EP0799343A1 - Faservlies- aerogel- verbundmaterial enthaltend bikomponentenfasern, verfahren zu seiner herstellung, sowie seine verwendung - Google Patents

Faservlies- aerogel- verbundmaterial enthaltend bikomponentenfasern, verfahren zu seiner herstellung, sowie seine verwendung

Info

Publication number
EP0799343A1
EP0799343A1 EP95942723A EP95942723A EP0799343A1 EP 0799343 A1 EP0799343 A1 EP 0799343A1 EP 95942723 A EP95942723 A EP 95942723A EP 95942723 A EP95942723 A EP 95942723A EP 0799343 A1 EP0799343 A1 EP 0799343A1
Authority
EP
European Patent Office
Prior art keywords
composite material
material according
airgel
fibers
nonwoven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95942723A
Other languages
English (en)
French (fr)
Other versions
EP0799343B1 (de
Inventor
Dierk Frank
Franz Thönnessen
Andreas Zimmermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cabot Corp
Original Assignee
Hoechst AG
Hoechst Research and Technology Deutschland GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG, Hoechst Research and Technology Deutschland GmbH and Co KG filed Critical Hoechst AG
Publication of EP0799343A1 publication Critical patent/EP0799343A1/de
Application granted granted Critical
Publication of EP0799343B1 publication Critical patent/EP0799343B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H13/00Other non-woven fabrics
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/413Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties containing granules other than absorbent substances
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4374Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece using different kinds of webs, e.g. by layering webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5412Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres sheath-core
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5418Mixed fibres, e.g. at least two chemically different fibres or fibre blends
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/542Adhesive fibres
    • D04H1/55Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5414Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres side-by-side
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/23Sheet including cover or casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/23Sheet including cover or casing
    • Y10T428/237Noninterengaged fibered material encased [e.g., mat, batt, etc.]
    • Y10T428/238Metal cover or casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/637Including strand or fiber material which is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • Y10T442/641Sheath-core multicomponent strand or fiber material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/637Including strand or fiber material which is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • Y10T442/642Strand or fiber material is a blend of polymeric material and a filler material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/647Including a foamed layer or component
    • Y10T442/652Nonwoven fabric is coated, impregnated, or autogenously bonded
    • Y10T442/653Including particulate material other than fiber

Definitions

  • Nonwoven airgel composite material containing bicomponent fibers process for its production and its use
  • the invention relates to a composite material which has at least one layer of nonwoven fabric and airgel particles, a process for its production and its use.
  • aerogels because of their very low density, high porosity and small pore diameter, aerogels, in particular those with porosities above 60% and densities below 0.4 g / cm 3 , have an extremely low thermal conductivity and are therefore used as heat insulation materials, for example in the EP -A-0 171 722.
  • the high porosity also leads to a low mechanical stability of both the gel from which the airgel is dried and the dried airgel itself.
  • Aerogels in the wider sense i.e. in the sense of "gel with air as a dispersing agent" are produced by drying a suitable gel.
  • airgel in this sense includes aerogels in the narrower sense, xerogels and cryogels.
  • a dried gel is referred to as an airgel in the narrower sense if the liquid of the gel is removed at temperatures above the critical temperature and starting from pressures above the critical pressure. If, on the other hand, the liquid of the gel is removed subcritically, for example with the formation of a liquid-vapor boundary phase, the resulting gel is referred to as a xerogel. It should be noted that the gels according to the invention are
  • Aerogels in the sense of gel with air as a dispersant.
  • the molding process of the airgel is completed during the sol-gel transition.
  • the outer shape can only be changed by comminution, for example grinding, the material is too fragile for another form of processing.
  • DE-A 33 46 180 describes rigid plates made of pressed bodies on the basis of silica airgel obtained from flame pyrolysis in connection with reinforcement by mineral long fibers.
  • this silica airgel obtained from flame pyrolysis is not an airgel in the above sense, since it is not produced by drying a gel and thus has a completely different pore structure; therefore it is mechanically more stable and can therefore be pressed without destroying the microstructure , but has a higher thermal conductivity than typical aerogels in the above sense.
  • the surface of such compacts is very sensitive and must therefore be hardened by using a binder on the surface or protected by lamination with a film. Furthermore, the resulting compact is not compressible.
  • the object is achieved by a composite material which has at least one layer of nonwoven fabric and airgel particles, which is characterized in that the nonwoven fabric contains at least one bicomponent fiber material, the bicomponent fiber material having low and high-melting areas and the fibers of the nonwoven are connected both to the airgel particles and to one another by the low-melting areas of the fiber material.
  • the thermal bonding of the bicomponent fibers leads to a connection of the low-melting parts of the bicomponent fibers and thus ensures a stable fleece.
  • the melting part of the bicomponent fiber binds the airgel particles to the fiber.
  • the bicomponent fibers are chemical fibers made from two firmly connected polymers of different chemical and / or physical structure, which have areas with different melting points, ie areas with low and high melting points.
  • the melting points of the low-melting or higher-melting areas preferably differ by at least 10 ° C.
  • the bicomponent fibers preferably have a core / sheath structure.
  • the core of the fiber consists of a polymer, preferably a thermoplastic polymer, whose melting point is higher than that of the thermoplastic polymer that forms the sheath. Polyester / copolyester bicomponent fibers are preferably used.
  • bicomponent fiber variations made of polyester / polyolefin for example polyester / polyethylene or polyester / copolyolefin or bicomponent fibers which have an elastic sheath polymer, can also be used.
  • side-by-side bicomponent fibers can also be used.
  • the nonwoven fabric can also contain at least one simple fiber material that is bonded to the low-melting areas of the bicomponent fibers during thermal consolidation.
  • the simple fibers are organic polymer fibers, e.g. Polyester, polyolefin and / or polyamide fibers, preferably polyester fibers.
  • the fibers can have round, trilobal, pentalobal, octalobal, ribbon, fir tree, barbell or other star-shaped profiles. Hollow fibers can also be used. The melting point of these simple fibers should be above that of the low-melting areas of the bicomponent fibers.
  • the bicomponent fibers ie the high and / or low melting component, and optionally the simple fibers with an IR opacifier such as carbon black, titanium dioxide, iron oxides or zirconium dioxide or mixtures thereof be blackened.
  • an IR opacifier such as carbon black, titanium dioxide, iron oxides or zirconium dioxide or mixtures thereof be blackened.
  • the bicomponent fibers and possibly the simple fibers can also be colored for coloring.
  • the diameter of the fibers used in the composite should preferably be smaller than the average diameter of the airgel particles in order to be able to bind a high proportion of airgel in the nonwoven fabric.
  • the titer of the simple fibers should preferably be between 0.8 and 40 dtex, that of the bicomponent fibers preferably between 2 and 20 dtex.
  • the weight fraction of bicomponent fiber should be between 10 and 100% by weight, preferably between 40 and 100% by weight, based on the total fiber content.
  • the volume fraction of the airgel in the composite material should be as high as possible, at least 40%, preferably over 60%. In order to still achieve mechanical stability of the composite, however, the proportion should not be above 95%, preferably not above 90%.
  • Suitable aerogels for the compositions according to the invention are those based on metal oxides which are suitable for sol-gel technology (CJ Brinker, GW Scherer, Sol-Gel-Science, 1990, chapters 2 and 3), such as Si or Al compounds or those based on organic substances which are suitable for sol-gel technology, such as melamine formaldehyde condensates (US Pat. No. 5,086,085) or resorcinol formaldehyde condensates (US Pat. No. 4,873,218).
  • Aerogels containing Si compounds are preferably used.
  • the airgel can contain IR opacifiers, such as, for example, carbon black, titanium dioxide, iron oxides, zirconium dioxide or mixtures thereof.
  • the thermal conductivity of the aerogels decreases with increasing porosity and decreasing density. For this reason, aerogels with porosities above 60% and densities below 0.4 g / cm 3 are preferred.
  • the thermal conductivity of the airgel granules should be less than 40 mW / mK, preferably less than 25 mW / mK.
  • the airgel particles have hydrophobic surface groups.
  • hydrophobic surface groups In order to avoid a later collapse of the aerogels by condensation of moisture in the pores, it is namely advantageous if there are covalent hydrophobic groups on the inner surface of the aerogels which are not split off under the action of water.
  • Preferred groups for permanent hydrophobization are trisubstituted silyl groups of the general formula -Si (R) 3 , particularly preferably trialkyl and / or triarylsilyl groups, each R independently being a non-reactive, organic radical such as C, -C 18 alkyl or C 6 -C 14- aryl, preferably C r C 6 alkyl or phenyl, in particular methyl, ethyl, cyclohexyl or phenyl, which can additionally be substituted with functional groups.
  • the use of trimethylsilyl groups is particularly advantageous for permanent hydrophobization of the airgel.
  • Tue These groups can be introduced as described in WO 94/25149 or by gas phase reaction between the airgel and, for example, an activated trialkylsilane derivative, such as, for example, a chlorotrialkylsilane or a hexaalkyldisilazane (see R. Her, The Chemistry of Silica, Wiley & Sons, 1979 ), happen.
  • an activated trialkylsilane derivative such as, for example, a chlorotrialkylsilane or a hexaalkyldisilazane (see R. Her, The Chemistry of Silica, Wiley & Sons, 1979 ), happen.
  • the size of the grains depends on the application of the material. However, in order to be able to bind a high proportion of airgel granules, the particles should be larger than the fiber diameter, preferably larger than 30 ⁇ m. In order to achieve high stability, the granules should not be too coarse-grained, preferably the grains should be less than 2 cm.
  • Granules with a bimodal grain size distribution can preferably be used to submit high airgel volume fractions. Other suitable distributions can also be used.
  • the fire class of the composite material is determined by the fire class of the airgel and the fibers. Flame-retardant fiber types, such as TREVIRA CS ® , should be used to obtain the most favorable fire class of the composite material.
  • the composite material consists only of the fiber fleece which contains the airgel particles, airgel granules can break or become detached from the fiber when the composite material is mechanically stressed, so that fragments can fall out of the fleece.
  • the nonwoven fabric is provided on at least one or both sides with at least one cover layer, the cover layers being able to be the same or different.
  • the cover layers can either be thermally hardened via the low-melting Component of the bicomponent fiber or glued using another adhesive.
  • the cover layer can be, for example, a plastic film, preferably a metal film or a metallized plastic film.
  • the respective cover layer itself can consist of several layers.
  • nonwoven-airgel composite material in the form of mats or plates, which has an airgel-containing nonwoven fabric as the middle layer and has a cover layer on both sides, at least one of the cover layers containing nonwoven layers composed of a mixture of fine, simple fibers and fine bicomponent fibers, and the individual fiber layers are thermally consolidated in and among themselves.
  • the simple fibers as well as the bicomponent fibers should have diameters of less than 30 ⁇ m, preferably less than 15 ⁇ m.
  • the nonwoven layers of the cover layers can be needled.
  • Another object of the present invention is to provide a method for producing the composite material according to the invention.
  • the composite material according to the invention can be produced, for example, by the following method: To produce the nonwoven, staple fibers in the form of standard cards or cards are used. The airgel granules are sprinkled in while the fleece is being laid according to the methods familiar to the person skilled in the art. When introducing the airgel granules into the fiber composite, care should be taken to ensure that the granules are distributed as evenly as possible. This is achieved using commercially available spreading devices.
  • the nonwoven fabric can be placed on top of a top layer while sprinkling in the airgel, after this process the top top layer is applied.
  • cover layers made of finer fiber material are used, the lower non-woven layer made of fine fibers and / or bicomponent fibers is first laid and, if necessary, needled.
  • the airgel-containing fiber composite is applied thereon, as described above.
  • a layer of fine fibers and / or bicomponent fibers can be laid and, if necessary, needled.
  • the resulting fiber composite is optionally thermally consolidated under pressure at temperatures between the melting temperature of the sheath material and the lower of the melting temperatures of simple fiber material and high-melting component of the bicomponent fiber.
  • the pressure is between normal pressure and the compressive strength of the airgel used.
  • the plates and mats according to the invention are suitable as heat insulation material.
  • the plates and mats according to the invention can be used as sound absorption materials directly or in the form of resonance absorbers, since they have a low speed of sound and, compared to monolithic aerogels, have a higher sound absorption.
  • additional damping occurs due to air friction between the pores in the nonwoven material.
  • the permeability of the nonwoven fabric can be influenced by changing the fiber diameter, the nonwoven fabric density and the grain size of the airgel particles. If the fleece still contains cover layers, these cover layers should allow the sound to penetrate into the fleece and not lead to extensive reflection of the sound.
  • the plates and mats according to the invention are also suitable as adsorption materials for liquids, vapors and gases.
  • a specific adsorption can be achieved by modifying the airgel surface.
  • a fiber fleece with a basis weight of 100 was made from 50% by weight of TREVIRA 290, 0.8 dtex / 38 mm hm and 50% by weight of PES / Co-PES bicomponent fibers of the type TREVIRA 254, 2.2 dtex / 50 mm hm g / m 2 .
  • a hydrophobic airgel granulate based on TEOS with a density of 150 kg / m 3 and a thermal conductivity of 23 mW / mK with grain sizes of 1 to 2 mm diameter was sprinkled in during laying.
  • the resulting nonwoven composite material was thermally solidified at a temperature of 160 ° C. for 5 minutes and compressed to a thickness of 1.4 cm.
  • the volume fraction of airgel in the solidified mat was 51%.
  • the resulting mat had a basis weight of 1.2 kg / m 2 . It was easy to bend and squeeze.
  • the thermal conductivity was determined to be 28 mW / mK using a plate method in accordance with DIN 52 612 Part 1.
  • TREVIRA 1 20 staple fibers with a titer of 1.7 dtex, length 38mm, black and 50 wt .-% PES / Co-PES bicomponent fibers of the type TREVIRA 254, 2.2 dtex / 50 mm hm was first laid a fleece that served as the lower cover layer. This top layer had a basis weight of 100 g / m 2 . A nonwoven fabric made of 50% by weight of TREVIRA 292, 40 dtex / 60 mm hm and 50% by weight was then applied as the middle layer.
  • % PES / Co-PES bicomponent fibers of the TREVIRA 254 type 4.4 dtex / 50 mm hm with a basis weight of 100 g / m 2 .
  • a hydrophobic airgel granulate based on TEOS with a density of 1,50 kg / m 3 and a thermal conductivity of 23 mW / mK with grain sizes of 2 to 4 mm in diameter was sprinkled in during laying.
  • a cover layer was placed on this airgel-containing non-woven fabric, which was built up like the lower cover layer.
  • the resulting composite material was thermally solidified at a temperature of 160 ° C. for 5 minutes and compressed to a thickness of 1.5 cm.
  • the volume fraction of airgel in the solidified mat was 51%.
  • the resulting mat had a basis weight of 1.4 kg / m 2 .
  • the thermal conductivity was determined using a plate method according to DIN 52612 Part 1 to 27 mW / mK.
  • the mat was easy to bend and squeeze. Even after bending, no airgel granules trickled out of the mat.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nonwoven Fabrics (AREA)
  • Laminated Bodies (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Woven Fabrics (AREA)
  • Filtering Materials (AREA)
  • Multicomponent Fibers (AREA)

Description

Beschreibung
Faservlies- Aerogel- Verbundmaterial enthaltend Bikomponentenfasern, Verfahren zu seiner Herstellung, sowie seine Verwendung
Die Erfindung betrifft ein Verbundmaterial, das mindestens eine Lage Faservlies und Aerogel-Partikel aufweist, ein Verfahren zu seiner Herstellung sowie seine Verwendung.
Aerogele, insbesondere solche mit Porositäten über 60 % und Dichten unter 0,4 g/cm3, weisen aufgrund ihrer sehr geringen Dichte, hohen Porosität und geringen Porendurchmesser eine äußerst geringe thermische Leitfähigkeit auf und finden deshalb Anwendung als Wärmeisolationsmaterialien, wie z.B. in der EP-A-0 171 722 beschrieben.
Die hohe Porosität führt aber auch zu einer geringen mechanischen Stabilität sowohl des Gels, aus dem das Aerogel getrocknet wird, als auch des getrockneten Aerogels selbst.
Aerogele im weiteren Sinn, d.h. im Sinne von "Gel mit Luft als Dispersionsmittel", werden durch Trocknung eines geeigneten Gels hergestellt. Unter den Begriff "Aerogel" in diesem Sinne, fallen Aerogele im engeren Sinne, Xerogele und Kryogele. Dabei wird ein getrocknetes Gel als Aerogel im engeren Sinn bezeichnet, wenn die Flüssigkeit des Gels bei Temperaturen oberhalb der kritischen Temperatur und ausgehend von Drücken oberhalb des kritischen Druckes entfernt wird. Wird die Flüssigkeit des Gels dagegen unterkritisch, beispielsweise unter Bildung einer Flüssig-Dampf-Grenzphase entfernt, dann bezeichnet man das entstandene Gel als Xerogel. Es ist anzumerken, daß es sich bei den erfindungsgemäßen Gelen um
ORIGINAL UNTERLAGEN Aerogele, im Sinne von Gel mit Luft als Dispersionsmittel handelt.
Der Formgebungsprozeß des Aerogels wird während des Sol-Gel-Übergangs abgeschlossen. Nach Ausbildung der festen Gelstruktur kann die äußere Form nur noch durch Zerkleinerung, beispielsweise Mahlen, verändert werden, für eine andere Form der Bearbeitung ist das Material zu brüchig.
Für viele Anwendungen ist es jedoch notwendig, die Aerogele in Gestalt bestimmter Formkörper einzusetzen. Im Prinzip ist die Herstellung von Formkörpern schon während der Gelherstellung möglich. Jedoch würde der während der Herstellung typischerweise notwendige, diffusionsbestimmte Austausch von Lösemitteln (bzgl. Aerogele: s. z.B. US-A 4,610,863, EP-A 0 396 076, bzgl. Aerogelverbundmaterialien: s. z. B. WO 93/06044) und die ebenfalls diffusionsbestimmte Trocknung zu unwirtschaftlich langen Produktionszeiten führen. Daher ist es sinnvoll, im Anschluß an die Aerogel- Herstellung, also nach der Trocknung, einen Formgebungsschritt durchzuführen, ohne daß eine wesentliche Änderung der inneren Struktur des Aerogels im Hinblick auf die Anwendung stattfindet.
Für viele Anwendungen, z.B. zur Isolierung von gewölbten oder unregelmäßig geformten Flächen, sind flexible Platten bzw. Matten aus einem Dämmstoff notwendig.
In der DE-A 33 46 180 werden biegefeste Platten aus Preßkörpern auf der Basis von aus der Flammpyrolyse gewonnenem Kieselsäureaerogel in Verbindung mit einer Verstärkung durch mineralische Langfasern beschrieben. Bei diesem aus der Flammpyrolyse gewonnenem Kieselsäureaerogel handelt es sich jedoch nicht um ein Aerogel im obigen Sinne, da es nicht durch Trocknung eines Gels hergestellt wird und damit eine gänzlich andere Porenstruktur aufweist; daher ist es mechanisch stabiler und kann daher ohne Zerstörung der MikroStruktur gepreßt werden, weist aber eine höhere Wärmeleitfähigkeit als typische Aerogele im obigen Sinne auf. Die Oberfläche solcher Preßkörper ist sehr empfindlich und muß daher etwa durch Einsatz eines Binders an der Oberfläche gehärtet oder durch Kaschierung mit einer Folie geschützt werden. Weiter ist der entstehende Preßkörper nicht kompressibel.
Weiter wird in der deutschen Patentanmeldung P 44 18 843.9 eine Matte aus einem faserverstärkten Xerogel beschrieben. Diese Matten weisen zwar durch den sehr hohen Aerogelanteil eine sehr geringe Wärmeleitfähigkeit auf, doch sind für ihre Herstellung auf Grund der oben beschriebenen Diffusionsprobleme relativ lange Herstellungszeiten notwendig. Insbesondere ist die Herstellung dickerer Matten nur durch Kombination mehrerer dünner Matten sinnvoll möglich und erfordert damit zusätzlichen Aufwand.
Aufgabe der vorliegenden Erfindung ist es daher, ein Verbundmaterial auf der Basis von Aerogel-Granulat bereitzustellen, das eine niedrige Wärmeleitfähigkeit aufweist, das mechanisch stabil ist und die einfache Herstellung von Matten oder Platten erlaubt.
Die Aufgabe wird gelöst durch ein Verbundmaterial, das mindestens eine Lage Faservlies und Aerogel-Partikel aufweist, das dadurch gekennzeichnet ist, daß das Faservlies mindestens ein Bikomponenten-Fasermaterial enthält, wobei das Bikomponenten-Fasermaterial nieder- und höherschmelzende Bereiche aufweist und die Fasern des Vlieses sowohl mit den Aerogel-Partikeln als auch untereinander durch die niederschmelzenden Bereiche des Fasermaterials verbunden sind. Die thermische Verfestigung der Bikomponentenfasern führt zu einer Verbindung der niedrigschmelzenden Teile der Bikomponentenfasern und sorgt damit für ein stabiles Vlies. Gleichzeitig bindet der niederschmelzende Teil der Bikomponentenfaser die Aerogel-Partikel an die Faser. Die Bikomponentenfasern sind Chemiefasern aus zwei fest verbundenen Polymere von unterschiedlichem chemischen und/oder physikalischem Aufbau, die Bereiche mit unterschiedlichen Schmelzpunkten, d.h. nieder- und höherschmelzende Bereiche, aufweisen. Die Schmelzpunkte der nieder- bzw. höherschmelzenden Bereiche unterscheiden sich dabei vorzugsweise um mindestens 10°C. Vorzugsweise weisen die Bikomponentenfasern Kern- Mantel- Struktur auf. Der Kern der Faser besteht dabei aus einem Polymer, vorzugsweise einem thermoplastischen Polymer, dessen Schmelzpunkt höher liegt als der des thermoplastischen Polymers, das den Mantel bildet. Vorzugsweise werden Polyester/Copolyester Bikomponentenfasern eingesetzt. Weiterhin können auch Bikomponentenfaservariationen aus Polyester/Polyolefin, z.B. Polyester/Polyethylen bzw. Polyester/Copolyolefin oder Bikomponentenfasern, die ein elastisches Mantelpolymer aufweisen, verwendet werden. Es können aber auch Side-by- Side Bikomponentenfasern verwendet werden.
Zusätzlich kann das Faservlies noch mindestens ein einfaches Fasermaterial enthalten, das bei der thermischen Verfestigung mit den niederschmelzenden Bereichen der Bikomponentenfasern verbunden wird.
Bei den einfachen Fasern handelt es sich um organische Polymerfasern, z.B. Polyester-, Polyolefin- und/oder Polyamidfasern, vorzugsweise Polyesterfasern. Die Fasern können runde, trilobale, pentalobale, oktalobale, bändchen-, tannenbaum-, hantel- oder andere sternförmige Profile aufweisen. Ebenso können Hohlfasern verwendet werden. Der Schmelzpunkt dieser einfachen Fasern sollte über dem der niederschmelzenden Bereiche der Bikomponentenfasern liegen.
Zur Reduktion des Strahlungsbeitrages zur Wärmeleitfähigkeit können die Bikomponentenfasern, d.h. die hoch- und/oder die niedrigschmelzende Komponente, und ggf. die einfachen Fasern mit einem IR- Trübungsmittel wie z.B. Ruß, Titandioxid, Eisenoxiden oder Zirkondioxid oder Mischungen derselben geschwärzt sein.
Zur Farbgebung können die Bikomponentenfasern sowie ggf. die einfachen Fasern auch gefärbt sein.
Der Durchmesser der im Verbundstoff verwendeten Fasern sollte vorzugsweise kleiner als der mittlere Durchmesser der Aerogel-Partikel sein, um einen hohen Anteil Aerogel im Faservlies binden zu können. Durch Wahl von sehr dünnen Faserdurchmessern lassen sich Matten herstellen, die sehr flexibel sind, während dickere Fasern durch ihre größere Biegesteifigkeit zu voluminöseren und starreren Matten führen.
Der Titer der einfachen Fasern sollte vorzugsweise zwischen 0,8 und 40 dtex liegen, der der Bikomponentenfasern vorzugsweise zwischen 2 und 20 dtex.
Es können auch Mischungen von Bikomponentenfasern bzw. einfachen Fasern aus verschiedenen Materialien, mit verschiedenen Profilen und/oder verschiedenen Titern verwendet werden.
Um einerseits eine gute Verfestigung des Vlieses zu erreichen, andererseits eine gute Haftung des Aerogelgranulates sollte der Gewichtsanteil an Bikomponentenfaser zwischen 10 und 100 Gew.-%, vorzugsweise zwischen 40 und 100 Gew.-%, bezogen auf den Gesamtfaseranteil, liegen.
Der Volumenanteil des Aerogels im Verbundmaterial sollte möglichst hoch, mindestens 40 %, bevorzugt über 60 % sein. Um noch mechanische Stabilität des Verbundstoffes zu erreichen sollte der Anteil jedoch nicht über 95%, vorzugsweise nicht über 90 % liegen. Geeignete Aerogele für die erfindungsgemäßen Zusammensetzungen sind solche auf der Basis von Metalloxiden, die für die Sol-Gel-Technik geeignet sind (C.J. Brinker, G.W. Scherer, Sol-Gel-Science, 1990, Kap. 2 und 3), wie beispielsweise Si- oder AI-Verbindungen oder solche auf der Basis organischer Stoffe, die für die Sol-Gel-Technik geeignet sind, wie Melaminformaldehydkondensate (US-A-5 086 085) oder Resorcinformaldehydkondensate (US-A-4 873 218). Sie können auch au Mischungen der obengenannten Materialien basieren. Bevorzugt verwendet werde Aerogele, enthaltend Si- Verbindungen, insbesondere SiO2-Aerogele und ganz besonders bevorzugt SiO2-Xerogele. Zur Reduktion des Strahlungsbeitrags der Wärmeleitfähigkeit kann das Aerogel IR-Trübungsmittel, wie z.B. Ruß, Titandioxid, Eisenoxide, Zirkondioxid oder Mischungen derselben enthalten.
Darüber hinaus gilt, daß die thermische Leitfähigkeit der Aerogele mit zunehmende Porosität und abnehmender Dichte abnimmt. Aus diesem Grund sind Aerogele mit Porositäten über 60 % und Dichten unter 0,4 g/cm3 bevorzugt. Die Wärmeleitfähigkeit des Aerogelgranulats sollte weniger als 40 mW/mK, vorzugsweise weniger als 25 mW/mK, betragen.
In einer bevorzugten Ausführungsform weisen die Aerogel-Partikel hydrophobe Oberflächengruppen auf. Um einen späteren Kollaps der Aerogele durch Kondensation von Feuchtigkeit in den Poren zu vermeiden, ist es nämlich vorteilhaft, wenn auf der inneren Oberfläche der Aerogele hydrophobe Gruppen kovalent vorhanden sind, die unter Wassereinwirkung nicht abgespalten werden. Bevorzugte Gruppen zur dauerhaften Hydrophobisierung sind trisubstituierte Silylgruppen der allgemeinen Formel -Si(R)3, besonders bevorzugt Trialkyl- und/ode Triarylsilylgruppen, wobei jedes R unabhängig ein nicht reaktiver, organischer Rest wie C,-C18 -Alkyl oder C6-C14-Aryl, vorzugsweise CrC6-Alkyl oder Phenyl, insbesondere Methyl, Ethyl, Cyclohexyl oder Phenyl ist, der zusätzlich noch mit funktioneilen Gruppen substituiert sein kann. Besonders vorteilhaft zur dauerhaften Hydrophobisierung des Aerogels ist die Verwendung von Trimethylsilylgruppen. Di Einbringung dieser Gruppen kann, wie in der WO 94/25149 beschrieben, erfolgen oder durch Gasphasenreaktion zwischen dem Aerogel und beispielsweise einem aktivierten Trialkylsilanderivat, wie z.B. einem Chlortrialkγlsilan oder einem Hexaalkyldisilazan (vergleiche R. Her, The Chemistry of Silica, Wiley & Sons, 1979), geschehen.
Die Größe der Körner richtet sich nach der Anwendung des Materials. Um jedoch einen hohen Anteil von Aerogelgranulat binden zu können, sollten die Partikel größer als die Faserdurchmesser, vorzugsweise größer als 30 μm sein. Um eine hohe Stabilität zu erreichen sollte das Granulat nicht zu grobkörnig sein, vorzugsweise sollten die Körner kleiner als 2 cm sein.
Zur Einreichung hoher Aerogel- Volumenanteile kann vorzugsweise Granulat mit einer bimodalen Korngrößenverteilung verwendet werden. Weiter können auch andere geeignete Verteilungen Verwendung finden.
Die Brandklasse des Verbundmaterials wird durch die Brandklasse des Aerogels und der Fasern bestimmt. Um eine möglichst günstige Brandklasse des Verbundmaterials zu erhalten, sollten schwerentflammbare Fasertypen, wie z.B. TREVIRA CS®, verwendet werden.
Besteht das Verbundmaterial nur aus dem Faservlies, das die Aerogel-Partikel enthält, kann bei mechanischer Beanspruchung des Verbundmaterials Aerogelgranulat brechen oder sich von der Faser lösen, so daß Bruchstücke aus dem Vlies herausfallen können.
Für bestimmte Anwendungen ist es daher vorteilhaft, wenn das Faservlies auf einer oder beiden Seiten mit jeweils mindestens einer Deckschicht versehen ist, wobei die Deckschichten gleich oder verschieden sein können. Die Deckschichten können entweder bei der thermischen Verfestigung über die niedrigschmelzende Komponente der Bikomponentenfaser oder mittels eines anderen Klebers verklebt werden. Die Deckschicht kann z.B. eine Kunststoffolie, vorzugsweise eine Metallfolie oder eine metallisierte Kunststoffolie sein. Ferner kann die jeweilige Deckschicht selbst aus mehreren Schichten bestehen.
Bevorzugt ist ein Faservlies-Aerogel-Verbundmaterial in Form von Matten oder Platten, das ein aerogelhaltiges Faservlies als Mittelschicht und auf beiden Seiten jeweils eine Deckschicht aufweist, wobei mindestens eine der Deckschichten Vlieslagen aus einer Mischung feiner, einfacher Fasern und feiner Bikomponentenfasern enthält, und die einzelnen Faserschichten in sich und untereinander thermisch verfestigt sind.
Zur Auswahl der Bikomponentenfasern und der einfachen Fasern der Deckschicht gilt das gleiche wie für die Fasern des Faservlies, in das die Aerogel-Partikel eingebunden sind.
Um eine möglichst dichte Deckschicht zu erhalten, sollten jedoch die einfachen Fasern wie auch die Bikomponentenfasern Durchmesser kleiner als 30 μ , vorzugsweise kleiner als 15 μm, besitzen.
Um eine größere Stabilität oder Dichte der Oberflächenlagen zu erzielen, können die Vlieslagen der Deckschichten vernadelt sein.
Eine weitere Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zur Herstellung des erfindungsgemäßen Verbundmaterials bereitzustellen.
Das erfindungsgemäße Verbundmaterial kann z.B. nach folgendem Verfahren hergestellt werden: Zur Herstellung des Faservlieses werden Stapelfasern in Form handelsüblicher Karden oder Krempeln eingesetzt. Während das Vlies nach den dem Fachmann geläufigen Verfahren gelegt wird, wird das Aerogelgranulat eingestreut. Beim Einbringen des Aerogelgranulates in den Faserverbund ist auf eine möglichst gleichmäßige Verteilung der Granulatkörner zu achten. Dies wird durch handelsübliche Streuvorrichtungen erreicht.
Bei Einsatz von Deckschichten kann auf einer Deckschicht das Faservlies unter Einstreuen des Aerogels gelegt werden, nach Beendigung dieses Vorgangs wird die obere Deckschicht aufgebracht.
Werden Deckschichten aus feinerem Fasermaterial verwendet, wird zunächst die untere Vliesschicht aus feinen Fasern und/oder Bikomponentenfasern nach bekannten Verfahren gelegt und ggf. vernadelt. Darauf wird, wie oben geschildert, der aerogelhaltige Faserverbund aufgebracht. Für eine weitere, obere Deckschicht kann, wie für die untere Vliesschicht, aus feinen Fasern und/oder Bikomponenten¬ fasern eine Schicht gelegt und ggf. vernadelt werden.
Der resultierende Faserverbund wird ggf. unter Druck bei Temperaturen zwischen der Schmelztemperatur des Mantelmaterials und der kleineren der Schmelztemperaturen von einfachem Fasermaterial und hochschmelzender Komponente der Bikomponentenfaser thermisch verfestigt. Der Druck liegt zwischen Normaldruck und der Druckfestigkeit des verwendeten Aerogels.
Die ganzen Verarbeitungsvorgänge können bevorzugt kontinuierlich auf dem Fachmann bekannten Anlagen hergestellt werden.
Die erfindungsgemäßen Platten und Matten eignen sich auf Grund ihrer geringen Wärmeleitfähigkeit als Wärmeisolationsmaterial. Daneben können die erfindungsgemäßen Platten und Matten als Schallabsorptions materialien direkt oder in Form von Resonanzabsorbern verwendet werden, da sie eine geringe Schallgeschwindigkeit und, verglichen mit monolithischen Aerogelen, eine höhere Schalldämpfung aufweisen. Zusätzlich zu der Dämpfung des Aerogelmaterials tritt nämlich je nach Permeabilität des Faservlieses eine zusätzliche Dämpfung durch Luftreibung zwischen den Poren im Vliesmaterial auf. Die Permeabilität des Faservlieses kann durch Veränderung des Faserdurchmesser der Vliesdichte und der Korngröße der Aerogel-Partikel beeinflußt werden. Enthält das Vlies noch Deckschichten, so sollten diese Deckschichten ein Eindringen des Schalls in das Vlies erlauben und nicht zu einer weitgehenden Reflexion des Schall führen.
Die erfindungsgemäßen Platten und Matten eignen sich weiterhin auf Grund der Porosität des Vlieses und besonders der großen Porosität und spezifischen Oberfläche des Aerogels auch als Adsorptionsmaterialien für Flüssigkeiten, Dämpfe und Gase. Dabei kann durch Modifikation der Aerogel-Oberfläche eine spezifische Adsorption erzielt werden.
Die Erfindung wird im folgenden anhand von Ausführungsbeispielen näher beschrieben.
Beispiel 1 :
Aus 50 Gew.-% TREVIRA 290, 0,8 dtex/38 mm hm und 50 Gew.-% PES/Co-PES Bikomponentenfasern vom Typ TREVIRA 254, 2,2 dtex/50 mm hm wurde ein Faservlies mit einem Flächengewicht von 100 g/m2 gelegt. Während des Legens wurde ein hydrophobes Aerogelgranulat auf der Basis von TEOS mit einer Dichte von 150 kg/m3 und einer Wärmeleitfähigkeit von 23 mW/mK mit Korngrößen von 1 bis 2 mm Durchmesser eingestreut. Das so entstandene Vliesverbundmaterial wurde bei einer Temperatur von 1 60°C für 5 Minuten thermisch verfestigt und auf eine Dicke von 1 ,4 cm komprimiert.
Der Volumenanteil an Aerogel in der verfestigten Matte betrug 51 %. Die resultierende Matte wies ein Flächengewicht von 1 ,2 kg/m2 auf. Sie ließ sich leicht biegen und auch zusammendrücken. Die Wärmeleitfähigkeit wurde mit einer Plattenmethode nach DIN 52 612 Teil 1 zu 28 mW/mK bestimmt.
Beispiel 2:
Aus 50 Gew.-% TREVIRA 1 20 Stapelfasern mit einem Titer von 1 ,7 dtex, Länge 38mm, spinnschwarz und 50 Gew.-% PES/Co-PES Bikomponentenfasern vom Typ TREVIRA 254, 2,2 dtex/50 mm hm wurde zunächst ein Vlies gelegt, das als untere Deckschicht diente. Diese Deckschicht hatte ein Flächengewicht von 100g/m2. Darauf wurde als Mittelschicht ein Faservlies aus 50 Gew.-% TREVIRA 292, 40 dtex/60 mm hm und 50-Gew. % PES/Co-PES Bikomponentenfasern vom Typ TREVIRA 254, 4,4 dtex/50 mm hm mit einem Flächengewicht von 100 g/m2 gelegt. Während des Legens wurde ein hydrophobes Aerogelgranulat auf der Basis von TEOS mit einer Dichte von 1 50 kg/m3 und einer Wärmeleitfähigkeit von 23 mW/mK mit Korngrößen von 2 bis 4 mm Durchmesser eingestreut. Auf dieses aerogelhaltige Faservlies wurde eine Deckschicht gelegt, die wie die untere Deckschicht aufgebaut wurde.
Das so entstandene Verbundmaterial wurde bei einer Temperatur von 1 60" C für 5 Minuten thermisch verfestigt und auf eine Dicke von 1 ,5 cm komprimiert. Der Volumenanteil an Aerogel in der verfestigten Matte betrug 51 %. Die resultierende Matte wies ein Flächengewicht von 1 ,4 kg/m2 auf. Die Wärmeleitfähigkeit wurde mit einer Plattenmethode nach DIN 52612 Teil 1 zu 27 mW/mK bestimmt.
Die Matte ließ sich leicht biegen und zusammendrücken. Aus der Matte rieselte auch nach Verbiegen kein Aerogelgranulat heraus.

Claims

Patentansprüche:
1. Verbundmaterial, das mindestens eine Lage Faservlies und Aerogel-Partikel aufweist, dadurch gekennzeichnet, daß das Faservlies mindestens ein Bikomponenten-Fasermaterial enthält, wobei das Bikomponenten- Fasermaterial nieder- und höherschmelzende Bereiche aufweist und die Fasern des Vlieses sowohl mit den Aerogel-Partikeln als auch untereinander durch die niederschmelzenden Bereiche des Fasermaterials verbunden sind.
2. Verbundmaterial gemäß Anspruch 1 , dadurch gekennzeichnet, daß das Bikomponenten-Fasermaterial eine Kern-/Mantelstruktur aufweist.
3. Verbundmaterial gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Faservlies zusätzlich mindestens ein einfaches Fasermaterial enthält.
4. Verbundmaterial gemäß mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Titer des Bikomponenten-Fasermaterials im Bereich von 2 bis 20 dtex und der Titer der einfachen Fasern im Bereich von 0,8 bis 40 dtex liegt.
5. Verbundmaterial gemäß mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Anteil der Aerogel-Partikel im Verbundmaterial mindestens 40 Vol.-% beträgt.
6. Verbundmaterial gemäß mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Aerogel ein SiO2-Aerogel ist.
7. Verbundmaterial gemäß mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das Bikomponenten-Fasermaterial, das einfache Fasermaterial und/oder die Aerogel-Partikel mindestens ein IR-Trübungsmittel enthalten.
8. Verbundmaterial gemäß mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Aerogel-Partikel Porositäten über 60 %, Dichten unter 0,4 g/cm3 und Wärmeleitfähigkeit von weniger als 40 mW/mK, vorzugsweise weniger als 25 mW/mK, aufweisen.
9. Verbundmaterial gemäß mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Aerogel-Partikel hydrophobe Oberflächengruppen aufweisen.
10. Verbundmaterial gemäß mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß das Faservlies auf einer oder beiden Seiten mit jeweils mindestens einer Deckschicht versehen ist, wobei die Deckschichten gleich oder verschieden sein können.
1 1 . Verbundmaterial gemäß Anspruch 10, dadurch gekennzeichnet, daß die Deckschichten Kunststoffolien, Metallfolien, metallisierte Kunststoffolien oder vorzugsweise Vlieslagen aus feinen einfachen Fasern und/oder feinen Bikomponenten-Fasern, enthalten.
12. Verbundmaterial gemäß mindestens einem der Ansprüche 1 bis 1 1 in Form einer Platte oder Matte.
13. Verfahren zur Herstellung eines Verbundmaterials gemäß Anspruch 1 , dadurch gekennzeichnet, daß man in ein Faservlies, das mindestens ein Bikomponenten-Fasermaterial mit nieder- und höherschmelzenden Bereichen enthält, die Aerogel-Partikel einstreut und den resultierenden Faserverbund gegebenenfalls unter Druck bei Temperaturen oberhalb der niedrigeren Schmelztemperatur und unterhalb der höheren Schmelztemperatur thermisch verfestigt.
14. Verwendung eines Verbundmaterials gemäß mindestens einem der Ansprüche 1 bis 1 2 zur Wärmedämmung, zur Schalldämpfung und/oder als Adsorptionsmaterial für Gase, Dämpfe und Flüssigkeiten.
EP95942723A 1994-12-21 1995-12-21 Faservlies- aerogel- verbundmaterial enthaltend bikomponentenfasern, verfahren zu seiner herstellung, sowie seine verwendung Expired - Lifetime EP0799343B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4445771 1994-12-21
DE4445771 1994-12-21
PCT/EP1995/005083 WO1996019607A1 (de) 1994-12-21 1995-12-21 Faservlies- aerogel- verbundmaterial enthaltend bikomponentenfasern, verfahren zu seiner herstellung, sowie seine verwendung

Publications (2)

Publication Number Publication Date
EP0799343A1 true EP0799343A1 (de) 1997-10-08
EP0799343B1 EP0799343B1 (de) 2000-03-22

Family

ID=6536571

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95942723A Expired - Lifetime EP0799343B1 (de) 1994-12-21 1995-12-21 Faservlies- aerogel- verbundmaterial enthaltend bikomponentenfasern, verfahren zu seiner herstellung, sowie seine verwendung

Country Status (16)

Country Link
US (1) US5786059A (de)
EP (1) EP0799343B1 (de)
JP (1) JP4237253B2 (de)
KR (1) KR100368851B1 (de)
CN (1) CN1063246C (de)
AT (1) ATE191021T1 (de)
AU (1) AU4388996A (de)
CA (1) CA2208510A1 (de)
DE (1) DE59508075D1 (de)
ES (1) ES2146795T3 (de)
FI (1) FI972677A (de)
MX (1) MX9704728A (de)
NO (1) NO309578B1 (de)
PL (1) PL181720B1 (de)
RU (1) RU2147054C1 (de)
WO (1) WO1996019607A1 (de)

Families Citing this family (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6887563B2 (en) * 1995-09-11 2005-05-03 Cabot Corporation Composite aerogel material that contains fibres
DE19648798C2 (de) 1996-11-26 1998-11-19 Hoechst Ag Verfahren zur Herstellung von organisch modifizierten Aerogelen durch Oberflächenmodifikation des wäßrigen Gels (ohne vorherigen Lösungsmitteltausch) und anschließender Trocknung
DE19702238A1 (de) * 1997-01-24 1998-08-06 Hoechst Ag Verwendung von Aerogelen zur Körper- und/oder Trittschalldämmung
DE19702240A1 (de) * 1997-01-24 1998-07-30 Hoechst Ag Mehrschichtige Verbundmaterialien, die mindestens eine aerogelhaltige Schicht und mindestens eine weitere Schicht aufweisen, Verfahren zu ihrer Herstellung sowie ihre Verwendung
DE19702239A1 (de) * 1997-01-24 1998-07-30 Hoechst Ag Mehrschichtige Verbundmaterialien, die mindestens eine aerogelhaltige Schicht und mindestens eine Schicht, die Polyethylenterephthalat-Fasern enthält, aufweisen, Verfahren zu ihrer Herstellung sowie ihre Verwendung
EP0975405B1 (de) * 1997-04-18 2006-03-29 Cabot Corporation Verwendung von aerogelen als adsorptionsmittel
DE19718740A1 (de) 1997-05-02 1998-11-05 Hoechst Ag Verfahren zur Granulierung von Aerogelen
DE19718741A1 (de) 1997-05-02 1998-11-05 Hoechst Ag Verfahren zur Kompaktierung von Aerogelen
EP1012891A2 (de) * 1997-09-05 2000-06-28 1... Ipr Limited Aerogele, piezoelektrische anordnungen, und ihre verwendung
DE19756633A1 (de) 1997-12-19 1999-06-24 Hoechst Ag Verfahren zur unterkritischen Trocknung von Lyogelen zu Aerogelen
DE19801004A1 (de) 1998-01-14 1999-07-15 Cabot Corp Verfahren zur Herstellung von im wesentlichen kugelförmigen Lyogelen in wasserunlöslichen Silylierungsmitteln
JP2002517585A (ja) * 1998-06-05 2002-06-18 カボット・コーポレーション ナノ多孔質相互浸透有機−無機網目構造
US8075716B1 (en) * 2000-01-11 2011-12-13 Lawrence Livermore National Security, Llc Process for preparing energetic materials
KR100909732B1 (ko) 2000-12-22 2009-07-29 아스펜 에어로겔, 인코퍼레이티드 섬유성 배팅을 보유하는 에어로겔 복합물
GB0117212D0 (en) * 2001-07-16 2001-09-05 Mat & Separations Tech Int Ltd Filter element
CN1309468C (zh) * 2002-01-29 2007-04-11 卡伯特公司 耐热气凝胶绝缘复合材料及其制备方法,气凝胶粘合剂组合物及其制备方法
JP4559229B2 (ja) * 2002-05-15 2010-10-06 キャボット コーポレイション 耐熱性絶縁複合材及びそれを製造する方法
DE602004017982D1 (de) * 2003-05-06 2009-01-08 Aspen Aerogels Inc Tragendes, leichtes und kompaktes isoliersystem
US7621299B2 (en) * 2003-10-03 2009-11-24 Cabot Corporation Method and apparatus for filling a vessel with particulate matter
US7641954B2 (en) * 2003-10-03 2010-01-05 Cabot Corporation Insulated panel and glazing system comprising the same
US7118801B2 (en) * 2003-11-10 2006-10-10 Gore Enterprise Holdings, Inc. Aerogel/PTFE composite insulating material
US20050270746A1 (en) * 2004-06-04 2005-12-08 Reis Bradley E Insulating structure having combined insulating and heat spreading capabilities
WO2006052581A2 (en) * 2004-11-03 2006-05-18 Cottonwood Manufacturing, Inc. Fiber insulation blanket and method of manufacture
US7635411B2 (en) * 2004-12-15 2009-12-22 Cabot Corporation Aerogel containing blanket
US8461223B2 (en) 2005-04-07 2013-06-11 Aspen Aerogels, Inc. Microporous polycyclopentadiene-based aerogels
US9469739B2 (en) 2005-04-07 2016-10-18 Aspen Aerogels, Inc. Microporous polyolefin-based aerogels
US20060264133A1 (en) * 2005-04-15 2006-11-23 Aspen Aerogels,Inc. Coated Aerogel Composites
US20060269734A1 (en) * 2005-04-15 2006-11-30 Aspen Aerogels Inc. Coated Insulation Articles and Their Manufacture
US9476123B2 (en) 2005-05-31 2016-10-25 Aspen Aerogels, Inc. Solvent management methods for gel production
WO2007011750A2 (en) * 2005-07-15 2007-01-25 Aspen Aerogels, Inc. Secured aerogel composites and method of manufacture thereof
CN100398492C (zh) * 2005-08-01 2008-07-02 中国人民解放军国防科学技术大学 一种气凝胶绝热复合材料及其制备方法
US20070202771A1 (en) * 2005-11-02 2007-08-30 Earl Douglass Fiber insulation blanket and method of manufacture
CN100372603C (zh) * 2005-11-18 2008-03-05 上海市纺织科学研究院 吸附用SiO2气凝胶-双组分无纺毡复合材料及其制造方法
WO2007140293A2 (en) 2006-05-25 2007-12-06 Aspen Aerogels, Inc. Aerogel compositions with enhanced performance
US8118177B2 (en) 2006-10-04 2012-02-21 Sellars Absorbent Materials, Inc. Non-woven webs and methods of manufacturing the same
US8318062B2 (en) 2006-10-04 2012-11-27 Sellars Absorbent Materials, Inc. Industrial absorbents and methods of manufacturing the same
WO2008055208A1 (en) * 2006-11-01 2008-05-08 New Jersey Institute Of Technology Aerogel-based filtration of gas phase systems
US20080229704A1 (en) * 2007-03-23 2008-09-25 Birdair, Inc. Architectural membrane structures and methods for producing them
GB2448467A (en) * 2007-04-20 2008-10-22 Parasol Panel Systems Llp Insulating panel
WO2008144634A2 (en) * 2007-05-18 2008-11-27 Cabot Corporation Filling fenestration units
US8596361B2 (en) * 2007-12-14 2013-12-03 3M Innovative Properties Company Proppants and uses thereof
BRPI0821118B1 (pt) * 2007-12-14 2018-11-06 Prad Research And Development Limited método de completar um poço, método de tratar uma formação subterrânea interceptada por um poço, utilizando aditivos mutáveis, e método
EP3059338A1 (de) * 2007-12-14 2016-08-24 3M Innovative Properties Company Faseraggregat
US20100263870A1 (en) * 2007-12-14 2010-10-21 Dean Michael Willberg Methods of contacting and/or treating a subterranean formation
US20090209155A1 (en) * 2008-02-15 2009-08-20 Chapman Thermal Products, Inc. Layered thermally-insulating fabric with thin heat reflective and heat distributing core
US20090258180A1 (en) * 2008-02-15 2009-10-15 Chapman Thermal Products, Inc. Layered thermally-insulating fabric with an insulating core
WO2009134992A2 (en) 2008-05-01 2009-11-05 Cabot Corporation Manufacturing and installation of insulated pipes or elements thereof
WO2010068254A2 (en) 2008-12-10 2010-06-17 Cabot Corporation Insulation for storage or transport of cryogenic fluids
KR101906754B1 (ko) 2009-04-27 2018-10-10 캐보트 코포레이션 에어로겔 조성물 및 그의 제조 방법 및 사용 방법
CA2777244C (en) 2009-10-21 2018-01-09 3M Innovative Properties Company Porous supported articles and methods of making
EP2504290B1 (de) 2009-11-25 2018-04-25 Cabot Corporation Verfahren zur herstellung von aerogelverbundstoffen
FI122693B (fi) 2009-12-23 2012-05-31 Paroc Oy Ab Menetelmä mineraalivilla-komposiittimateriaalin valmistamiseksi, menetelmällä valmistettu tuote ja sen käyttö eristysmateriaalina
FI123674B (fi) 2009-12-23 2013-09-13 Paroc Oy Ab Menetelmä mineraalikuitu-komposiittituotteen valmistamiseksi
DK2547510T3 (da) * 2010-03-18 2014-05-12 Toho Tenax Europe Gmbh Multiaksialt tæppe som har en vliespolymer og præform til fremstilling af kompositkomponenter
US8899000B2 (en) 2010-07-09 2014-12-02 Birdair, Inc. Architectural membrane and method of making same
US8663427B2 (en) 2011-04-07 2014-03-04 International Paper Company Addition of endothermic fire retardants to provide near neutral pH pulp fiber webs
WO2012018749A1 (en) 2010-08-03 2012-02-09 International Paper Company Fire retardant treated fluff pulp web and process for making same
US8952119B2 (en) 2010-11-18 2015-02-10 Aspen Aerogels, Inc. Organically modified hybrid aerogels
US8906973B2 (en) 2010-11-30 2014-12-09 Aspen Aerogels, Inc. Modified hybrid silica aerogels
US8388807B2 (en) 2011-02-08 2013-03-05 International Paper Company Partially fire resistant insulation material comprising unrefined virgin pulp fibers and wood ash fire retardant component
US9133280B2 (en) 2011-06-30 2015-09-15 Aspen Aerogels, Inc. Sulfur-containing organic-inorganic hybrid gel compositions and aerogels
WO2013006666A1 (en) 2011-07-07 2013-01-10 3M Innovative Properties Company Article including multi-component fibers and hollow ceramic microspheres and methods of making and using the same
FR2981341B1 (fr) 2011-10-14 2018-02-16 Enersens Procede de fabrication de xerogels
ITMO20110298A1 (it) * 2011-11-21 2013-05-22 Giemme S N C Di Corradini Marco & C Procedimento di realizzazione di un pannello isolante e relativo pannello isolante ottenibile.
SI24001A (sl) 2012-02-10 2013-08-30 Aerogel Card D.O.O. Kriogena naprava za transport in skladiščenje utekočinjenih plinov
FI126355B (en) 2012-03-27 2016-10-31 Paroc Group Oy Composite insulating product consisting of mineral wool and material with excellent insulating properties
US9302247B2 (en) 2012-04-28 2016-04-05 Aspen Aerogels, Inc. Aerogel sorbents
WO2014004366A1 (en) 2012-06-26 2014-01-03 Cabot Corporation Flexible insulating structures and methods of making and using same
CN102807358B (zh) * 2012-07-13 2014-03-12 中国科学院研究生院 一种柔性气凝胶块体及其制备方法
US11053369B2 (en) 2012-08-10 2021-07-06 Aspen Aerogels, Inc. Segmented flexible gel composites and rigid panels manufactured therefrom
US10058808B2 (en) 2012-10-22 2018-08-28 Cummins Filtration Ip, Inc. Composite filter media utilizing bicomponent fibers
BR112015021190B1 (pt) 2013-03-08 2021-10-05 Aspen Aerogels, Inc Compósito de aerogel e painel laminado
FR3007025B1 (fr) 2013-06-14 2015-06-19 Enersens Materiaux composites isolants comprenant un aerogel inorganique et une mousse de melamine
US10590000B1 (en) * 2013-08-16 2020-03-17 United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration High temperature, flexible aerogel composite and method of making same
US9434831B2 (en) 2013-11-04 2016-09-06 Aspen Aerogels, Inc. Benzimidazole based aerogel materials
CZ307301B6 (cs) * 2013-12-17 2018-05-23 Univerzita Tomáše Bati ve Zlíně Kompaktní útvar kompozitního charakteru a způsob jeho přípravy
CN106029763A (zh) 2013-12-19 2016-10-12 W.L.戈尔及同仁股份有限公司 热绝缘膨体聚四氟乙烯制品
US11380953B2 (en) 2014-06-23 2022-07-05 Aspen Aerogels, Inc. Thin aerogel materials
EP4234620A3 (de) 2014-10-03 2023-12-06 Aspen Aerogels, Inc. Verbesserte hydrophobe aerogelmaterialien
CN106660317A (zh) * 2014-11-06 2017-05-10 松下知识产权经营株式会社 复合片及其制造方法
FR3033732B1 (fr) * 2015-03-17 2017-04-14 Enersens Materiaux composites multicouches
US10543660B2 (en) 2015-03-30 2020-01-28 Panasonic Intellectual Property Managment Co., Ltd. Heat-insulation sheet, electronic device using same, and method for producing heat-insulation sheet
DE102015009370A1 (de) 2015-07-24 2017-01-26 Carl Freudenberg Kg Aerogelvliesstoff
CN105965988A (zh) * 2016-05-03 2016-09-28 杭州歌方新材料科技有限公司 一种绝缘阻燃的复合材料及其制备方法
US10337408B2 (en) * 2016-06-08 2019-07-02 Mra Systems, Llc Thermal insulation blanket and thermal insulation blanket assembly
CN105908369A (zh) * 2016-06-27 2016-08-31 湖南华丰纺织有限公司 一种双面定型无胶棉絮片及其制造方法
EP3601422A1 (de) 2017-03-29 2020-02-05 W. L. Gore & Associates, Inc. Wärmedämmende artikel aus expandiertem polytetrafluorethylen
AU2018306554A1 (en) * 2017-07-24 2020-02-20 Dotterel Technologies Limited Shroud
CN109458519B (zh) * 2017-09-06 2021-11-30 松下电器产业株式会社 绝热材料
EP3801868A1 (de) 2018-05-31 2021-04-14 Aspen Aerogels Inc. Glasfaserverstärkte aerogelzusammensetzungen
JP7304509B2 (ja) * 2019-03-28 2023-07-07 パナソニックIpマネジメント株式会社 断熱材およびその製造方法
CN111560613B (zh) * 2020-05-19 2021-12-21 江苏万力机械股份有限公司 一种汽车曲轴表面半消失型补强处理方法
CN116695280B (zh) * 2023-06-07 2024-04-12 清源创新实验室 一种三维螺旋结构弹性es纤维及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3346180C2 (de) * 1983-12-21 1996-05-15 Micropore International Ltd Starrer Wärmedämmkörper
AU598606B2 (en) * 1986-11-27 1990-06-28 Unitika Ltd. Adsorptive fiber sheet
US5256476A (en) * 1989-11-02 1993-10-26 Kuraray Chemical Co., Ltd. Fan blade comprising adsorbent particles, fine plastic particles and reinforcing fibers
IS1570B (is) * 1990-05-14 1995-02-28 Nihon Dimple Carton Co., Ltd. Hitaeinangrandi bylgjupappi og aðferð til framleiðslu hans
US5271780A (en) * 1991-12-30 1993-12-21 Kem-Wove, Incorporated Adsorbent textile product and process
US5221573A (en) * 1991-12-30 1993-06-22 Kem-Wove, Inc. Adsorbent textile product

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9619607A1 *

Also Published As

Publication number Publication date
US5786059A (en) 1998-07-28
MX9704728A (es) 1997-10-31
JPH10510888A (ja) 1998-10-20
WO1996019607A1 (de) 1996-06-27
DE59508075D1 (de) 2000-04-27
FI972677A0 (fi) 1997-06-19
NO972850D0 (no) 1997-06-19
ATE191021T1 (de) 2000-04-15
PL320877A1 (en) 1997-11-10
FI972677A (fi) 1997-06-19
CN1063246C (zh) 2001-03-14
JP4237253B2 (ja) 2009-03-11
AU4388996A (en) 1996-07-10
CN1170445A (zh) 1998-01-14
KR100368851B1 (ko) 2003-05-12
PL181720B1 (pl) 2001-09-28
NO972850L (no) 1997-08-15
RU2147054C1 (ru) 2000-03-27
CA2208510A1 (en) 1996-06-27
ES2146795T3 (es) 2000-08-16
NO309578B1 (no) 2001-02-19
EP0799343B1 (de) 2000-03-22

Similar Documents

Publication Publication Date Title
EP0799343B1 (de) Faservlies- aerogel- verbundmaterial enthaltend bikomponentenfasern, verfahren zu seiner herstellung, sowie seine verwendung
DE19548128A1 (de) Faservlies-Aerogel-Verbundmaterial enthaltend mindestens ein thermoplastisches Fasermaterial, Verfahren zu seiner Herstellung, sowie seine Verwendung
EP0963358B1 (de) Mehrschichtige verbundmaterialien, die mindestens eine aerogelhaltige schicht und mindestens eine weitere schicht aufweisen, verfahren zu ihrer herstellung sowie ihre verwendung
EP0954438B1 (de) Mehrschichtige verbundmaterialien, die mindestens eine aerogelhaltige schicht und mindestens eine schicht, die polyethylenterephthalat-fasern enthält, aufweisen, verfahren zu ihrer herstellung sowie ihre verwendung
DE19533564A1 (de) Faserhaltiges Aerogel-Verbundmaterial
EP0850206B1 (de) Aerogel- und klebstoffhaltiges verbundmaterial, verfahren zu seiner herstellung sowie seine verwendung
EP0966411B1 (de) Verwendung von aerogelen zur körper- und/oder trittschalldämmung
EP0793626B1 (de) Aerogelhaltiges verbundmaterial, verfahren zu seiner herstellung sowie seine verwendung
DE4430642A1 (de) Aerogel- und Xerogelverbundstoffe, Verfahren zu ihrer Herstellung sowie ihre Verwendung
WO1996015997A1 (de) Aerogelhaltiges verbundmaterial, verfahren zu seiner herstellung sowie seine verwendung
DE69914501T2 (de) Synthetische glasfaserprodukte für wärmeisolierung und deren herstellung
EP0618399A1 (de) Mikroporöser Wärmedämmformkörper
EP2576929A1 (de) Dämmung mit schichtaufbau
DE19634109C2 (de) Aerogel- und kunststoffhaltiges, transparentes Verbundmaterial, Verfahren zu seiner Herstellung sowie seine Verwendung
EP0310138A1 (de) Bauelement und Verfahren zu seiner Herstellung
WO2012062370A1 (de) Aerogel-aerogel-verbundwerkstoff
DE102020118734A1 (de) Aerogel-haltige Isolationsschicht
DE19622865A1 (de) Aerogel- und klebstoffhaltiges Verbundmaterial, Verfahren zu seiner Herstellung sowie seine Verwendung
EP2864087B1 (de) Holzverbundwerkstoff mit aerogele und entsprechendes herstellungsverfahren und verwendung
DE10203984A1 (de) Isolierkörper auf Basis von wärmedämmenden Isoliermaterial

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970721

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

17Q First examination report despatched

Effective date: 19980618

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HOECHST RESEARCH & TECHNOLOGY DEUTSCHLAND GMBH & C

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CABOT CORPORATION

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000322

REF Corresponds to:

Ref document number: 191021

Country of ref document: AT

Date of ref document: 20000415

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: DIPL.-ING. ETH H. R. WERFFELI PATENTANWALT

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59508075

Country of ref document: DE

Date of ref document: 20000427

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000509

ITF It: translation for a ep patent filed

Owner name: STUDIO TORTA S.R.L.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000623

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2146795

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001221

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010309

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

BERE Be: lapsed

Owner name: CABOT CORP.

Effective date: 20001231

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20031001

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20031110

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20031202

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20031219

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041222

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050701

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051221

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20041222

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59508075

Country of ref document: DE

Representative=s name: MAI DOERR BESIER PATENTANWAELTE, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20141124

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20141124

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20141222

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59508075

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20151220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20151220