EP0774520A1 - Procede de production de tubes d'acier presentant une excellente resistance a la corrosion et une bonne aptitude au soudage - Google Patents

Procede de production de tubes d'acier presentant une excellente resistance a la corrosion et une bonne aptitude au soudage Download PDF

Info

Publication number
EP0774520A1
EP0774520A1 EP95921979A EP95921979A EP0774520A1 EP 0774520 A1 EP0774520 A1 EP 0774520A1 EP 95921979 A EP95921979 A EP 95921979A EP 95921979 A EP95921979 A EP 95921979A EP 0774520 A1 EP0774520 A1 EP 0774520A1
Authority
EP
European Patent Office
Prior art keywords
temperature
steel pipe
steel
corrosion resistance
welded portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95921979A
Other languages
German (de)
English (en)
Other versions
EP0774520B1 (fr
EP0774520A4 (fr
Inventor
Yasushi Nippon Steel Corporation Suzuki
Masaaki Obata
Akihiro Miyasaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of EP0774520A1 publication Critical patent/EP0774520A1/fr
Publication of EP0774520A4 publication Critical patent/EP0774520A4/fr
Application granted granted Critical
Publication of EP0774520B1 publication Critical patent/EP0774520B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys

Definitions

  • This invention relates to a production method of a steel pipe excellent in corrosion resistance and weldability. More particularly, this invention relates to a method of producing easily and at a low cost a steel pipe which has a high corrosion resistance in an environment containing wet carbon dioxide and a small amount of wet hydrogen sulfide, has also excellent weldability and can be used as oil well pipes for the exploitation and production of petroleum/natural gases and line pipes for the transportation, for example.
  • Petroleum and natural gases produced in recent years have become more and more of the type which contains wet carbon dioxide and hydrogen sulfide. It is well known that under such an environment, carbon steels and low alloy steels corrode remarkably. To transport such corrosive petroleum and natural gases, it has been customary to add a corrosion inhibitor as an anticorrosion countermeasure. In the case of offshore oil wells, however, it is enormously expensive to add and recover the corrosion inhibitor, and the use of the corrosion inhibitor has become more and more difficult due to the problem of ocean pollution. For these reasons, recently, a need for corrosion-resistant materials which do not need the addition of a corrosion inhibitor has become greater.
  • martensite steel oil well pipes typified by the AISI420 steel have been generally produced in the past as seamless steel pipes by a seamless steel pipe rolling method.
  • the seamless steel pipes involve the problems that a production yield and productivity are extremely low and the production cost is extremely high.
  • the steel pipe In the case of the martensitic stainless steel pipes produced by the seamless steel pipe production method, the steel pipe must be subjected to quenching and tempering heat-treatments after pipe making, and this is one of the causes for the high production cost of the seamless steel pipes.
  • low carbon martensitic stainless steels which reduce as much as possible the C or C and N contents so as to improve the corrosion resistance or weldability, the steel pipes cannot be produced easily by the seamless steel pipe rolling method.
  • Japanese Unexamined Patent Publications (Kokai) No. 4-191319 and No. 4-191320 disclose a method of producing a steel pipe from a low carbon martensitic stainless steel
  • Japanese Unexamined Patent Publications (Kokai) No. 4-99127 and No. 4-99128 disclose a method of producing a low carbon martensitic stainless steel pipe.
  • Japanese Unexamined Patent Publication (Kokai) No. 5-263139 describes a method of producing an oil well pipe containing 12 to 14 wt% of Cr as an electric resistance seam welded steel pipe.
  • these methods require heat-treatment such as normalizing and tempering after the steel pipe is made, and involve the problems that the production cost is high, and oxide scales are formed on the steel pipe surface.
  • the present invention aims at providing a method of easily producing, at a low cost, a steel pipe having excellent corrosion resistance in a carbon dioxide-containing environment, etc., and also having excellent weldability.
  • the gist of the present invention resides in the following points (1) to (7).
  • the present invention solves the various problems with the martensitic stainless steels typified by the stainless steel AISI420 steel that have been examined in the past as the corrosion-resistant materials for petroleum and natural gases containing large quantities of carbon dioxide, and is directed to make it possible particularly to secure a high strength necessary for line pipes and oil well pipes, to restrict the rise of the hardness of the welding heat affected zone and to improve the corrosion resistance and weldability.
  • the present invention limits the range of the chemical compositions of the steel from the aspect of the corrosion resistance and weldability, and optimizes a hot working condition of a raw steel sheet rolling process and a pipe making process and a cooling condition after hot working.
  • Si as a deoxidizing agent and a strengthening element to a steel containing 7.5 to 14.0% of Cr is effective.
  • the Si content is limited to the range of 0.01% to less than 1.2%.
  • the necessary strength can be obtained by the combination of other alloy elements and the production condition, a large quantity of Si need not be added, and the Si addition quantity is reduced preferably to not more than 0.2% as the necessary and sufficient amount for deoxidation.
  • Mn is necessary as the deoxidizing agent for a steel containing 7.5 to 14.0% of Cr, and at least 0.02% of Mn must be added. Mn is also a useful element for converting the metallic structure to the structure mainly consisting of martensite. If the Mn content exceeds 3.0%, however, the effect of addition gets into saturation, and the excessive Mn content induces difficulties in steel making. Therefore, the upper limit of the Mn content is limited to 3.0%.
  • the Cr content is limited to 7.5 to 14.0%.
  • At least 0.005% of Al must be added as the deoxidizing agent.
  • the upper limit of the Al content is set to 0.5%.
  • the C content is limited to not greater than 0.03%.
  • N lowers the toughness of the weld portion and remarkably raises the hardness of the welding heat affected zone. Therefore, the N content is limited to not more than 0.02%.
  • the C content must be limited to not more than 0.015% and the N content, to not more than 0.015%, and the total content of (C + N) is preferably limited to not more than 0.02%.
  • the P content must be reduced to not more than 0.03%, and the P content is preferably as little as possible.
  • the S content is preferably less, and must be limited to not more than, 0.01%.
  • Mo and W When added to a steel containing 7.5 to 14.0% of Cr, Mo and W are effective for improving the corrosion resistance in a wet carbon dioxide gas environment. In any way, the effect of the addition gets into saturation when they are added in the amount exceeding 3.0%. Further, because large quantities of other alloy elements such as Cu, Ni, Co, etc., must be added so as to form the metallic structure mainly consisting of martensite, heat-treatment of the hot coil becomes difficult. Therefore, the upper limit of each of Mo and W is set to 3.0%.
  • this MC value When this MC value is less than 0, it is difficult to form the metallic structure consisting substantially of martensite whichever hot-rolling condition and heat-treatment condition may be selected, and the strength and toughness as the indispensable characteristics for the oil well pipe or the line pipe drop.
  • the MC value When the MC value is less than 0, further, it becomes difficult to stably form the austenite structure in the hot rolling temperature zone, the possibility of the occurrence of large rolling scratches becomes high, and the production yield drops. Therefore, the MC value must be at least 0.
  • a steel, the metallic structure of which substantially consists of martensite can be obtained by the combination of the later-appearing rolling condition, coiling condition and cooling condition.
  • Nb, V and Ti When added to a steel containing 7.5 to 14.0% of Cr, Nb, V and Ti provide a great effect of reducing the hardness of the welding heat affected zone, and also improve the corrosion resistance. However, when they are added in excessive amounts, the effect of addition gets into saturation and the toughness of the base metal drops. Therefore, the sum of at least one of Nb, V and Ti must not exceed 1.0%. Particularly when an excellent toughness of the base metal is required, the sum of at least one of Nb, V and Ti does not preferably exceed 0.5%. On the other hand, in order to sufficiently lower the hardness of the welding heat affected zone, the sum of at least one of Nb, V and Ti is preferably at least 0.1%.
  • Rare earth elements and Ca are elements which are effective for improving hot workability and impact toughness. However, when the rare earth elements in an amount more than 0.05% and Ca in an amount more than 0.03% are added, coarse non-metallic inclusions of these elements are formed, respectively, and hot workability and corrosion resistance are deteriorated. Therefore, the upper limit is 0.05% for the rare earth elements and 0.03% for Ca.
  • the term "rare earth elements" used in this specification represents the elements having the atomic numbers of 57 to 71, 89 to 103 and Y.
  • the steel used for the method of the present invention may contain Zr, B, etc., as mixed impurities from scraps or those added for adjusting toughness, workability, but in such a case, too, the MC value described above must be at least 0.
  • the oxygen content is not particularly limited in the present invention, the oxygen content is preferably as small as possible because oxygen is an impurity which forms oxide type non-metallic inclusions.
  • Hot workability in hot rolling must be secured by uniformly heating the slab to its center portion. However, if heating is made to a temperature more than 1,300°C, the material loss due to the formation of oxide scales becomes so remarkable that the production yield drops. When the heating temperature is less than 1,050°C, on the other hand, the deformation resistance in hot rolling becomes excessively great. Therefore, the slab heating temperature is limited to 1,050 to 1,300°C.
  • Ordinary hot coil rolling can be employed for hot rolling.
  • the sheet thickness is limited to at least 3.0 mm to not more than 25.4 mm from practical utility of the sheet for the oil well pipe or the line pipe. From the aspect of productivity in subsequent seam welding, the shape of the sheet is limited to the hot coil.
  • the metallic structure substantially comprises the austenite monophase
  • the hot rolling finish temperature and to the coiling temperature there are no other limitations to the hot rolling finish temperature and to the coiling temperature. If the temperature is too low, however, the hot rolling deformation resistance becomes great even though the structure is the austenite monophase structure. Therefore, a suitable temperature must be set within the range of the capacity of the hot rolling mill and that of the coiling machine.
  • cooling When the hot coil after coiling is cooled, cooling must be carried out at a cooling rate of at least 0.01 °C/sec to a temperature of 500°C or lower. This is for preventing the formation of ferrite from austenite and converting the steel to one whose metallic structure substantially comprises martensite after cooling. If the cooling rate is less than 0.01 °C/sec, the possibility that ferrite is formed during cooling becomes high. In the steel to which the present invention is directed, on the other hand, austenite cooled to less than 500°C no longer undergoes transformation to ferrite, and because the cooling rate at a temperature less than 500°C has small influences on the martensite transformation, any cooling rate may be used at a temperature less than 500°C.
  • the heating temperature of less than 550°C or the holding time of less than 15 minutes is not preferable because the toughness of the base metal is not sufficient.
  • the heating temperature exceeds the A c1 transformation point, fresh martensite is formed in subsequent cooling process and the toughness as well as the stress corrosion cracking resistance of the base metal drop.
  • the holding time of at least 15 minutes is secured, a longer holding time causes no problem.
  • box annealing is employed, the holding time is from about 2 to about 10 hours.
  • the reheating atmosphere may be the air atmosphere, but is more preferably a non-oxidizing atmosphere or a reducing atmosphere in order to reduce the oxide scales on the steel surface and to improve the production yield of the steel pipe without lowering the corrosion resistance.
  • a mixed gas consisting of 5 to 15% of hydrogen and the balance of a nitrogen or argon gas.
  • An ordinary production process of an electric resistance seam welded steel pipe can be employed for forming and seam welding in the present invention, and a seam welded steel pipe is produced by cutting a steel coil into a predetermined width in accordance with a required outer diameter as an oil well pipe or a line pipe and welding both edges of the steel coil by electric resistance welding while continuously shaping the steel coil so cut into a cylindrical shape.
  • the steps of producing the steel pipe by seam welding, reheating the seam welded portion and the portions within 2 mm from both sides of the seam to a temperature of not less than 550°C and not more than the A c1 transformation point and then cooling the pipe may be added, whenever necessary.
  • the object of this additional production step is to lower the hardness of the hardened structure formed locally at the time of seam welding and to improve the toughness of the seam welded portion.
  • reheating is carried out, only the portions in the proximity of the seam welded portion may be reheated immediately after seam welding by using a post annealer, for example, or the full-body of the steel pipe may be heated.
  • the present invention to add the steps of reheating the seam welded portion and the portions within at least 2 mm from both sides of the seam welded portion to not less than the A c3 transformation point +50°C, rapidly cooling them to a temperature below an Ms point, further heating again at least the seam welded portion and the portions within 2 mm from both sides of the seam to a temperature from 550°C to the A c1 transformation point and then cooling them.
  • the object of the additional steps is to reduce non-uniformity occurring at the time of seam welding and to further improve the toughness of the seam welded portion.
  • the seam welded portion and the portions within at least 2 mm from both sides of the seam are heated to not less than the A c3 transformation point +50°C, it is preferred to reheat only the portions in the proximity of the seam welded portion immediately after seam welding by using the post-annealer.
  • the steel pipe may be naturally heated as a whole, but in this case, the steel pipe is hardened as a whole, so that the material property secured at the time of the hot coil is lost. After reheating is made to the A c3 transformation point +50°C or more, the pipe must be rapidly cooled to a temperature lower than the Ms point.
  • the metallic structure of the hot coil of the steel having the selected components is converted to the structure substantially consisting of tempered martensite. If the structure of the hot coil remains un-tempered martensite, the strength is excessively high and hence, workability and toughness are extremely inferior. In contrast, workability of the steel can be improved by tempering the mertensite under the state of the hot coil so as to provide a suitable strength to the hot coil, and forming in the production of the seam welded steel pipe can be attained with a remarkable increase in productivity.
  • the metallic structure is converted to the tempered martensite, a high strength such as a yield strength of at least 551 MPa, for example, can be easily obtained, and a high strength and an excellent impact toughness can be obtained, too.
  • Each testpiece having a thickness of 3 mm, a width of 15 mm and a length of 50 mm was used for the wet carbon dioxide environment, and was immersed in a 5% aqueous NaCl solution inside an autoclave at a testing temperature of 120°C at a carbon dioxide pressure of 40 atms for 30 days.
  • a corrosion rate was calculated from the weight change between the weight before the test and the weight after the test. The unit of this corrosion rate was expressed by mm/y. It is generally believed that if a corrosion rate of a certain material in a certain environment is less than 0.1 mm/y, the material is sufficiently anti-corrosive and can be used.
  • test results are also tabulated in Table 2.
  • symbol ⁇ shows that a fracture appearance transition temperature is not more than -30°C
  • symbol X shows that the fracture appearance transition temperature is from -30°C to 0°C
  • symbol XX shows that the fracture appearance transition temperature exceeds 0°C.
  • symbol ⁇ shows the maximum hardness is less than 300
  • X shows that it is from 300 to less than 450
  • symbol XX shows that it is at least 450.
  • the present invention can produce, at a low cost and with high productivity, steel pipes excellent in both corrosion resistance and weldability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)
EP95921979A 1994-06-16 1995-06-16 Procede de production de tubes d'acier presentant une excellente resistance a la corrosion et une bonne aptitude au soudage Expired - Lifetime EP0774520B1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP15649494 1994-06-16
JP06156494A JP3116156B2 (ja) 1994-06-16 1994-06-16 耐食性および溶接性に優れた鋼管の製造方法
JP156494/94 1994-06-16
PCT/JP1995/001207 WO1995034690A1 (fr) 1994-06-16 1995-06-16 Procede de production de tubes d'acier presentant une excellente resistance a la corrosion et une bonne aptitude au soudage

Publications (3)

Publication Number Publication Date
EP0774520A1 true EP0774520A1 (fr) 1997-05-21
EP0774520A4 EP0774520A4 (fr) 1998-11-04
EP0774520B1 EP0774520B1 (fr) 2002-12-11

Family

ID=15628984

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95921979A Expired - Lifetime EP0774520B1 (fr) 1994-06-16 1995-06-16 Procede de production de tubes d'acier presentant une excellente resistance a la corrosion et une bonne aptitude au soudage

Country Status (9)

Country Link
US (1) US5820703A (fr)
EP (1) EP0774520B1 (fr)
JP (1) JP3116156B2 (fr)
KR (1) KR100206503B1 (fr)
CN (1) CN1152947A (fr)
CA (1) CA2192833C (fr)
DE (1) DE69529162T2 (fr)
NO (1) NO965386L (fr)
WO (1) WO1995034690A1 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998017835A1 (fr) * 1996-10-24 1998-04-30 Mannesmann Ag ACIER CONTENANT DU Ni ET PROCEDE POUR LA FABRICATION DE PRODUITS LAMINES ET FORGES AVEC CET ACIER
EP0848069A2 (fr) * 1996-12-03 1998-06-17 MANNESMANN Aktiengesellschaft Procédé pour la fabrication de bouteilles ou de récipients résistants à la corrosion en acier
WO1999031283A1 (fr) * 1997-12-12 1999-06-24 Sket Walzwerkstechnik Gmbh Acier de construction inoxydable et son procede de production
EP1006204A1 (fr) * 1998-11-30 2000-06-07 Sumitomo Metal Industries Limited Tôle en acier inoxydable martensitique à faible teneur en carbone
EP1160347A1 (fr) * 2000-05-31 2001-12-05 Kawasaki Steel Corporation Alliage Fe-Cr ayant une excellente résistance à la corrosion, une excellente aptitude à l' usinage et une excellente sondabilité
WO2002004689A1 (fr) * 2000-07-12 2002-01-17 Ugine-Savoie Imphy Acier inoxydable ferritique utilisable pour des pieces ferromagnetiques
EP1350858A1 (fr) * 2000-10-12 2003-10-08 Kawasaki Steel Corporation Acier au cr pour structure soudee
EP1354975A1 (fr) * 2002-03-28 2003-10-22 Kawasaki Steel Corporation Tôle d'acier inoxydable pour éléments de construction soudés et procédé pour leur fabrication
WO2005023478A1 (fr) 2003-09-05 2005-03-17 Sumitomo Metal Industries, Ltd. Structure soudee presentant une excellente resistance a la fissuration par corrosion sous contrainte

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3444008B2 (ja) * 1995-03-10 2003-09-08 住友金属工業株式会社 耐炭酸ガス腐食性及び耐硫化物応力腐食割れ性の優れたマルテンサイトステンレス鋼
EP0738784B1 (fr) * 1995-04-21 2000-07-12 Kawasaki Steel Corporation Aciers inoxydables martensitiques avec haute teneur de chrome pour tubes qui sont résistants à la corrosion par formation de piqûres et leur fabrication
EP0995809B1 (fr) * 1997-09-29 2004-02-04 Sumitomo Metal Industries Limited Acier pour tubes de puits de petrole avec bonne resistance a la corrosion par gaz carbonique humide et par eau de mer, et tube sans soudure pour puits de petrole
DE19800283C1 (de) * 1998-01-07 1999-07-15 Rasmussen Gmbh Profilschelle und Verfahren zu ihrer Herstellung
US7232053B2 (en) * 2004-12-30 2007-06-19 Kva, Inc. Seam-welded air hardenable steel constructions
US7540402B2 (en) * 2001-06-29 2009-06-02 Kva, Inc. Method for controlling weld metal microstructure using localized controlled cooling of seam-welded joints
US7618503B2 (en) * 2001-06-29 2009-11-17 Mccrink Edward J Method for improving the performance of seam-welded joints using post-weld heat treatment
KR100516515B1 (ko) * 2001-12-22 2005-09-26 주식회사 포스코 내마모성이 우수한 레잉헤드파이프의 열처리방법
US7032809B1 (en) 2002-01-18 2006-04-25 Steel Ventures, L.L.C. Seam-welded metal pipe and method of making the same without seam anneal
JP4325243B2 (ja) * 2002-03-28 2009-09-02 Jfeスチール株式会社 耐粒界腐食性及び加工性に優れた溶接構造用ステンレス鋼板
US7157672B2 (en) * 2003-05-20 2007-01-02 Gandy Technologies Corporation Method of manufacturing stainless steel pipe for use in piping systems
JP4400423B2 (ja) * 2004-01-30 2010-01-20 Jfeスチール株式会社 マルテンサイト系ステンレス鋼管
US20060162824A1 (en) * 2005-01-27 2006-07-27 United States Steel Corporation Method for producing high strength, high ductility steel strip
DE102005014966A1 (de) * 2005-04-01 2006-10-05 Schaeffler Kg Verfahren zur Herstellung geschweisster Wälzlagerringe aus Wälzlagerstahl
JP4635764B2 (ja) * 2005-07-25 2011-02-23 住友金属工業株式会社 継目無鋼管の製造方法
CN100357484C (zh) * 2005-12-09 2007-12-26 北京工业大学 镍基耐蚀电弧喷涂粉芯丝材
CN102534166B (zh) * 2012-01-13 2013-09-25 北京科技大学 一种高扩径性能的j55钢级erw膨胀管的制备方法
CN102719747A (zh) * 2012-06-25 2012-10-10 宝山钢铁股份有限公司 一种耐硫酸盐还原菌腐蚀的油井管及其制造方法
EP3042976B1 (fr) * 2013-08-30 2020-05-13 Nippon Steel Corporation Tôle d'acier pour tube de canalisation à paroi épaisse et à haute résistance mécanique ayant d'excellentes caracteristiques de résistance à la corrosion et à l'affaissement, et une ductilité aux basses températures, ainsi que tube de canalisation
KR101518578B1 (ko) 2013-09-10 2015-05-07 주식회사 포스코 내마모성 및 표면품질이 우수한 황산 및 염산 복합내식용 강판 및 그 제조방법
JP6229066B2 (ja) * 2014-12-09 2017-11-08 ポスコPosco Ahss熱延コイルの熱処理方法、これを利用した冷間圧延方法および熱処理装置
DE102015112215A1 (de) * 2015-07-27 2017-02-02 Salzgitter Flachstahl Gmbh Hochlegierter Stahl insbesondere zur Herstellung von mit Innenhochdruck umgeformten Rohren und Verfahren zur Herstellung derartiger Rohre aus diesem Stahl
CN105088086A (zh) * 2015-09-01 2015-11-25 广西南宁智翠科技咨询有限公司 一种高强度合金钢
CN105132822B (zh) * 2015-10-10 2017-08-25 武汉钢铁有限公司 一种耐co2腐蚀性能优异的管线钢及生产方法
FR3047254B1 (fr) * 2016-02-02 2018-02-16 Vallourec Tubes France Composition d'aciers aux proprietes anti-cokage ameliorees
CN106521357A (zh) * 2016-12-19 2017-03-22 苏州金威特工具有限公司 一种耐腐蚀刀具钢
CN108298270B (zh) * 2017-01-11 2021-09-28 山西太钢不锈钢股份有限公司 一种带式输送机用托辊
KR20190138835A (ko) * 2017-04-11 2019-12-16 티센크루프 스틸 유럽 악티엔게젤샤프트 벨형 노에서 어닐링 처리된 냉간 압연한 평강 제품 및 그 제조 방법
WO2019060333A1 (fr) * 2017-09-21 2019-03-28 The Nanosteel Company, Inc. Améliorations de la soudabilité d'un acier à haute résistance avancé
US10960487B2 (en) * 2017-09-21 2021-03-30 United States Steel Corporation Weldability improvements in advanced high strength steel
CA3078333C (fr) * 2017-10-03 2023-01-17 Nippon Steel Corporation Metal soude d'acier inoxydable a base d'austenite, et structure soudee
CN111218624B (zh) * 2020-01-08 2021-10-15 北京科技大学 一种耐二氧化碳腐蚀无缝钢管及其制备方法
CN113774279B (zh) * 2021-08-20 2022-07-01 中国原子能科学研究院 核反应堆合金材料,其制备方法、部件及焊接方法
CN114959221B (zh) * 2022-06-11 2024-06-07 新疆八一钢铁股份有限公司 海洋石油输送管线用x60级微合金宽带钢的制造方法
CN116441870B (zh) * 2023-05-22 2023-09-29 发哲(浙江)新材料科技有限公司 一种超高强度轻量化的钢管或型材及其制造工艺

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63134630A (ja) * 1986-11-21 1988-06-07 Sumitomo Metal Ind Ltd 高クロム継目無鋼管の製造方法
JPS63213619A (ja) * 1987-02-27 1988-09-06 Nisshin Steel Co Ltd 加工性に優れ溶接軟化のない高強度ステンレス鋼材の製造方法
JPS63238217A (ja) * 1987-03-26 1988-10-04 Kawasaki Steel Corp 低温靭性および耐応力腐食割れ性に優れたマルテンサイト系ステンレス継目無鋼管の製造方法
JP2867295B2 (ja) * 1990-08-03 1999-03-08 新日本製鐵株式会社 マルテンサイト系ステンレス鋼ラインパイプの製造方法
JPH06104868B2 (ja) * 1990-08-03 1994-12-21 新日本製鐵株式会社 高強度マルテンサイト系ステンレス鋼ラインパイプの製造方法
JPH075972B2 (ja) * 1990-11-27 1995-01-25 新日本製鐵株式会社 低炭素マルテンサイト系ステンレス鋼ラインパイプの製造方法
JPH0713261B2 (ja) * 1990-11-27 1995-02-15 新日本製鐵株式会社 低炭素マルテンサイト系ステンレス鋼油井管の製造方法
JPH05156408A (ja) * 1991-11-29 1993-06-22 Nippon Steel Corp 溶接性に優れた高強度マルテンサイトステンレス鋼とその製造方法
JPH05156409A (ja) * 1991-11-29 1993-06-22 Nippon Steel Corp 耐海水性に優れた高強度マルテンサイトステンレス鋼とその製造方法
JP2705435B2 (ja) * 1992-03-18 1998-01-28 住友金属工業株式会社 Cr含有油井用鋼管の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
No further relevant documents disclosed *
See also references of WO9534690A1 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998017835A1 (fr) * 1996-10-24 1998-04-30 Mannesmann Ag ACIER CONTENANT DU Ni ET PROCEDE POUR LA FABRICATION DE PRODUITS LAMINES ET FORGES AVEC CET ACIER
EP0848069A2 (fr) * 1996-12-03 1998-06-17 MANNESMANN Aktiengesellschaft Procédé pour la fabrication de bouteilles ou de récipients résistants à la corrosion en acier
EP0848069A3 (fr) * 1996-12-03 1999-06-02 MANNESMANN Aktiengesellschaft Procédé pour la fabrication de bouteilles ou de récipients résistants à la corrosion en acier
WO1999031283A1 (fr) * 1997-12-12 1999-06-24 Sket Walzwerkstechnik Gmbh Acier de construction inoxydable et son procede de production
EP1006204A1 (fr) * 1998-11-30 2000-06-07 Sumitomo Metal Industries Limited Tôle en acier inoxydable martensitique à faible teneur en carbone
US6220306B1 (en) 1998-11-30 2001-04-24 Sumitomo Metal Ind Low carbon martensite stainless steel plate
EP1160347A1 (fr) * 2000-05-31 2001-12-05 Kawasaki Steel Corporation Alliage Fe-Cr ayant une excellente résistance à la corrosion, une excellente aptitude à l' usinage et une excellente sondabilité
US6419878B2 (en) 2000-05-31 2002-07-16 Kawasaki Steel Corporation Fe-Cr alloy having excellent initial rust resistance, workability and weldability
US6821358B2 (en) 2000-07-12 2004-11-23 Ugine-Savoie Imphy Ferritic stainless steel which can be used for ferromagnetic parts
WO2002004689A1 (fr) * 2000-07-12 2002-01-17 Ugine-Savoie Imphy Acier inoxydable ferritique utilisable pour des pieces ferromagnetiques
FR2811683A1 (fr) * 2000-07-12 2002-01-18 Ugine Savoie Imphy Acier inoxydable ferritique utilisable pour des pieces ferromagnetiques
EP1350858A1 (fr) * 2000-10-12 2003-10-08 Kawasaki Steel Corporation Acier au cr pour structure soudee
EP1350858A4 (fr) * 2000-10-12 2004-08-25 Jfe Steel Corp Acier au cr pour structure soudee
EP1354975A1 (fr) * 2002-03-28 2003-10-22 Kawasaki Steel Corporation Tôle d'acier inoxydable pour éléments de construction soudés et procédé pour leur fabrication
US7429302B2 (en) 2002-03-28 2008-09-30 Jfe Steel Corporation Stainless steel sheet for welded structural components and method for making the same
WO2005023478A1 (fr) 2003-09-05 2005-03-17 Sumitomo Metal Industries, Ltd. Structure soudee presentant une excellente resistance a la fissuration par corrosion sous contrainte
EP1661655A1 (fr) * 2003-09-05 2006-05-31 Sumitomo Metal Industries, Ltd. Structure soudee presentant une excellente resistance a la fissuration par corrosion sous contrainte
EP1661655A4 (fr) * 2003-09-05 2008-06-18 Sumitomo Metal Ind Structure soudee presentant une excellente resistance a la fissuration par corrosion sous contrainte
EP2258507A3 (fr) * 2003-09-05 2010-12-15 Sumitomo Metal Industries, Ltd. Structure soudée présentant une résistance améliorée à la fissuration par corrosion sous contrainte
EP2289662A3 (fr) * 2003-09-05 2012-12-05 Sumitomo Metal Industries, Ltd. Structure soudée dotée d'une résistance améliorée au craquage de la corrosion sous tension
NO339014B1 (no) * 2003-09-05 2016-11-07 Sumitomo Metal Ind Sveiset rørledningsstruktur med forbedret motstand mot stresskorrosjonssprekkdannelse

Also Published As

Publication number Publication date
KR100206503B1 (ko) 1999-07-01
NO965386D0 (no) 1996-12-13
DE69529162T2 (de) 2003-11-13
CA2192833A1 (fr) 1995-12-21
JPH083642A (ja) 1996-01-09
US5820703A (en) 1998-10-13
EP0774520B1 (fr) 2002-12-11
CA2192833C (fr) 2000-05-30
NO965386L (no) 1997-02-13
JP3116156B2 (ja) 2000-12-11
CN1152947A (zh) 1997-06-25
WO1995034690A1 (fr) 1995-12-21
DE69529162D1 (de) 2003-01-23
EP0774520A4 (fr) 1998-11-04

Similar Documents

Publication Publication Date Title
EP0774520B1 (fr) Procede de production de tubes d'acier presentant une excellente resistance a la corrosion et une bonne aptitude au soudage
EP1918397B1 (fr) Tube d'acier sans soudoure pour conduite petroliere et son procédé de fabrication
EP1568792B1 (fr) Tôle d'acier laminée à chaud pour la tube soudée de haute résistance électrique et méthode pour fabriquer la même chose
CN106987782B (zh) 一种耐少量co2及h2s腐蚀的连续管及其制造方法
EP0178334B1 (fr) Aciers inoxydables martensiques pour tubes d'acier sans soudure
US5849116A (en) Production method for steel material and steel pipe having excellent corrosion resistance and weldability
JP3379355B2 (ja) 耐硫化物応力割れ性を必要とする環境で使用される高強度鋼材およびその製造方法
JPH09249935A (ja) 耐硫化物応力割れ性に優れる高強度鋼材とその製造方法
JPH08325641A (ja) 加工性に優れた高強度高靭性鋼管の製造方法
EP0738784B1 (fr) Aciers inoxydables martensitiques avec haute teneur de chrome pour tubes qui sont résistants à la corrosion par formation de piqûres et leur fabrication
JPH075972B2 (ja) 低炭素マルテンサイト系ステンレス鋼ラインパイプの製造方法
JPH0636993B2 (ja) 耐食性および靭性に優れたステンレスクラッド鋼板の製造方法
JPH0499128A (ja) マルテンサイト系ステンレス鋼ラインパイプの製造方法
JPH11158551A (ja) マルテンサイト系ステンレス鋼管の製造方法
JPH0625746A (ja) 高Cr含有鋼油井管の製造方法
JPH0713261B2 (ja) 低炭素マルテンサイト系ステンレス鋼油井管の製造方法
JPH07102321A (ja) 抗張力800MPa以上を有する非熱処理型電縫油井管の製造方法
JPH06104868B2 (ja) 高強度マルテンサイト系ステンレス鋼ラインパイプの製造方法
JPH07233449A (ja) フェライト系ステンレス鋼板とその製造方法
JP2582148B2 (ja) 溶接部靱性の優れた低温用低降伏比ニッケル鋼板の製造方法
JP3241912B2 (ja) 塑性変形環境での耐硫化物応力腐食割れ性に優れる熱延鋼板の製造方法
JPH02290947A (ja) 耐サワー性の優れた高靭性電縫鋼管用鋼板
JPS5942053B2 (ja) 高張力ラインパイプの製造法
JPH05105962A (ja) 加工性の極めて優れた高強度熱延鋼板の製造方法
JPH10130775A (ja) 耐めっき割れ性に優れた高張力鋼及びその製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970114

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

A4 Supplementary search report drawn up and despatched

Effective date: 19980922

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20001124

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69529162

Country of ref document: DE

Date of ref document: 20030123

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030912

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100709

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100616

Year of fee payment: 16

Ref country code: DE

Payment date: 20100610

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110616

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120229

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69529162

Country of ref document: DE

Effective date: 20120103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110616