EP0776376A1 - Utilisation d'arn polymerase pour ameliorer un procede d'amplification d'acide nucleique - Google Patents

Utilisation d'arn polymerase pour ameliorer un procede d'amplification d'acide nucleique

Info

Publication number
EP0776376A1
EP0776376A1 EP95929679A EP95929679A EP0776376A1 EP 0776376 A1 EP0776376 A1 EP 0776376A1 EP 95929679 A EP95929679 A EP 95929679A EP 95929679 A EP95929679 A EP 95929679A EP 0776376 A1 EP0776376 A1 EP 0776376A1
Authority
EP
European Patent Office
Prior art keywords
dna
rna
polymerase
template
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95929679A
Other languages
German (de)
English (en)
Other versions
EP0776376B1 (fr
Inventor
Roy Sooknanan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biomerieux BV
Original Assignee
Akzo Nobel NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akzo Nobel NV filed Critical Akzo Nobel NV
Publication of EP0776376A1 publication Critical patent/EP0776376A1/fr
Application granted granted Critical
Publication of EP0776376B1 publication Critical patent/EP0776376B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6865Promoter-based amplification, e.g. nucleic acid sequence amplification [NASBA], self-sustained sequence replication [3SR] or transcription-based amplification system [TAS]

Definitions

  • This invention relates to the use of DNA-directed RNA polymerase of a class that synthesizes cellular RNA to improve a process of amplifying a specific nucleic acid sequence.
  • nucleic acids in a sample may indicate that a source from which the sample is taken has a disease, disorder or abnormal physical state.
  • Certain diagnostics determine whether nucleic acids are present in a sample. These diagnostics invariably require amplification of nucleic acids because of the copy number problem.
  • a first primer hybridizes to the DNA. Then, a DNA-directed DNA polymerase makes a double-stranded DNA product. The product of the polymerization then undergoes either thermal or alkali denaturation before the single-stranded DNA enters the cycle.
  • double-stranded DNA is a starting template
  • the double-stranded DNA first undergoes either thermal or alkali denaturation.
  • the first primer then hybridizes to one of the single strands of DNA.
  • a DNA-directed DNA polymerase makes a double-stranded DNA product.
  • the product of the polymerization then undergoes a second thermal or alkali denaturation before the single-stranded DNA enters the cycle.
  • Thermal denaturation is problematic because entry into the amplification cycle is not isothermal. Alkali denaturation is problematic because it requires participation and manipulations by a user of the amplification process. Thermal denaturation may be used not only in Malek's processes, but in other amplification processes (for example, PCR and LCR).
  • RNA-directed RNA polymerase means such polymerase of a quality suitable for use in molecular biological reactions.
  • One "unit” of a first RNA polymerase means the amount of RNA polymerase which catalyzes the incorporation of one nanomole of radiolabelled ribonucleoside triphosphate into an RNA first template in 10 minutes at 37°C.
  • This invention makes the amplification of nucleic acids more expedient, requiring less participation and fewer manipulations than conventional amplification processes.
  • the amplification including the entry into any amplification cycle, takes place at a relatively constant ambient temperature. The entry into the cycle does not require serial steps.
  • This invention relates to the use of a eukaryotic or prokaryotic DNA- directed RNA polymerase of a class that synthesizes cellular RNA, in a process i for the amplification of a specific nucleic acid sequence.
  • the ⁇ polymerase is Escherichia coli RNA polymerase.
  • the use may also include the use of an inhibitor of such polymerase.
  • This invention also relates to a process for the amplification of a specific nucleic acid sequence.
  • the process includes two steps (A)-(B).
  • the reagents may be combined in a variety of ways to provide one or more reaction mediums
  • the first RNA polymerase uses the DNA first template to synthesize an RNA first template which includes the specific nucleic acid sequence or a sequence complementary to the specific nucleic acid sequence
  • the first oligonucleotide primer hybridizes to the RNA first template
  • the RNA-directed DNA polymerase uses the RNA first template to synthesize a DNA second template by extension of the first oligonucleotide primer and thereby forms an RNA-DNA hybrid intermediate
  • the ribonuclease hydrolyzes RNA of the RNA-DNA hybrid intermediate
  • the second oligonucleotide primer hybridizes to the DNA second template
  • the DNA-directed DNA polymerase uses the second oligonucleotide primer and the DNA second template to synthesize a functional promoter recognized by the second RNA polymerase
  • the second RNA polymerase recognizes the functional promoter and transcribes the DNA second template, thereby providing copies of an RNA second template.
  • the second oligonucleotide primer hybridizes to the RNA second template
  • the RNA-directed DNA polymerase uses the RNA second template to synthesize a DNA third template by extension of the second oligonucleotide primer and thereby forms an RNA-DNA hybrid intermediate
  • the ribonuclease hydrolyzes RNA of the RNA-DNA hybrid intermediate
  • the first oligonucleotide primer hybridizes to the DNA third template
  • the DNA-directed DNA polymerase uses the first oligonucleotide primer as template to synthesize a functional promoter recognized by the second RNA polymerase by extension of the DNA third template
  • the second RNA polymerase recognizes the functional promoter and transcribes the DNA third template, thereby providing copies of the RNA second template.
  • Step (A) In Step (A), one provides reagents including, (i) a DNA first template, (ii) a first RNA polymerase which is a eukaryotic or prokaryotic RNA polymerase, the polymerase being of a class that synthesizes cellular RNA, and (iii) ribonucleoside triphosphates.
  • the RNA polymerase uses the DNA first template to synthesize an RNA first template which includes the specific nucleic acid sequence.
  • the DNA first template could be double-stranded DNA or single-stranded DNA.
  • the first RNA polymerase may be Escherichia coli RNA polymerase.
  • concentration of Esche ⁇ chia coli RNA polymerase could be in the range of, but not limited to, 0.04-0.2 units per ⁇ l.
  • Step (B ⁇ one provides in one or more steps reagents including (i) a first oligonucleotide primer having a plus sequence of a promoter recognised by a second RNA polymerase, (ii) a second oligonucleotide primer, (iii) a second RNA polymerase which is a DNA-directed RNA polymerase that recognizes the promoter, (iv) an RNA-directed DNA polymerase, (v) a DNA- directed DNA polymerase, (vi) a ribonuclease that hydrolyzes RNA of an RNA- DNA hybrid without hydrolyzing single or double-stranded RNA or DNA, (vii) ribonucleoside and deoxyribonucleoside
  • the second oligonucleotide primer hybridizes to the RNA second template
  • the RNA-directed DNA polymerase uses the RNA second template to synthesize a DNA third template by extension of the second oligonucleotide primer and thereby forms an RNA- DNA hybrid intermediate
  • the ribonuclease hydrolyzes RNA of the RNA- DNA hybrid intermediate
  • the first oligonucleotide primer hybridizes to the DNA third template
  • the DNA-directed DNA polymerase uses the first oligonucleotide primer as template to synthesize a functional promoter recognized by the second RNA polymerase by extension of the DNA third template
  • the second RNA polymerase recognizes the functional promoter and transcribes the DNA third template, thereby providing copies of an RNA second template.
  • Step (C) Thereafter, in Step (C), one maintains the conditions for a time sufficient to achieve a desired amplification of the specific nucleic acid sequence or of a sequence complementary to the specific nucleic acid sequence. For example, one may maintain the conditions for a time between, but not limited to, 30 minutes and 4 hours. In Step (A), one could also provide deoxyribonucleoside triphosphates.
  • the deoxyribonucleoside triphosphates and the ribonucleoside triphosphates need not be added to the second reaction medium.
  • Step (B) one could also provide an inhibitor of the first RNA polymerase.
  • the inhibitor is rifampicin which is provided at a concentration in the range of, but not limited to, 10-100 ⁇ g per ml.
  • Step (A) could be followed by heating the first reaction medium to about 65°C before Step (B).
  • Step (A) or (B) one could also provide an alkylated sulfoxide and a suitable carrier protein.
  • the alkyl sulfoxide may be dimethylsulfoxide (DMSO) and the carrier protein may be bovine serum albumin (BSA).
  • DMSO dimethylsulfoxide
  • BSA bovine serum albumin
  • the first oligonucleotide primer may also include a plus sequence of a transcription initiation site for the second RNA polymerase.
  • the plus sequence of the transcription initiation site would be operatively linked to the plus sequence of the promoter.
  • the first RNA polymerase could be any prokaryotic RNA polymerase, such as E. coli RNA polymerase, an RNA polymerase of Bacillus or of Archae bacteria.
  • the first RNA polymerase could be any eukaryotic RNA polymerase, such as RNA polymerase I, RNA polymerase II, or RNA polymerase III.
  • the second RNA polymerase could be bacteriophage T7 RNA polymerase. In such a case, the plus sequence of the transcription initiation site and the plus sequence of the promoter together are the nucleotide sequence:
  • the process may include a further step of monitoring the reaction medium for consumption of any of the first primer, second primer, ribonucleoside and deoxyribunucleoside triphosphates or for accumulation of any product of the cycle.
  • the monitoring step could be (1) detecting a nucleic acid product of the cycle using a nucleic acid probe, or restriction endonucleases and electrophoretic separation, (2) monitoring the accumulation of the RNA second template, (3) monitoring the accumulation of the DNA second template, (4) monitoring DNA containing a functional promoter recognized by the RNA polymerase, (5) monitoring the accumulation of the RNA-DNA hybrid intermediate, (6) monitoring consumption of any first primer, second primer, ribonucleoside and deoxyribunucleoside triphosphates or accumulation of any product of the cycle with a value representing consumption of the reagent or accumulation of the product in the second reaction medium in the absence of the specific nucleic acid sequence.
  • the ribonuclease could be Escherichia coli ribonuclease H or calf thymus ribonuclease H.
  • the first oligonucleotide primer or the second oligonucleotide primer could be bound reversibly to an immobilized support.
  • the DNA-directed RNA polymerase could be bacteriophage RNA polymerase, bacteriophage T7 RNA polymerase, bacteriophage T3 polymerase, bacteriophage ⁇ II polymerase, Salmonella bacteriophage sp6 polymerase, or Pseudomonas bacteriophage gh-1 polymerase.
  • the RNA-directed DNA polymerase could be retrovirus reverse transcriptase such as an avian myeloblastosis virus polymerase or a Moloney murine leukemia virus polymerase.
  • the DNA-directed DNA polymerase lacks DNA exonuclease activity. In another instance, all DNA polymerases in the second reaction medium lack DNA exonuclease and DNA endonuciease activity.
  • the DNA-directed DNA polymerase could be avian myeloblastosis virus polymerase, DNA polymerase ⁇ or DNA polymerase ⁇ , or calf thymus DNA polymerase.
  • the process may include the steps of ligating a DNA product of the cycle into a cloning vector and then cloning the DNA product, expressing a product encoded by the DNA product of the cycle in an expression system.
  • the invention includes a kit for amplifying nucleic acid sequences.
  • the kit includes one or more receptacles containing (a) a first RNA polymerase which is a DNA-directed RNA polymerase which synthesizes cellular RNA, (b) ribonucleoside triphosphates, (c) deoxyribonucleoside triphosphates, (d) a first oligonucleotide primer including a plus sequence of a promoter recognized by a second RNA polymerase, (e) a second oligonucleotide primer, (f) a second RNA polymerase which is a DNA-directed RNA polymerase that recognizes the promoter, (g) an RNA-directed DNA polymerase, (h) a DNA-directed DNA polymerase, and (i) a ribonuclease that hydrolyzes RNA of an RNA-DNA hybrid without hydrolyzing single- or double-stranded RNA or DNA.
  • the first RNA polymerase may be Escherichia coli RNA polymerase.
  • the kit may also include a receptacle containing an inhibitor of Escherichia coli RNA polymerase.
  • the inhibitor is rifampicin.
  • the kit may also include a receptacle containing an alkylated sulfoxide and a receptacle containing a suitable carrier protein.
  • Figure 1 is a general illustration of a nucleic acid amplification process starting with double-stranded DNA or with single-stranded DNA.
  • Figure 2 shows the sensitivity of transcripts generated by using Escherichia coli RNA polymerase and genomic DNA to RNase A and DNase I.
  • Figure 3A shows the inhibition of Escherichia coli RNA polymerase by rifampicin.
  • Figure 3B shows the effect of rifampicin in NASBATM amplification.
  • I shows an agarose gel containing ethidium bromide.
  • II shows a northern blot hybridization.
  • Figure 4 shows the evidence for specific amplification from transcriptions generated from Escherichia coli RNA polymerase where 4A shows the results of an agarose gel containing ethidium bromide and 4B shows a northern blot hybridization.
  • Figure 5 shows the specific amplification of (I) GM-CSF and (II) G3PDH
  • Figure 6 shows the amplification in NASBATM of specific sequences of Chlamydia trachomatis from Escherichia coli RNA polymerase generated RNA, (l) PL1, and (ll) VD1.
  • Figure 7 shows the amplification in NASBATM of DNA transcribed with
  • Escherichia coli RNA polymerase using a 2-step versus a 3 step procedure and a single reaction vessel.
  • This invention relates to the use of a eukaryotic or prokaryotic DNA- directed RNA polymerase which is of a class that synthesizes cellular RNA, in a process for the amplification of a specific nucleic acid sequence.
  • a eukaryotic or prokaryotic DNA- directed RNA polymerase which is of a class that synthesizes cellular RNA, in a process for the amplification of a specific nucleic acid sequence.
  • such polymerase is used in the amplification process which is described in United States Patent Number 5,409,818 (Malek et al.).
  • such polymerase is used in the amplification process which is described in United States Patent No. 5,130,238 (Malek et al.).
  • this invention relates to a novel process for entering the amplification cycle.
  • the polymerase is used in the amplification process described in United States Patent No. 4,683,195 (Mullis), United States Patent No. 4,
  • RNA first template single-stranded or double-stranded DNA
  • Escherichia coli RNA polymerase and ribonucleoside triphosphates are added to a first reaction medium containing single-stranded or double-stranded DNA (DNA first template) suspected of containing or known to contain a specific nucleic acid sequence.
  • the Escherichia coli RNA polymerase non-specifically transcribes the DNA template independent of specific promoter sequences (Chamberlin, 1976; Ovchinnikov et al., 1977) to provide an RNA first template.
  • RNA first template Following transcription of the DNA first template, there is at least one RNA copy (an RNA first template) for each DNA first template. After obtaining the RNA first template, one provides a second set of reagents as described in the Summary of the Invention.
  • the first primer hybridizes to the RNA first template
  • the RNA-directed DNA polymerase uses the RNA first template to synthesize a DNA second template by extending the first primer, resulting in a RNA-DNA hybrid intermediate.
  • the ribonuclease hydrolyzes RNA of the RNA- DNA hybrid.
  • the second primer hybridizes to the DNA second template.
  • the DNA-directed DNA polymerase uses the second primer and the DNA second template to synthesize a functional promoter recognized by the second RNA polymerase.
  • the second RNA polymerase recognizes the functional promoter and transcribes the DNA second template providing copies of the RNA second template.
  • the RNA second template then enters the cycle described in United States Patent No.
  • Oligonucleotides were synthesized using an Applied Biosystems DNA synthesizer. Columns, phosphoramidites, and reagents used for oligonu ⁇ cleotide synthesis were purchased from Applied Biosystems, Inc. Oligonucleotides were purified by polyacrylamide gel electrophoresis followed by DEAE cellulose chromatography. The radioisotope ⁇ - 32 P-CTP (-3000 Cl/mmol) and ⁇ - 32 P-ATP (-3000 Cl/mmol) (was from Amersham. RNase A and rifampicin were purchased from Sigma. DNase I was obtained from Promega. Escherichia coli RNA polymerase was purchased from Boehringer Mannheim and Epicentre Technologies Inc.
  • Agarose gels were prepared and run according to Sambrook et al., 1989.
  • the gels contained either 3% low-melt agarose (NuSieveTM; FMC) and 1 % agarose or only 2% agarose in 1X Tris-acetate EDTA (TAE) with 0.2 ⁇ g/ml ethidium bromide. Aliquots (5 ⁇ l) of the amplification reactions were analysed. Following electrophoresis, the amplified materials were transferred to a nylon membrane by eiectroblotting (Sambrook et al., 1989). The nucleic acids were fixed to the nylon membrane and hybridized to specific probes using conditions described by Sooknanan et al., 1993. The probes were labelled at the 5' - end with 32 P (Sambrook et al., 1989). Following hybridization and the removal of non-specifically bound probe by washing, autoradiography was performed using Kodak XAR-5 film.
  • a standard Escherichia coli RNA polymerase transcription reaction comprised 66.67 mM Tris (pH 8.5), 83.3 mM KCI, 20 mM MgCI 2 , 3.3 mM of each ATP, CTP, GTP and UTP, 1.6 mM of each dATP, dCTP, dGTP and dTTP, 5 ⁇ g bovine serum albumin, 16.6 mM DTT, 7.5 units placental ribonuclease inhibitor, ⁇ 500 ng double-stranded DNA and 1 unit Escherichia coli RNA polymerase core enzyme in a final volume of 15 ⁇ l. The reaction mixture was incubated at 40°C for 30 minutes.
  • RNA synthesized appeared to be a heterogenous mixture as indicated by the smear extending above the 1 Kb DNA molecular weight marker on the native ethidium bromide stained agarose gel.
  • Escherichia coli RNA polymerase must be inactivated following transcription to prevent the inhibition of NASBATM.
  • Escherichia coli RNA polymerase reactions containing 1.7 pmoles ⁇ - ⁇ P-CTP, 100 ng native genomic DNA and 0, 1 , 10 or 100 ⁇ g/ml rifampicin were performed as described in Example 1.
  • RNA synthesized were measured by TCA precipitation of the transcribed materials. Both 10 and 100 ⁇ g/ml rifampicin were sufficient to inhibited 1 unit of Escherichia coli RNA polymerase resulting in less than 2% RNA synthesis compared to 10% for 1 mg/ml rifampicin and 100% when no rifampicin was present (Figure 3A).
  • Example 3 Evidence for Specific Amplification from RNA Transcribed by Escherichia coli RNA Polymerase from Double-strand DNA Template
  • Six separate transcription reactions each containing 10 ng of native human genomic DNA were performed as described in Example 1. The reactions were pooled and re-divided into 6 equal amounts for the purpose of standardization. Two of the aliquots were then digested with 2 ⁇ g RNase A each and another two with 2 units DNase I each as described in Example 1. The final two aliquots were incubated as the others but without any added nuclease.
  • Escherichia coli RNA polymerase transcription reactions containing 1 ng, 10 ng or 100 ng of HGD were performed as described in Example 1. Following transcription, the appropriate primer mixture was added directly to the transcription reaction to give a final concentration in a 25 ⁇ l volume of 0.2 ⁇ M of the first primer (P1), 0.2 ⁇ M of the send primer (P2) and 15% (v/v) DMSO. The reaction mixture was heated at 65 ⁇ C for 2 minutes and then transferred to 40°C.
  • Escherichia coli RNA polymerase transcription reactions containing different amounts of total nucleic acids isolated from Chlamydia trachomatis infected HeLa cells were performed as described in Example 1.
  • Primers specific for the cryptic plasmid (PL1) and the MOMP gene (VD1) of Chlamydia trachomatis were tested in NASBATM.
  • the appropriate primer mixture was added directly to the transcription reaction to give a final concentration in a 25 ⁇ l volume of 0.2 ⁇ M P1, 0.2 ⁇ M P2 and 15% (v/v) DMSO.
  • the reactions were heated at 65°C for 2 minutes and then transferred to 40°C.
  • NASBATM enzyme mixture containing 8 units AMV reverse transcriptase, 0.2 unit RNase H, 40 units T7 RNA polymerase and 100 ⁇ g/ml BSA was added to each reaction. The final reaction volume was adjusted to 25 ml with H 2 O and the reactions were incubated at 40°C for an additional 90 minutes. Parallel NASBATM reactions were performed with Pi- primed material and neat material at similar concentrations.
  • Example 6 Direct amplification in NASBATM of DNA transcribed with Escherichia coli RNA polymerase using a 2 -step versus a 3-step procedure and a single reaction vessel.
  • Example 3 describes a 3-step procedure using 2 separate reaction vessels for the amplification of Escherichia coli RNA polymerase generated transcripts from DNA in NASBATM.
  • Example 4 describes a 3-step procedure for performing the same task which uses a single reaction vessel. In this example, the 3-step procedure using a single reaction vessel is replaced by a 2-step procedure using a single reaction vessel.
  • DMSO final 20.83% (v/v)
  • All primary transcription reactions in this example contained 10 ng of HGD and the amplification was performed using GM-CSF specific primers.
  • Example 4 was performed to serve as a control.
  • the final concentration of DMSO in the amplification reaction was adjusted to 18.75% (v/v) and the same 3-step procedure was used.
  • the primary transcription reaction as set out in Example 1 contained in addition 15% (v/v) DMSO and 5 pmoles of primer 1 in a total volume of 18 ⁇ l. The reactions were incubated at 40°C for 30 minutes, heated to 65°C for 2 minutes and then placed at 40°C for 2 minutes. A standard enzyme mixture containing in addition 15% (v/v) DMSO and 5 pmoles of primer 2 was then added to each reaction tube. Amplification was allowed to proceed at 40°C for 90 minutes.
  • the primary transcription reaction as set out in Example 1 contained in addition 20.83% (v/v) DMSO in a total volume of 18 ⁇ l.
  • the reactions were incubated at 40°C for 30 minutes, heated to 65°C for 2 minutes and then placed at 40°C.
  • a standard enzyme mixture containing in addition 5 pmoles of each of primers 1 and 2 was added to each reaction tube. Amplification was allowed to proceed at 40°C for 90 minutes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)
EP95929679A 1994-07-15 1995-07-13 Utilisation d'arn polymerase pour ameliorer un procede d'amplification d'acide nucleique Expired - Lifetime EP0776376B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US27525094A 1994-07-15 1994-07-15
US275250 1994-07-15
PCT/CA1995/000423 WO1996002668A1 (fr) 1994-07-15 1995-07-13 Utilisation d'arn polymerase pour ameliorer un procede d'amplification d'acide nucleique

Publications (2)

Publication Number Publication Date
EP0776376A1 true EP0776376A1 (fr) 1997-06-04
EP0776376B1 EP0776376B1 (fr) 2001-11-21

Family

ID=23051486

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95929679A Expired - Lifetime EP0776376B1 (fr) 1994-07-15 1995-07-13 Utilisation d'arn polymerase pour ameliorer un procede d'amplification d'acide nucleique

Country Status (12)

Country Link
US (1) US6025134A (fr)
EP (1) EP0776376B1 (fr)
JP (1) JP3881009B2 (fr)
KR (1) KR100392551B1 (fr)
AT (1) ATE209258T1 (fr)
AU (1) AU711115B2 (fr)
CA (1) CA2195209C (fr)
DE (1) DE69524105T2 (fr)
DK (1) DK0776376T3 (fr)
ES (1) ES2168380T3 (fr)
PT (1) PT776376E (fr)
WO (1) WO1996002668A1 (fr)

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5712127A (en) * 1996-04-29 1998-01-27 Genescape Inc. Subtractive amplification
WO1998021361A1 (fr) * 1996-11-12 1998-05-22 Visible Genetics Inc. Methode et necessaire correspondant pour sequençage isothermique d'acides nucleiques
ZA989950B (en) * 1997-11-17 1999-05-04 Akzo Nobel Nv Transcription based amplification of double stranded DNA targets
KR100440044B1 (ko) * 1998-02-27 2004-07-14 팸진 비.브이. 핵산의 비특이적 증폭방법
WO2000000638A2 (fr) * 1998-06-26 2000-01-06 Akzo Nobel N.V. Marquage d'amplicons d'arn produits au moyen d'une amplification fondee sur la transcription
AU759915B2 (en) * 1998-07-31 2003-05-01 Gen-Probe Incorporated Reversible inhibiting probes
US7122314B2 (en) 2002-01-30 2006-10-17 Id Biomedical Corporation Methods for detecting vancomycin-resistant microorganisms and compositions therefor
EP2108707A3 (fr) 2002-05-17 2010-04-14 The Government of the United States of America as represented by the Secretary of the Department of Health and Human Services Identification moléculaire d'espèces d'Aspergillus
US20040018494A1 (en) * 2002-07-25 2004-01-29 Shurtliff Roxanne N Isothermal transcription based amplification assay for detection and quantification of guanylyl cyclase C
JP2006516883A (ja) 2002-09-19 2006-07-13 アメリカ合衆国 P.アリアシポリペプチド、ユウガイサシチョウバエポリペプチド、および使用法
EP2085467B1 (fr) 2002-10-29 2013-12-11 The Government of the United States of America as represented by the Secretary of the Department of Health and Human Services Polypeptides de Lutzomyia Longipalpis et méthodes d'utilisation desdits polypeptides
CA2943039C (fr) 2005-10-14 2018-11-06 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services, Centers For Disease Control And Prevention Compositions et procedes contre des virus rabiques
CA2646132C (fr) 2006-02-13 2019-03-19 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services, Centers For Disease Control And Prevention Amorces et sondes pour la detection et la discrimination du virus de la grippe de type a
EP2441469A1 (fr) 2006-03-14 2012-04-18 Oregon Health and Science University Méthode pour produire une reponse contre la tuberculose
WO2008083174A2 (fr) 2006-12-27 2008-07-10 Emory University Compositions et procédés pour le traitement d'infections et de tumeurs
EP2444410A3 (fr) 2007-02-28 2012-08-08 The Govt. Of U.S.A. As Represented By The Secretary Of The Department Of Health And Human Services Polypeptides brachyury et procédés d'utilisation
CN102089443A (zh) 2008-04-10 2011-06-08 基因信息公司 用于测定受试者中结肠直肠癌的概率的方法和装置
EP2385371B1 (fr) 2008-09-22 2014-10-22 Oregon Health and Science University Méthodes permettant de détecter une infection par le bacille de Koch
CN102282265B (zh) 2008-11-28 2020-07-24 埃默里大学 用于治疗传染病和肿瘤的方法
WO2010096713A2 (fr) 2009-02-20 2010-08-26 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Procédé pour le diagnostic de troubles vasculaires liés à l'âge
WO2010138926A1 (fr) 2009-05-29 2010-12-02 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services, Centers For Disease Control And Prevention Acides nucléiques pour la détection et la discrimination des génotypes de chlamydophila psittaci
WO2010138908A1 (fr) 2009-05-29 2010-12-02 Ventana Medical Systems, Inc. Nombre de copies du gène igf1r en tant que marqueur pronostique dans un cancer du poumon non à petites cellules
EP2446053A1 (fr) 2009-05-29 2012-05-02 Ventana Medical Systems, Inc. MÉTHODES DE DÉNOMBREMENT DU NOMBRE DE COPIES DE GÈNE DANS UN ÉCHANTILLON BIOLOGIQUE À L'AIDE D'UNE HYBRIDATION IN SITU& xA;
US9175070B2 (en) 2009-09-25 2015-11-03 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Neutralizing antibodies to HIV-1 and their use
WO2011047340A1 (fr) 2009-10-16 2011-04-21 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Insertion de gènes étrangers dans le virus de la rubéole et leur expression stable dans un vaccin viral vivant atténué
US8961989B2 (en) 2009-11-20 2015-02-24 Oregon Health & Science University Methods for producing an immune response to tuberculosis
US9260762B2 (en) 2010-04-16 2016-02-16 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services, Centers For Disease Control And Prevention Real time PCR assay for detection of bacterial respiratory pathogens
US9828637B2 (en) 2010-04-18 2017-11-28 Wake Forest University Health Sciences Methods of predicting predisposition to or risk of kidney disease
CN104689314B (zh) 2010-06-16 2018-02-02 高等教育联邦系统-匹兹堡大学 内质蛋白的抗体及其用途
US20130316338A1 (en) 2010-06-29 2013-11-28 The United States Government As Represented By The Department Of Veterans Affairs CCR6 As A Biomarker of Alzheimer's Disease
JP6039560B2 (ja) 2010-08-30 2016-12-07 ダウ アグロサイエンシィズ エルエルシー サトウキビ桿状ウイルス(scbv)エンハンサーおよび植物機能ゲノミクスにおけるその使用
BR112013004691A2 (pt) 2010-08-30 2017-11-21 Dow Agrosciences Llc construto de dna de ativação gênica marcada de milho, população marcada de plantas de milho, método para geração da mesma e método para gerar uma planta de milho marcada
EA201391074A1 (ru) 2011-01-25 2013-12-30 Олмак Дайэгностикс Лимитед Профили экспрессии генов рака толстой кишки и способы применения
US9150644B2 (en) 2011-04-12 2015-10-06 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Human monoclonal antibodies that bind insulin-like growth factor (IGF) I and II
CA2834976C (fr) 2011-05-04 2016-03-15 Htg Molecular Diagnostics, Inc. Perfectionnements apportes a un dosage quantitatif (qnpa) et a un sequencage (qnps) avec protection contre la nuclease
WO2013006684A1 (fr) 2011-07-05 2013-01-10 The Gov. Of The U.S.A. As Represented By The Secretary Of The Dept. Of Health And Human Services. Essai de génotypage de vih-1 pour la surveillance globale d'une résistance à un médicament de vih-1
WO2013049535A2 (fr) 2011-09-30 2013-04-04 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Vaccin antigrippal
DK2780466T3 (da) 2011-11-15 2019-05-13 Univ Bruxelles Detektering af streptococcus pneumoniae i blod
CA2865977A1 (fr) 2012-02-29 2013-09-06 Dow Agrosciences Llc Activateur du virus bacilliforme de la canne a sucre (scbv) et son utilisation en genomique vegetale fonctionnelle
CA2866185C (fr) 2012-03-23 2021-04-06 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Isolats de phlebovirus pathogenes, ainsi que des compositions et des methodes d'utilisation
US9428813B2 (en) 2012-03-26 2016-08-30 The United States Of America, As Represented By The Secretary, Dept. Of Health & Human Services DNA methylation analysis for the diagnosis, prognosis and treatment of adrenal neoplasms
US9566329B2 (en) 2012-04-06 2017-02-14 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Live, attenuated rubella vector to express vaccine antigens
US10076535B2 (en) 2012-04-27 2018-09-18 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Use of CPG oligonucleotides co-formulated with an antibiotic to accelerate wound healing
WO2013165551A1 (fr) 2012-05-03 2013-11-07 The Government Of The Usa As Represented By The Secretary Of The Department Of Health And Human Services Procédés de détection du virus de la grippe
US9394574B2 (en) 2012-06-12 2016-07-19 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Methods for detecting Legionella nucleic acids in a sample
WO2013192100A1 (fr) 2012-06-18 2013-12-27 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Procédés et compositions pour la détection du virus jc
EP2895191B1 (fr) 2012-09-14 2019-06-05 The U.S.A. as represented by the Secretary, Department of Health and Human Services Protéine brachyury, vecteurs adénoviraux codant pour la protéine brachyury, et leur utilisation
WO2014093702A1 (fr) 2012-12-12 2014-06-19 The Usa, As Represented By The Secretary, Department Of Health And Human Services Agents thérapeutiques du vih et procédés de fabrication et d'utilisation associés
CA2899865C (fr) 2013-02-01 2023-10-10 Kapil BHARTI Procede de generation de cellules epitheliales pigmentaires retiniennes (epr) a partir de cellules souches pluripotentes induites (cspi)
US9534041B2 (en) 2013-02-12 2017-01-03 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Monoclonal antibodies that neutralize a norovirus
US10612088B2 (en) 2013-03-14 2020-04-07 The Broad Institute, Inc. Massively multiplexed RNA sequencing
JP2016518126A (ja) 2013-04-19 2016-06-23 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア ローンスターウイルス
EP3583950A1 (fr) 2013-05-09 2019-12-25 The U.S.A. As Represented By The Secretary, Department Of Health And Human Services Anticorps vhh à domaine unique dirigé contre les norovirus gi.1 et gii.4 et leur utilisation
EP3399055A1 (fr) 2013-10-22 2018-11-07 The Government of the United States of America as represented by the Secretary of the Department of Health and Human Services Compositions et procédés permettant de détecter des virus de la grippe
US10398772B2 (en) 2014-01-08 2019-09-03 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Ras pathways as markers of protection against HIV and methods to improve vaccine efficacy
EP3107930A1 (fr) 2014-02-21 2016-12-28 THE UNITED STATES OF AMERICA, represented by the S Acides nucléiques du vih-2 et leurs procédés de détection
US20170044631A1 (en) 2014-04-14 2017-02-16 The Unite States of America, as represented by the Secretary, Dept. of Health and Human Services Methods for rapid detection and identification of viral nucleic acids
WO2015199976A1 (fr) 2014-06-24 2015-12-30 The United States Of America, As Represented By The Secretary, Department Of Health & Human Services Microdissection activée par une cible
CN107075573A (zh) 2014-07-30 2017-08-18 莫尔研究应用有限公司 用于急性淋巴细胞白血病的预后方法和治疗系统
EP3473271B1 (fr) 2014-07-31 2022-07-20 The Government of the United States of America as represented by the Secretary of the Department of Health and Human Services Anticorps monoclonaux humains dirigés contre epha4 et leur utilisation
US11279974B2 (en) 2014-12-01 2022-03-22 The Broad Institute, Inc. Method for in situ determination of nucleic acid proximity
WO2016090170A1 (fr) 2014-12-05 2016-06-09 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anticorps puissant anti-neuraminidase d'un sous-type n1 du virus de la grippe a
US10119172B2 (en) 2015-02-20 2018-11-06 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods and reagents for detecting ebola virus
WO2016145409A1 (fr) 2015-03-11 2016-09-15 The Broad Institute, Inc. Couplage de génotype et de phénotype
EP3337908A4 (fr) 2015-08-18 2019-01-23 The Broad Institute, Inc. Procédés et compositions permettant de changer la fonction et la structure de boucles et/ou de domaines de chromatine
EP3359651A1 (fr) 2015-10-05 2018-08-15 THE UNITED STATES OF AMERICA, represented by the S Souche de rotavirus humain g9p[6]et utilisation comme vaccin
WO2017192589A1 (fr) 2016-05-02 2017-11-09 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anticorps neutralisants dirigés contre la grippe ha, leur utilisation et leur identification
WO2017200790A1 (fr) 2016-05-20 2017-11-23 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Essai de réaction en chaîne de la transcriptase-polymérase inverse en temps réel ayant une sonde modifiée destinée au diagnostic des virus de la rage et d'autres lyssavirus
US11248272B2 (en) 2016-06-27 2022-02-15 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods and compositions for influenza a virus subtyping
PE20191767A1 (es) 2016-12-06 2019-12-17 Univ Oregon State Composiciones y metodos para la produccion incrementada de enduracina en una cepa geneticamente modificada de streptomyces fungicidicus
US11708613B2 (en) 2017-05-03 2023-07-25 The United States of America, as Represened by the Secretary, Department of Health and Human Services Rapid detection of Zika virus by reverse transcription loop-mediated isothermal amplification
US11466329B2 (en) 2017-06-14 2022-10-11 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Detection of blaIMP antibacterial resistance genes
GB201710838D0 (en) 2017-07-05 2017-08-16 Ucl Business Plc Bispecific antibodies
ES2924185T3 (es) 2017-09-25 2022-10-05 Fred Hutchinson Cancer Center Perfiles in situ de alta eficiencia dirigidos a todo el genoma
WO2019071054A1 (fr) 2017-10-04 2019-04-11 The Broad Institute, Inc. Procédés et compositions permettant de modifier la fonction et la structure de boucles et/ou de domaines de chromatine
WO2019133727A1 (fr) 2017-12-29 2019-07-04 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Ensemble de sondes universelles de virus de la grippe pour l'enrichissement d'un quelconque acide nucléique du virus de la grippe
WO2019152860A1 (fr) 2018-02-02 2019-08-08 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Procédés d'amplification aléatoire de quantités extrêmement faibles d'acides nucléiques en entrée
CN112770742A (zh) 2018-07-27 2021-05-07 阿佩塔生物科学有限公司 用于治疗蠕形螨引起的眼部和面部疾病的多杀菌素制剂
US11844800B2 (en) 2019-10-30 2023-12-19 Massachusetts Institute Of Technology Methods and compositions for predicting and preventing relapse of acute lymphoblastic leukemia
WO2022056078A1 (fr) 2020-09-11 2022-03-17 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Dosage de détection assisté par rnase h d'arn (radar)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1340807C (fr) * 1988-02-24 1999-11-02 Lawrence T. Malek Procede d'amplification d'une sequence d'acide nucleique
US5130238A (en) * 1988-06-24 1992-07-14 Cangene Corporation Enhanced nucleic acid amplification process
DE69034177T2 (de) * 1989-07-11 2005-10-27 Gen-Probe Inc., San Diego Verfahren zur Amplifikation von Nukleinsäuresequenzen
WO1991004340A1 (fr) * 1989-09-20 1991-04-04 Cambridge Biotech Corporation Amplification isothermique in vitro de l'acide nucleique
AU659601B2 (en) * 1989-09-21 1995-05-25 Camborne Industries Plc Recycling scrap metal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9602668A1 *

Also Published As

Publication number Publication date
DK0776376T3 (da) 2002-02-18
JP3881009B2 (ja) 2007-02-14
US6025134A (en) 2000-02-15
DE69524105T2 (de) 2002-07-18
ES2168380T3 (es) 2002-06-16
CA2195209C (fr) 2008-09-23
AU3336695A (en) 1996-02-16
JPH11505402A (ja) 1999-05-21
KR100392551B1 (ko) 2003-10-30
CA2195209A1 (fr) 1996-02-01
ATE209258T1 (de) 2001-12-15
EP0776376B1 (fr) 2001-11-21
PT776376E (pt) 2002-05-31
AU711115B2 (en) 1999-10-07
DE69524105D1 (de) 2002-01-03
WO1996002668A1 (fr) 1996-02-01

Similar Documents

Publication Publication Date Title
EP0776376B1 (fr) Utilisation d'arn polymerase pour ameliorer un procede d'amplification d'acide nucleique
US5409818A (en) Nucleic acid amplification process
JP2650159B2 (ja) 核酸増幅方法
US5744311A (en) Strand displacement amplification using thermophilic enzymes
JP2648802B2 (ja) 増強された核酸増幅方法
US5334515A (en) Method for altering a nucleotide sequence
EP1167524A1 (fr) Procede d'amplification d'une sequence d'acide nucleique
HU216317B (hu) Eljárás transzkripcióra alapozott nukleinsav sokszorozó/észlelő rendszerek előállítására
CA2252801A1 (fr) Amplification soustractive
CA2249643C (fr) Epreuve de detection de chlamydia trachomatis par amplification et detection de l'acide nucleique de chlamydia trachomatis
AU690294B2 (en) Species-specific detection of Mycobacterium kansasii
US6261773B1 (en) Reagent for nucleic acid amplification and process for nucleic acid amplification
US8309303B2 (en) Reverse transcription and amplification of RNA with simultaneous degradation of DNA
US6156508A (en) Detection of M. tuberculosis complex via reverse transcriptase SDA
US5955271A (en) Method and kits for determining messenger RNA molecules in a sample
CA2102963A1 (fr) Amplification simple des acides nucleiques
AU2004205118B2 (en) Method for amplifying nucleic acid sequence
JP3145169B2 (ja) 核酸検出法及びキット
JPH0576400A (ja) 核酸増幅の使用による細菌の検出方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970207

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 19990628

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

REF Corresponds to:

Ref document number: 209258

Country of ref document: AT

Date of ref document: 20011215

Kind code of ref document: T

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ORGANON TEKNIKA B.V.

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REF Corresponds to:

Ref document number: 69524105

Country of ref document: DE

Date of ref document: 20020103

ET Fr: translation filed
NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: ORGANON TEKNIKA B.V.

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20020400530

Country of ref document: GR

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20020207

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2168380

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020713

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: ISLER & PEDRAZZINI AG;POSTFACH 1772;8027 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20140623

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20140728

Year of fee payment: 20

Ref country code: DE

Payment date: 20140729

Year of fee payment: 20

Ref country code: DK

Payment date: 20140725

Year of fee payment: 20

Ref country code: GR

Payment date: 20140729

Year of fee payment: 20

Ref country code: CH

Payment date: 20140728

Year of fee payment: 20

Ref country code: NL

Payment date: 20140726

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20140728

Year of fee payment: 20

Ref country code: FR

Payment date: 20140717

Year of fee payment: 20

Ref country code: SE

Payment date: 20140729

Year of fee payment: 20

Ref country code: AT

Payment date: 20140619

Year of fee payment: 20

Ref country code: GB

Payment date: 20140729

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140724

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20140730

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69524105

Country of ref document: DE

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: MAXIMUM VALIDITY LIMIT REACHED

Effective date: 20150713

Ref country code: DK

Ref legal event code: EUP

Effective date: 20150713

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20150713

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20150713

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20150712

REG Reference to a national code

Ref country code: IE

Ref legal event code: MK9A

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: GR

Ref legal event code: MA

Ref document number: 20020400530

Country of ref document: GR

Effective date: 20150714

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 209258

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150713

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20151026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20150713

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20150720

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20150712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20150714