EP0765950B2 - Alliage à haute résistance et à coefficient d'expansion thermique faible - Google Patents

Alliage à haute résistance et à coefficient d'expansion thermique faible Download PDF

Info

Publication number
EP0765950B2
EP0765950B2 EP96306099A EP96306099A EP0765950B2 EP 0765950 B2 EP0765950 B2 EP 0765950B2 EP 96306099 A EP96306099 A EP 96306099A EP 96306099 A EP96306099 A EP 96306099A EP 0765950 B2 EP0765950 B2 EP 0765950B2
Authority
EP
European Patent Office
Prior art keywords
alloy
total
alloys
niobium
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96306099A
Other languages
German (de)
English (en)
Other versions
EP0765950B1 (fr
EP0765950A1 (fr
Inventor
John Scott Smith
Ladonna Sheree Hillis
Melissa Ann Moore
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huntington Alloys Corp
Original Assignee
Inco Alloys International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27059930&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0765950(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US08/696,487 external-priority patent/US5688471A/en
Application filed by Inco Alloys International Inc filed Critical Inco Alloys International Inc
Publication of EP0765950A1 publication Critical patent/EP0765950A1/fr
Publication of EP0765950B1 publication Critical patent/EP0765950B1/fr
Application granted granted Critical
Publication of EP0765950B2 publication Critical patent/EP0765950B2/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel

Definitions

  • This invention relates to low expansion alloys.
  • this invention relates to low expansion iron alloys containing about 40.5 to about 48 weight percent nickel.
  • the nickel-containing alloy tooling or fixtures used for curing graphite-epoxy composites must have very low thermal expansion coefficients.
  • the low coefficients of thermal expansion are necessary to decrease stresses arising from thermal expansion mismatch that occurs during heating of resin-containing tooling to curing temperatures.
  • the low-expansion alloy system of 36 to 42 weight percent nickel and balance of essentially iron has been commercially used for these tooling applications.
  • These iron-base alloys are, however, inherently soft, difficult to weld in large sections, lack dimensional stability after thermomechanical processing, and are difficult to machine. For example, the knives used to remove graphite epoxy composites from the tooling routinely cut into and mar the tooling's surface.
  • Another problem with these iron-base low expansion alloys is is general corrosion that accelerates during the curing of graphite epoxy tooling.
  • Structural graphite epoxy composites have CTEs that are highly variable with orientation. Typically graphite-epoxy composites have CTEs that range from 1.8 to 9.0 x10 -6 m/m/°C (1.0 to 5.0 x 10 -6 in/in/°F) depending upon orientation. The mean CTE of this composite is about 5.4 x 10 -6 m/m/°C (3.0 x 10 -6 in/in/°F). The alloys used for this tooling have a lower CTE than the composite being cured. The low CTE tooling provides a constant and uniform compressive force during heating of the composites from room to curing temperatures.
  • This compressive force reduces porosity, permits tight tolerances (e.g., ⁇ 0.0051 cm or ⁇ 0.002 in or less), and provides high quality composite surfaces.
  • CTE of the alloy must be 4.9 x 10 -6 m/m/°C (2.7 x 10 -6 in/in/°F) or less.
  • the alloy of the invention provides a low coefficient of thermal expansion alloy having a CTE of about 4.9 x10 -6 m/m/°C or less at 204°C and a relatively high strength is defined in the accompanying claims. Alloys of the invention may be aged to a Rockwell C hardness of at least about 30.
  • niobium and titanium may be used in combination to provide an age hardenable alloy while maintaining a relatively low CTE.
  • the alloys of the invention are readily aged to produce a hardness of at least 30 on the Rockwell “C” (RC) scale.
  • NILO® alloy 36 typically only has a hardness of 71 on the Rockwell “B” (RB) scale (NILO is a trademark of the Inco family of companies).
  • the alloys of the invention are uniquely characterized by a relatively low CTE in combination with excellent marring resistance.
  • Table 1 HEAT C MN FE S SI NI CR AL TI NG CO MO NB TA NB + TA 1 * 0.004 0.2 56.7 0.1101 0.1 38.17 ⁇ 0.1 0.33 1.5 ⁇ 0.1 ⁇ 0.1 ⁇ 0.1 2.9 0.001 2.9 2 * 0.005 0.2 54.9 0.001 0.1 40.09 ⁇ 0.1 0.12 1.5 ⁇ 0.1 ⁇ 0.1 ⁇ 0.1 2.9 0.001 2.9 3 * 0.018 0.2 54.8 0.001 0.1 40.24 ⁇ 0.1 0.30 1.5 ⁇ 0.1 ⁇ 0.1 ⁇ 0.1 2.9 0.001 2.9 4 * 0.003 0.2 54.8 0.001 0.1 40.07 ⁇ 0.1 0.32 1.5 ⁇ 0.1 ⁇ 0.1 ⁇ 0.1 2.9 0.001 2.9 5 * 0.005 0.2 54.4 0.001 0.1 40.06 ⁇ 0.1 0.51 1.5 ⁇ 0.1 ⁇ 0.1 ⁇ 0.1 2.9 0.001 2.9 6 * 0.004 0.2 52.7 0.001 0.1 41.93
  • Table 2 below provides coefficient of thermal expansion and hardness data for alloys that were warm worked and aged at 1200°F (649°C) for 8 hours then air cooled.
  • Table 2 provides coefficient of thermal expansion and hardness data for alloys that were warm worked and aged at 1200°F (649°C) for 8 hours then air cooled.
  • the CTE of graphite-epoxy composites at 360°F (182°C) is 3.1 x 10 -6 in/in/°F (5.6 x 10 -6 m/m/°C).
  • Figures 1 and 2 illustrate that CTE reaches a minimum above about 42.3% nickel.
  • alloys of the invention contain sufficient nickel to provide a relatively low CTE of less than or equal to about 4.9 x 10 -6 m/m/°C (2.7 x10 -6 in/in/°F) at 204°C (400°F).
  • the CTE is less than or equal to about (4.5 x 10 -6 m/m/°C (2.5 x 10 -6 in/in/°F) at 204°C (400°F).
  • CTE in / in / °F 245.29 ⁇ 10 - 6 - 11.26 ⁇ 10 - 6 Ni + 0.13 ⁇ 10 - 6 Ni 2 + 3.77 ⁇ 10 - 6 Al
  • Figure 3 illustrates that total niobium and tantalum must be limited to about 3.7 weight percent to maintain a CTE less than 4.9 x 10 -6 m/m/°C. At total niobium plus tantalum concentrations above about 3.5 weight percent, the 204°C (400°F) CTE of the alloy dramatically increases.
  • tantalum is maintained at concentrations below about 0.25 weight percent. Tantalum concentrations above about 0.25 weight percent are believed to be detrimental to weldability and phase segregation. Alloys containing less than 0.25 weight percent tantalum may be readily formed into large sections free of both macro- and micro-segregation. Furthermore, an optional addition of at least about 0.15 weight percent manganese facilitates hot working of the alloy. In addition, boron may optionally be added to the alloy in quantities up to about 0.01 weight percent.
  • Table 6 below provides hardness data for annealed and aged alloys of the invention.
  • the alloy of Table 6 were all annealed at 1700°F (927°C) prior to aging.
  • Tables 4-6 illustrate that the alloys of the invention may be readily age hardened to hardness levels at least as high as about 30 on the Rockwell C scale. Most advantageously, alloys are aged to a hardness of at least about 35 on the Rockwell C scale. Advantageously, the alloys are aged at a temperature between 1000 and 1400°F (538 and 760°C). Most advantageously, alloys are aged at a temperature between about 1100 and 1300°F (593 to 704°C) for optimum age hardening. It has been discovered that thermomechanical processing followed by an aging heat treatment further optimizes hardness of the alloy.
  • Table 7 compares oxidation resistance of alloys of the invention to alloy 36 Ni-Fe after exposure to air at 371°C for 560 hours.
  • alloy 36 oxidizes nearly twice as rapidly as alloys of the invention at typical curing temperature for graphite-epoxy composites. Although these alloys lack the oxidation resistance of chromium-containing alloys, the increased oxidation resistance of the invention significantly reduces tooling maintenance. For example, facing plates require less grinding, polishing or pickling to maintain a smooth metal surface.
  • Table 8 demonstrates the dimensional stability of alloys of the invention in comparison to 36 Ni-Fe alloys. TABLE 8 HEAT CREEP STRENGTH, MPa 11 >690 12 >690 D (Alloy 36) 55
  • Heat D was annealed prior to testing. Heats 11 and 12 were annealed and aged as above.
  • the age hardened alloys of the invention provide at least a ten-fold increase in creep resistance. This increase in creep resistance provides excellent dimensional stability that effectively resists deformation during curing. The alloys dimensional stability allows significant reductions of the size and amount of materials necessary to produce durable tooling.
  • the alloy of the invention is described by alloys having the composition of Table 9 below. TABLE 9 BROAD INTERMEDIATE NARROW NOMINAL Ni 42.3-48 42.3-46 42.3-45 43.5 Nb 2-3.7 2.5 - 3.6 3-3.5 3.3 Ti 0.75-2 0.9-1.9 1-1.8 1.4 Al 0-1 0.05-0.8 0.05-0.6 0.2 C 0-0.1 0-0.05 0.01 Mn 0-1 0-0.5 0.3 Si 0-1 0-0.5 - Cu 0-1 0.5 - Cr 0-1 0-0.5 - Co 0-5 0-2 - B 0-0.01 0-0.005 - W, V 0-2 0-1 - Ta 0-0.25 Mg, Ca, Ce (Total) 0-0.1 0-0.05 - Y, Rare Earths (Total) 0-0.5 0-0.1 - S 0-0.1 0-0.05 - P 0-0.1 0-0.05 - N 0-0.1 0-0.05 - Fe Balance + Incidental Impurities Balance + Incidental Impurities Balance + Incidental
  • the alloy of the invention provides alloys having a coefficient of thermal expansion of 2.7 x 10 -6 in/in/°F (5.5 x 10 -6 m/m/°C) or less with a minimum hardness of RC 30. With a hardness above RC 30, composite tooling alloys provide excellent resistance to scratching and marring. In addition, age hardening increases the yield strength of the alloy and machinability of the alloy. The alloy has tested to be excellent with the drop weight and bend tests. The alloy may be readily welded with NILO® filler metals 36 and 42. Finally, the alloys of the invention provide improved oxidation resistance and dimensional stability over conventional iron-nickel low coefficient of thermal expansion alloys.
  • the alloys of the invention provides an especially useful material for tooling that are used to fabricate graphite-epoxy composites or other low CTE composites under compression.
  • the alloys of the invention are expected to be useful for high strength electronic strips, age hardenable lead frames and mask alloys for tubes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heat Treatment Of Steel (AREA)
  • Materials For Medical Uses (AREA)

Claims (11)

  1. Un alliage à haute résistance et à faible coefficient de dilatation thermique, CTE, de 4,9 x 10-6m/m/°C ou moins à 204°C, constitué, exprimé en pourcentage en poids, de 42, 3 à 48 % de nickel, 2 à 3,7 % de niobium, 0,75 à 2 % de titane, 3,7 ou moins pour le total du niobium plus le tantale, 0 à 1 % d'aluminium, 0 à 0,1 % de carbone, 0 à 1 de manganèse, 0 à 1 % de silicium, 0 à 1 % de cuivre, 0 à 1 % de chrome, 0 à 5 % de cobalt, 0 à 0,01 % de bore, 0 à 2 % de tungstène, 0 à 2 % de vanadium, 0 à 0,1 % du total du magnésium, calcium et cérium, 0 à 0,5 % du total de l'yttrium et de terres rares, de 0 à 0,1 % de soufre, 0 à 0,1 de phosphore, 0 à 0,1 % d'azote et le reste étant du fer et d'éventuelles impuretés.
  2. L'alliage selon la revendication 1, comprenant de 42,3 à 46 % en poids de nickel, 2,5 à 3,6 % de niobium, 0,9 à 1,9 de titane et 0,05 à 0,8 % d'aluminium.
  3. L'alliage selon la revendication 1 ayant une dureté d'au moins 30 sur l'échelle Rockwell C.
  4. Un alliage à haute résistance et à faible coefficient de dilatation thermique, CTE, de 4,9 x 10-6m/m/°C ou moins à 204°C, constitué, exprimé en pourcentage en poids, de 42,3 à 46 % de nickel, 2 à 3,6 % de niobium, 0,9 à 1,9 % titane, 0,05 à 0,8 % d'aluminium, 0 à 0,1 % de carbone, 0 à 1 % de manganèse, 0 à 1 % de silicium, 0 à 1 % de cuivre, 0 à 0,5 de chrome, 0 à 5 % de cobalt, 0 à 0,01 % de bore, 0 à 2 % de tungstène, 0 à 2 % de vanadium 0 à 0,05 % du total du magnésium, calcium et cérium, 0 à 0,5 % du total de l'yttrium et de terres rares, 0 à 0,1 % de soufre, 0 à 0,1 % de phosphore, 0 à 0,1 % d'azote, 3,6 % ou moins du total du niobium plus le tantale, et le reste étant du fer et d'éventuelles impuretés.
  5. L'alliage selon la revendication 4, comprenant de 42,3 à 45 % en poids de nickel.
  6. L'alliage selon la revendication 4, comprenant de 3 à 3,5 % en poids de niobium, 1 à 1,8 % en poids de titane et 0,05 à 0,6 % en poids d'aluminium.
  7. L'alliage selon la revendication 4, comprenant de 0 à 0,05 % en poids de carbone, 0 à 0,5 % de manganèse, 0 à 0,5 % de silicium, 0 à 0,5 % de cuivre, 0 à 0,5 % de chrome, 0 à 2 % de cobalt, 0 à 0,005 de bore, 0 à 1 % de tungstène, 0 à 1 % de vanadium, 0 à 0,05 % du total du magnésium, calcium et cérium, 0 à 0,01 % total de l'yttrium et des terres rares, 0 à 0,05 % de soufre, 0 à 0,05 % de phosphore, moins de 0,25 % en poids de tantale et de 0 à 0,05 % en poids d'azote.
  8. L'alliage selon la revendication 4, ayant une dureté d'au moins 30 sur l'échelle Rockwell C.
  9. Un alliage à haute résistance et à faible coefficient de dilatation thermique, CTE, de 4,9 x 10-6m/m/°C ou moins à 204°C, constitué, exprimé en pourcentage en poids, de 42,3 à 45 % de nickel, 3 à 3,5 % de niobium, 1 à 1,8 % de titane, 0 à 0,6 % d'aluminium, 0 à 0,05 % de carbone, 0 à 0,5 de manganèse, 0 à 0,5 % de silicium, 0 à 0,5 % de cuivre, 0 à 2 % de cobalt, 0 à 0,005 % de bore, 0 à 1 % de tungstène, 0 à 1 de vanadium, 0 à 0,1 % du total de l'yttrium et de terres rares, 0 à 0,05 % de soufre, 0 à 0,05 % de phosphore, 0 à 0,05 % d'azote, 3,5 % ou moins du total du niobium plus le tantale, 0 à 0,25 % de tantale et le reste étant du fer et d'éventuelles impuretés.
  10. L'alliage selon la revendication 9 ayant une dureté d'au moins 30 sur l'échelle Rockwell C.
  11. Utilisation d'un alliage, telle que définie sur l'une quelconque des revendications 1 à 10 pour la fabrication d'outillage destiné à la fabrication, à faible coefficient de dilatation thermique CTE, de composites, graphite-epoxy, ou pour la fabrication de bandes électroniques, de châssis conducteurs durcissables par le vieillissement, ou bien d'alliages de masques pour des tubes.
EP96306099A 1995-08-25 1996-08-21 Alliage à haute résistance et à coefficient d'expansion thermique faible Expired - Lifetime EP0765950B2 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US51967895A 1995-08-25 1995-08-25
US519678 1995-08-25
US08/696,487 US5688471A (en) 1995-08-25 1996-08-14 High strength low thermal expansion alloy
US696487 1996-08-14

Publications (3)

Publication Number Publication Date
EP0765950A1 EP0765950A1 (fr) 1997-04-02
EP0765950B1 EP0765950B1 (fr) 2001-10-17
EP0765950B2 true EP0765950B2 (fr) 2010-01-20

Family

ID=27059930

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96306099A Expired - Lifetime EP0765950B2 (fr) 1995-08-25 1996-08-21 Alliage à haute résistance et à coefficient d'expansion thermique faible

Country Status (4)

Country Link
EP (1) EP0765950B2 (fr)
JP (1) JPH09165653A (fr)
DE (1) DE69615977T3 (fr)
ES (1) ES2161983T3 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10435780B2 (en) 2009-06-11 2019-10-08 Genius Solutions Engineering Company Low CTE slush molds with textured surface, and method of making and using the same
JP6244979B2 (ja) * 2014-02-27 2017-12-13 新日鐵住金株式会社 低熱膨張合金

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0482889A2 (fr) 1990-10-26 1992-04-29 Inco Alloys International, Inc. Métal d'apport de sondage pour alliages à bas coefficient de dilatation thermique
JPH04180542A (ja) 1990-11-14 1992-06-26 Hitachi Metals Ltd 低熱膨張高強度材料
JPH04202642A (ja) 1990-11-30 1992-07-23 Nkk Corp メッキ性,ハンダ性,繰返し曲げ特性に優れた高強度低熱膨脹Fe―Ni合金およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3093518A (en) * 1959-09-11 1963-06-11 Int Nickel Co Nickel alloy
US3514284A (en) * 1966-06-08 1970-05-26 Int Nickel Co Age hardenable nickel-iron alloy for cryogenic service
US3705827A (en) * 1971-05-12 1972-12-12 Carpenter Technology Corp Nickel-iron base alloys and heat treatment therefor
US4445943A (en) * 1981-09-17 1984-05-01 Huntington Alloys, Inc. Heat treatments of low expansion alloys
JP2669789B2 (ja) * 1994-08-11 1997-10-29 株式会社東芝 管内部品

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0482889A2 (fr) 1990-10-26 1992-04-29 Inco Alloys International, Inc. Métal d'apport de sondage pour alliages à bas coefficient de dilatation thermique
JPH04180542A (ja) 1990-11-14 1992-06-26 Hitachi Metals Ltd 低熱膨張高強度材料
JPH04202642A (ja) 1990-11-30 1992-07-23 Nkk Corp メッキ性,ハンダ性,繰返し曲げ特性に優れた高強度低熱膨脹Fe―Ni合金およびその製造方法

Also Published As

Publication number Publication date
EP0765950B1 (fr) 2001-10-17
ES2161983T3 (es) 2001-12-16
EP0765950A1 (fr) 1997-04-02
DE69615977T2 (de) 2002-04-04
JPH09165653A (ja) 1997-06-24
DE69615977D1 (de) 2001-11-22
DE69615977T3 (de) 2010-05-06

Similar Documents

Publication Publication Date Title
KR101910744B1 (ko) 극저온 특성이 우수한 중엔트로피 합금
EP0293165B1 (fr) Acier inoxydable martensitique du type susceptible au durcissement a une température inférieure a zéro
EP0235075B1 (fr) Alliage à base de nickel et procédé pour sa fabrication
KR102054735B1 (ko) 변태유기소성 고엔트로피 합금 및 이의 제조방법
KR102178331B1 (ko) 중엔트로피 합금 및 그 제조방법
KR101915906B1 (ko) V-Cr-Fe-Ni계 고강도 고엔트로피 합금
US20020134469A1 (en) Process for manufacturing a strip made of an Fe-Ni alloy
EP1772528B1 (fr) Alliage de titane et procede de fabrication de materiau en alliage de titane
EP1275744B1 (fr) Alliage de martensite refractaire possedant une excellente resistance a la rupture en fluage a haute temperature et une excellente endurance et procede de production de ce dernier
JPH11343528A (ja) 高強度β型Ti合金
KR102179460B1 (ko) 고엔트로피 합금 및 그 제조방법
US5688471A (en) High strength low thermal expansion alloy
US20020124913A1 (en) Ferritic Fe-Cr-Ni-Al alloy having exellent oxidation resistance and high strength and a plate made of the alloy
EP3693483A1 (fr) Alliage à entropie élevée de plasticité induite par la transformation, et son procédé de fabrication
EP0765950B2 (fr) Alliage à haute résistance et à coefficient d'expansion thermique faible
KR102181568B1 (ko) 이상을 갖는 변태유기소성 고엔트로피 합금 및 그 제조방법
EP1255873B9 (fr) Acier a ressorts de type acier vieilli thermiquement
KR102086758B1 (ko) 고엔트로피 합금 및 그 제조방법
US5417779A (en) High ductility processing for alpha-two titanium materials
JP2009215650A (ja) 形状記憶合金
JP3297011B2 (ja) 冷延性に優れた高強度チタン合金
KR101952015B1 (ko) Co-Cu-Ni-Mn계 고엔트로피 합금
JP3114503B2 (ja) 局部的に耐磨耗性に優れた(α+β)型チタン合金の製造方法
EP0502245B1 (fr) Alliage de construction, résistant à la fragilisation par l'hydrogène
KR102509526B1 (ko) 바나듐 석출물을 포함하는 석출경화형 고 엔트로피 합금

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB

17P Request for examination filed

Effective date: 19970925

17Q First examination report despatched

Effective date: 19990628

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB

REF Corresponds to:

Ref document number: 69615977

Country of ref document: DE

Date of ref document: 20011122

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2161983

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20020812

Year of fee payment: 7

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: KRUPP VDM GMBH

Effective date: 20010717

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030822

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: THYSSENKRUPP VDM GMBHC/O DIPL.-ING. WOLFGANG CICHY

Effective date: 20010717

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030822

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20100120

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): DE ES FR GB

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030822

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130821

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130823

Year of fee payment: 18

Ref country code: GB

Payment date: 20130821

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69615977

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140821

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69615977

Country of ref document: DE

Effective date: 20150303

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150303

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140901