EP0768405A1 - Gewebe und Gelege mit einstellbarer Gas- und/oder Flüssigkeitdichtigkeit enthaltend Hybridgarne, Verfahren zu deren Weiterverarbeitung, textile Flächengebilde mit vorbestimmter Gas- und/oder Flüssigkeitsdurchlässigkeit und deren Verwendung - Google Patents

Gewebe und Gelege mit einstellbarer Gas- und/oder Flüssigkeitdichtigkeit enthaltend Hybridgarne, Verfahren zu deren Weiterverarbeitung, textile Flächengebilde mit vorbestimmter Gas- und/oder Flüssigkeitsdurchlässigkeit und deren Verwendung Download PDF

Info

Publication number
EP0768405A1
EP0768405A1 EP19960115791 EP96115791A EP0768405A1 EP 0768405 A1 EP0768405 A1 EP 0768405A1 EP 19960115791 EP19960115791 EP 19960115791 EP 96115791 A EP96115791 A EP 96115791A EP 0768405 A1 EP0768405 A1 EP 0768405A1
Authority
EP
European Patent Office
Prior art keywords
fabric
filaments
radical
matrix
polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19960115791
Other languages
English (en)
French (fr)
Inventor
Burkhard Dr. Bönigk
Hans-Joachim Dl. Brüning
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Invista Technologies SARL Switzerland
Original Assignee
Hoechst Trevira GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst Trevira GmbH and Co KG filed Critical Hoechst Trevira GmbH and Co KG
Publication of EP0768405A1 publication Critical patent/EP0768405A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/447Yarns or threads for specific use in general industrial applications, e.g. as filters or reinforcement
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/40Yarns in which fibres are united by adhesives; Impregnated yarns or threads
    • D02G3/402Yarns in which fibres are united by adhesives; Impregnated yarns or threads the adhesive being one component of the yarn, i.e. thermoplastic yarn
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • D03D1/02Inflatable articles
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/242Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads inorganic, e.g. basalt
    • D03D15/247Mineral
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/242Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads inorganic, e.g. basalt
    • D03D15/267Glass
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/40Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
    • D03D15/41Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads with specific twist
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/40Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
    • D03D15/47Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads multicomponent, e.g. blended yarns or threads
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/573Tensile strength
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/587Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads adhesive; fusible
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/02Inorganic fibres based on oxides or oxide ceramics, e.g. silicates
    • D10B2101/06Glass
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/02Inorganic fibres based on oxides or oxide ceramics, e.g. silicates
    • D10B2101/08Ceramic
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/20Metallic fibres
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/02Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
    • D10B2321/021Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polyethylene
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/02Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
    • D10B2321/022Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polypropylene
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • D10B2331/021Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides aromatic polyamides, e.g. aramides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/06Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyethers
    • D10B2331/061Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyethers polyetherketones, polyetheretherketones, e.g. PEEK
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/14Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polycondensates of cyclic compounds, e.g. polyimides, polybenzimidazoles
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/30Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polycondensation products not covered by indexing codes D10B2331/02 - D10B2331/14
    • D10B2331/301Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polycondensation products not covered by indexing codes D10B2331/02 - D10B2331/14 polyarylene sulfides, e.g. polyphenylenesulfide
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/04Heat-responsive characteristics
    • D10B2401/041Heat-responsive characteristics thermoplastic; thermosetting
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/063Load-responsive characteristics high strength
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2501/00Wearing apparel
    • D10B2501/04Outerwear; Protective garments
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2501/00Wearing apparel
    • D10B2501/04Outerwear; Protective garments
    • D10B2501/043Footwear
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/04Filters
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/10Packaging, e.g. bags
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/12Vehicles
    • D10B2505/124Air bags
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/18Outdoor fabrics, e.g. tents, tarpaulins
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/20Industrial for civil engineering, e.g. geotextiles
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/20Industrial for civil engineering, e.g. geotextiles
    • D10B2505/204Geotextiles
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2507/00Sport; Military
    • D10B2507/04Sails
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/902High modulus filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • Y10T428/2931Fibers or filaments nonconcentric [e.g., side-by-side or eccentric, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • Y10T428/2967Synthetic resin or polymer
    • Y10T428/2969Polyamide, polyimide or polyester

Definitions

  • the present invention relates to fabrics and scrims with adjustable gas and / or liquid permeability from which textile fabrics with predetermined gas and / or liquid permeability can be produced in a simple manner. These textile fabrics can be used in many areas of application, in particular for the production of airbags.
  • Airbags are made in part from gas-impermeable, coated fabrics which contain a gas-permeable filter fabric or filter fabric segment or an opening on one side of the bag.
  • DE-A-4,009,611 describes a gas-permeable woven fabric made of synthetic yarn which is spun from a staple fiber mixture, in addition to aramid fibers, thermally deformable fibers, such as fibers made of polyamides, polyvinyl chloride, polypropylene or polyester, are used.
  • thermally deformable fibers such as fibers made of polyamides, polyvinyl chloride, polypropylene or polyester.
  • an airbag made of a fabric which comprises warp and weft threads, which are each made of polymer material with a high melting point, and which additionally contains polymer threads with a low melting point, such as woven from polyamide or polyester.
  • the polymer threads with a low melting point are arranged at predetermined intervals and extend along at least one of the warp and weft threads. By heating these polymer threads, they are welded to the warp and weft threads. This is to prevent the fabric from fraying when cut by a press or punch.
  • Hybrid yarns can also be used in the manufacture of this fabric. In addition to these yarns, there are always yarns made of polymer material with a high melting point in these fabrics, these latter yarns making up the majority of the fabric.
  • JP-A-03-266,745 describes a flexible band of hybrid yarns which, in addition to a first filament yarn component, contain a matrix-forming elastomeric second filament yarn component. Such tapes will be wound on a mandrel and by melting the second filament yarn component, a flexible molded body is produced which is suitable for use as an airbag. This manufacturing route bypasses the manufacture of a textile surface, such as a woven or knitted fabric.
  • GB-A-2,251,410 describes the production of airbags, a melt fiber being used in the formation of seams.
  • DE-A-4,142,884 discloses an airbag made of fabrics which are made up of bicomponent fibers of the core-sheath type or of the side-by-side type.
  • the first component used is polyamide, polyester, aramid or ultra-high molecular weight polyethylene and the second component is low-melting polymer such as polyethylene, modified polyester, polyurethane or ethylene-vinyl acetate copolymer.
  • the difference between the melting points of the materials forming the two components should be at least 100 ° C.
  • an airbag made of an elastic membrane is described which has an elongation at break of at least 100%.
  • an airbag consisting of an elastomeric body and a shaping part attached to parts of this body is described, this part containing elastic fibers or threads and high-modulus filaments.
  • this embodiment therefore also requires an additive which keeps the inflated airbag in an optimal shape.
  • textile fabrics containing carrier fibers have already become known, which are provided with a coating that allows the textile fabric to be folded for placement in a small volume and / or provides excellent kink resistance.
  • These include, for example PVC-coated tarpaulins or PVC-coated weather clothing.
  • these products are manufactured by subsequently coating a textile fabric;
  • coating agents are used, the components of which are to be assigned to other chemical substance classes than the components of the textile fabric.
  • fabrics and knitted fabrics which contain a hybrid yarn made of a multi-component fiber and a conventional polyester fiber.
  • the multi-component fiber consists of a thermoplastic elastomer, such as an elastomeric polyurethane or an elastomeric polyester, and a polyester.
  • the fabrics described are intended for textile applications and are characterized by good elastic recovery and freedom from creasing. The fabrics are stabilized by melting the elastomer component during dyeing, and the result is a good distribution of the melted component in the fabric. This publication does not refer to the production of gas-tight fabrics.
  • JP-A-04-353,525 discloses prepregs made of hybrid yarns which, in addition to reinforcing fibers, are made up of filaments made of thermoplastic and elastomeric materials. Polyester and polyurethane are mentioned as thermoplastic and elastomeric components.
  • the prepregs are used to manufacture composite materials;
  • hybrid yarns can be produced from the two filament types, which are processed into fabrics and then converted into shaped structures by heating, or direct molding processes such as pultrusion or filament winding processes are used.
  • Shaped structures with complicated shapes can be produced from the prepregs.
  • the shaped structures are characterized by good damping properties, high flexibility and impact resistance and can be used as conveyor belts, shoe soles or sporting goods.
  • the invention relates to fabrics or scrims containing at least two thread systems of parallel threads, at least one of these thread systems having more than 10 threads per centimeter and consisting of at least 10%, based on the thread system, of hybrid yarns containing reinforcing filaments and deep-melting matrix filaments made of thermoplastic polymers.
  • the fabrics or scrims according to the invention can consist to a small extent or entirely of the hybrid yarns defined above.
  • the proportion of the hybrid yarns to be selected in the individual case will be determined in addition to the desired application purpose by the respective proportion of the matrix filaments in the hybrid yarn.
  • the proportion of hybrid yarns in the fabric or in the scrim or the proportion of matrix filaments in the hybrid yarn is selected according to the requirement profile of the processor.
  • some of the yarns that make up the fabrics or scrims can only consist of carrier filaments or only binder filaments.
  • the proportion of the hybrid yarns must in any case be selected so that its proportion in at least one of the thread systems constructing the fabric or scrim is at least 10%, preferably at least 50%, very particularly preferably at least 95%.
  • At least one direction is preferred, e.g. the weft or warp direction, the woven or non-woven fabric according to the invention is built entirely from the hybrid yarns defined above.
  • the fabrics or scrims according to the invention can consist of two or more thread systems; two thread systems are preferably provided (warp and weft threads).
  • the thread densities of at least one of the thread systems of the fabrics or scrims according to the invention are at least 10 threads per centimeter, preferably at least 15 threads per centimeter, and particularly preferably at least 20 threads per centimeter.
  • Woven or laid fabrics are preferred which have two thread systems with thread densities of at least 15 threads per centimeter and which thread systems consist of at least 10%, preferably at least 50%, of hybrid yarns containing reinforcing filaments and low-melting matrix filaments made of thermoplastic polymers.
  • Fabrics or scrims which consist of two thread systems, each consisting of at least 95% hybrid yarns containing reinforcing filaments and deep-melting matrix filaments made of thermoplastic polymers, are very particularly preferred.
  • Another very particularly preferred embodiment of the fabrics or scrims according to the invention contains, in at least one thread system, a combination of hybrid yarns containing reinforcing filaments and low-melting matrix filaments and yarns made from carrier filaments, or that at least one thread system contains a combination of different hybrid yarns containing reinforcing filaments and different proportions of low-melting ones Matrix filaments are present, wherein several of the hybrid yarns and the carrier filament yarns or several of the different hybrid yarns are each arranged in a predetermined pattern.
  • the gas and / or liquid permeability of parts of the textile surface resulting from further processing can be adjusted in a controlled manner.
  • the hybrid yarns used to produce the fabrics or scrims according to the invention contain matrix filaments made of thermoplastic polymers which have a melting point which is usually at least 10 ° C., preferably at least 30 ° C. below the melting point or the decomposition point of the reinforcing filaments.
  • the fabrics or scrims according to the invention can be produced using techniques known per se. Examples of this can be found in EP-A-442,373, -509,399 and -665,313.
  • the reinforcing or carrier filaments used can be filaments made from a large number of materials.
  • Reinforcing or carrier filaments in the sense of this description mean filaments which take on a reinforcing function in the textile fabric to be produced from the fabrics or scrims.
  • the reinforcement or carrier filaments are made up of individual filaments which have an initial modulus of more than 50 GPa.
  • Preferred reinforcement or carrier filaments of this type consist of glass; Carbon; Metals or metal alloys, such as steel, aluminum or tungsten; Non-metals such as boron; Metal, semimetal or non-metal oxides, carbides or nitrides, such as aluminum oxide, zirconium oxide, boron nitride, boron carbide, silicon carbide, silicon dioxide (quartz); Ceramics, or high-performance polymers (i.e.
  • fibers that provide a very high initial modulus and a very high tensile strength with little or no stretching
  • LCP liquid-crystalline polyesters
  • BBB poly (bis-benzimidazo-benzophenanthrolines
  • PAI polybenzimidazoles
  • PBO poly (p-phenylene benzobisoxazoles
  • PBT poly (p-phenylene benzobisthiazoles)
  • PES polyether ketones
  • PEI polyether sulfones
  • PESU Polyether sulfones
  • PESU polyimides
  • PI poly (p-phenylenes)
  • PPS polyarylene sulfides
  • PSU polyolefins
  • PE polyethylene
  • PP polypropylene
  • HMA aramids
  • Reinforcement or carrier filaments made of glass, carbon or aromatic polyamide are particularly preferred.
  • reinforcement or carrier filaments and matrix or binder filaments are used which consist of polymeric materials from one polymer class, for example polyolefins, polyamides or preferably polyesters, in particular polyethylene terephthalate.
  • the individual filaments of the reinforcement or carrier filaments have an initial modulus of more than 10 GPa.
  • Reinforcement or carrier filaments for this embodiment are preferably high-strength and low-shrinkage polyester filament yarns, in particular with a yarn titer of less than or equal to 750 dtex, a tenacity of greater than or equal to 55 cN / tex, a maximum tensile strength elongation of greater than or equal to 15% and a hot air shrinkage (measured at 200 ° C) less than or equal to 9%.
  • the maximum tensile force and the maximum tensile force elongation of the polyester yarns used are measured in accordance with DIN 53 830, Part 1.
  • the thermal shrinkage (hot air shrinkage) of the polyester yarns used is measured in accordance with DIN 53 866, Part 3 at a temperature of 200 ° C on free-hanging yarn samples with a treatment time of 15 minutes. 10 m of string are used with a reel tension of 0.5 cN / tex.
  • Matrix or binder filaments in the hybrid yarns used according to the invention consist of or contain thermoplastic polymers. These can be any melt-spinnable thermoplastics, as long as the filaments produced therefrom melt at a lower temperature than the melting or decomposition temperature of the reinforcing filaments used in the respective case.
  • Matrix or binder filaments made of a thermoplastic modified polyester, in particular a modified polyethylene terephthalate, are preferably used; the modification lowers the melting point compared to the filament made of unmodified polyester.
  • Very particularly preferred modified polyesters of this type contain 40 to 95 mol% of the repeating structural units of the formula I and 60 to 5 mol% of the repeating structural units of the formula II;
  • Ar 1 is 1,4-phenylene and / or 2,6-naphthylene,
  • R 1 and R 3 are ethylene and
  • R 2 is 1,3-phenylene.
  • matrix or binder filaments are used which consist of or contain a thermoplastic and elastomeric polymer. These can also be any melt-spinnable and elastomeric thermoplastics, as long as the filaments produced therefrom melt at a lower temperature than the melting or decomposition temperature of the reinforcing filaments used in the respective case.
  • elastomeric polymer is understood to mean a polymer whose glass transition temperature is less than 23 ° C., preferably less than 0 ° C.
  • thermoplastic and elastomeric polymers are elastomeric polyamides, polyolefins, polyesters and polyurethanes.
  • Ar 2 and Ar 3 are preferably independently of one another a phenylene and / or a naphthylene radical.
  • Ar 2 and Ar 3 each particularly preferably denote 1,4-phenylene.
  • R 4 as a divalent aliphatic radical means straight-chain or branched alkylene or alkylidene; these are usually residues with two to twenty carbon atoms, preferably two to eight carbon atoms and in particular two to four carbon atoms.
  • R 4 is particularly preferably straight-chain alkylene having two to six carbon atoms, in particular ethylene.
  • R 4 as a divalent cycloaliphatic radical usually means a radical containing five to eight, preferably six ring carbon atoms; this carbocycle is particularly preferably part of an aliphatic chain.
  • An example of a particularly preferred representative of this type is the rest of the cyclohexanedimethanol.
  • R 4 is particularly preferably a radical of the formula -C n H 2n -, in which n is an integer between 2 and 6 or a radical derived from cyclohexanedimethanol.
  • R 5 as a divalent radical of a polyoxyalkylene usually means a polyether radical which has recurring oxyethylene, oxypropylene or in particular oxybutylene units or mixtures of these units.
  • R 5 particularly preferably represents a radical of the formula V. - [C o H 2o -O] z -C o H 2o - (V), (V), wherein o is an integer from two to four and z is an integer from 1 to 50.
  • o is four and z is an integer from 10 to 18.
  • Hybrid yarns made of thermoplastic and elastomeric polyester containing the recurring structural units of the formulas III and IV defined above are particularly preferred, wherein Ar 2 and Ar 3 are 1,4-phenylene, R 4 is ethylene, R 5 is a group of the formula V defined above is o is four, and in which the proportion of the recurring structural units of the formula V, based on the proportion of the polyester molecule, is 5 to 60% by weight.
  • Fibers made of such polyesters have different melting points depending on the proportion of the repeating structural units of the formula V; the higher the proportion of these structural units, the lower the melting point can be set.
  • fibers made of an elastomeric polyester of this type with a content of 13% by weight of polyoxybutylene have a melting point of about 220 ° C.
  • fibers made of an elastomeric polyester of this type with a content of 53% by weight of polyoxybutylene have a melting point of about 160 ° C.
  • Hybrid yarns made from thermoplastic and elastomeric polyurethane containing the recurring structural units of the formulas VI and VII defined above are particularly preferably used, wherein R 7 is butane-1,4-diyl, R 9 is a radical of the formula VIII defined above, wherein q is a whole Number from two to four, in particular four, and x is an integer from 1 to 50, preferably from 10 to 18 and in which R 6 and R 8 independently of one another are phenylene or naphthylene.
  • Preferred elastomeric polyamides are known per se and are described, for example, in Domininghaus: "The plastics and their properties", 3rd edition, VDI Verlag GmbH, Düsseldorf 1988, pp. 456-461.
  • radicals in the structural formulas defined above mean divalent aliphatic radicals, this means branched and in particular straight-chain alkylene, for example alkylene with two to twenty, preferably with two to eight, carbon atoms.
  • examples of such radicals are ethane-1,2-diyl, propane-1,3-diyl, butane-1,4-diyl, pentane-1,5-diyl, hexane-1,6-diyl or octane-1,8 -diyl.
  • radicals in the structural formulas defined above are divalent cycloaliphatic radicals, they are to be understood as meaning groups which contain carbocyclic radicals having five to eight, preferably six, ring carbon atoms. Examples of such radicals are cyclohexane-1,4-diyl or the group -CH 2 -C 6 H 10 -CH 2 -.
  • radicals in the structural formulas defined above mean divalent aromatic radicals, these are mono- or polynuclear aromatic hydrocarbon radicals or heterocyclic-aromatic radicals which can be mono- or polynuclear.
  • heterocyclic-aromatic radicals these have in particular one or two oxygen, nitrogen or sulfur atoms in the aromatic nucleus.
  • Polynuclear aromatic radicals can be condensed with one another or linked to one another via CC bonds or via bridging groups such as —O—, —S—, —CO— or —CO — NH groups.
  • the valence bonds of the divalent aromatic radicals can be in a para- or in a comparable coaxial or parallel position to one another, or also in a meta or in a comparable angled position to one another.
  • valence bonds which are in a coaxial or parallel position, are directed in opposite directions.
  • An example of coaxial, oppositely directed bonds are the biphenyl-4,4'-diyl bonds.
  • An example of parallel, opposite bonds are the naphthalene 1,5 or 2,6 bonds, while the naphthalene 1,8 bonds are parallel aligned.
  • Examples of preferred divalent aromatic radicals are mononuclear aromatic radicals with mutually para-free valences, in particular 1,4-phenylene or dinuclear fused aromatic radicals with parallel directed bonds, in particular 1,4-, 1,5- and 2,6-naphthylene, or dinuclear aromatic residues linked via a CC bond with coaxial, oppositely directed bonds, in particular 4,4'-biphenylene.
  • Examples of preferred divalent aromatic radicals whose valence bonds are in a meta or in a comparable angled position to one another are mononuclear aromatic radicals with free valences which are meta to one another, in particular 1,3-phenylene or dinuclear condensed aromatic radicals with bonds oriented at an angle to one another, in particular 1,6- and 2,7-naphthylene, or dinuclear aromatic residues linked via a CC bond with bonds oriented at an angle to one another, in particular 3,4'-biphenylene.
  • radicals mean divalent araliphatic radicals, this means groups which contain one or more divalent aromatic radicals contain which are combined with one or both valences with an alkylene radical.
  • a preferred example of such a radical is the group -C 6 H 4 -CH 2 -.
  • the recurring structural units of the formula III or VI or IV or VII are typical hard or soft segments.
  • Thermoplastic polyesters or polyurethanes of this type are known and are described, for example, in Domininghaus: "The plastics and their properties", 3rd edition, VDI Verlag GmbH, Düsseldorf 1988, pp. 518-524.
  • R 6 and R 8 are preferably divalent mono- or dinuclear aromatic radicals, in particular phenylene and / or naphthylene.
  • R 7 is preferably a radical of the formula -C p H 2p -, in which p is an integer between 2 and 6 or a radical derived from cyclohexanedimethanol. R 7 butane-1,4-diyl is particularly preferred.
  • R 9 is preferably a radical of the formula VIII defined above.
  • R 9 particularly preferably represents a radical of the formula VIII, in which q is an integer from two to four, in particular four, and x is an integer from 1 to 50, preferably from 10 to 18.
  • R 9 likewise preferably represents a radical of the formula IX defined above, in which R 10 is a radical of the formula VIII, and R 7 represents a radical of the formula -C p H 2p -, in which p is an integer between 2 and 6, in particular butane-1,4-diyl, or a radical derived from cyclohexanedimethanol or represents a phenylene and / or naphthylene radical.
  • Thermoplastic and elastomeric polyurethanes containing the recurring structural units of the formulas VI and VII defined above are very particularly preferably used, wherein R 7 is butane-1,4-diyl, R 9 is a radical of the formula VIII defined above, where q is an integer from two to four, in particular four, and x is an integer from 1 to 50, preferably from 10 to 18, and in which R 6 and R 8 independently of one another are phenylene or naphthylene.
  • Fibers made from such polyurethanes have different melting points, depending on the proportion of the repeating structural units of the formula VIII or IX; the higher the proportion of these structural units, the lower the melting point can be set.
  • substituents are alkyl, alkoxy or halogen.
  • Alkyl radicals are to be understood as meaning branched and in particular straight-chain alkyl, for example alkyl having one to six carbon atoms, in particular methyl.
  • Alkoxy radicals are to be understood as meaning branched and in particular straight-chain alkoxy, for example alkoxy with one to six carbon atoms, in particular methoxy.
  • radicals are halogen, it is, for example, fluorine, bromine or, in particular, chlorine.
  • the matrix filaments used in the hybrid yarn used according to the invention can be constructed from thermoplastic polymers which usually have an intrinsic viscosity of at least 0.5 dl / g, preferably 0.6 to 1.5 dl / g.
  • the intrinsic viscosity is measured in a solution of the thermoplastic polymer in dichloroacetic acid at 25 ° C.
  • these polyesters usually have an intrinsic viscosity of at least 0.5 dl / g, preferably 0.6 to 1.5 dl / g.
  • the intrinsic viscosity is measured as described above.
  • the hybrid yarns used according to the invention usually have yarn titer of 2000 to 150 dtex, preferably 1100 to 150 dtex.
  • the individual fiber titer of the reinforcement or carrier filaments and the matrix or binder filaments usually ranges from 2 to 10 dtex, preferably 4 to 8 dtex.
  • cross sections of the reinforcement or carrier filaments and the matrix or binder filaments can be any; for example elliptical, bi- or multilobal, ribbon-shaped or preferably round.
  • thermoplastic polymers are prepared by processes known per se by polycondensation of the corresponding bifunctional monomer components.
  • dicarboxylic acids or dicarboxylic acid esters and the corresponding diol components are usually used.
  • Such thermoplastic and optionally elastomeric polyesters, polyurethanes, polyamides and polyolefins are already known.
  • the reinforcing or carrier filaments used in the textile fabrics according to the invention are also known per se.
  • the mechanical properties of the hybrid yarns used according to the invention are dependent on the composition, such as the type and proportion of the reinforcing filaments or the matrix filaments, depending on the physical structure of the yarns, e.g. Degree of turbulence, can be varied within wide limits.
  • the proportion of the matrix filaments is usually 3 to 50% by weight, based on the weight of the hybrid yarn.
  • hybrid yarn is to be understood in its broadest meaning within the scope of this description. Accordingly, this includes any combination containing reinforcing filaments and the matrix filaments defined above.
  • hybrid yarn types are filament yarns from different types of filaments which are interwoven with one another or combined with one another by means of another technology, such as for example twisting. All of these hybrid yarns are characterized by the presence of two or more types of filaments, at least one type of filament being a reinforcing filament and at least one type of filament being a matrix filament as defined above.
  • Hybrid yarns produced by intermingling or commingling techniques are particularly preferably used.
  • hybrid yarns used in accordance with the invention are described using the example of the preferred blow-mixed yarns.
  • Other types of hybrid yarns can be produced in a manner known per se.
  • the interlacing of the hybrid yarns from reinforcement and matrix filaments of the first embodiment described above is preferably carried out by means of a special warm interlacing process, which is described in EP-B-0,455,193.
  • the filaments are warmed to near the softening point before swirling (approx. 600 ° C for glass).
  • the heating can be carried out by means of godets and / or a heating tube, while the low-melting thermoplastic single filaments made of polyester are fed to the superordinate intermingling nozzle without preheating.
  • the hybrid yarns can be produced from reinforcement and matrix filaments of the second embodiment described above by conventional intermingling techniques, for example by intermingling or commingling techniques, as described, for example, in chemical fibers / textile industry, (7/8) 1989, T 185-7 .
  • Such yarns can consist of reinforcement and matrix filaments from different or preferably from the same chemical substance classes.
  • the fabrics or scrims according to the invention can be processed in a simple manner by using elevated temperatures, if appropriate using pressure or negative pressure, for example by calendering, to form textile fabrics with predetermined gas and / or liquid permeability.
  • the thermal treatment after step b) can e.g. by contact heating, by radiation, by convection (hot air blower), by ultrasound or by a combination of these measures.
  • step a) fabrics or scrims which contain hybrid yarns arranged in a predetermined pattern or combinations of reinforcing and hybrid yarns according to the definition given above.
  • textile fabrics with predetermined gas and / or liquid permeability are to be understood as textile fabrics which are derived from the fabrics or scrims defined above by melting the matrix component.
  • the property profile of such textile fabrics can be set differently depending on the intended use, for example by selecting the type of reinforcement and matrix filaments used, by the proportion of hybrid yarns in the preliminary fabric or scrim, by the proportion of matrix filaments in the hybrid yarns used, through the distribution of different yarn types in the fabric or scrim pre-products, as well as through the manufacturing conditions used in individual cases.
  • the gas and / or liquid permeability is reduced by melting the matrix filaments.
  • Such textile fabrics contain a woven fabric made of reinforcing filaments or at least one thread group of parallel reinforcing filaments and a matrix component made of thermoplastic polymer.
  • the matrix component in the textile fabrics can only make up a small proportion, for example 3% by weight, based on the weight of the textile fabric; however, the matrix component can also make up a high proportion, for example 70% by weight, preferably 3 to 50% by weight, based on the weight of the textile fabric.
  • the matrix components can be evenly distributed over the textile fabric or preferably in a predetermined pattern. Depending on the respective amount, the matrix component can embed the reinforcing filaments (which results in a particularly low gas or liquid permeability) or only fix them.
  • the invention also relates to textile fabrics with predetermined gas and / or liquid permeability containing a woven fabric made of reinforcing filaments or at least one thread bundle of parallel reinforcing filaments and a matrix component made of thermoplastic polymer, wherein reinforcing filaments and matrix components consist of one polymer class (single-variety combinations), preferably combinations Polyamide / polyamide, polyolefin / polyolefin and in particular made of polyester / polyester.
  • the gas and / or liquid permeability of the textile fabrics that can be produced according to the invention can be varied within wide limits.
  • Textile fabrics with a gas permeability of less than or equal to 80, preferably less than or equal to 30, in particular less than, are preferred equal to 12 dm 3 air per minute per square decimeter of fabric with a pressure drop of 500 Pa (measured according to DIN 53887).
  • the gas permeability is measured in accordance with DIN 53 887 on a fabric with a measuring area of 100 cm 2 and with a pressure drop (measuring pressure) of 500 Pa.
  • textile fabrics of the type defined above are particularly preferred, which are additionally characterized by a bursting strength according to Mullen of greater than or equal to 3500 kPa, a maximum tensile force of greater than or equal to 1300 N, each 5 cm of fabric width, and a tear propagation resistance, measured according to the leg method , greater than or equal to 100 N, and a maximum tensile force elongation of greater than or equal to 20%.
  • Particularly preferred textile fabrics are derived from fabrics or scrims which consist of the hybrid yarns defined above.
  • the textile fabrics usually have weights from 50 to 600 g / m 2 , preferably from 50 to 300 g / m 2 .
  • the thickness of these fabrics is usually less than 1.5 mm, preferably less than or equal to 0.45 mm.
  • the basis weight of the fabrics according to the invention is measured in accordance with DIN 53 854;
  • the thickness of the fabrics according to the invention is measured in accordance with DIN 53 855, part 1 (measuring area 10 cm 2 ; measuring pressure 50 cN / cm 2 ).
  • the textile fabrics according to the invention can be used in a large number of fields of application, for example as protective clothing, such as bullet, cut, stitch or saw-inhibiting clothing items or weather protection clothing or anti-G vests or diving clothing; as tent fabrics or tent floors; as linings for containers, such as silo, pool or container linings; as bags; as materials for making shoes; as packaging materials; as maritime textiles, such as textiles for the manufacture of inflatable boats, life jackets or life rafts; as a textile building material, such as textiles for the production of zeppelins; as a carrier material, such as a material for producing light conveyor belts; as geotextiles; for use in hydraulic engineering, such as rain catch tanks or landfill covers; as sails or tarpaulin, as filter materials or in particular for the production of airbags.
  • protective clothing such as bullet, cut, stitch or saw-inhibiting clothing items or weather protection clothing or anti-G vests or diving clothing
  • tent fabrics or tent floors as linings for containers, such as
  • Another object of the present invention is the use of the textile fabrics according to the invention for the purposes mentioned above.
  • the chain consisted of yarns made of polyethylene terephthalate of the type dtex 315f100 VZ 120.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Woven Fabrics (AREA)
  • Air Bags (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

Beschrieben werden Gewebe oder Gelege enthaltend mindestens zwei Fadensysteme parallellaufender Fäden, wobei wenigstens eines dieser Fadensysteme mehr als 10 Fäden pro Zentimeter aufweist und zu mindestens 10 %, bezogen auf das Fadensystem, aus Hybridgarnen enthaltend Verstärkungsfilamente und tieferschmelzende Matrixfilamente aus thermoplastischen Polymeren besteht. Aus derartigen Geweben oder Gelegen lassen sich durch Aufschmelzen der Matrixkomponente textile Flächengebilde mit einstellbarer Gas- und/oder Flüssigkeitsdurchlässigkeit herstellen, die sich insbesondere zur Herstellung von Airbags eignen.

Description

  • Die vorliegende Erfindung betrifft Gewebe und Gelege mit einstellbarer Gas- und/oder Flüssigkeitsdurchlässigkeit aus denen sich auf einfache Art und Weise textile Flächengebilde mit vorbestimmter Gas- und/oder Flüssigkeitsdurchlässigkeit herstellen lassen. Diese textilen Flächengebilde lassen sich auf vielen Anwendungsgebieten einsetzen, insbesondere zur Herstellung von Luftsäcken (Airbags).
  • Gewebe und Gelege dieser Art dienen unter anderem der Herstellung von Airbags, die bei einem Unfall explosionsartig aufgeblasen werden und die Insassen, insbesondere den Fahrer des Automobils, vor Aufprall-Verletzungen schützen sollen. Airbags werden zum Teil aus gasundurchlässigen, beschichteten Geweben hergestellt, welche auf einer Seite des Sackes ein gasdurchlässiges Filtergewebe oder Filtergewebesegment oder eine Öffnung enthalten.
  • Es wurde bereits vorgeschlagen, unbeschichtete Gewebe zur Herstellung von Airbags einzusetzen, beispielsweise in der EP-A-453,678. Nach der Beschreibung in dieser Schrift erfordert die Herstellung derartiger Gewebe ein mindestens zweifaches Kalandrieren des Rohgewebes, um die gewünschte Gasdichtigkeit einzustellen. Das Weglassen der Beschichtung wird bei dieser Lösung also durch zusätzliche Prozesschritte erkauft.
  • Es ist auch bereits vorgeschlagen worden, Gewebe für den Einsatz in Airbags aus Garnen oder Membranen herzustellen, die schmelzbare Komponenten enthalten.
  • So wird in der DE-A-4,009,611 ein gasdurchlässiges Gewebe aus synthetischem Garn beschrieben, das aus einer Stapelfasermischung gesponnen ist, wobei neben Aramidfasern thermisch verformbare Fasern, wie Fasern aus Polyamiden, Polyvinylchlorid, Polypropylen oder Polyester, zum Einsatz kommen. Nach der Beschreibung ist es wichtig, daß die das Gewebe bildenden Garne nicht aus Filamenten sondern aus Stapelfasern gefertigt werden, um über die gesamte Länge des Garns seitlich abstehende Faserenden zur Verfügung zu haben, die das Garn besonders bauschig machen und hierdurch die Filterwirkung des resultierenden Gewebes erhöhen.
  • Aus der DE-A-4,411,159 ist ein Airbag aus einem Gewebe bekannt, welches Kett- und Schußfäden umfaßt, die jeweils aus Polymermaterial mit einem hohen Schmelzpunkt hergestellt sind, und welches zusätzlich Polymerfäden mit niedrigem Schmelzpunkt, wie aus Polyamid oder Polyester, eingewebt enthält. Die Polymerfäden mit niedrigem Schmelzpunkt sind dabei unter vorgegebenen Abständen angeordnet und erstrecken sich entlang mindestens einem der Kett- und Schußfäden. Durch Erwärmen dieser Polymerfäden werden diese an den Kett- und Schußfäden verschweißt. Dadurch soll das Ausfransen des Gewebes beim Schneiden durch Presse bzw. Stanze verhindert werden. Bei der Herstellung dieses Gewebes können auch Hybridgarne zum Einsatz kommen. Neben diesen Garnen liegen in diesen Geweben aber stets Garne aus Polymermaterial mit einem hohen Schmelzpunkt vor, wobei diese letzteren Garne den Hauptanteil des Gewebes ausmachen.
  • In der JP-A-03-266,745 wird ein flexibles Band aus Hybridgarnen beschrieben, welche neben einer ersten Filamentgarnkomponente eine matrixbildende elastomere zweite Filamentgarnkomponente enthalten. Derartige Bänder werden auf einen Dorn gewickelt und durch Aufschmelzen der zweiten Filamentgarnkomponente wird ein flexibler Formkörper hergestellt, der sich zum Einsatz als Airbag eignet. Dieser Herstellungsweg umgeht die Herstellung einer textilen Fläche, wie eines Gewebes oder eines Gestrickes.
  • In der GB-A-2,251,410 wird die Herstellung von Airbags beschrieben, wobei bei der Bildung von Säumen eine Schmelzfaser eingesetzt wird.
  • Aus der JP-A-05-338,510 ist ein Gewebe zur Herstellung von Airbags bekannt, wobei eine Gewebeseite schmelzbare Kurzfasern aufweist.
  • Schließlich ist in der DE-A-4,142,884 ein Airbag aus Geweben bekannt, die aus Bikomponentenfasern des Kern-Mantel-Typs oder des Seite-an-Seite Typs aufgebaut sind. Dabei wird als erste Komponente Polyamid, Polyester, Aramid oder ultrohochmolekulares Polyethylen und als zweite Komponente niedrig schmelzendes Polymer, wie Polyethylen, modifizierte Polyester, Polyurethan oder Ethylen-Vinylacetat-Copolymer, eingesetzt. Nach der Beschreibung soll der Unterschied zwischen den Schmelzpunkten der die beiden Komponenten bildenden Materialien mindestens 100 °C betragen. In einer weiteren Ausführungsform wird ein Airbag aus einer elastischen Membran beschrieben, die eine Bruchdehnung von mindestens 100 % aufweist. In einer dritten Ausführungsform wird ein Airbag aus einem elastomeren Körper und ein auf Teilen dieses Körpers angebrachten Formgebungsteils beschrieben, wobei dieses Teil elastische Fasern oder Fäden und Hochmodulfilamente enthält. Diese Ausführungsform benötigt also neben dem eigentlichen Airbag noch einen Zusatz, der den aufgeblasenen Airbag in einer optimalen Form hält.
  • Ferner sind bereits Trägerfasern enthaltende textile Flächengebilde bekannt geworden, die mit einer Beschichtung versehen sind, die das Falten des textilen Flächengebildes zur Unterbringung in einem kleinen Volumen gestattet und/oder eine hervorragende Knickbeständigkeit verleiht. Dazu zählen beispielsweise PVC-beschichtete Planen oder PVC-beschichtete Wetterbekleidungen. Die Herstellung dieser Produkte erfolgt aber durch nachträgliches Beschichten eines textilen Flächengebildes; dabei werden Beschichtungsmittel eingesetzt, deren Bestandteile anderen chemischen Stoffklassen zuzurechnen sind als die Bestandteile des textilen Flächengebildes.
  • Aus der JP-A-04-146,235 sind Gewebe und Gestricke bekannt, die ein Hybridgarn aus einer Mehrkomponentenfaser und einer konventionellen Polyesterfaser enthalten. Die Mehrkomponentenfaser besteht aus einem thermoplastischen Elastomer, wie aus einem elastomeren Polyurethan oder einem elastomeren Polyester, und aus einem Polyester. Die beschriebenen Flächengebilde sind für textile Anwendungsgebiete vorgesehen und zeichnen sich durch gute elastische Erholung sowie Knitterfreiheit aus. Die Flächengebilde werden durch Aufschmelzen der Elastomerkomponente während des Färbens stabilisiert und es resultiert eine gute Verteilung der aufgeschmolzenen Komponente im Flächengebilde. Ein Hinweis auf die Herstellung gasdichter Gewebe ist dieser Publikation nicht zu entnehmen.
  • Aus der JP-A-04-353,525 sind Prepregs aus Hybridgarnen bekannt, die neben Verstärkungsfasern aus Filamenten aus thermoplastischen und elastomeren Materialien aufgebaut sind. Als thermoplastische und elastomere Komponenten werden unter anderem Polyester und Polyurethane erwähnt. Die Prepregs dienen zur Herstellung von Verbundwerkstoffen; zu diesem Zweck können aus den beiden Filamenttypen Hybridgarne hergestellt werden, welche zu Geweben verarbeitet und anschließend durch Erwärmen in geformte Gebilde übergeführt werden, oder es werden direkte Formverfahren angewendet, wie Pultrusions- oder Filament Windingverfahren. Aus den Prepregs können geformte Gebilde mit komplizierten Formen hergestellt werden. Die geformten Gebilde zeichnen sich durch gute Dämpfungseigenschaften, hohe Flexibilität und Schlagzähigkeit aus und lassen sich als Förderbänder, Schuhsohlen oder Sportartikel einsetzen.
  • Ein Hinweis auf die Herstellung textiler Flächengebilde mit vorbestimmter Gasdurchlässigkeit ist dieser Publikation nicht zu entnehmen.
  • Ferner sind aus unserer älteren Deutschen Patentanmeldung 19531001.2 Gelege aus Hybridgarnen bekannt, die sich als Träger zur Vliesverstärkung einsetzen lassen. Die Fadendichten der dort konkret beschriebenen Gelege liegen mit bis zu 10 Fäden pro Zentimeter relativ hoch.
  • Es besteht immer noch ein Bedarf an textilen Flächengebilden enthaltend Verstärkungsfilamente und Matrixmaterial, deren Gas- und/oder Flüssigkeitsdurchlässigkeit gezielt eingestellt werden kann, und die eine hohe Knickbeständigkeit (auch bei tiefen Temperaturen bis etwa - 25 °C) aufweisen, sowie eine hohe Haftfestigkeit zwischen Verstärkungsfilamenten und Matrixmaterial, insbesondere an Vorprodukten, die sich auf einfache Art und Weise zu derartigen textilen Flächengebilden verarbeiten lassen.
  • Es wurden nun überraschend gefunden, daß Gewebe oder Gelege abgeleitet von speziellen Hybridgarnen auf einfache Art und Weise zu textilen Flächengebilden mit gezielt einstellbarer Gas- und/oder Flüssigkeitsdurchlässigkeit verarbeitet werden können. Diese textilen Flächengebilde gestatten die Herstellung im Vergleich zu konventionell beschichteten Flächengebilden kleinvolumiger gefalteter Produkte, die sich schlagartig aufblasen lassen und in hervorragender Weise zur Herstellung von Airbags eignen.
  • Die Erfindung betrifft Gewebe oder Gelege enthaltend mindestens zwei Fadensysteme parallellaufender Fäden, wobei wenigstens eines dieser Fadensysteme mehr als 10 Fäden pro Zentimeter aufweist und zu mindestens 10 %, bezogen auf das Fadensystem, aus Hybridgarnen enthaltend Verstärkungsfilamente und tieferschmelzende Matrixfilamente aus thermoplastischen Polymeren besteht.
  • Die erfindungsgemäßen Gewebe oder Gelege können in Abhängigkeit von dem ins Auge gefaßten Anwendungszweck zu einem geringen Anteil oder vollständig aus den oben definierten Hybridgarnen bestehen. So ist es beispielsweise möglich nur eines der die erfindungsgemäßen Gewebe oder Gelege aufbauenden Fadensysteme ganz oder auch nur zum Teil aus Hybridgarnen aufzubauen. Der im Einzelfall auszuwählende Anteil der Hybridgarne wird neben dem gewünschten Anwendungszweck auch von dem jeweiligen Anteil der Matrixfilamente im Hybridgarn bestimmt werden. Der Anteil an Hybridgarnen am Gewebe bzw. am Gelege bzw. der Anteil der Matrixfilamente im Hybridgarn wird nach dem Anforderungsprofil des Weiterverarbeiters gewählt.
  • Neben den oben definierten Hybridgarnen kann ein Teil der die Gewebe oder Gelege aufbauenden Garne nur aus Trägerfilamenten oder nur aus Binderfilamenten bestehen. Der Anteil der Hybridgarne ist auf jeden Fall so zu wählen, daß deren Anteil in wenigstens einem der das Gewebe bzw. Gelegen aufbauenden Fadensysteme mindestens 10 %, vorzugsweise mindestens 50 %, ganz besonders bevorzugt mindestens 95 % beträgt.
  • Bevorzugt ist zumindest eine Richtung, z.B. die Schuß- oder die Kettrichtung, der erfindungsgemäßen Gewebe oder Gelege vollständig aus den oben definierten Hybridgarnen aufgebaut.
  • Die erfindungsgemäßen Gewebe oder Gelege können in Abhängigkeit von dem ins Auge gefaßten Anwendungszweck aus zwei oder mehr Fadensystemen bestehen; vorzugsweise sind zwei Fadensysteme vorgesehen (Kett- und Schußfadenscharen).
  • Die Fadendichten mindestens eines der Fadensysteme der erfindungsgemäßen Gewebe oder Gelege betragen wenigstens 10 Fäden pro Zentimeter, vorzugsweise wenigstens 15 Fäden pro Zentimeter, und besonders bevorzugt wenigstens 20 Fäden pro Zentimeter.
  • Bevorzugt werden Gewebe oder Gelege, die zwei Fadensysteme mit Fadendichten von mindestens 15 Fäden pro Zentimeter aufweisen und welche Fadensysteme zu mindestens 10 %, vorzugsweise zu mindestens 50 % aus Hybridgarnen enthaltend Verstärkungsfilamente und tieferschmelzende Matrixfilamente aus thermoplastischen Polymeren bestehen.
  • Ganz besonders bevorzugt werden Gewebe oder Gelege, die aus zwei Fadensystemen bestehen, welche jeweils zu mindestens 95 % aus Hybridgarnen enthaltend Verstärkungsfilamente und tieferschmelzende Matrixfilamente aus thermoplastischen Polymeren bestehen.
  • Eine weitere ganz besonders bevorzugte Ausführungsform der erfindungsgemäßen Gewebe oder Gelege enthält in mindestens einem Fadensystem eine Kombination von Hybridgarnen enthaltend Verstärkungsfilamente und tieferschmelzende Matrixfilamente und von Garnen aus Trägerfilamenten vorliegt, oder daß in mindestens einem Fadensystem eine Kombination von verschiedenen Hybridgarnen enthaltend Verstärkungsfilamente und unterschiedliche Anteile von tieferschmelzenden Matrixfilamenten vorliegt, wobei jeweils mehrere der Hybridgarne und der Garne aus Trägerfilamenten oder jeweils mehrere der verschiedenen Hybridgarne in einem vorbestimmten Muster angeordnet sind.
  • Mit dieser Ausführungsform läßt sich die Gas- und/oder Flüssigkeitsdurchlässigkeit von Teilen der aus der Weiterverarbeitung hervorgehenden textilen Fläche kontrolliert einstellen.
  • Die zur Herstellung der erfindungsgemäßen Gewebe oder Gelege zum Einsatz kommenden Hybridgarne enthalten Matrixfilamente aus thermoplastischen Polymeren, die einen Schmelzpunkt aufweisen, der üblicherweise mindestens 10 °C, vorzugsweise mindestens 30 °C unter dem Schmelzpunkt oder dem Zersetzungspunkt der Verstärkungsfilamente liegt.
  • Die Herstellung der erfindungsgemäßen Gewebe oder Gelege kann mittels an sich bekannter Techniken erfolgen. Beispiele dafür sind in den EP-A-442,373, -509,399 und -665,313 zu finden.
  • Bei den zum Einsatz kommenden Verstärkungs- bzw. Trägerfilamenten kann es sich um Filamente aus einer Vielzahl von Materialien handeln. Verstärkungs- bzw. Trägerfilamente im Sinne dieser Beschreibung bedeuten Filamente, welche in dem aus den Geweben oder Gelegen herzustellenden textilen Flächengebilden eine verstärkende Funktion übernehmen.
  • In einer ersten bevorzugten Ausführungsform sind die Verstärkungs- bzw. Trägerfilamente aus Einzelfilamenten aufgebaut, die einen Anfangsmodul von mehr als 50 GPa aufweisen.
  • Bevorzugte Verstärkungs- bzw. Trägerfilamente dieses Typs bestehen aus Glas; Kohlenstoff; Metallen bzw. Metallegierungen, wie Stahl, Aluminium oder Wolfram; Nichtmetallen, wie Bor; Metall-, Halbmetall- oder Nichtmetalloxiden, - carbiden oder nitriden, wie Aluminiumoxid, Zirkonoxid, Bornitrid, Borcarbid, Siliziumcarbid, Siliziumdioxid (Quarz); Keramik, oder Hochleistungspolymeren (d.h. Fasern, die ohne oder nur bei geringer Verstreckung einen sehr hohen Anfangsmodul und eine sehr hohe Reißfestigkeit liefern), wie flüssigkristallinen Polyestern (LCP), Poly-(bis-benzimidazo-benzophenanthrolinen (BBB), Poly-(amid-imiden) (PAI), Polybenzimidazolen (PBI), Poly-(p-phenylenbenzo-bisoxazolen (PBO), Poly-(p-phenylenbenzo-bisthiazolen) (PBT), Polyetherketonen (PEK, PEEK, PEEKK), Polyetherimiden (PEI), Polyethersulfonen (PESU), Polyimiden (PI), Poly-(p-phenylenen) (PPP), Polyarylensulfiden (PPS), Polysulfonen (PSU), Polyolefinen, wie Polyethylen (PE) oder Polypropylen (PP), und Aramiden (HMA), wie Poly-(m-phenylen-isophthalamid), Poly-(m-phenylen-terephthalamid), Poly-(p-phenylen-isophthalamid), Poly-(p-phenylen-terephthalamid), oder aus organischen Lösungsmitteln, wie N-Methylpyrrolidon, spinnbare Aramide abgeleitet von Terephthalsäuredichlorid und einer Mischung von zwei oder mehr aromatischen Diaminen, beispielsweise der Kombination p-Phenylendiamin, 1,4-Bis-(4-aminophenoxy)-benzol, 3,3'-Dimethylbenzidin, oder p-Phenylendiamin, 1,4-Bis-(4-aminophenoxy)-benzol, 3,4'-Diaminodiphenylether, oder p-Phenylendiamin, m-Phenylendiamin, 1,4-Bis-(4-aminophenoxy)-benzol.
  • Besonders bevorzugt werden Verstärkungs- bzw. Trägerfilamente aus Glas, Kohlenstoff oder aromatischem Polyamid.
  • In einer zweiten besonders bevorzugten Ausführungsform kommen Verstärkungs- bzw. Trägerfilamente und Matrix- bzw. Binderfilamente zum Einsatz, die aus polymeren Materialien aus einer Polymerklasse, beispielsweise aus Polyolefinen, aus Polyamiden oder vorzugsweise aus Polyestern, insbesondere aus Polyethylenterephthalat bestehen.
  • In dieser Ausführungsform weisen die Einzelfilamente der Verstärkungs- bzw. Trägerfilamente einen Anfangsmodul von mehr als 10 GPa auf. Verstärkungs- bzw. Trägerfilamente für diese Ausführungsform sind vorzugsweise hochfeste und schrumpfarme Polyesterfilamentgarne, insbesondere mit einem Garntiter von kleiner gleich 750 dtex, einer Feinheitsfestigkeit von größer gleich 55 cN/tex, einer Höchstzugkraftdehnung von größer gleich 15 % und einem Heißluftschrumpf (gemessen bei 200 °C) von kleiner gleich 9 %.
  • Die Messung der Höchstzugkraft und der Höchstzugkraftdehnung der zum Einsatz kommenden Polyestergarne erfolgt in Anlehnung an DIN 53 830, Teil 1.
  • Die Messung des Thermoschrumpfes (Heißluftschrumpf) der zum Einsatz kommenden Polyestergarne erfolgt in Anlehnung an DIN 53 866, Teil 3 bei einer Temperatur von 200 °C an freihängenden Garnproben bei einer Behandlungszeit von 15 Minuten. Eingesetzt werden 10 m Strang bei einer Haspelspannung von 0,5 cN/tex.
  • Matrix- bzw. Binderfilamente in den erfindungsgemäß zum Einsatz kommenden Hybridgarnen bestehen aus oder enthalten thermoplastische Polymere. Dabei kann es sich um beliebige schmelzspinnbare Thermoplaste handeln, solange die daraus hergestellten Filamente bei einer niedrigeren Temperatur schmelzen als die Schmelz- oder Zersetzungstemperatur der im jeweiligen Fall eingesetzten Verstärkungsfilamente beträgt.
  • Bevorzugt werden Matrix- bzw. Binderfilamente aus einem thermoplastischen modifizierten Polyester, insbesondere einem modifizierten Polyethylenterephthalat eingesetzt; die Modifizierung bewirkt ein Absenken des Schmelzpunktes im Vergleich mit dem Filament aus unmodifiziertem Polyester.
  • Besonders bevorzugt modifizierte Polyester dieses Typs enthalten die wiederkehrenden Struktureinheiten der Formeln I und II

            -O-OC-Ar1-CO-O-R1-     (I),

    und

            -O-OC-R2-CO-O-R3-     (II),

    worin
  • Ar1
    einen zweiwertigen ein- oder mehrkernigen aromatischen Rest darstellt, dessen freie Valenzen sich in para-Stellung oder in einer zu dieser Stellung vergleichbaren parallelen oder koaxialen Stellung zueinander befinden, vorzugsweise 1,4-Phenylen und/oder 2,6-Naphthylen darstellt,
    R1 und R3
    unabhängig voneinander zweiwertige aliphatische oder cycloaliphatischen Reste darstellen, insbesondere Reste der Formel -CnH2n-, worin n eine ganze Zahl zwischen 2 und 6 ist, insbesondere Ethylen, oder einen von Cyclohexandimethanol abgeleiteten Rest darstellen, und
    R2
    einen zweiwertigen aliphatischen, cycloaliphatischen oder ein- oder mehrkernigen aromatischen Rest darstellt, dessen freie Valenzen sich in meta-Stellung oder in einer zu dieser Stellung vergleichbaren gewinkelten Stellung zueinander befinden, vorzugsweise 1,3-Phenylen darstellt.
  • Ganz besonders bevorzugte modifizierte Polyester dieses Typs enthalten 40 bis 95 Mol % der wiederkehrenden Struktureinheiten der Formel I und 60 bis 5 Mol % der wiederkehrenden Struktureinheiten der Formel II; dabei bedeuten Ar1 1,4-Phenylen und/oder 2,6-Naphthylen, R1 und R3 Ethylen und R2 1,3-Phenylen.
  • In einer weiteren bevorzugten Ausführungsform kommen Matrix- bzw. Binderfilamente zum Einsatz, die aus einem thermoplastischen und elastomeren Polymeren bestehen oder dieses enthalten. Dabei kann es sich ebenfalls um um beliebige schmelzspinnbare und elastomere Thermoplaste handeln, solange die daraus hergestellten Filamente bei einer niedrigeren Temperatur schmelzen als die Schmelz- oder Zersetzungstemperatur der im jeweiligen Fall eingesetzten Verstärkungsfilamente beträgt.
  • Unter "elastomerem Polymer" ist im Rahmen dieser Beschreibung ein Polymer zu verstehen, dessen Glasübergangstemperatur weniger als 23 °C, vorzugsweise weniger als 0 °C beträgt.
  • Beispiele für thermoplastische und elastomere Polymere sind elastomere Polyamide, Polyolefine, Polyester und Polyurethane.
  • Besonders bevorzugt kommen Hybridgarne zum Einsatz, die Matrixfasern aus thermoplastischem und elastomerem Polyester enthalten, der die wiederkehrenden Struktureinheiten der Formeln III und IV enthält

            -O-OC-Ar2-CO-O-R4-     (III),

    und

            -O-OC-Ar3-CO-O-R5-     (IV),

    worin
  • Ar2 und Ar3
    unabhängig voneinander zweiwertige aromatische Reste darstellen,
    R4
    einen zweiwertigen aliphatischen oder cycloaliphatischen Rest darstellt, und
    R5
    den zweiwertigen Rest eines Polyalkylenethers bedeutet.
  • Vorzugsweise bedeuten Ar2 und Ar3 unabhängig voneinander einen Phenylen- und/oder einen Naphthylenrest.
  • Besonders bevorzugt bedeuten Ar2 und Ar3 jeweils 1,4-Phenylen.
  • R4 als zweiwertiger aliphatischer Rest bedeutet geradkettiges oder verzweigtes Alkylen oder Alkyliden; dabei handelt es sich üblicherweise um Reste mit zwei bis zwanzig Kohlenstoffatomen, bevorzugt zwei bis acht Kohlenstoffatomen und insbesondere zwei bis vier Kohlenstoffatomen.
  • Besonders bevorzugt ist R4 geradkettiges Alkylen mit zwei bis sechs Kohlenstoffatomen, insbesondere Ethylen.
  • R4 als zweiwertiger cycloaliphatischer Rest bedeutet üblicherweise einen Rest enthaltend fünf bis acht, vorzugsweise sechs Ringkohlenstoffatome; besonders bevorzugt ist dieser Carbocyclus Teil einer aliphatischen Kette. Ein Beispiel für einen besonders bevorzugten Vertreter dieses Typs ist der Rest des Cyclohexandimethanols.
  • Besonders bevorzugt ist R4 ein Rest der Formel -CnH2n-, worin n eine ganze Zahl zwischen 2 und 6 ist oder ein von Cyclohexandimethanol abgeleiteter Rest.
  • R5 als zweiwertiger Rest eines Polyoxyalkylens bedeutet üblicherweise einen Polyetherrest, der wiederkehrende Oxyethylen-, Oxypropylen- oder insbesondere Oxybutyleneinheiten oder Mischungen dieser Einheiten aufweist.
  • Besonders bevorzugt stellt R5 einen Rest der Formel V dar

            -[CoH2o-O]z-CoH2o- (V),     (V),

    worin o eine ganze Zahl von zwei bis vier bedeutet und z eine ganze Zahl von 1 bis 50 ist.
  • Ganz besonders bevorzugt bedeutet o vier und z ist eine ganze Zahl von 10 bis 18.
  • Besonders bevorzugt kommen Hybridgarne aus thermoplastischem und elastomerem Polyester enthaltend die oben definierten wiederkehrenden Struktureinheiten der Formeln III und IV zum Einsatz, worin Ar2 und Ar3 1,4-Phenylen bedeuten, R4 Ethylen ist, R5 eine Gruppe der oben definierten Formel V ist, o vier bedeutet, und worin der Anteil der wiederkehrenden Struktureinheiten der Formel V, bezogen auf den Anteil des Polyestermoleküls 5 bis 60 Gew.% beträgt.
  • Fasern aus derartigen Polyestern besitzen in Abhängigkeit vom Anteil der wiederkehrenden Struktureinheiten der Formel V unterschiedliche Schmelzpunkte; je höher der Anteil dieser Struktureinheiten ist, umso niedriger läßt sich der Schmelzpunkt einstellen. So weisen beispielsweise Fasern aus einem elastomeren Polyester dieses Typs mit einem Gehalt von 13 Gew. % Polyoxybutylen einen Schmelzpunkt von etwa 220°C auf, während Fasern aus einem elastomeren Polyester dieses Typs mit einem Gehalt von 53 Gew.% Polyoxybutylen einen Schmelzpunkt von etwa 160°C aufweisen.
  • Besonders bevorzugt kommen Hybridgarne zum Einsatz, die Matrixfasern aus thermoplastischem und elastomerem Polyurethan enthalten, das die wiederkehrenden Struktureinheiten der Formeln VI und VII enthält

            -[O-OC-NH-R6-NH-CO-O-R7]-     (VI),



            -[O-OC-NH-R8-NH-CO-O-R9]-     (VII),

    worin
  • R6, R7 und R8
    unabhängig voneinander einen zweiwertigen aliphatischen, cycloaliphatischen, aromatischen oder araliphatischen Rest bedeuten,
    R6 und R8
    vorzugsweise zweiwertige ein- oder zweikernige aromatische Reste sind, insbesondere Phenylen und/oder Naphthylen,
    R7
    vorzugsweise ein Rest der Formel -CpH2p- ist, worin p eine ganze Zahl zwischen 2 und 6 ist oder ein von Cyclohexandimethanol abgeleiteter Rest ist, insbesondere Butan-1,4-diyl,
    R9
    einen Rest der Formeln VIII und/oder IX bedeutet


            -[CqH2q-O]x-CqH2q-     (VIII),



            -[R10-O-OC-R11-CO-O]y-R10-     (IX),

    worin
    q
    eine ganze Zahl von zwei bis vier bedeutet und x eine ganze Zahl von 1 bis 50,
    R10
    einen zweiwertigen aliphatischen oder cycloaliphatischen Rest oder einen Rest der Formel VIII darstellt,
    R11
    ein zweiwertiger aliphatischer, cycloaliphatischer, aromatischer oder araliphatischer Rest ist, und
    y
    eine ganze Zahl von 1 bis 50 bedeutet.
  • Besonders bevorzugt kommen Hybridgarne aus thermoplastischem und elastomerem Polyurethan enthaltend die oben definierten wiederkehrenden Struktureinheiten der Formeln VI und VII zum Einsatz, worin R7 Butan-1,4-diyl bedeutet, R9 ein Rest der oben definierten Formel VIII ist, worin q eine ganze Zahl von zwei bis vier, insbesondere vier bedeutet und x eine ganze Zahl von 1 bis 50, vorzugsweise von 10 bis 18 ist und worin R6 und R8 unabhängig voneinander Phenylen oder Naphthylen bedeuten.
  • Bevorzugte elastomere Polyamide sind an sich bekannt und beispielsweise in Domininghaus: "Die Kunststoffe und ihre Eigenschaften", 3. Auflage, VDI Verlag GmbH, Düsseldorf 1988, S. 456 - 461 beschrieben.
  • Bedeuten in den oben definierten Strukturformeln irgendwelche Reste zweiwertige aliphatische Reste, so ist darunter verzweigtes und insbesondere geradkettiges Alkylen zu verstehen, beispielsweise Alkylen mit zwei bis zwanzig, vorzugsweise mit zwei bis acht Kohlenstoffatomen. Beispiele für derartige Reste sind Ethan-1,2-diyl, Propan-1,3-diyl, Butan-1,4-diyl, Pentan-1,5-diyl, Hexan-1,6-diyl oder Octan-1,8-diyl.
  • Bedeuten in den oben definierten Strukturformeln irgendwelche Reste zweiwertige cycloaliphatische Reste, so sind darunter Gruppen zu verstehen, die carbocyclische Reste mit fünf bis acht, vorzugsweise sechs Ringkohlenstoffatomen enthalten. Beispiele für derartige Reste sind Cyclohexan-1,4-diyl oder die Gruppe -CH2-C6H10-CH2-.
  • Bedeuten in den oben definierten Strukturformeln irgendwelche Reste zweiwertige aromatische Reste, so handelt es sich dabei um ein- oder mehrkernige aromatische Kohlenwasserstoffreste oder um heterocyclisch-aromatische Reste, die ein- oder mehrkernig sein können. Im Falle von heterocyclisch-aromatischen Resten weisen diese insbesondere ein oder zwei Sauerstoff-, Stickstoff- oder Schwefelatome im aromatischen Kern auf.
  • Mehrkernige aromatische Reste können miteinander kondensiert sein oder über C-C-Bindungen oder über Brückengruppen, wie -O-, -S-, -CO- oder -CO-NH-Gruppen miteinander verbunden sein.
  • Die Valenzbindungen der zweiwertigen aromatischen Reste können sich in para- oder in vergleichbarer koaxialer oder paralleler Position zueinander befinden, oder auch in meta- oder in vergleichbarer gewinkelter Position zueinander.
  • Die Valenzbindungen, die in koaxialer oder parallel zueinander befindlicher Stellung stehen, sind entgegengesetzt gerichtet. Ein Beispiel für koaxiale, entgegengesetzt gerichtete Bindungen sind die Biphenyl-4,4'-diyl Bindungen. Ein Beispiel für parallel, entgegegesetzt gerichtete Bindungen sind die Naphthalin-1,5- oder -2,6-Bindungen, während die Naphthalin-1,8-Bindungen parallel gleichgerichtet sind.
  • Beispiele für bevorzugte zweiwertige aromatische Reste, deren Valenzbindungen sich in para- oder in vergleichbarer koaxialer oder paralleler Position zueinander befinden, sind einkernige aromatische Reste mit zueinander para-ständigen freien Valenzen, insbesondere 1,4-Phenylen oder zweikernige kondensierte aromatische Reste mit parallelen, entgegengesetzt gerichteten Bindungen, insbesondere 1,4-, 1,5- und 2,6-Naphthylen, oder zweikernige über eine C-C Bindung verknüpfte aromatische Reste mit koaxialen, entgegengesetzt gerichteten Bindungen, insbesondere 4,4'-Biphenylen.
  • Beispiele für bevorzugte zweiwertige aromatische Reste, deren Valenzbindungen sich in meta- oder in vergleichbarer gewinkelter Position zueinander befinden, sind einkernige aromatische Reste mit zueinander meta-ständigen freien Valenzen, insbesondere 1,3-Phenylen oder zweikernige kondensierte aromatische Reste mit zueinander gewinkelt gerichteten Bindungen, insbesondere 1,6- und 2,7-Naphthylen, oder zweikernige über eine C-C Bindung verknüpfte aromatische Reste mit zueinander gewinkelt gerichteten Bindungen, insbesondere 3,4'-Biphenylen.
  • Bedeuten irgendwelche Reste zweiwertige araliphatische Reste, so sind darunter Gruppen zu verstehen, die einen oder mehrere zweiwertige aromatische Reste enthalten, welche über eine oder beide Valenzen mit einem Alkylenrest kombiniert sind. Ein bevorzugtes Beispiel für einen derartigen Rest ist die Gruppe -C6H4-CH2-.
  • Bei den wiederkehrenden Struktureinheiten der Formel III oder VI bzw. IV oder VII handelt es sich um typische Hart- bzw. Weichsegmente. Thermoplastische Polyester oder Polyurethane dieses Typs sind bekannt und beispielsweise in beispielsweise in Domininghaus: "Die Kunststoffe und ihre Eigenschaften", 3. Auflage, VDI Verlag GmbH, Düsseldorf 1988, S. 518 - 524 beschrieben.
  • Vorzugsweise handelt es sich bei R6 und R8 um zweiwertige ein- oder zweikernige aromatische Reste, insbesondere um Phenylen und/oder um Naphthylen.
  • Vorzugsweise handelt es sich bei R7 um einen Rest der Formel -CpH2p-, worin p eine ganze Zahl zwischen 2 und 6 ist oder um einen von Cyclohexandimethanol abgeleiteten Rest. Besonders bevorzugt ist R7 Butan-1,4-diyl.
  • Vorzugsweise ist R9 ein Rest der oben definierten Formel VIII.
  • Besonders bevorzugt stellt R9 einen Rest der Formel VIII dar, worin q eine ganze Zahl von zwei bis vier, insbesondere vier, bedeutet und x eine ganze Zahl von 1 bis 50, vorzugsweise von 10 bis 18, ist.
  • Ebenfalls bevorzugt stellt R9 einen Rest der oben definierten Formel IX dar, worin R10 ein Rest der Formel VIII ist, und R7 einen Rest der Formel -CpH2p-darstellt, worin p eine ganze Zahl zwischen 2 und 6 ist, insbesondere Butan-1,4-diyl, oder ein von Cyclohexandimethanol abgeleiteter Rest ist oder einen Phenylen- und/oder Naphthylenrest darstellt.
  • Ganz besonders bevorzugt kommen thermoplastische und elastomere Polyurethane enthaltend die oben definierten wiederkehrenden Struktureinheiten der Formeln VI und VII zum Einsatz, worin R7 Butan-1,4-diyl bedeutet, R9 ein Rest der oben definierten Formel VIII ist, worin q eine ganze Zahl von zwei bis vier, insbesondere vier, bedeutet und x eine ganze Zahl von 1 bis 50, vorzugsweise von 10 bis 18, ist und worin R6 und R8 unabhängig voneinander Phenylen oder Naphthylen bedeuten.
  • Fasern aus derartigen Polyurethanen besitzen in Abhängigkeit vom Anteil der wiederkehrenden Struktureinheiten der Formel VIII oder IX unterschiedliche Schmelzpunkte; je höher der Anteil dieser Struktureinheiten ist, umso niedriger läßt sich der Schmelzpunkt einstellen.
  • Alle diese aliphatischen, cycloaliphatischen, aromatischen, araliphatischen oder Polyoxyalkylenreste können mit inerten Gruppen substituiert sein. Darunter sind Substituenten zu verstehen, die die ins Auge gefaßte Anwendung nicht negativ beeinflussen.
  • Beispiele für solche Substituenten sind Alkyl, Alkoxy oder Halogen.
  • Unter Alkylresten ist verzweigtes und insbesondere geradkettiges Alkyl zu verstehen, beispielsweise Alkyl mit ein bis sechs Kohlenstoffatomen, insbesondere Methyl.
  • Unter Alkoxyresten ist verzweigtes und insbesondere geradkettiges Alkoxy zu verstehen, beispielsweise Alkoxy mit ein bis sechs Kohlenstoffatomen, insbesondere Methoxy.
  • Bedeuten irgendwelche Reste Halogen, so handelt es sich dabei beispielsweise um Fluor, Brom oder insbesondere um Chlor.
  • Die im erfindungsgemäß zum Einsatz kommenden Hybridgarn verwendeten Matrixfilamente können aus thermoplastischen Polymeren aufgebaut sein, die üblicherweise eine intrinsische Viskosität von mindestens 0,5 dl/g, vorzugsweise 0,6 bis 1,5 dl/g aufweisen. Die Messung der intrinsischen Viskosität erfolgt in einer Lösung des thermoplastischen Polymeren in Dichloressigsäure bei 25 °C.
  • Werden im erfindungsgemäß einzusetzenden Hybridgarn Verstärkungsfilamente aus Polyestern verwendet, weisen diese Polyester üblicherweise eine intrinsische Viskosität von mindestens 0,5 dl/g, vorzugsweise 0,6 bis 1,5 dl/g auf. Die Messung der intrinsischen Viskosität erfolgt wie voranstehend beschrieben.
  • Die erfindungsgemäß eingesetzten Hybridgarne weisen üblicherweise Garntiter von 2000 bis 150 dtex auf, vorzugsweise von 1100 bis 150 dtex.
  • Der Einzelfasertiter der Verstärkungs- bzw. Trägerfilamente und der Matrix- bzw. binderfilamente bewegt sich üblicherweise im Bereich von 2 bis 10 dtex, vorzugsweise 4 biso 8 dtex.
  • Die Querschnitte der Verstärkungs- bzw. Trägerfilamente und der Matrix- bzw. Binderfilamente können beliebig sein; beispielsweise ellipsenförmig, bi- oder multilobal, bändchenförmig oder vorzusweise rund.
  • Die Herstellung der thermoplastischen Polymeren erfolgt nach an sich bekannten Verfahren durch Polykondensation der entsprechenden bifunktionellen Monomerkomponenten. Im Falle der Polyester kommen üblicherweise Dicarbonsäuren oder Dicarbonsäureester und die entsprechenden Diolkomponenten zum Einsatz. Derartige thermoplastische und gegebenenfalls elastomere Polyester, Polyurethane, Polyamide und Polyolefine sind bereits bekannt.
  • Die in den erfindungsgemäßen textilen Flächengebilden zum Einsatz gelangenden Verstärkungs- bzw. Trägerfilamente sind ebenfalls an sich bekannt.
  • Die mechanischen Eigenschaften der erfindungsgemäß zum Einsatz kommenden Hybridgarne sind in Abhängigkeit der Zusammensetzung, wie Art und Anteil der Verstärkungsfilamente oder der Matrixfilamente in Abhängigkeit des physikalischen Aufbaus der Garne, wie z.B. Grad der Verwirbelung, in weiten Grenzen variierbar. Üblicherweise beträgt der Anteil der Matrixfilamente 3 bis 50 Gew.%, bezogen auf das Gewicht des Hybridgarns.
  • Der Begriff "Hybridgarn" ist im Rahmen dieser Beschreibung in seiner breitesten Bedeutung zu verstehen. Darunter ist demnach jede Kombination enthaltend Verstärkungsfilamente und die oben definierten Matrixfilamente zu verstehen.
  • Beispiele für mögliche Hybridgarntypen sind Filamentgarne aus verschiedenen Typen von Filamenten, welche miteinander verwirbelt oder mittels einer anderen Technologie, wie beispielsweise Zwirnen, miteinander kombiniert sind. Alle diese Hybridgarne sind durch die Anwesenheit von zwei oder mehreren Typen von Filamenten gekennzeichnet, wobei mindestens eine Filamenttype ein Verstärkungsfilament und mindestens eine Filamenttype ein Matrixfilament im Sinne der oben gegebenen Definitionen darstellt.
  • Besonders bevorzugt eingesetzt werden durch Intermingling- oder Commingling-Techniken hergestellte Hybridgarne.
  • Die Herstellung der erfindungsgemäß zum Einsatz kommenden Hybridgarne wird am Beispiel der bevorzugten blasverwirbelten Garne beschrieben. Andere Typen von Hybridgarnen können in an sich bekannter Weise hergestellt werden.
  • Die Verwirbelung der Hybridgarne aus Verstärkungs- und Matrixfilamenten der oben beschriebenen ersten Ausführungsform erfolgt vorzugsweise mittels eines speziellen Warm-Verwirbelungsverfahrens, das in EP-B-0,455,193 beschrieben ist. Hierbei werden zur Vermeidung von Filamentbrüchen beim Verwirbeln die Filamente vor dem Verwirbeln bis nahe dem Erweichungspunkt erwärmt (bei Glas ca. 600 °C). Die Erwärmung kann durch Galetten und/oder Heizrohr erfolgen, während die niedrigschmelzenden thermoplastischen Einzelfilamente aus Polyester ohne Vorerwärmung der übergeordneten Verwirbelungsdüse zugeführt werden. Diese glatten, mit hohem Fadenschluß ausgestatteten Hybridgarne sind problemlos webtauglich.
  • Die Herstellung der Hybridgarne aus Verstärkungs- und Matrixfilamenten der oben beschriebenen zweiten Ausführungsform kann nach an sich üblichen Verwirbelungstechniken, beispielsweise durch Intermingling- oder Commingling-Techniken erfolgen, wie beispielsweise in Chemiefasern/Textilindustrie, (7/8) 1989, T 185-7 beschrieben.
  • Solche Garne können aus Verstärkungs- und Matrixfilamenten aus unterschiedlichen oder vorzugsweise aus gleichen chemischen Stoffklassen bestehen.
  • Die erfindungsgemäßen Gewebe oder Gelege können auf einfache Art und Weise durch Anwendung von erhöhten Temperaturen, gegebenenfalls unter Anwendung von Druck bzw. Unterdruck, beispielsweise durch Kalandrieren, zu textilen Flächengebilden mit vorbestimmter Gas- und/oder Flüssigkeitsdurchlässigkeit verarbeitet werden.
  • Die Erfindung betrifft auch ein Verfahren zur Herstellung von textilen Flächengebilden mit vorbestimmter Gas- und/oder Flüssigkeitsdurchlässigkeit umfassend die Maßnahmen:
    • a) Vorlage eines Gewebes oder Geleges enthaltend Hybridgarne gemäß der oben gegebenen Definition, und
    • b) thermische Behandlung dieses Gewebes oder Geleges unter Bedingungen, so daß die Matrixfilamente aufschmelzen und sich ein textiles Flächengebilde mit vorbestimmter Gas- und/oder Flüssigkeitsdurchlässigkeit ausbildet.
  • Die thermische Behandlung nach Schritt b) kann z.B. durch Kontaktheizung, durch Bestrahlung, durch Konvektion (Heißluftgebläse), durch Ultraschall oder durch eine Kombination dieser Maßnahmen erfolgen.
  • Besonders bevorzugt wird ein derartiges Verfahren, worin in Schritt a) Gewebe oder Gelege vorgelegt werden, die in einem vorbestimmten Muster angeordnete Hybridgarne oder Kombinationen von Verstärkungs- und Hybridgarnen gemäß der weiter oben gegebenen Definition enthalten.
  • Unter "textilen Flächengebilden mit vorbestimmter Gas- und/oder Flüssigkeitsdurchlässigkeit" sind im Rahmen dieser Beschreibung textile Flächengebilde zu verstehen, die sich von den weiter oben definierten Geweben oder Gelegen durch Aufschmelzen der Matrixkomponente ableiten. Das Eigenschaftsprofil derartiger textiler Flächengebilde kann in Abhängigkeit vom ins Auge gefaßten Verwendungszweck unterschiedlich eingestellt werden, beispielsweise durch die Auswahl der Art der jeweils eingesetzten Verstärkungs- und Matrixfilamente, durch den Anteil der Hybridgarne in den Gewebe-oder Gelege-Vorprodukten, durch den Anteil der Matrixfilamente in den zum Einsatz gelangenden Hybridgarnen, durch die Verteilung von unterschiedlichen Garntypen in den Gewebe- oder Gelege-Vorprodukten, sowie durch die im Einzelfall angewendeten Herstellungsbedingungen.
  • Die Gas- und/oder Flüssigkeitsdurchlässigkeit wird durch Aufschmelzen der Matrixfilamente einstellbar verringert.
  • Derartige textile Flächengebilde enthalten ein Gewebe aus Verstärkungsfilamenten oder mindestens eine Fadenschar parallel verlaufender Verstärkungsfilamente und eine Matrixkomponente aus thermoplastischem Polymer.
  • Die Matrixkomponente in den textilen Flächengebilden kann nur einen geringen Anteil ausmachen, beispielsweise 3 Gew. %, bezogen auf das Gewicht des textilen Flächengebildes; die Matrixkomponente kann aber auch einen hohen Anteil ausmachen, beispielsweise 70 Gew.%, vorzugsweise 3 bis 50 Gew.%, bezogen auf das Gewicht des textilen Flächengebildes.
  • Die Matrixkomponenten kann gleichmäßig über das textile Flächengebilde verteilt sein oder vorzugsweise in einem vorbestimmten Muster vorliegen. Die Matrixkomponente kann, abhängig von der jeweiligen Menge, die Verstärkungsfilamente einbetten (womit sich eine besonders geringe Gas- bzw. Flüssigkeitsdurchlässigkeit ergibt) oder auch diese nur fixieren.
  • Gegenstand der Erfindung sind ebenfalls textile Flächengebilde mit vorbestimmter Gas- und/oder Flüssigkeitsdurchlässigkeit enthaltend ein Gewebe aus Verstärkungsfilamenten oder mindestens eine Fadenschar parallel verlaufender Verstärkungsfilamente und eine Matrixkomponente aus thermoplastischem Polymer, wobei Verstärkungsfilamente und Matrixkomponente aus einer Polymerklasse bestehen (sortenreine Kombinationen), vorzugsweise aus Kombinationen Polyamid/Polyamid, Polyolefin/Polyolefin und insbesondere aus Polyester/Polyester.
  • Die Gas- und/oder Flüssigkeitsdurchlässigkeit der erfindungsgemäß herstellbaren textilen Flächengebilde kann in weiten Grenzen variiert werden.
  • Bevorzugt werden textile Flächengebilde mit einer Gasdurchlässigkeit von kleiner gleich 80, vorzugsweise von kleiner gleich 30, insbesondere von kleiner gleich 12 dm3 Luft pro Minute pro Quadratdezimeter Stoff bei einem Druckabfall von 500 Pa (gemessen nach DIN 53887).
  • Die Messung der Gasdurchlässigkeit erfolgt in Anlehnung an DIN 53 887 an einem Gewebe mit 100 cm2 Meßfläche und bei einem Druckabfall (Meßdruck) von 500 Pa.
  • Für den Einsatz als Airbag werden textile Flächengebilde des voranstehend definierten Typs besonders bevorzugt, welche zusätzlich gekennzeichnet sind durch eine Berstfestigkeit nach Mullen von größer gleich 3500 kPa, eine Höchstzugkraft von größer gleich 1300 N, je 5 cm Gewebebreite, eine Weiterreißfestigkeit, gemessen nach der Schenkelmethode, von größer gleich 100 N, und eine Höchstzugkraftdehnung von größer gleich 20 %.
  • Die aufgeführten Eigenschaften werden dabei wie folgt ermittelt:
    • Berstfestigkeit nach Mullen: Federal Test Method Standard No: 191A, Method 5122
    • Höchstzugkraft: nach DIN 53 857, Teil 1
    • Weiterreißfestigkeit (Schenkelmethode): in Anlehnung an DIN 53 356 (Probengröße 150 * 200 mm geschlaucht; Auswertung nach DIN 53539, B)
    • Höchstzugkraftdehnung: nach DIN 53 857, Teil 1.
  • Ganz besonders bevorzugt werden textile Flächengebilde, welche die Matrixkomponente in einem vorbestimmten Muster in unterschiedlichen Mengen angeordnet enthalten, wodurch in vorbestimmten Teilbereichen des textilen Flächengebildes unterschiedliche Gas- und/oder Flüssigkeitsdurchlässigkeiten erzielt werden.
  • Besonders bevorzugte textile Flächengebilde leiten sich von Geweben oder Gelegen ab, die aus den weiter oben definierten Hybridgarnen bestehen.
  • Die textilen Flächengebilde weisen üblicherweise Flächengewichte von 50 bis 600 g/m2, vorzugsweise von 50 bis 300 g/m2 auf. Die Dicke dieser Flächengebilde beträgt üblicherweise weniger als 1,5 mm, vorzugsweise kleiner gleich 0,45 mm.
  • Die Messung des Flächengewichtes der erfindungsgemäßen Gewebe erfolgt nach DIN 53 854; die Messung der Dicke der erfindungsgemäßen Gewebe erfolgt in Anlehnung an DIN 53 855, Teil 1 (Meßfläche 10 cm2; Meßdruck 50 cN/cm2).
  • Die erfindungsgemäßen textilen Flächengebilde lassen sich in einer Vielzahl von Anwendungsgebieten einsetzen, beispielsweise als Schutzbekleidung, wie geschoß-, schnitt-, stich- oder sägehemmende Kleidungsstücke bzw. Wetterschutzkleidung bzw. Anti-G-Westen oder Taucherbekleidung; als Zeltstoffe bzw. Zeltböden; als Auskleidungen für Behälter, wie Silo-, Pool- oder Containerauskleidungen; als Täschnerwaren; als Materialien zur Herstellung von Schuhen; als Verpackungsmaterialien; als maritime Textilien, wie Textilien zur Fertigung von Schlauchbooten, Rettungswesten oder Rettungsinseln; als textiler Baustoff, wie als Textilien zur Herstellung von Zeppelinen; als Trägermaterial, wie als Material zur Herstellung leichter Transportbänder; als Geotextilien; zum Einsatz im Wasserbau, wie Regenauffangbehälter oder Deponieabdeckungen; als Segel oder Plane, als Filtermaterialien oder insbesondere zur Herstellung von Airbags.
  • Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung der erfindungsgemäßen textilen Flächengebilde zu den oben erwähnten Zwecken.
  • Die nachfolgenden Beispiele erläutern die Erfindung ohne diese zu begrenzen.
  • Beispiel:
  • Auf einer Dornier Greifer-Webmaschine wurde ein Gewebe in Leinwandbindung des Typs L1/1 mit 36 Fäden/cm in Kette und 22 Fäden/cm in Schuß hergestellt.
  • Die Kette bestand aus Garnen aus Polyethylenterephthalat des Typs dtex 315f100 VZ 120.
  • Der Schuß bestand aus Hybridgarnen des Titers dtex 420f72 erhalten durch Commingling zweier Vorgarne des Typs dtex 280f48 aus Polyethylenterephthalat und des Typs dtex 140f24 aus isophthalsäuremodifiziertem Polyethylenterephthalat.Der Anteil an wiederkehrenden Isophthalsäureeinheiten im Copolyester betrug 33 Mol %, bezogen auf die Gesamtmenge an Dicarbonsäurekomponenten.
    Das Gewebe besaß ein Flächengewicht von 234 g/m2 und wies als Rohgewebe folgende Eigenschaften auf:
    • Gewebe-Höchstzugkraft (gemessen nach DIN 53 857, Teil 1):
      • in Kettrichtung: 2854,4 (N/5 cm)
      • in Schußrichtung: 1932,2 (N/5 cm)
    • Gewebe-Höchstzugkraftdehnung (gemessen nach DIN 53 857, Teil 1):
      • in Kettrichtung: 36,6 %
      • in Schußrichtung: 25,2 %
    • Gewebebreite: 172 cm
    • Gesamt-Kettfadenzahl: 6192

Claims (33)

  1. Gewebe oder Gelege enthaltend mindestens zwei Fadensysteme parallellaufender Fäden, wobei wenigstens eines dieser Fadensysteme mehr als 10 Fäden pro Zentimeter aufweist und zu mindestens 10 %, bezogen auf das Fadensystem, aus Hybridgarnen enthaltend Verstärkungsfilamente und tieferschmelzende Matrixfilamente aus thermoplastischen Polymeren besteht.
  2. Gewebe oder Gelege nach Anspruch 1, dadurch gekennzeichnet, daß diese zwei Fadensysteme mit Fadendichten von mindestens 15 Fäden pro Zentimeter aufweisen und zu mindestens 10 %, vorzugsweise zu mindestens 50 % aus Hybridgarnen enthaltend Verstärkungsfilamente und tieferschmelzende Matrixfilamente aus thermoplastischen Polymeren bestehen.
  3. Gewebe oder Gelege nach Anspruch 2, dadurch gekennzeichnet, daß diese aus zwei Fadensystemen bestehen, welche jeweils zu mindestens 95 % aus Hybridgarnen enthaltend Verstärkungsfilamente und tieferschmelzende Matrixfilamente aus thermoplastischen Polymeren bestehen.
  4. Gewebe oder Gelege nach Anspruch 1, dadurch gekennzeichnet, daß in mindestens einem Fadensystem eine Kombination von Hybridgarnen enthaltend Verstärkungsfilamente und tieferschmelzende Matrixfilamente und von Garnen aus Trägerfilamenten vorliegt, oder daß in mindestens einem Fadensystem eine Kombination von verschiedenen Hybridgarnen enthaltend Verstärkungsfilamente und unterschiedliche Anteile von tieferschmelzenden Matrixfilamenten vorliegt, wobei jeweils mehrere der Hybridgarne und der Garne aus Trägerfilamenten oder jeweils mehrere der verschiedenen Hybridgarne in einem vorbestimmten Muster angeordnet sind.
  5. Gewebe oder Gelege nach Anspruch 1, dadurch gekennzeichnet, daß die Matrixfilamente aus thermoplastischen Polymeren einen Schmelzpunkt aufweisen, der mindestens 30 °C unter dem Schmelzpunkt oder dem Zersetzungspunkt der Verstärkungsfilamente liegt.
  6. Gewebe oder Gelege nach Anspruch 1, dadurch gekennzeichnet, daß die Verstärkungsfilamente einen Anfangsmodul von größer als 50 GPa aufweisen, und vorzugsweise aus Glas, Kohlenstoff oder aromatischem Polyamid bestehen.
  7. Gewebe oder Gelege nach Anspruch 1, dadurch gekennzeichnet, daß die Verstärkungsfilamente einen Anfangsmodul von größer als 10 GPa aufweisen und aus Polyester, insbesondere aus Polyethylenterephthalat bestehen.
  8. Gewebe oder Gelege nach Anspruch 1, dadurch gekennzeichnet, daß die Matrixfilamente aus Polybutylenterephthalat bestehen.
  9. Gewebe oder Gelege nach Anspruch 1, dadurch gekennzeichnet, daß Verstärkungsfilamente und Matrixfilamente aus einer Polymerklasse bestehen.
  10. Gewebe oder Gelege nach Anspruch 9, dadurch gekennzeichnet, daß Verstärkungsfilamente und Matrixfilamente aus Kombinationen Polyamid/Polyamid, Polyolefin/Polyolefin und insbesondere aus Polyester/Polyester bestehen.
  11. Gewebe oder Gelege nach Anspruch 1, dadurch gekennzeichnet, daß die Matrixfilamente aus einem modifizierten Polyethylenterepthalat enthaltend die wiederkehrenden Struktureinheiten der Formeln I und II bestehen

            -O-OC-Ar1-CO-O-R1-     (I),

    und

            -O-OC-R2-CO-O-R3-     (II),

    worin
    Ar1   einen zweiwertigen ein- oder mehrkernigen aromatischen Rest darstellt, dessen freie Valenzen sich in para-Stellung oder in einer zu dieser Stellung vergleichbaren parallelen oder koaxialen Stellung zueinander befinden, vorzugsweise 1,4-Phenylen und/oder 2,6-Naphthylen darstellt,
    R1 und R3   unabhängig voneinander zweiwertige aliphatische oder cycloaliphatischen Reste darstellen, insbesondere Reste der Formel -CnH2n-, worin n eine ganze Zahl zwischen 2 und 6 ist, insbesondere Ethylen, oder einen von Cyclohexandimethanol abgeleiteten Rest darstellen, und
    R2   einen zweiwertigen aliphatischen, cycloaliphatischen oder ein- oder mehrkernigen aromatischen Rest darstellt, dessen freie Valenzen sich in meta-Stellung oder in einer zu dieser Stellung vergleichbaren gewinkelten Stellung zueinander befinden, vorzugsweise 1,3-Phenylen darstellt.
  12. Gewebe oder Gelege nach Anspruch 11, dadurch gekennzeichnet, daß die Matrixfilamente aus einem modifizierten Polyethylenterepthalat bestehen, das 40 bis 95 Mol % der wiederkehrenden Struktureinheiten der Formel I und 60 bis 5 Mol % der wiederkehrenden Struktureinheiten der Formel II enthält, worin Ar1 1,4-Phenylen und/oder 2,6-Naphthylen ist, R1 und R3 Ethylen bedeuten und R2 1,3-Phenylen ist.
  13. Gewebe oder Gelege nach Anspruch 1, dadurch gekennzeichnet, daß die Matrixfilamente aus einem thermoplastischen und elastomeren Polymeren bestehen.
  14. Gewebe oder Gelege nach Anspruch 13, dadurch gekennzeichnet, daß das thermoplastische und elastomere Polymere ein Polyester ist, der die wiederkehrenden Struktureinheiten der Formeln III und IV enthält

            -O-OC-Ar2-CO-O-R4-     (III),

    und

            -O-OC-Ar3-CO-O-R5-     (IV),

    worin
    Ar2 und Ar3   unabhängig voneinander zweiwertige aromatische Reste, vorzugsweise Phenylen- und/oder Naphthylenreste, insbesondere jeweils 1,4-Phenylen, darstellen,
    R4   einen zweiwertigen aliphatischen oder cycloaliphatischen Rest darstellt, insbesondere einen Rest der Formel -CmH2m-, worin m eine ganze Zahl zwischen 2 und 6 ist oder einen von Cyclohexandimethanol abgeleiteten Rest, insbesondere Ethylen ist, und
    R5   den zweiwertigen Rest eines Polyalkylenethers bedeutet, vorzugsweise einen Rest der Formel V darstellt


            -[CoH2o-O]z-CoH2o-     (V),

    worin
    o   eine ganze Zahl von zwei bis vier, insbesondere vier, bedeutet und z eine ganze Zahl von 1 bis 50 ist, insbesondere eine ganze Zahl von 10 bis 18 ist.
  15. Gewebe oder Gelege nach Anspruch 14, dadurch gekennzeichnet, daß Ar2 und Ar3 1,4-Phenylen bedeuten, R4 Ethylen ist, o vier bedeutet, und worin der Anteil der wiederkehrenden Struktureinheiten der Formel V, bezogen auf den Anteil des Polyestermoleküls 5 bis 60 Gew. % beträgt.
  16. Gewebe oder Gelege nach Anspruch 13, dadurch gekennzeichnet, daß das thermoplastische und elastomere Polymere ein Polyurethan ist, das die wiederkehrenden Struktureinheiten der Formeln VI und VII enthält

            -[O-OC-NH-R6-NH-CO-O-R7]-     (VI),



            -[O-OC-NH-R8-NH-CO-O-R9]-     (VII),

    worin
    R6, R7 und R8   unabhängig voneinander einen zweiwertigen aliphatischen, cycloaliphatischen, aromatischen oder araliphatischen Rest bedeuten,
    R6 und R8   vorzugsweise zweiwertige ein- oder zweikernige aromatische Reste sind, insbesondere Phenylen und/oder Naphthylen,
    R7   vorzugsweise ein Rest der Formel -CpH2p- ist, worin p eine ganze Zahl zwischen 2 und 6 ist oder ein von Cyclohexandimethanol abgeleiteter Rest ist, insbesondere Butan-1,4-diyl,
    R9   einen Rest der Formeln VIII und/oder IX bedeutet


            -[CqH2q-O]x-CqH2q-     (VIII),



            -[R10-O-OC-R11-CO-O]y-R10-     (IX),

    worin
    q   eine ganze Zahl von zwei bis vier bedeutet und x eine ganze Zahl von 1 bis 50,
    R10   einen zweiwertigen aliphatischen oder cycloaliphatischen Rest oder einen Rest der Formel VIII darstellt,
    R11   ein zweiwertiger aliphatischer, cycloaliphatischer, aromatischer oder araliphatischer Rest ist, und
    y   eine ganze Zahl von 1 bis 50 bedeutet.
  17. Gewebe oder Gelege nach Anspruch 16, dadurch gekennzeichnet, daß R7 Butan-1,4-diyl bedeutet, R9 ein Rest der Formel VIII gemäß Anspruch 16 ist, worin q eine ganze Zahl von zwei bis vier, insbesondere vier, bedeutet und x eine ganze Zahl von 1 bis 50, vorzugsweise von 10 bis 18, ist und worin R6 und R8 unabhängig voneinander Phenylen oder Naphthylen bedeuten.
  18. Verfahren zur Herstellung von textilen Flächengebilden mit vorbestimmter Gasdurchlässigkeit umfassend die Maßnahmen:
    a) Vorlage eines Gewebes oder Geleges enthaltend Hybridgarne gemäß Anspruch 1, und
    b) thermische Behandlung dieses Gewebes oder Geleges unter Bedingungen, so daß die Matrixfilamente aufschmelzen und sich ein textiles Flächengebilde mit vorbestimmter Gasdurchlässigkeit ausbildet.
  19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, daß in Schritt a) Gewebe oder Gelege vorgelegt werden, die in einem vorbestimmten Muster angeordnete Hybridgarne nach Anspruch 4 enthalten.
  20. Textes Flächengebilde mit vorbestimmter Gas- und/oder Flüssigkeitsdurchlässigkeit enthaltend ein Gewebe aus Verstärkungsfilamenten und eine Matrixkomponente aus thermoplastischem Polymer oder enthaltend mindestens eine Fadenschar parallel verlaufender Verstärkungsfilamente und eine Matrixkomponente aus thermoplastischem Polymer, wobei Verstärkungsfilamente und Matrixkomponente aus einer Polymerklasse bestehen, vorzugsweise aus Kombinationen Polyamid/Polyamid, Polyolefin/Polyolefin und insbesondere aus Polyester/Polyester.
  21. Textiles Flächengebilde nach Anspruch 20, dadurch gekennzeichnet, daß dieses eine Gasdurchlässigkeit von kleiner gleich 80, vorzugsweise von kleiner gleich 30, insbesondere von kleiner gleich 12 dm3 Luft pro Minute pro Quadratdezimeter Stoff bei einem Druckabfall von 500 Pa (gemessen nach DIN 53887) aufweist.
  22. Textiles Flächengebilde nach Anspruch 20, dadurch gekennzeichnet, daß dieses eine Berstfestigkeit nach Mullen von größer gleich 3500 kPa, eine Höchstzugkraft von größer gleich 1300 N, je 5 cm Gewebebreite, eine Weiterreißfestigkeit, gemessen nach der Schenkelmethode, von größer gleich 100 N, und eine Höchstzugkraftdehnung von größer gleich 20 % aufweist.
  23. Textiles Flächengebilde nach Anspruch 20, dadurch gekennzeichnet, daß dieses die Matrixkomponente in einem vorbestimmten Muster in unterschiedlichen Mengen angeordnet enthält und dadurch in vorbestimmten Teilbereichen des textilen Flächengebildes unterschiedliche Gas- und/oder Flüssigkeitsdurchlässigkeiten erzielt werden.
  24. Textiles Flächengebilde nach Anspruch 20, dadurch gekennzeichnet, daß die Verstärkungsfilamente einen Anfangsmodul von größer als 10 GPa aufweisen und aus Polyester, insbesondere aus Polyethylenterephthalat bestehen und daß die Matrixkomponente aus Polybutylenterephthalat besteht.
  25. Textiles Flächengebilde nach Anspruch 20, dadurch gekennzeichnet, daß die Verstärkungsfilamente einen Anfangsmodul von größer als 10 GPa aufweisen und aus Polyester, insbesondere aus Polyethylenterephthalat bestehen und daß die Matrixkomponente aus einem modifizierten Polyethylenterepthalat enthaltend die wiederkehrenden Struktureinheiten der Formeln I und II besteht

            -O-OC-Ar1-CO-O-R1-     (I),

    und

            -O-OC-R2-CO-O-R3-     (II),

    worin Ar1, R1, R2 und R3 die in Anspruch 11 definierte Bedeutung besitzen.
  26. Textiles Flächengebilde nach Anspruch 25, dadurch gekennzeichnet, daß die Matrixkomponente aus einem modifizierten Polyethylenterepthalat besteht, das 40 bis 95 Mol % der wiederkehrenden Struktureinheiten der Formel I und 60 bis 5 Mol % der wiederkehrenden Struktureinheiten der Formel II enthält, worin Ar1 1,4-Phenylen und/oder 2,6-Naphthylen ist, R1 und R3 Ethylen bedeuten und R2 1,3-Phenylen ist.
  27. Textiles Flächengebilde nach Anspruch 20, dadurch gekennzeichnet, daß die Verstärkungsfilamente einen Anfangsmodul von größer als 10 GPa aufweisen und aus Polyester, insbesondere aus Polyethylenterephthalat bestehen und daß die Matrixkomponente aus einem thermoplastischen und elastomeren Polyester besteht.
  28. Textiles Flächengebilde nach Anspruch 27, dadurch gekennzeichnet, daß der thermoplastische und elastomere Polyester die wiederkehrenden Struktureinheiten der Formeln III und IV enthält

            -O-OC-Ar2-CO-O-R4-     (III),

    und

            -O-OC-Ar3-CO-O-R5-     (IV),

    worin Ar2, Ar3, R4 und R5 die in Anspruch 14 definierte Bedeutung aufweisen.
  29. Textiles Flächengebilde nach Anspruch 28, dadurch gekennzeichnet, daß Ar2 und Ar3 1,4-Phenylen bedeuten, R4 Ethylen ist, R5 einen Rest der Formel V gemäß Anspruch 14 darstellt

            -[CoH2o-O]z-CoH2o-     (V),

    worin o vier bedeutet, z eine ganze Zahl von 10 bis 18 ist und worin der Anteil der wiederkehrenden Struktureinheiten der Formel V, bezogen auf den Anteil des Polyestermoleküls 5 bis 60 Gew. % beträgt.
  30. Verwendung der textilen Flächengebilde nach Anspruch 20 als als Schutzbekleidung, als Zeltstoffe oder Zeltböden; als Auskleidungen für Behälter, als Täschnerwaren, als Materialien zur Herstellung von Schuhen; als Verpackungsmaterialien; als maritime Textilien, als textiler Baustoff, als Trägermaterial, als Geotextilien; zum Einsatz im Wasserbau, als Segel oder Plane, als Filtermaterialien oder zur Herstellung von Airbags.
  31. Verwendung nach Anspruch 30, dadurch gekennzeichnet, daß es sich bei den martimen Textilien um Textilien zur Herstellung von Schlauchbooten, Rettungswesten oder Rettungsinseln handelt.
  32. Verwendung nach Anspruch 30, dadurch gekennzeichnet, daß es sich bei den Auskleidungen für Behälter um Silo-, Pool- oder Containerauskleidungen handelt.
  33. Verwendung nach Anspruch 30, dadurch gekennzeichnet, daß die textilien Flächengebilde zur Herstellung von Airbags eingesetzt werden.
EP19960115791 1995-10-11 1996-10-02 Gewebe und Gelege mit einstellbarer Gas- und/oder Flüssigkeitdichtigkeit enthaltend Hybridgarne, Verfahren zu deren Weiterverarbeitung, textile Flächengebilde mit vorbestimmter Gas- und/oder Flüssigkeitsdurchlässigkeit und deren Verwendung Withdrawn EP0768405A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19537702 1995-10-11
DE1995137702 DE19537702A1 (de) 1995-10-11 1995-10-11 Gewebe und Gelege mit einstellbarer Gas- und/oder Flüssigkeitsdichtigkeit enthaltend Hybridgarne, Verfahren zu deren Weiterverarbeitung, textile Flächengebilde mit vorbestimmter Gas- und/durch Flüssigkeitsdurchlässigkeit und deren Verwendung

Publications (1)

Publication Number Publication Date
EP0768405A1 true EP0768405A1 (de) 1997-04-16

Family

ID=7774483

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19960115791 Withdrawn EP0768405A1 (de) 1995-10-11 1996-10-02 Gewebe und Gelege mit einstellbarer Gas- und/oder Flüssigkeitdichtigkeit enthaltend Hybridgarne, Verfahren zu deren Weiterverarbeitung, textile Flächengebilde mit vorbestimmter Gas- und/oder Flüssigkeitsdurchlässigkeit und deren Verwendung

Country Status (8)

Country Link
US (1) US5863644A (de)
EP (1) EP0768405A1 (de)
JP (1) JPH09119039A (de)
KR (1) KR970021391A (de)
BR (1) BR9605049A (de)
CA (1) CA2187612A1 (de)
DE (1) DE19537702A1 (de)
MX (1) MX9604727A (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012004796A1 (de) * 2012-03-08 2013-09-12 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Schutzeinrichtung für ein Kraftfahrzeug
US20140050886A1 (en) * 2011-03-23 2014-02-20 Autoneum Management Ag Moulded multilayer lining for heat and sound insulation
WO2017079499A1 (en) * 2015-11-06 2017-05-11 Invista North America S.Ar.L. Low permeability and high strength fabric and methods of making the same
WO2018121806A1 (de) * 2016-12-30 2018-07-05 ANKER Gebr. Schoeller GmbH + Co. KG Verfahren zur herstellung eines gewebten textilen stoffes sowie mit diesem verfahren hergestellter textiler stoff
CN111304803A (zh) * 2017-05-02 2020-06-19 英威达纺织(英国)有限公司 低渗透性和高强度织造织物及其制造方法
US11708045B2 (en) 2017-09-29 2023-07-25 Inv Performance Materials, Llc Airbags and methods for production of airbags

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19613965A1 (de) * 1996-04-09 1997-10-16 Hoechst Trevira Gmbh & Co Kg Schrumpfarme Hybridgarne, Verfahren zu deren Herstellung und deren Verwendung
GB9626060D0 (en) * 1996-12-16 1997-02-05 United Utilities Plc Thermoplastic composite products
US6632754B1 (en) * 1997-01-16 2003-10-14 Precision Fabrics Group, Inc. Unbalanced twill weave fabric and airbag device
RU2222762C2 (ru) * 1998-08-04 2004-01-27 Тейджин Тварон Гмбх Ударостойкий материал
US6770578B2 (en) 1999-06-07 2004-08-03 Bradford Industries, Inc. Laminated textile fabrics for use in air holding vehicle restraint systems
US6734123B2 (en) 1999-06-07 2004-05-11 Bradford Industries, Inc. Polyurethane coated fabrics for use in air-holding vehicle restraint systems
US6455449B1 (en) 1999-09-03 2002-09-24 Bradford Industries, Inc. Coated multi-denier mixed fabrics for use in inflatable vehicle restraint systems
US6753275B2 (en) * 1999-06-07 2004-06-22 Bradford Industries, Inc. Laminated multi-layered woven textile fabrics for use in air holding vehicle restraint systems
US6458724B1 (en) 1999-06-07 2002-10-01 Bradford Industries, Inc. Coated multi-layered woven textile fabrics for use in air-holding vehicle restraint system
US6239046B1 (en) 1999-06-07 2001-05-29 Bradford Industries, Inc. Polysiloxane coated fabrics for use in air bags
US6734125B2 (en) 1999-06-07 2004-05-11 Bradford Industries, Inc. Laminated multi-denier mixed fabrics for use in inflatable vehicle restraint systems
US6740607B2 (en) * 1999-06-07 2004-05-25 Bradford Industries, Inc. Substrate with stretch and heat sealing properties to make a multidirectional restraint module design
US6350709B1 (en) 1999-11-30 2002-02-26 Bradford Industries, Inc. Heat sealable coated textile fabric for inflatable vehicle restraint systems
US6630220B1 (en) 2000-01-28 2003-10-07 Bradford Industries, Inc. Sewn fusion seal process for producing air-holding vehicle restraint systems
US6632753B1 (en) 2000-04-26 2003-10-14 Safety Components Fabric Technologies, Inc. Motor vehicle air bag and fabric for use in same
WO2002068081A2 (en) * 2001-01-17 2002-09-06 Polymer Group Inc. Hydroentangled filter media and method
AU2004212968A1 (en) * 2003-02-14 2004-09-02 Polymer Group, Inc. Hydroentangled liquid filter media and method of manufacture
US7014914B2 (en) * 2004-01-09 2006-03-21 Milliken & Company Polyester yarn and airbags employing certain polyester yarn
JP2006123696A (ja) * 2004-10-28 2006-05-18 Takata Corp エアバッグ及びエアバッグ装置
DE102005061351A1 (de) * 2005-12-21 2007-07-05 Bst Safety Textiles Gmbh Gewebe und Verfahren zum Herstellen desselben
KR100579257B1 (ko) * 2006-01-26 2006-05-12 동방전기공업(주) 고기능성 섬유소재로 이루어진 차폐수단을 구비한 옥외용건식 변압기
MX2008013154A (es) * 2006-04-12 2009-01-09 Itg Automotive Safety Textiles Tela para bolsa de aire.
GB0710740D0 (en) * 2007-06-05 2007-07-18 Univ Bournemouth Ground sheet for fabric structures
US7651118B1 (en) 2008-08-30 2010-01-26 Bradford Industries, Inc. Polyvinyl chloride coated fabrics for use in air bags
US20100129575A1 (en) * 2008-08-30 2010-05-27 Veiga Manuel J Polyvinyl chloride coated fabrics for use in air bags
WO2013117728A1 (de) * 2012-02-10 2013-08-15 Php Fibers Gmbh Bändchengarn
SE537876C2 (sv) * 2012-10-11 2015-11-10 Engtex Ab Intrångshindrande arrangemang
JP6130804B2 (ja) * 2014-03-28 2017-05-17 住商エアバッグ・システムズ株式会社 袋織基布
US10619281B2 (en) 2015-08-24 2020-04-14 Milliken & Company One-piece woven, side impact airbag having two layer coating
DE102015012274A1 (de) 2015-09-24 2017-03-30 Autoliv Development Ab Airbagvorrichtung für ein Kraftfahrzeug
CN105568704B (zh) * 2016-03-24 2017-11-28 江苏工程职业技术学院 一种超高分子量聚乙烯/锦纶安全气囊织物的生产方法
TWI845758B (zh) * 2019-09-13 2024-06-21 美商北面服飾公司 具有膜之複合材料

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03266745A (ja) * 1990-03-16 1991-11-27 Bando Chem Ind Ltd 可撓性袋体繊維成形物とその製造方法
JPH04146235A (ja) * 1990-10-09 1992-05-20 Teijin Ltd 曲げ反撥性に優れた織編物
DE4142884A1 (de) * 1990-12-27 1992-07-02 Bridgestone Corp Airbag
EP0542070A1 (de) * 1991-11-14 1993-05-19 Cytec Technology Corp. Hybridgarn aus Polyamidfasern und Verstärkungsfasern
DE4243465A1 (en) * 1991-12-28 1993-07-01 Basf Ag Hybrid yarn with polyamide and reinforcing fibres - has 5-20 micron polyamide filaments to give greater strength fabrics and consolidated composites
EP0630735A2 (de) * 1993-05-25 1994-12-28 Basf Corporation Mit einem thermoplastischen Stapelfaserverbundwerkstoff verstärkte Verbundgegenstände

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0496317B1 (de) * 1991-01-22 1996-04-10 Hoechst Aktiengesellschaft Halbzeug und daraus hergestellte faserverstärkte Verbundwerkstoffe
SE469432B (sv) * 1991-11-22 1993-07-05 Nordiskafilt Ab Vaevd beklaednad foer pappersmaskiner och liknande
JPH07173299A (ja) * 1993-12-21 1995-07-11 Toyobo Co Ltd 繊維強化熱可塑性樹脂成形品用成形材料
DE19525629A1 (de) * 1995-07-17 1997-01-23 Hoechst Trevira Gmbh & Co Kg Verwendung von speziellen Copolyestern zur Herstellung von Papiermaschinensieben, Filtern und Verstärkungseinlagen für Elastomere und stabilisierte Copolyester

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03266745A (ja) * 1990-03-16 1991-11-27 Bando Chem Ind Ltd 可撓性袋体繊維成形物とその製造方法
JPH04146235A (ja) * 1990-10-09 1992-05-20 Teijin Ltd 曲げ反撥性に優れた織編物
DE4142884A1 (de) * 1990-12-27 1992-07-02 Bridgestone Corp Airbag
EP0542070A1 (de) * 1991-11-14 1993-05-19 Cytec Technology Corp. Hybridgarn aus Polyamidfasern und Verstärkungsfasern
DE4243465A1 (en) * 1991-12-28 1993-07-01 Basf Ag Hybrid yarn with polyamide and reinforcing fibres - has 5-20 micron polyamide filaments to give greater strength fabrics and consolidated composites
EP0630735A2 (de) * 1993-05-25 1994-12-28 Basf Corporation Mit einem thermoplastischen Stapelfaserverbundwerkstoff verstärkte Verbundgegenstände

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 8839, Derwent World Patents Index; Class A32, AN 88-276317, XP002002727, ANONYMOUS: "Prepreg mfr. for mfg. composites - by stacking woven fabric(s) contg. reinforcing and thermoplastic yarns in mould, applying heat and pressure" *
PATENT ABSTRACTS OF JAPAN vol. 16, no. 425 (C - 0982) 7 September 1992 (1992-09-07) *
PATENT ABSTRACTS OF JAPAN vol. 16, no. 82 (M - 1215) 27 February 1992 (1992-02-27) *
RESEARCH DISCLOSURE, vol. 292, no. 015, 10 August 1988 (1988-08-10), EMSWORTH, GB *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140050886A1 (en) * 2011-03-23 2014-02-20 Autoneum Management Ag Moulded multilayer lining for heat and sound insulation
US9586380B2 (en) * 2011-03-23 2017-03-07 Autoneum Management Ag Moulded multilayer lining for heat and sound insulation
DE102012004796A1 (de) * 2012-03-08 2013-09-12 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Schutzeinrichtung für ein Kraftfahrzeug
WO2017079499A1 (en) * 2015-11-06 2017-05-11 Invista North America S.Ar.L. Low permeability and high strength fabric and methods of making the same
CN111945273A (zh) * 2015-11-06 2020-11-17 英威达纺织(英国)有限公司 低渗透率和高强度织物及其制造方法
US11214895B2 (en) 2015-11-06 2022-01-04 Inv Performance Materials, Llc Low permeability and high strength fabric and methods of making the same
WO2018121806A1 (de) * 2016-12-30 2018-07-05 ANKER Gebr. Schoeller GmbH + Co. KG Verfahren zur herstellung eines gewebten textilen stoffes sowie mit diesem verfahren hergestellter textiler stoff
CN111304803A (zh) * 2017-05-02 2020-06-19 英威达纺织(英国)有限公司 低渗透性和高强度织造织物及其制造方法
CN111304803B (zh) * 2017-05-02 2021-09-03 英威达纺织(英国)有限公司 低渗透性和高强度织造织物及其制造方法
US11634841B2 (en) 2017-05-02 2023-04-25 Inv Performance Materials, Llc Low permeability and high strength woven fabric and methods of making the same
US11708045B2 (en) 2017-09-29 2023-07-25 Inv Performance Materials, Llc Airbags and methods for production of airbags

Also Published As

Publication number Publication date
CA2187612A1 (en) 1997-04-12
US5863644A (en) 1999-01-26
JPH09119039A (ja) 1997-05-06
DE19537702A1 (de) 1997-04-17
KR970021391A (ko) 1997-05-28
BR9605049A (pt) 1998-06-30
MX9604727A (es) 1998-04-30

Similar Documents

Publication Publication Date Title
EP0768405A1 (de) Gewebe und Gelege mit einstellbarer Gas- und/oder Flüssigkeitdichtigkeit enthaltend Hybridgarne, Verfahren zu deren Weiterverarbeitung, textile Flächengebilde mit vorbestimmter Gas- und/oder Flüssigkeitsdurchlässigkeit und deren Verwendung
EP0442373B1 (de) Gewebe für Airbags
DE3877961T2 (de) Schockabsorbierendes kissen und verfahren zur herstellung.
DE69212979T2 (de) Luftundurchlässige gewellte stoffbahn für luftkissen und verfahren zu ihrer herstellung
MXPA96004727A (en) Woven fabrics and structures, containing hybrid threads, with adjustable waterproofing to gas and / or liquids, procedure for its rear transformation, flat textile structure with permeability prefixed to gas and / or liquids, and its use
EP0773313B1 (de) Schwerentflammbare Sicherheitsgurte enthaltend phosphor-modifizierte Polyesterfasern
DE69402728T2 (de) Gewebe aus Polyesterfilamente für Airbags
EP0773140B1 (de) Schwerentflammbare Gewebe enthaltend phosphor-modifizierte Polyesterfasern, Airbags daraus und deren Verwendung
EP0953072B1 (de) Technische gewebe für airbags
EP0737763A2 (de) Hybridgarn und daraus hergestelltes permanent verformbares Textilmaterial, seine Herstellung und Verwendung
EP0616061A1 (de) Airbag und Gewebe für dessen Herstellung
DE69208809T2 (de) Gewebe für faserverstärktes thermoplastisches Verbundmaterial
DE112013006035T5 (de) Gewebe für Airbag
EP0801159B1 (de) Schrumpfarme Hybridgarne, Verfahren zu deren Herstellung und deren Verwendung
EP0551832B1 (de) Bondiertes Fadenbündel, Verfahren zu dessen Herstellung und daraus erhältliche textile Flächengebilde
EP1228928B1 (de) Luftsackgewebe, Verfahren zu seiner Herstellung und Verwendung
US6132872A (en) Lightweight abrasion resistant braiding
DE19537703A1 (de) Textile Flächengebilde hoher Dichte aus Polyesterhybridgarnen, Verfahren zur Herstellung von Verbundwerkstoffen und Verwendung der textilen Flächengebilde
WO1996005985A1 (de) Unbeschichtetes gewebe für airbag
DE69404941T2 (de) Mit Polymerisatdispersion behandelte Gewebe zur Reduzierung der Porosität
AU677075B2 (en) Rubberline belting
EP1693495B1 (de) Airbaggewebe
DE4428939A1 (de) Faserverstärkter Schichtstoff, seine Herstellung und Verwendung
DE4444917A1 (de) Hybridgarn und daraus hergestelltes schrumpffähiges und geschrumpftes, permanent verformbares Textilmaterial, seine Herstellung und Verwendung
KR960005469B1 (ko) 성형용 복합섬유사조

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19971016

17Q First examination report despatched

Effective date: 19990818

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ARTEVA TECHNOLOGIES S.A.R.L.

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 20020722