EP0542070A1 - Hybridgarn aus Polyamidfasern und Verstärkungsfasern - Google Patents

Hybridgarn aus Polyamidfasern und Verstärkungsfasern Download PDF

Info

Publication number
EP0542070A1
EP0542070A1 EP92118673A EP92118673A EP0542070A1 EP 0542070 A1 EP0542070 A1 EP 0542070A1 EP 92118673 A EP92118673 A EP 92118673A EP 92118673 A EP92118673 A EP 92118673A EP 0542070 A1 EP0542070 A1 EP 0542070A1
Authority
EP
European Patent Office
Prior art keywords
polyamide
hybrid yarn
fibers
yarn
hybrid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92118673A
Other languages
English (en)
French (fr)
Other versions
EP0542070B1 (de
Inventor
Joerg Dr. Vogelsang
Giorgio Dr. Greening
Regina Laws
Peter Dr. Ittemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cytec Technology Corp
Original Assignee
BASF SE
Cytec Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE, Cytec Technology Corp filed Critical BASF SE
Publication of EP0542070A1 publication Critical patent/EP0542070A1/de
Application granted granted Critical
Publication of EP0542070B1 publication Critical patent/EP0542070B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/40Yarns in which fibres are united by adhesives; Impregnated yarns or threads
    • D02G3/402Yarns in which fibres are united by adhesives; Impregnated yarns or threads the adhesive being one component of the yarn, i.e. thermoplastic yarn
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • Y10T428/2931Fibers or filaments nonconcentric [e.g., side-by-side or eccentric, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2936Wound or wrapped core or coating [i.e., spiral or helical]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3065Including strand which is of specific structural definition
    • Y10T442/313Strand material formed of individual filaments having different chemical compositions
    • Y10T442/3138Including inorganic filament
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/40Knit fabric [i.e., knit strand or strip material]
    • Y10T442/425Including strand which is of specific structural definition
    • Y10T442/438Strand material formed of individual filaments having different chemical compositions

Definitions

  • the invention relates to hybrid yarn made of polyamide fibers and reinforcing fibers.
  • Hybrid yarns in which thermoplastic fibers and reinforcing fibers are intimately mixed, have been used increasingly in recent years for the production of high-performance composite materials.
  • the hybrid yarns and the fabrics made from them are very flexible and can therefore be deformed as required. If they are consolidated by pressing at temperatures above the softening point of the thermoplastic, it melts and forms a matrix in which the reinforcing fibers are embedded in the preferred direction.
  • EP-B 156 599 describes a process for the production of hybrid yarn from carbon fibers and thermoplastic fibers, in which the two types of fiber are spread apart, mixed with one another by being brought together via rollers or rods, and the mixed yarn is then optionally wrapped with another thermoplastic yarn. Such wrapping results in a good thread closure, so that the yarn can be easily woven without the addition of a size.
  • Hybrid yarn based on the thermoplastics mentioned in the examples of EP-B 156 599 is not suitable for the production of inexpensive and easily processable high-performance composite materials. In principle, however, this is possible with polyamides, which, in addition to many others, are also mentioned in the description of EP-B 156 599. Attempting to produce hybrid yarns from the usual high and medium viscosity polyamide fibers shows that the time required for consolidation into the composite material is relatively long and that some mechanical properties of the composite materials, in particular the transverse tensile strength, are too low.
  • the invention was therefore based on the object of providing a hybrid yarn which does not have these disadvantages.
  • This object is achieved in that an extremely low-viscosity polyamide is used in the production of hybrid yarn from polyamide fibers and reinforcing fibers.
  • the invention accordingly relates to a hybrid yarn composed of polyamide fibers A and reinforcing fibers B, in which the individual filaments of the two types of fiber are mixed, and which is wrapped in a polyamide yarn A ', the polyamide A having a melt viscosity of less than 220 Pa ⁇ s (measured according to DIN 54 811 at a shear rate of 100 s ⁇ 1 and at a temperature which is 30 ° C above the melting point or the glass transition temperature of the polyamide).
  • GB-A 2 105 247 describes fiber composite materials which are produced by wrapping a fiber core made of reinforcing fibers with a thermoplastic thread.
  • the core consists of a carbon fiber yarn and two ends of a nylon multifilament yarn, and a nylon multifilament yarn is also used as the wrapping yarn.
  • the three multifilament yarns are arranged side by side in the fiber core; the individual filaments have not been mixed, the fiber composite material therefore has a low level of mechanical properties.
  • Preferred reinforcing fibers B are carbon fibers and glass fibers.
  • fibers made of ceramic materials, silicon carbide and boron nitride are also suitable, as well as those made of polymers with a softening point which is more than 70 ° C. above the softening point of polyamide A, for example from polyether ketone or fully aromatic polyamides.
  • polyamide fibers A preferably polyamide-6 and polyamide-6.6.
  • polyamide-6,6 T, polyamide-6,10, polyamide-10, and a polyamide made of adipic acid and 1,3-xylylenediamine and copolyamides based on the corresponding monomers are also suitable.
  • the polyamides A have a melt viscosity of less than 220, preferably less than 180 Pa ⁇ s, measured in accordance with DIN 54 811 at a shear rate of 100 s ⁇ 1 and at a temperature which is 30 ° C. above the melting point (in the case of partially crystalline) Polyamides) or above the glass transition temperature (in the case of amorphous polyamides) of the polymer.
  • the hybrid yarns are preferably produced in accordance with EP-B 156 599 by spreading the two types of fiber separately from one another by blowing with air and then mixing them by bringing them together over rolls or rods.
  • the spreading can in principle also be carried out by a liquid jet, by electrostatic charging or by separating the individual filaments by means of combs.
  • intimate mixing of the individual filaments is obtained, so that thermoplastic and reinforcing fibers are evenly and statistically distributed in the mixed yarn.
  • Such intimate mixing is not necessary for all applications; one can also dispense with spreading the starting fibers and mix them using simple methods, e.g. by pulling them together over rollers or rods or swirling them together in an air stream.
  • a polyamide yarn A ' is used for this, preferably the same polyamide as that used for the polyamide fiber A.
  • a different type of polyamide can also be used; basically also a polyamide, whose melt viscosity is over 220 Pa ⁇ s.
  • the wrapping yarn should preferably have a titer of 40 to 100 dtex.
  • the proportions should preferably be chosen so that the finished hybrid yarn contains 26 to 80% by weight of polyamide fibers A, 20 to 75% by weight of reinforcing fibers B and 0.2 to 3% by weight of wrapping yarn A '.
  • the hybrid yarn according to the invention can be processed into woven, knitted or braided fabrics without the additional application of a size.
  • a plurality of yarns can be laid down in parallel to scrims or ribbons, a plurality of such scrims being stacked parallel or at predetermined angles to one another can be. You can also wind the yarns over tubes to tubes.
  • These semi-finished products can then be consolidated into composites by pressing at temperatures above the softening point of the polyamide and, if necessary, deformed. It is advisable to apply a size to the semi-finished product beforehand, which can reduce the consolidation time.
  • This is preferably an aqueous dispersion of a thermoplastic which is compatible with polyamide A.
  • the composite materials based on the hybrid yarn according to the invention can be used to produce heavy-duty articles, e.g. Tennis racket frames, baseball and hockey sticks, frames for badminton and squash rackets, and bicycle frames.
  • heavy-duty articles e.g. Tennis racket frames, baseball and hockey sticks, frames for badminton and squash rackets, and bicycle frames.
  • Ultramid®B a polyamide 6 from BASF AG with different melt viscosity, was spun into a multifilament yarn made of 184 filaments with a total of 217 tex using a single-stage spin-stretching process. Two of these yarns were intimately mixed together with a Celion® G30-500 carbon fiber yarn from Celion Carbon Fibers, consisting of 12,000 individual carbon filaments, as described in EP 156 599, by spreading the individual multifilament yarns with air and then together over and were brought together under two bars. Then they are wound with a 6 tex strong auxiliary yarn (consisting of 12 single filaments) made of Ultramid®B (melt viscosity 260 Pa ⁇ s). The winding rate of the auxiliary yarn was 150 turns / m of the resulting hybrid yarn. The product had an even distribution of thermoplastic and carbon fibers, it contained 64.1% carbon fibers 34.8% polyamide fibers A 1.1% thread A '.
  • a consolidated test specimen was then produced from the hybridized and wound thread thus produced.
  • the hybridized yarn was wound on a metal reel with a free area of 220 mm x 270 mm inside. A total of six layers (three on each side) were wound and then the reel was placed between two steel tools designed for this purpose, which were to transmit pressure and heat to the wound hybrid yarn.
  • the hybrid yarn was consolidated in a hot press.
  • the tool was placed in the press preheated to the temperature T and kept at a pressure of 5.5 bar for 15 minutes so that the hybridized yarn was heated to T. The pressure was then increased to 14 bar within one minute and this pressure was held for Z minutes. The tool was then cooled in the same press for 10 minutes by inserting cooling cassettes between the hybrid yarn tool and the press jaws. A 2 mm thick, consolidated plate with a smooth, non-porous surface was found when the tool was opened.
  • the material was subjected to a 90 ° tensile test according to SAC-MA 4-88.
  • the 2 mm thick plate was cut into 25 mm x 210 mm specimens with a diamond saw, taking care to ensure that the reinforcement fibers were aligned exactly parallel to the 25 mm long side of the specimens was respected.
  • the tensile strength is shown in the table.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Artificial Filaments (AREA)
  • Woven Fabrics (AREA)

Abstract

Die Erfindung betrifft ein Hybridgarn aus Verstärkungsfasern und matrixbildenden Thermoplastfasern aus niedrigviskosem Polyamid, in dem die Einzelfilamente der beiden Faserarten vermischt sind, und welches mit einem weiteren Polyamidgarn umwickelt ist. Sie betrifft ferner Gelege, Gewebe, Gewirke, Geflechte und Wickelkörper aus diesem Hybridgarn sowie daraus durch Konsolidieren hergestellte Faserverbundwerkstoffe.

Description

  • Die Erfindung betrifft Hybridgarn aus Polyamidfasern und Verstärkungsfasern. Hybridgarne, in denen Thermoplastfasern und Verstärkungsfasern innig vermischt sind, werden in den letzten Jahren in zunehmendem Maße zur Herstellung von Hochleistungsverbundwerkstoffen verwendet. Die Hybridgarne sowie daraus hergestellte Flächengebilde sind sehr flexibel und deshalb beliebig verformbar. Wenn man sie durch Verpressen bei Temperaturen oberhalb des Erweichungspunktes des Thermoplasten konsolidiert, schmilzt dieser und bildet eine Matrix, in der die Verstärkungsfasern in Vorzugsrichtung orientiert eingelagert sind.
  • In der EP-B 156 599 ist ein Verfahren zur Herstellung von Hybridgarn aus Kohlenstoffasern und Thermoplastfasern beschrieben, bei dem die beiden Faserarten gespreizt, durch Zusammenführen über Rollen oder Stäben miteinander vermischt und das Mischgarn anschließend gegebenenfalls durch ein weiteres Thermoplastgarn umwickelt wird. Ein solches Umwickeln bewirkt einen guten Fadenschluß, so daß das Garn auch ohne zusätzliches Aufbringen einer Schlichte problemlos gewoben werden kann. Hybridgarn auf Basis der in den Beispielen von EP-B 156 599 genannten Thermoplasten ist nicht zur Herstellung von kostengünstigen und leicht verarbeitbaren Hochleistungsverbundwerkstoffen geeignet. Dies ist jedoch grundsätzlich mit Polyamiden möglich, die in der Beschreibung der EP-B 156 599 neben vielen anderen ebenfalls genannt sind. Versucht man, aus den üblichen hoch- und mittelviskosen Polyamidfasern Hybridgarne herzustellen, so zeigt sich, daß die für die Konsolidierung zum Verbundwerkstoff benötigte Zeit verhältnismäßig lang ist, und daß einige mechanische Eigenschaften der Verbundwerkstoffe, insbesondere die Querzugfestigkeit, ein zu niedriges Niveau haben.
  • Der Erfindung lag also die Aufgabe zugrunde, ein Hybridgarn bereitzustellen, welches diese Nachteile nicht aufweist.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß man bei der Herstellung von Hybridgarn aus Polyamidfasern und Verstärkungsfasern ein extrem niedrigviskoses Polyamid einsetzt.
  • Gegenstand der Erfindung ist demzufolge ein Hybridgarn aus Polyamidfasern A und Verstärkungsfasern B, in dem die Einzelfilamente der beiden Faserarten vermischt sind, und welches von einem Polyamidgarn A' umwickelt ist, wobei das Polyamid A eine Schmelzviskosität von weniger als 220 Pa·s aufweist (gemessen nach DIN 54 811 bei einer Schergeschwindigkeit von 100 s⁻¹ und bei einer Temperatur, die 30°C über dem Schmelzpunkt bzw. der Glastemperatur des Polyamids liegt).
  • In der GB-A 2 105 247 sind Faserverbundwerkstoffe beschrieben, die hergestellt werden durch Umwickeln eines Faserkerns aus Verstärkungsfasern mit einem thermoplastischen Umwindegarn. Im Beispiel 2 besteht der Kern aus einem Kohlenstoffasergarn und zwei Enden eines Nylon-Multifilamentgarns, als Umwindegarn wird ebenfalls ein Nylon-Multifilamentgarn eingesetzt. Im Faserkern liegen die drei Multifilamentgarne nebeneinander angeordnet vor; eine Vermischung der Einzelfilamente hat nicht stattgefunden, der Faserverbundwerkstoff weist deshalb ein niedriges mechanisches Eigenschaftsniveau auf.
  • Bevorzugte Verstärkungsfasern B sind Kohlenstoffasern und Glasfasern. Daneben sind auch Fasern aus keramischen Materialien, Siliciumcarbid und Bornitrid geeignet, sowie solche aus Polymeren mit einem Erweichungspunkt, der mehr als 70°C über dem Erweichungspunkt des Polyamids A liegt, zum Beispiel aus Polyetherketon oder vollaromatischen Polyamiden.
  • Für die Polyamidfasern A können die üblichen aliphatischen oder teilaromatischen Homo- und Copolyamide eingesetzt werden, bevorzugt Polyamid-6 und Polyamid-6.6. Daneben sind auch Polyamid-6,6 T, Polyamid-6,10, Polyamid-10, und ein Polyamid aus Adipinsäure und 1,3-Xylylendiamin sowie Copolyamide auf Basis der entsprechenden Monomeren geeignet.
  • Die Polyamide A weisen erfindungsgemäß eine Schmelzeviskosität von weniger als 220, vorzugsweise von weniger als 180 Pa·s auf, gemessen nach DIN 54 811 bei einer Schergeschwindigkeit von 100 s⁻¹ und bei einer Temperatur, die 30°C über dem Schmelzpunkt (bei teilkristallinen Polyamiden) bzw. über der Glastemperatur (bei amorphen Polyamiden) des Polymeren liegt.
  • Die Hybridgarne werden vorzugsweise nach EP-B 156 599 hergestellt, indem man die beiden Faserarten getrennt voneinander durch Anblasen mit Luft spreizt und dann durch Zusammenführen über Rollen oder Stäbe vermischt. Das Spreizen kann grundsätzlich auch durch einen Flüssigkeitsstrahl, durch elektrostatische Aufladung oder durch Separieren der Einzelfilamente durch Kämme erfolgen. Bei den bisher genannten Arbeitsweisen erhält man eine innige Vermischung der Einzelfilamente, so daß im Mischgarn Thermoplast- und Verstärkungsfasern gleichmäßig statistisch verteilt sind. Eine solche innige Vermischung ist aber nicht für alle Anwendungszwecke notwendig; man kann auch auf das Spreizen der Ausgangsfasern verzichten und diese nach einfachen Methoden vermischen, z.B. indem man sie zusammen über Rollen oder Stäbe zieht oder gemeinsam in einem Luftstrom verwirbelt.
  • Wesentlich ist, daß das Hybridgarn nach dem Vermischen der Polyamid- und Verstärkungsfasern umwickelt wird. Dafür wird ein Polyamidgarn A' verwendet, wobei vorzugsweise das gleiche Polyamid wie bei der Polyamidfaser A eingesetzt wird. Es kann aber auch ein andersartiges Polyamid verwendet werden; grundsätzlich auch ein Polyamid, dessen Schmelzviskosität über 220 Pa·s liegt. Das Umwindegarn soll vorzugsweise einen Titer von 40 bis 100 dtex aufweisen.
  • Die Mengenverhältnisse sollen vorzugsweise so gewählt werden, daß im fertigen Hybridgarn 26 bis 80 Gew. -% Polyamidfasern A, 20 bis 75 Gew.-% Verstärkungsfasern B und 0,2 bis 3 Gew.-% Umwindegarn A' enthält.
  • Das erfindungsgemäße Hybridgarn kann ohne zusätzliches Aufbringen einer Schlichte zu Geweben, Gewirken oder Geflechten verarbeitet werden. Mehrere Garne können parallel zu Gelegen oder Bändern abgelegt werden, wobei mehrere solcher Gelege parallel oder in vorbestimmten Winkeln zueinander gestapelt werden können. Ferner kann man die Garne über Kerne zu Rohren wickeln. Diese Halbzeuge können dann durch Verpressen bei Temperaturen oberhalb des Erweichungspunktes des Polyamids zu Verbundwerkstoffen konsolidiert und gegebenenfalls verformt werden. Dabei ist es zweckmäßig, vorher auf das Halbzeug eine Schlichte aufzubringen, wodurch die Konsolidierungszeit verkürzt werden kann. Diese ist vorzugsweise eine wäßrige Dispersion eines Thermoplasten, der mit dem Polyamid A verträglich ist.
  • Aus den Verbundwerkstoffen auf Basis des erfindungsgemäßen Hybridgarn können hochbelastbare Gebrauchsartikel hergestellt werden, die z.B. Tennisschlägerrahmen, Baseball- und Hockeyschläger, Rahmen für Badminton- und Squash-Schläger, sowie Farradrahmen.
  • Die in den Beispielen genannten Teile und Prozente beziehen sich auf das Gewicht.
  • Beispiele Allgemeine Versuchsdurchführung:
  • Ultramid®B, ein Polyamid 6 der BASF AG, mit unterschiedlicher Schmelzeviskosität, wurde durch ein einstufiges Spinnstreckverfahren zu einem Multifilamentgarn aus 184 Filamenten mit insgesamt 217 tex versponnen. Zwei dieser Garne wurden zusammen mit einem Celion® G30-500 Kohlenstoffasergarn der Firma Celion Carbon Fibers, bestehend aus 12000 einzelnen Kohlenstoffilamenten, wie in EP 156 599 beschrieben, miteinander innig vermischt, indem die einzelnen Multifilamentgarne durch Anblasen mit Luft gespreizt und dann gemeinsam über und unter zwei Stäben zusammengeführt wurden. Anschließend werden sie mit einem 6 tex starken Hilfsgarn (bestehend aus 12 Einzelfilamenten) aus Ultramid®B (Schmelzeviskosität 260 Pa·s) umwunden. Die Umwindungsrate des Hilfsgarns betrug 150 Umdrehungen/m des entstehenden Hybridgarnes. Das Produkt wies eine gleichmäßige Verteilung von Thermoplast- und Kohlenstoffasern auf, es enthielt
    64,1 % Kohlenstoffasern
    34,8 % Polyamidfasern A
    1,1 % Umwindegarn A'.
  • Einige Proben des Hybridgarns wurden dann durch eine wäßrige Schlichtedispersion geführt, die aus einer alkoholischen Lösung eines Terpolyamids (ELVAMID 8063 von DuPont) hergestellt wurden. Dabei wurden 0,6 % Schlichte aufgetragen. In der folgenden Tabelle sind diese Versuche mit (S) gekennzeichnet.
  • Anschließend wurde aus dem so hergestellten hybridisierten und umwundenen Garn ein konsolidierter Probekörper hergestellt. Um eine möglichst unidirektionale Ausrichtung der Verstärkungsfasern zu erhalten, wurde das hybridisierte Garn auf eine Metall-Haspel gewickelt, die innen eine freie Fläche von 220 mm x 270 mm hatte. Es wurden insgesamt sechs Lagen (drei auf jeder Seite) gewickelt und danach wurde die Haspel zwischen zwei dafür konstruierte Stahlwerkzeuge gelegt, die Druck und Wärme auf das gewickelte Hybridgarn übertragen sollten. Die Konsolidierung des Hybridgarns erfolgte in einer heißen Presse.
  • Zuerst wurde das Werkzeug in die auf die Temperatur T vorgeheizten Presse gelegt und bei einem Druck von 5.5 bar 15 Minuten lang belassen, damit das hybridisierte Garn auf T erhitzt wurde. Danach wurde der Druck auf 14 bar innerhalb einer Minute erhöht und dieser Druck für Z Minuten gehalten. Anschließend wurde das Werkzeug 10 Minuten lang in derselben Presse abgekühlt, indem Kühlkassetten zwischen dem Hybridgarnwerkzeug und den Preßbacken eingeschoben wurden. Eine 2 mm starke, konsolidierte Platte mit einer glatten porenfreien Oberfläche wurde beim Öffnen des Werkzeugs vorgefunden.
  • Um die Anbindung der Polyamidmatrix an die Kohlenstoffasern zu prüfen, wurde das Material einer 90°-Zugprüfung nach SAC-MA 4-88 unterzogen. Hierfür wurde die 2 mm starke Platte zu 25 mm x 210 mm großen Probekörpern mit einer Diamantsäge zerschnitten, wobei auf die genaue parallele Ausrichtung der Verstärkungsfasern zur 25 mm langen Seite der Probekörpern geachtet wurde. Die Zugfestigkeit ist in der Tabelle wiedergegeben. Tabelle
    Beispiel Viskosität [Pa·s] T [°C] Z [min] Zugfestgkeit [MPa]
    1 260 260 20 48.4
    2 260 260 5 27.4
    3 130 260 20 63.2
    3S 130 260 20 64.0
    4 130 260 5 44.2
    4S 130 260 5 60.3
    5 130 270 5 49.8
    5S 130 270 5 63.8
    6 130 240 20 44.8
  • Die Beispiele 1 und 2 sind nicht erfindungsgemäß.

Claims (10)

  1. Hybridgarn aus Polyamidfasern A und Verstärkungsfasern B, in dem die Einzelfilamente der beiden Faserarten vermischt sind, und welches von einem Polyamidgarn A' umwickelt ist, dadurch gekennzeichnet, daß das Polyamid A eine Schmelzviskosität von weniger als 220 Pa·s aufweist (gemessen nach DIN 54 811 bei einer Schergeschwindigkeit von 100 s⁻¹ und bei einer Temperatur, die bei 30°C über dem Schmelzpunkt bzw. der Glastemperatur des Polyamids liegt).
  2. Hybridgarn nach Anspruch 1, dadurch gekennzeichnet daß das Polyamid A ein Polyamid-6 mit einer Schmelzeviskosität von weniger als 180 Pa·s ist.
  3. Hybridgarn nach Anspruch 1, dadurch gekennzeichnet, daß das Polyamid A ein Polyamid-6,6 mit einer Schmelzeviskosität von weniger als 180 Pa·s ist.
  4. Hybridgarn nach Anspruch 1, dadurch gekennzeichnet, daß Polyamid A und Polyamid A' identische Polymere sind.
  5. Hybridgarn nach Anspruch 1, dadurch gekennzeichnet, daß die Verstärkungsfasern B Kohlenstoffasern sind.
  6. Hybridgarn nach Anspruch 1, dadurch gekennzeichnet, daß die Verstärkungsfasern B Glasfasern sind.
  7. Gelege, Wickelkörper, Gewebe, Gewirke oder Geflecht, hergestellt aus dem Hybridgarn nach Anspruch 1.
  8. Gelege, Wickelkörper, Gewebe, Gewirke oder Geflecht nach Anspruch 7, gekennzeichnet durch eine nach ihrer Herstellung aus dem Hybridgarn aufgebrachte Schlichte.
  9. Verbundwerkstoff, hergestellt aus einem Gelege, Wickelkörper, Gewebe, Gewirke oder Geflecht nach Anspruch 7 durch Konsolidieren.
  10. Verbundwerkstoff nach Anspruch 9 in Form eines Sportartikels, insbesondere eines Tennisschlägerrahmens.
EP92118673A 1991-11-14 1992-10-31 Hybridgarn aus Polyamidfasern und Verstärkungsfasern Expired - Lifetime EP0542070B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19914137406 DE4137406A1 (de) 1991-11-14 1991-11-14 Hybridgarn aus polyamidfasern und verstaerkungsfasern
DE4137406 1991-11-14
US07/970,455 US5464684A (en) 1991-11-14 1992-11-02 Hybrid yarn comprising a core of intermixed polyamide filaments and reinforcing rilaments wherein the core is wrapped by a polyamide fiber

Publications (2)

Publication Number Publication Date
EP0542070A1 true EP0542070A1 (de) 1993-05-19
EP0542070B1 EP0542070B1 (de) 1996-07-10

Family

ID=25909115

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92118673A Expired - Lifetime EP0542070B1 (de) 1991-11-14 1992-10-31 Hybridgarn aus Polyamidfasern und Verstärkungsfasern

Country Status (4)

Country Link
US (1) US5464684A (de)
EP (1) EP0542070B1 (de)
JP (1) JPH05247761A (de)
DE (1) DE4137406A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0768405A1 (de) * 1995-10-11 1997-04-16 Hoechst Trevira GmbH & Co. KG Gewebe und Gelege mit einstellbarer Gas- und/oder Flüssigkeitdichtigkeit enthaltend Hybridgarne, Verfahren zu deren Weiterverarbeitung, textile Flächengebilde mit vorbestimmter Gas- und/oder Flüssigkeitsdurchlässigkeit und deren Verwendung
DE102007028373A1 (de) * 2007-06-11 2008-12-24 Technische Universität Dresden Faserverbundwerkstoff und Verfahren zur Herstellung von Faserverbundwerkstoffen
WO2011134995A1 (de) * 2010-04-30 2011-11-03 Deutsche Institute Für Textil- Und Faserforschung Denkendorf Hybridgarn zur herstellung von formteilen
WO2023012226A3 (de) * 2021-08-05 2023-06-08 Universität Stuttgart Strukturelle transparente faser-matrix-komposite und verfahren zur deren herstellung

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4412376C3 (de) * 1994-04-13 1999-09-09 Buck Halbzeug
US5756206A (en) * 1995-03-15 1998-05-26 Custom Composite Materials, Inc. Flexible low bulk pre-impregnated tow
EP0758693B1 (de) 1995-08-11 2001-10-24 BUCK, Alfred Halbzeug für Verbundwerkstoff
DE19613965A1 (de) * 1996-04-09 1997-10-16 Hoechst Trevira Gmbh & Co Kg Schrumpfarme Hybridgarne, Verfahren zu deren Herstellung und deren Verwendung
US6531218B2 (en) * 1996-09-16 2003-03-11 Basf Corporation Dyed sheath/core fibers and methods of making same
US20010007706A1 (en) * 1996-09-16 2001-07-12 Matthew B. Hoyt Colored fibers having resistance to ozone fading
EP1085968B1 (de) 1998-06-08 2003-05-14 Complastik Corporation Verbundgegenstände insbesondere prepregs, vorformlinge, laminate und sandwich formteile, und verfahren zu deren herstellung
US6117548A (en) * 1998-12-18 2000-09-12 Glen Raven Mills, Inc. Self-coating composite stabilizing yarn
US6557590B2 (en) 1998-12-29 2003-05-06 Glen Raven, Inc. Decorative outdoor fabrics
AU2002241584A1 (en) 2000-12-06 2002-06-18 Complastik Corporation Hybrid composite articles and methods for their production
JP2003055850A (ja) * 2001-08-10 2003-02-26 Fukushima Prefecture 複合糸および繊維強化プラスチック
EP1594341B1 (de) * 2004-05-06 2008-01-23 Harman/Becker Automotive Systems GmbH Lautsprechermembran
US7185481B2 (en) * 2005-02-15 2007-03-06 Banom, Inc. Cut resistant yarns for glove and sleeves, gloves and sleeves made with such yarns and methods of making such cut resistant yarns
ATE414807T1 (de) * 2005-07-15 2008-12-15 Teijin Aramid Bv Cord
CN101707929B (zh) * 2007-06-20 2017-01-18 罗地亚管理公司 复合聚酰胺制品
GB2477531B (en) * 2010-02-05 2015-02-18 Univ Leeds Carbon fibre yarn and method for the production thereof
JP2014173196A (ja) * 2013-03-06 2014-09-22 Gifu Univ 混繊糸、織物および編み物、複合材料、並びに、複合材料の製造方法
WO2015017570A1 (en) * 2013-08-01 2015-02-05 Invista North America S.A R.L. Continuous fiber thermoplastic composites
US20150137409A1 (en) * 2013-11-21 2015-05-21 Hsien-Hsiao Hsieh Method For Forming Textile Article
WO2017023225A2 (en) 2015-08-03 2017-02-09 Kordsa Global Endustriyel Iplik Ve Kord Bezi Sanayi Ve Ticaret Anonim Sirketi Thermoplastic prepreg production method
WO2017116349A1 (en) 2015-12-31 2017-07-06 Kordsa Teknik Tekstil Anonim Sirketi Thermoplastic prepreg production method
DE102020105167A1 (de) 2020-02-27 2021-09-02 Thüringisches Institut für Textil- und Kunststoff-Forschung e. V. Rudolstadt Verfahren zur Herstellung eines Hybridgarnes
JP7354037B2 (ja) 2020-03-23 2023-10-02 株式会社日立ハイテクサイエンス 集束イオンビーム加工装置
BE1030711B1 (nl) * 2022-07-12 2024-02-12 Sioen Ind Composietprofiel en gemengd garen voor het vervaardigen van composietprofielen

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2105247A (en) * 1981-06-23 1983-03-23 Courtaulds Plc Process for making a fibre-reinforced moulding
EP0156599A1 (de) * 1984-03-15 1985-10-02 BASF Aktiengesellschaft Mischungen aus Verbund-Kohlestoffasern und thermoplastischen Fasern
EP0156600A1 (de) * 1984-03-15 1985-10-02 Celanese Corporation Verbundfasermischung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3625809A (en) * 1970-02-24 1971-12-07 Owens Corning Fiberglass Corp Filament blend products
US4259394A (en) * 1979-09-26 1981-03-31 Huyck Corporation Papermaking fabrics with enhanced dimensional stability
DE4036926A1 (de) * 1990-11-20 1992-05-21 Basf Ag Verfahren zur herstellung von hybridgarn
US5227236A (en) * 1991-07-29 1993-07-13 Basf Aktiengesellschaft Process for preparing thermoplastic matrix fiber-reinforced prepregs and composite structure products formed thereby

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2105247A (en) * 1981-06-23 1983-03-23 Courtaulds Plc Process for making a fibre-reinforced moulding
EP0156599A1 (de) * 1984-03-15 1985-10-02 BASF Aktiengesellschaft Mischungen aus Verbund-Kohlestoffasern und thermoplastischen Fasern
EP0156600A1 (de) * 1984-03-15 1985-10-02 Celanese Corporation Verbundfasermischung

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0768405A1 (de) * 1995-10-11 1997-04-16 Hoechst Trevira GmbH & Co. KG Gewebe und Gelege mit einstellbarer Gas- und/oder Flüssigkeitdichtigkeit enthaltend Hybridgarne, Verfahren zu deren Weiterverarbeitung, textile Flächengebilde mit vorbestimmter Gas- und/oder Flüssigkeitsdurchlässigkeit und deren Verwendung
US5863644A (en) * 1995-10-11 1999-01-26 Hoechst Trevira Gmbh & Co Kg Woven and laid hybrid yarn structures of adjustable gas and/or liquid tightness, further processing thereof, textile sheet materials of predetermined gas and/or permeability, and use thereof
DE102007028373A1 (de) * 2007-06-11 2008-12-24 Technische Universität Dresden Faserverbundwerkstoff und Verfahren zur Herstellung von Faserverbundwerkstoffen
DE102007028373B4 (de) * 2007-06-11 2012-12-20 Technische Universität Dresden Faserverbundwerkstoff und Verfahren zur Herstellung von Faserverbundwerkstoffen
WO2011134995A1 (de) * 2010-04-30 2011-11-03 Deutsche Institute Für Textil- Und Faserforschung Denkendorf Hybridgarn zur herstellung von formteilen
WO2023012226A3 (de) * 2021-08-05 2023-06-08 Universität Stuttgart Strukturelle transparente faser-matrix-komposite und verfahren zur deren herstellung

Also Published As

Publication number Publication date
DE4137406A1 (de) 1993-05-19
JPH05247761A (ja) 1993-09-24
US5464684A (en) 1995-11-07
EP0542070B1 (de) 1996-07-10

Similar Documents

Publication Publication Date Title
EP0542070B1 (de) Hybridgarn aus Polyamidfasern und Verstärkungsfasern
DE3586454T2 (de) Faserverstaerkte thermoplastische gegenstaende und deren herstellungsverfahren.
DE69421712T2 (de) Vliesstoff aus Fasern-bestehend aus nichtmischbaren Faser-Komponenten
DE69312387T2 (de) Dauerhafter Vliesstoff
DE69203310T2 (de) Polymermaterialien.
DE60011310T2 (de) Ballistisches Material enthaltend hochfeste Polyethylenfasern
DE1660354A1 (de) Polypropylenverbundfaeden und Verfahren zu ihrer Herstellung
DE3935264A1 (de) Formmasse fuer thermoplastische verbundstoffe
DE69009560T2 (de) Vliesstoff zur Verstärkung von Kunstharz und diesen verwendende formbare Platte.
DE69208809T2 (de) Gewebe für faserverstärktes thermoplastisches Verbundmaterial
EP0133893A2 (de) Verfahren zur Herstellung von faserverstärkten Formkörpern
DE3544523C2 (de)
EP1705269B1 (de) Aus einem Polyhydroxyether enthaltenden Rohstoff gesponnenes thermoplastisches Fasermaterial, Verfahren zu seiner Herstellung und Verwendungen dafür
DE68925137T2 (de) Schlichte für Kohlenstoffasern
DE4243465A1 (en) Hybrid yarn with polyamide and reinforcing fibres - has 5-20 micron polyamide filaments to give greater strength fabrics and consolidated composites
DE69808917T2 (de) Garn für kunstrasen, verfahren zu seiner hertstellung und aus diesem garn hergestellte kunstrasenfeld
DE69515089T2 (de) Heterofilament-Verbundgarn und verstärkte Bündel aus Heterofilamenten und Draht
EP0801159A2 (de) Schrumpfarme Hybridgarne, Verfahren zu deren Herstellung und deren Verwendung
DE69928741T2 (de) Armierungsgewebe für Bauwerke
EP0345463B1 (de) Verfahren zur kontinuierlichen Herstellung von faserverstärkten Thermoplastbahnen, faserverstärkte Thermoplastbahnen sowie ihre Verwendung
EP0173221A2 (de) Hochfestes Polyestergarn und Verfahren zu seiner Herstellung
DE3539185A1 (de) Verfahren zur herstellung von polypropylen-faeden
DE69904361T2 (de) Hochorientierte polyolefinfaser
DE19533094B4 (de) Verfahren zur Herstellung eines Polymerverbundmaterials und polymeres Verbundmaterial
EP0627301B1 (de) Glasfaserverstärkter Verbundwerkstoff und Verfahren zu seiner Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19931118

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CYTEC TECHNOLOGY CORP.

17Q First examination report despatched

Effective date: 19940729

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: A. BRAUN, BRAUN, HERITIER, ESCHMANN AG PATENTANWAE

REF Corresponds to:

Ref document number: 59206735

Country of ref document: DE

Date of ref document: 19960814

ET Fr: translation filed
ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19961010

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19991220

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040915

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20040921

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20041004

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20041029

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051031

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060503

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20051031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060630

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20060501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060630