aluminium et/ou le dépôt de la couche partiellement transparente s'effectuent selon un procédé en continu dans une installation au passage, de préférence dans une installation d'anodisation et de revêtement anodique de bandes.
  16. Procédé selon l'une des revendications 12 à 15, caractérisé en ce que l'on applique à la surface de l'aluminium une tension continue U d'électrolyse localement variable afin d'obtenir une teinte structurée ou un motif de couleur.
EP19960810245 1996-04-18 1996-04-18 Surfaces d'aluminium avec des couleurs d'interférence Expired - Lifetime EP0802267B1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DK96810245T DK0802267T3 (da) 1996-04-18 1996-04-18 Aluminiumsoverflade med interferensfarver
AT96810245T ATE188517T1 (de) 1996-04-18 1996-04-18 Aluminiumoberfläche mit interferenzfarben
ES96810245T ES2141460T3 (es) 1996-04-18 1996-04-18 Superficies de aluminio con colores de interferencia.
EP19960810245 EP0802267B1 (fr) 1996-04-18 1996-04-18 Surfaces d'aluminium avec des couleurs d'interférence
PT96810245T PT802267E (pt) 1996-04-18 1996-04-18 Superficie de aluminio com cores de interferencia
DE59604113T DE59604113D1 (de) 1996-04-18 1996-04-18 Aluminiumoberfläche mit Interferenzfarben
US08/832,295 US5904989A (en) 1996-04-18 1997-04-03 Aluminum surface with interference colors
CA 2202603 CA2202603C (fr) 1996-04-18 1997-04-14 Surface d'aluminium avec teintes de polarisation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19960810245 EP0802267B1 (fr) 1996-04-18 1996-04-18 Surfaces d'aluminium avec des couleurs d'interférence

Publications (2)

Publication Number Publication Date
EP0802267A1 EP0802267A1 (fr) 1997-10-22
EP0802267B1 true EP0802267B1 (fr) 2000-01-05

Family

ID=8225592

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19960810245 Expired - Lifetime EP0802267B1 (fr) 1996-04-18 1996-04-18 Surfaces d'aluminium avec des couleurs d'interférence

Country Status (8)

Country Link
US (1) US5904989A (fr)
EP (1) EP0802267B1 (fr)
AT (1) ATE188517T1 (fr)
CA (1) CA2202603C (fr)
DE (1) DE59604113D1 (fr)
DK (1) DK0802267T3 (fr)
ES (1) ES2141460T3 (fr)
PT (1) PT802267E (fr)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2250535C (fr) * 1996-04-03 2004-05-18 Alusuisse Technology & Management Ag Substrat de revetement
US6399023B1 (en) 1996-04-16 2002-06-04 Caliper Technologies Corp. Analytical system and method
DE69816061T2 (de) * 1997-04-25 2004-04-22 Alcan International Ltd., Montreal Aluminium-werkstück
EP0892288B2 (fr) * 1997-07-17 2009-01-21 Alcan Technology & Management AG Utilisation d'un produit métallique laminé avec structure superficielle diffusant la lumière
DE20021660U1 (de) * 2000-12-20 2002-05-02 Alanod Al Veredlung Gmbh Verbundmaterial
JP5008869B2 (ja) * 2002-11-13 2012-08-22 日本曹達株式会社 金属−酸素結合を有する分散質、金属酸化物膜、及び単分子膜
US6884336B2 (en) * 2003-01-06 2005-04-26 General Motors Corporation Color finishing method
DE102008011296A1 (de) 2007-03-16 2008-09-18 Süddeutsche Aluminium Manufaktur GmbH Kraftfahrzeug-Bauteil mit Sol-Gel-Beschichtung
US20090101206A1 (en) * 2007-10-17 2009-04-23 Quantum Solar System Corp Process for manufacturing a photovoltaic or a light emitting polymer device
DE102008034189B3 (de) * 2008-07-16 2010-05-12 Felix Aschwanden Fahrzeugrad oder Radstern hierfür
CN102465301A (zh) * 2010-11-18 2012-05-23 鸿富锦精密工业(深圳)有限公司 铝制品及其制备方法
CN102480879A (zh) * 2010-11-26 2012-05-30 鸿富锦精密工业(深圳)有限公司 铝制品及其制备方法
CN102560334A (zh) * 2010-12-09 2012-07-11 鸿富锦精密工业(深圳)有限公司 彩色金属制品及其制备方法
CN102691080B (zh) * 2011-03-24 2016-08-03 广东广云新材料科技股份有限公司 铝制品
DE102012019969A1 (de) * 2012-10-08 2014-04-24 Hans und Ottmar Binder GbR (vertretungsberechtigte Gesellschafter: Hans Binder, 89558 Böhmenkirch; Ottmar Binder, 89558 Böhmenkirch) Verfahren zum Herstellen einer Sol-Gel-Beschichtung auf einer zu beschichtenden Oberfläche eines Bauteils sowie entsprechendes Bauteil
AT514194B1 (de) 2013-07-05 2014-11-15 Münze Österreich Ag Metallplatte
US10131971B2 (en) * 2013-08-13 2018-11-20 Nippon Light Metal Company, Ltd. High strength aluminum alloy sheet for anodic oxide coated material and method of producing same and high strength anodic oxide aluminum alloy sheet
US9512536B2 (en) 2013-09-27 2016-12-06 Apple Inc. Methods for forming white anodized films by metal complex infusion
WO2015099498A1 (fr) * 2013-12-26 2015-07-02 주식회사 포스코 Matière de base à couleur traitée et procédé de traitement de couleur de matière de base pour cette dernière
GB201403315D0 (en) * 2014-02-25 2014-04-09 Mathieu Yanick Use of colored anodized aluminium for bi-metallic coinage or medals
JP6697077B2 (ja) 2015-10-30 2020-05-20 アップル インコーポレイテッドApple Inc. 向上した特徴を有する陽極被膜
CN105744782A (zh) * 2016-03-14 2016-07-06 联想(北京)有限公司 一种电子设备及电子设备的金属壳体的制成方法
US11352708B2 (en) * 2016-08-10 2022-06-07 Apple Inc. Colored multilayer oxide coatings
WO2019163340A1 (fr) * 2018-02-22 2019-08-29 大阪瓦斯株式会社 Dispositif de refroidissement par rayonnement
CN113529149B (zh) * 2020-04-22 2023-05-16 北京小米移动软件有限公司 壳体制作方法、壳体及电子设备
CN112522757A (zh) * 2020-10-10 2021-03-19 厦门大学 一种镀膜彩色铝合金的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033390A (ja) * 1983-08-03 1985-02-20 Nippon Koki Kk アルミニウムまたはアルミニウム合金に対する模様着色方法
JPH0333802A (ja) * 1989-03-22 1991-02-14 Alcan Internatl Ltd 多孔質フィルムを有する光学干渉構造
CH689065A5 (de) * 1994-11-24 1998-08-31 Alusuisse Lonza Services Ag Aluminiumoberflaechen fuer lichttechnische Zwecke.
CH690080A5 (de) * 1995-09-12 2000-04-14 Alusuisse Lonza Services Ag Aluminium-Reflektor mit reflexionserhöhendem Schichtverbund.

Also Published As

Publication number Publication date
PT802267E (pt) 2000-04-28
CA2202603A1 (fr) 1997-10-18
ES2141460T3 (es) 2000-03-16
DE59604113D1 (de) 2000-02-10
DK0802267T3 (da) 2000-06-26
US5904989A (en) 1999-05-18
EP0802267A1 (fr) 1997-10-22
CA2202603C (fr) 2004-08-17
ATE188517T1 (de) 2000-01-15

Similar Documents

Publication Publication Date Title
EP0802267B1 (fr) Surfaces d'aluminium avec des couleurs d'interférence
EP0816875A1 (fr) Réflecteur avec revêtements réfléchissants
EP0762152B1 (fr) Réflecteur d'aluminium à revêtement pour augmenter la réflexion
EP0714039B1 (fr) Surface d'aluminium pour application dans le technique d'éclairage
EP1287389A1 (fr) Reflecteur
DE102007057777B4 (de) Verfahren zur Herstellung eines Bauteils aus Aluminium und/oder einer Aluminiumlegierung sowie Verwendung des Verfahrens
DE60116066T2 (de) Titanium mit verminderter anfälligkeit für verfärbung in der atmosphäre und herstellungsverfahren dafür
EP1266977B1 (fr) Pigment interférentiel et procédé de production
DE202009015376U1 (de) Abdeckscheibe für eine Signal- oder Anzeigeeinrichtung
EP3652363B1 (fr) Produit laminé en alliage d'aluminium à couleurs iridescentes intenses
CH691064A5 (de) Reflektor mit resistenter Oberfläche.
EP2414113B1 (fr) Reflecteur
EP1958008B1 (fr) Reflecteur munie d'une couche protectrice en vernis sol-gel
RU2620801C1 (ru) Способ формирования цветного декоративного покрытия с помощью анодирования
DE10149928C1 (de) Verfahren zum Glänzen von Aluminium und dessen Verwendung
EP2145980A1 (fr) Surface d'acier noble coloré et procédé de coloration d'acier noble
DE3043381C2 (de) Verwendung von spektralselektiv beschichteten Oberflächen sowie Verfahren zu ihrer Herstellung
EP0648863B2 (fr) Couche d'oxyde émaillable
DE19508126A1 (de) Chromfreies Verfahren zur Verbesserung der Lackhaftung nach Dünnschicht-Anodisierung
EP1457266B1 (fr) Procédé de fabrication de pièces de tôle d'aluminium formées avec une surface décorative
DE2909360C2 (de) Gefärbter Gegenstand aus Zink oder einer Zinklegierung und Verfahren zu seiner Herstellung
EP3054033B1 (fr) Procédé de fabrication de surfaces colorées en aluminium et zinc
DE2064770A1 (de) Schichtkörper mit mindestens einer Me tallschicht und mindestens einer das Metall gegen Beschädigung, Verkratzen und Anlaufen bzw Fleckigwerden der Oberflache schützen den Schutzschicht
WO2019115628A1 (fr) Procédé de décapage pour profilés, bandes laminées et tôles en alliages d'aluminium
CH691063A5 (de) Reflektor mit resistenter Oberfläche.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL PT SE

17P Request for examination filed

Effective date: 19980422

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19990330

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL PT SE

REF Corresponds to:

Ref document number: 188517

Country of ref document: AT

Date of ref document: 20000115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000106

REF Corresponds to:

Ref document number: 59604113

Country of ref document: DE

Date of ref document: 20000210

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2141460

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20000110

ET Fr: translation filed
REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20040331

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20040427

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20040428

Year of fee payment: 9

Ref country code: DK

Payment date: 20040428

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051018

BERE Be: lapsed

Owner name: *ALUSUISSE TECHNOLOGY & MANAGEMENT A.G.

Effective date: 20050430

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

EUG Se: european patent has lapsed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20060403

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20060426

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20060517

Year of fee payment: 11

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BERE Be: lapsed

Owner name: *ALUSUISSE TECHNOLOGY & MANAGEMENT A.G.

Effective date: 20050430

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20071101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070418

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20080428

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080428

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080417

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080429

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090418

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090418

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091222

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090418

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110427

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59604113

Country of ref document: DE

Owner name: CONSTELLIUM SWITZERLAND AG, CH

Free format text: FORMER OWNER: ALUSUISSE TECHNOLOGY & MANAGEMENT AG, NEUHAUSEN AM RHEINFALL, CH

Effective date: 20120302

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59604113

Country of ref document: DE

Effective date: 20121101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121101