EP0765848B1 - Verfahren zum Formen von Teilen aus anorganischen Pulvern - Google Patents

Verfahren zum Formen von Teilen aus anorganischen Pulvern Download PDF

Info

Publication number
EP0765848B1
EP0765848B1 EP96306635A EP96306635A EP0765848B1 EP 0765848 B1 EP0765848 B1 EP 0765848B1 EP 96306635 A EP96306635 A EP 96306635A EP 96306635 A EP96306635 A EP 96306635A EP 0765848 B1 EP0765848 B1 EP 0765848B1
Authority
EP
European Patent Office
Prior art keywords
binder
feedstock
trimethylolpropane
group
poly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96306635A
Other languages
English (en)
French (fr)
Other versions
EP0765848A1 (de
Inventor
Leonard Edward Bogan, Jr.
Richard Anthony Einhorn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carpenter Technology Corp
Original Assignee
Carpenter Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carpenter Technology Corp filed Critical Carpenter Technology Corp
Publication of EP0765848A1 publication Critical patent/EP0765848A1/de
Application granted granted Critical
Publication of EP0765848B1 publication Critical patent/EP0765848B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/103Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing an organic binding agent comprising a mixture of, or obtained by reaction of, two or more components other than a solvent or a lubricating agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/108Mixtures obtained by warm mixing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6022Injection moulding

Definitions

  • the present invention relates to a method for forming parts from inorganic particulate material. More particularly, the present invention relates to a method for forming parts from inorganic particulate material, by use of a polymeric binder which may be removed from the part after formation by heating. The method includes formation of parts by injection molding and by extrusion.
  • Injection molding is a useful method for forming parts from particulate material with little or no machining following formation. This is particularly desirable for forming parts from ceramic powders, because ceramic materials can be difficult to machine.
  • Extrusion is a process used in the ceramics and plastics industries to produce parts having a constant cross-section.
  • Plastic extrusion typically involves conveying polymeric material along a single or twin screw within a barrel of an extruder while heat is applied to melt the polymer and impart plasticity. Conversely, in ceramics processing, extrusion typically does not involve heating of the material. Ceramic materials are processed in powder form. Plasticity in a ceramic material is achieved by adding water and a binder to the ceramic powder.
  • Binders are generally required for the processing of ceramic and other inorganic particulate materials. However, following the processing of the material to form a part, the binder must be removed. Removal of binders is typically accomplished by heating the part, a process known as “thermal debinding", or by immersion of the part in one or more solvents, a process known as “solvent debinding”. The techniques may also be used in combination.
  • binder materials vaporize. If this vaporization occurs too rapidly, bubbles and cracks can form in the part. Therefore, the rate at which thermal debinding may be carried out is limited. Removal of the binder at a rate that does not damage the part may take one or more days of heating. Solvent debinding can be costly in terms of solvents and equipment, since many of the preferred solvents are materials which require special handling and disposal.
  • wicking involves packing of the part in a powder and heating the part and the surrounding powder. The binder material is wicked into the powder. This method can work more quickly than conventional thermal debinding but is also labor intensive.
  • Catalytic debinding is the most rapid of the standard debinding methods, and is described in detail in U.S. Patent 5,145,900.
  • the problems with catalytic debinding are that it requires the use of specialized equipment for debinding and it involves handling hazardous materials.
  • the catalytic materials are typically strong acids, such as nitric acid and oxalic acid, and produce formaldehyde as a decomposition product.
  • Japanese patent application 07-097271A discloses a binder composition comprising a paraffin wax and an acrylate resin for use in injection molding of ceramic powder.
  • the binder is thermally removed. However, when the binder is removed by heating at a rate of 30° C per hour, cracks and blisters formed.
  • US-A-4,996,015 discloses a method of producing ceramic honeycomb structures suitable for use as catalyst structures or catalyst carrier structures.
  • the method comprises preparing a ceramic plastic composition by admixing and kneading a ceramic material and an organic binder with water and a polyalkylene glycol monoether, extruding the composition into a wet green mold of a honeycomb structure having openings extending therethorugh, passing air of about 90-70% relative humidity through the openings to evaporate a substantial amount of the water, passing air at temperatures sufficient to evaporate the polyalkylene glycol monoether from the green mold to provide a dried mold, and calcining the dried mold.
  • WO 92/22509 discloses ceramic binder compositions used in ceramic formulations for molding ceramic parts.
  • the binder compositions are solutions of at least one polymer, at least one reactive monomer, solvent and initiator.
  • the ceramic binder solutions when combined with ceramic raw materials, produce formulations exhibiting drape and tack properties suitable for molding intricately shaped articles using conventional molding techniques.
  • the method of the present invention provides a more rapid thermal debinding rate than conventional thermal debinding processes, using standard equipment, without the added steps required in wicking or solvent debinding, without the use of noxious catalytic materials, and with the reduction or elimination of formaldehyde production.
  • a further advantage of the method of the present invention is that it allows for control over the debinding rate by selection of the composition of the binder. This control minimizes any adverse affects of the binder removal process on the shape or the dimensions of the part, including crack and bubble formation.
  • Parts formed by extrusion or injection molding of ceramic materials are "green parts". Green parts are further processed by firing, according to methods known to those skilled in the art. See, for example, James S. Reed, Principles of Ceramics Processing, John Wiley & Sons (1995). Firing involves heating of the part to a temperature sufficient to "sinter", or consolidate, the part. During firing, any residual binder is removed. Parts formed according to the method of the present invention may be fired according to methods known in the art.
  • a method for forming a part from one or more particulate inorganic materials comprising forming a feedstock by admixing one or more particulate inorganic materials and a binder, and forming a part from said feedstock by injection molding, characterised in that:
  • step (c) is carried out within 12 hours.
  • step (c) further comprises holding at the maximum temperature for less than 180 minutes.
  • the primary binder is selected from the group consisting of: trimethylolpropane, di-trimethylolpropane, neopentyl glycol, pentaerythritol, and dipentaerythritol.
  • Another aspect of the present invention is a method for forming an extruded part from one or more particulate inorganic materials, comprising forming a feedstock by admixing one or more particulate inorganic materials and a binder, and forming a part from said feedstock by feeding said feedstock into an extruder comprising a die, forcing said feedstock through the die to form an extrudate, and allowing the extrudate to harden at room temperature, characterised in that :
  • a further aspect of the present invention is a binder composition for the manufacture of parts from inorganic particulate material, characterised in that said composition comprises:
  • the binder composition used in the method of the present invention is formed from a primary binder and a secondary binder.
  • the primary binder and secondary binder have different vapor pressures, which allows them to be removed from the part sequentially rather than simultaneously. It is believed that the removal of the primary binder creates pathways through which the secondary binder may be removed from the part without creating cracks and bubbles in the part.
  • the binders are chosen so that the secondary binder remains in the part for as long as possible during the removal of the primary binder in order to maintain the shape of the part.
  • the primary binder has a vapor pressure of at least 1 torr (133.3 PA) at the decomposition temperature of the secondary binder.
  • the primary binder preferably has a vapor pressure of from 10 to 1000 torr (1.3-130 kiloPascal, kPa), more preferably from 100 to 600 torr (13-78 kPa), and most preferably from 300 to 400 torr (39-52 kPa) at the decomposition temperature of the secondary binder. Too high or too low a vapor pressure may result in increased time required for debinding.
  • the primary binder preferably dissolves the secondary binder at typical molding temperatures of from about 80°C to 200°C, but forms a separate phase from the secondary binder at temperatures above 10°C and below about 80°C.
  • the primary binder used in the method of this invention may have two components.
  • the first component is preferably a solid at room temperature.
  • the first component is a solid at room temperature of about 25°C.
  • the first component is independently selected from diols and polyols having a molecular weight less than about 300, such as, for example, trimethylolpropane, di-trimethylolpropane, neopentyl glycol, pentaerythritol, and dipentaerythritol.
  • the ratio of the second component of the primary binder to the first component of the primary binder is preferably at least 1:20, and more preferably at least 1:10.
  • the second component of the primary binder used in the method of this invention is independently selected from the group consisting of (C 2 -C 20 ) 1,2-diols; (C 3 -C 20 ) 1,2-polyols; (C 3 -C 20 ) 1,3-diols; (C 4 -C 20 ) 1,3-polyols; (C 2 -C 6 ) alkylene oxides; polymers comprising as polymerized units (C 2 -C 6 ) alkylene oxides, (C 2 -C 6 ) alkylene oxide oligomers; (C 1 -C 4 ) ethers of polymers comprising as polymerized units (C 2 -C 6 ) alkylene oxides; (C 1 -C 4 ) ethers of (C 2 -C 6 ) alkylene oxide oligomers; poly(hydroxyalkylene carbonate)s; and polyvinyl alcohol.
  • 1,3-diols and polyols include: 1,3-propanediol; 1,3-butanediol; 2-methyl-1,3-propanediol; neopentyl glycol; 2,2-diethylpropanediol; 2-ethyl-2-methylpropanediol; 2-methyl-2-propylpropanediol; 2-ethyl-2-butylpropanediol; 2,4,4-trimethyl-3,5-pentanediol; 2-ethyl-1,3-hexanediol; trimethylolpropane; di-trimethylolpropane; pentaerythritol; di-pentaerythritol.
  • derivatives of 1,3-diols including cyclic trimethylolpropane formal, and trimethylolpropane allyl ethers.
  • 1,2-diols examples include: ethylene glycol; propylene glycol; 2,2-dimethyl-3,4-butanediol; and pinacol.
  • alkylene oxides examples include ethylene oxide and propylene oxide.
  • polymers comprising as polymerized units (C 2 -C 6 ) alkylene oxides also known as polyalkylene oxides, include: homopolymers and copolymers of ethylene oxide and polymers of propylene oxide.
  • poly(hydroxyalkylene carbonate)s examples include: poly[[oxycarbonyl(oxy))]-2,3-O-isopropyldienethreityl] and poly[[(oxycarbonyl(oxy))]-1,4-threityl].
  • Oligomers of alkylene oxides include oligomers of ethylene glycol having a molecular weight of no more than 2000; and oligomers of propylene glycol having a molecular weight of no more than 2000.
  • Examples of these oligomers and ethers thereof, useful in the method of the present invention include dipropylene glycol; dipropylene glycol methyl ether; tripropylene glycol; tripropylene glycol methyl ether; triethylene glycol; triethylene glycol methyl ether; triethylene glycol dimethyl ether; tetraethylene glycol; tetraethylene glycol methyl ether; and tetraethylene glycol dimethyl ether.
  • the second component of the primary binder is selected from the group consisting of: 1,3-propanediol; 1,3-butanediol; 2-methyl-1,3-propanediol; neopentyl glycol; 2,2-diethylpropanediol; 2-ethyl-2-methylpropanediol; 2-methyl-2-propylpropanediol; 2-ethyl-2-butylpropanediol; 2,4-dimethyl-2,4-butanediol; 2,4,4-trimethyl-3,5-pentanediol; 2-ethyl-1,3-hexanediol; 3,3-dimethyl-1,2-butanediol; pinacol; 1,4-cyclohexanediol; trimethylolpropane; ditrimethylolpropane; pen
  • the secondary binder used in the method of the present invention may be any polymer known in the art for use in injection molding. These polymers may be thermoplastic polymers or thermoset polymers. Examples are acrylic and methacrylic homopolymers and copolymers, polystyrene and its copolymers, poly(vinyl acetate) and its copolymers; and poly(2-ethyl-2-oxazoline). Particularly useful are homopolymers and copolymers comprising as polymerized units: methyl methacrylate, ethyl acrylate, isobutyl methacrylate, tertiary butylaminoethyl methacrylate, acrylic acid, and methacrylic acid.
  • the secondary binder is selected from the group consisting of: acrylic and methacrylic homopolymers and copolymers, polystyrene, poly(vinyl acetate), and poly(2-ethyl-2-oxazoline).
  • the weight ratio of the total primary binder material to the secondary binder material in the binder composition is preferably 10:1 or less, more preferably 5:1 or less, most preferably 3:1 or less.
  • the method of the present invention is useful with particulate materials including ceramics, metals, and cermets which are composites of ceramic and metal.
  • Ceramic materials for which this method is useful include oxide ceramics and non-oxide ceramics. Mixtures of ceramics may be used.
  • Oxide ceramics include alumina, titania, silica, porcelain, barium titanate, clay, sialon, zirconia; and oxides of tin, lead, ruthenium, tungsten, yttrium, nickel, magnesium, and calcium.
  • Non oxide ceramics include silicon nitride, silicon carbide, aluminum nitride, zirconium nitride, zirconium bromide, titanium nitride, titanium carbide, titanium boride, boron nitride, boron carbide, tungsten carbide, tungsten boride.
  • Cermets include nickel-titanium carbide, silicon-silicon carbide, aluminum oxide-chromium, tungsten carbide-cobalt.
  • Metals for which the present method is useful include: iron; steel, including carbon steels, stainless steels, and precipitation hardened steels; nickel, tungsten.
  • the amount of particulate material used to form a part in the method of the present invention is at least 40 volume percent of the total mixture, preferably from 50 to 80, and more preferably from 55 to 70 volume percent.
  • the materials may be mixed by conventional methods used for mixing ceramic and other inorganic particulate materials.
  • a pressure kneader such as Haake torque rheometer may be used to mix the binder composition with one or more inorganic particulate materials.
  • the mixing of the binder composition with the inorganic particulate material is done at a temperature above the melting point of the binder composition.
  • the binder components may be mixed together, for example, in a kettle. Mixing of the binder components is preferably done at a temperature at which the mixture is a fluid. Alternatively, all components of the binder and the inorganic particulate material may be admixed simultaneously.
  • optional components may be added to the binder composition, as is known to those skilled in the art.
  • optional materials include lubricants and dispersants. These materials are known in the art and are typically used at levels of from 0.1 percent to 10 percent by weight based on the weight of the inorganic particulate material. Typical materials used as lubricants and dispersants include stearic add, oleic acid, palmitic add, zinc stearate, calcium stearate, lithium stearate, ethylene bisstearamide, and polyethylene.
  • the mixture of binder composition and particulate material may be used as a feedstock to form a part by injection molding.
  • the temperature and pressure required in the injection molding are determined by the composition of the feedstock and by the shape of the part which is to be formed.
  • the shaped part is allowed to cool until the particulate material and the binder composition have hardened.
  • the time required for hardening depends upon the composition of the feedstock, the shape and size of the part, and the molding conditions. Typically, hardening requires about one minute or less.
  • the binder is removed.
  • the binder removal is carried out in two steps.
  • the procedure, or "schedule" depends upon the composition of the feedstock, the size and shape of the part, and the oven used for heating.
  • a part is heated at a rate of from about 1°C/minute to about 5°C/minute, to a temperature of about 110 to 200°C, held at that temperature for 30 to 180 minutes, then heated at a rate of about 1°C/minute to a temperature of about 250°C and held at that temperature for from about 30 minutes to about 180 minutes.
  • the heating rate in either the first or second step, or in both steps may range up to about 10°C, depending upon the binder composition, the inorganic particulate material, and the dimensions of the part. For some compositions, it may be desirable to heat the part at a rate as slow as 0.5°C per minute in one or both of the heating steps.
  • the weight of the part has been reduced by at least 90 percent of the initial weight of primary binder. The 90 percent reduction typically occurs within about 12 hours or less, in some cases about 7 hours or less.
  • the feedstock may be used to form parts from inorganic particulate material by extrusion.
  • Standard extruders known in the art may be used.
  • the feedstock is prepared as described above, and fed into an extruder.
  • the residence time in the extruder is determined by the screw speed and the screw dimensions.
  • An extrudate is produced, which is allowed to harden at room temperature.
  • the extrudate may optionally be cut or machined to form parts.
  • debinding may be carried out as described herein for debinding of injection molded parts. Machining of the part may also optionally be done following debinding.
  • Parts formed by extrusion according to the method of the present invention are stronger than those prepared by extrusion of ceramic and metal parts using methylcellulose and water to form a binder.
  • Example 1 Injection molding of alumina parts using trimethylolpropane/ propylene glycol trimer/poly(methyl methacrylate) binder
  • a binder was prepared as follows: Trimethylolpropane (TMP), (435.1 g), was added to propylene glycol trimer (435.3 g) at 55°C and stirred to dissolve. The solution was heated to 160°C and poly(methylmethacrylate), PMMA (435.3 g, Rohm and Haas HT-100) was added with stirring over three hours. After all the PMMA had dissolved, stearic acid (68.7 g) was added. When the stearic add had dissolved, the binder solution was poured into aluminum pans to cool.
  • TMP Trimethylolpropane
  • PMMA 435.3 g, Rohm and Haas HT-100
  • a feedstock was formed by processing on a torque rheometer ((Haake Mess-Technik GmbH u. Co.) Rheocord 900 series, "Haake Rheocord”).
  • the Haake Rheocord was equipped with "roller type” rotors (model no. 557-1034). The unit was pre-heated to 120°C and the rotors were started at 200 rpm.
  • Alumina (648.8 g; ALCOA 3000) and binder as prepared above (88.8g) were gradually added alternately, a liter at a time, over about 5 minutes. The alumina and binder were mixed for 30 minutes.
  • the mixture was discharged from the rheometer. After the mixture was cooled to room temperature, the particle size was reduced by processing in a lab scale grinding mill (Staub Co. Model 4E) to prepare for injection molding.
  • the feedstock was used to mold standard tensile bars on an Arburg model 270C-300-80 injection molding machine under the following conditions: melt temperature 120-160°C mold temperature 35°C, injection speed 25-50 mm/s, screw speed 200 rpm, back pressure 10 bar (1 kPa) 1 .
  • the resulting injection pressure was 280 bar (28 kPa) and the cavity pressure was 100 bar (10 kPa).
  • the tensile bars underwent debinding in a forced-air oven by heating at 1°C/min. to 110°C, holding at 110°C for 90 minutes, then cooling.
  • the bars were sintered by heating at 5°C/min. to 1700°C.
  • the sintered bars exhibited no bubbles or cracks.
  • Example 2 Injection molding of alumina parts using trimethylolpropane/ tetraglyme/poly(methylmethacrylate) binder
  • TMP 899.9 g was dissolved in tetraglyme (TG), (100.1 g), at 80°C with stirring.
  • TG tetraglyme
  • PMMA 500.0 g, Rohm and Haas HT-100
  • stearic acid 79.0 g was added.
  • the solution was poured into aluminum pans to cool.
  • a feedstock was formed by processing on a torque rheometer ((Haake Mess-Technik GmbH u. Co.) Rheocord 900 series, "Haake Rheocord”).
  • the Haake Rheocord was equipped with "roller type” rotors (model no. 557-1034). The unit was pre-heated to 120°C and the rotors were started at 200 rpm.
  • Alumina (648.8 g; ALCOA 3000) and binder as prepared above (88.8g) were gradually added alternately, a liter at a time, over about 5 minutes. The alumina and binder were mixed for 30 minutes.
  • the mixture was discharged from the rheometer. After the mixture was cooled to room temperature, the particle size was reduced by processing in a lab scale grinding mill (Staub Co. Model 4E) to prepare for injection molding.
  • Example 3 Extrusion of alumina using trimethylolpropane/ tetraglyme/poly(methyl methacrylate) binder
  • a feedstock was prepared from 63 volume percent alumina and a binder which was 2:1 (TMP/TG):PMMA (Rohm and Haas HT-100). The weight ratio of TMP:TG was 9:1.
  • the feedstock was fed into a 22 mm single screw extruder having a 25:1 length/diameter (L/D) ratio.
  • the screw used a 2.5:1 compression ratio.
  • the extruder employed four independent heating zones and the temperatures of the zones were: 120°C/120°C/125°C/130°C.
  • the residence time in the extruder was 2 minutes. Two millimeter rods were produced. Similarly, 20 millimeter rods were produced using the same feedstock and conditions.
  • the extrudate emerged from the die in a semi-rigid state and hardened within a few seconds.
  • Example 4 Extrusion of stainless steel using trimethylolpropane/ tetraglyme/poly(methyl methacrylate) binder
  • a feedstock was prepared from 63 v/o 316L stainless steel and a binder which was 2:1 (TMP/TG):PMMA (Rohm and Haas HT-100). The weight ratio of TMP:TG was 9:1.
  • the feedstock was fed into a 22 mm single screw extruder having a 25:1 length/diameter (L/D) ratio.
  • the extruder employed four independent heating zones and the temperatures of the zones were: 120°C/120°C/125°C/130°C.
  • the residence time in the extruder was 2 minutes. Two millimeter rods were produced. Similarly, 20 millimeter rods were produced using the same feedstock and conditions.
  • the extrudate emerged from the die in a semi-rigid state and hardened within a few seconds.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Glass Compositions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Silicon Compounds (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Claims (16)

  1. Verfahren zur Herstellung eines Teils aus einem oder mehreren teilchenförmigen anorganischen Materialien, bei dem man durch Mischen eines oder mehrerer teilchenförmiger anorganischer Materialien mit einem Bindemittel einen Einsatzstoff herstellt und daraus durch Spritzgießen ein Teil herstellt, dadurch gekennzeichnet, daß man:
    a) als Bindemittel eine durch Mischen eines Primärbindemittels mit einem Sekundärbindemittel hergestellte Bindemittelzusammensetzung einsetzt, wobei das Primärbindemittel bei der Zersetzungstemperatur des Sekundärbindemittels einen Dampfdruck von mindestens 1 Torr (133,3 Pa) aufweist;
    b) den Einsatzstoff durch Mischen der Bindemittelzusammensetzung mit dem einen oder den mehreren teilchenförmigen anorganischen Materialien bei einer Temperatur oberhalb des Schmelzpunkts der Bindemittelzusammensetzung herstellt und
    c) das Teil mit einer Geschwindigkeit von 0,5°C pro Minute bis 10°C pro Minute erhitzt.
  2. Verfahren nach Anspruch 1, bei dem man bei der Herstellung einer Bindemittelzusammensetzung ferner ein oder mehrere Materialien aus der Gruppe bestehend aus Gleitmitteln und Dispergiermitteln zusetzt.
  3. Verfahren nach Anspruch 1 oder 2, bei dem man das Primärbindemittel aus der Gruppe bestehend aus Trimethylolpropan, Ditrimethylolpropan, Neopentylglykol, Pentaerythrit und Dipentaerythrit auswählt.
  4. Verfahren nach Anspruch 1 oder 2, bei dem man ein Primärbindemittel aus zwei Komponenten einsetzt.
  5. Verfahren nach Anspruch 4, bei dem man die erste der beiden Komponenten aus der Gruppe bestehend aus Trimethylolpropan, Ditrimethylolpropan, Neopentylglykol, Pentaerythrit und Dipentaerythrit auswählt.
  6. Verfahren nach Anspruch 4 oder 5, bei dem man die zweite der beiden Komponenten aus der Gruppe bestehend aus C2-C20-1,2-Diolen; C3-C20-1,2-Polyolen; C3-C20-1,3-Diolen; C4-C20-1,3-Polyolen; C2-C6-Alkylenoxiden; Polymeren, die als einpolymerisierte Einheiten C2-C6-Alkylenoxide enthalten; C2-C6-Alkylenoxid-Oligomeren; C1-C4-Ethern von Polymeren, die als einpolymerisierte Einheiten C2-C6-Alkylenoxide enthalten; C1-C4-Ethern von C2-C6-Alkylenoxid-Oligomeren; Poly (hydroxyalkylencarbonaten) und Polyvinylalkohol auswählt.
  7. Verfahren nach Anspruch 4 oder 5, bei dem man die zweite der beiden Komponenten aus der Gruppe bestehend aus 1,3-Propandiol; 1,3-Butandiol; 2-Methyl-1,3-propandiol; Neopentylglykol; 2,2-Diethylpropandiol; 2-Ethyl-2-methylpropandiol; 2-Methyl-2-propylpropandiol; 2-Ethyl-2-butylpropandiol; 2,4-Dimethyl-2,4-butandiol; 2,4,4-Trimethyl-3,5-pentandiol; 2-Ethyl-1,3-hexandiol; 3,3-Dimethyl-1,2-butandiol; Pinakol; 1,4-Cyclohexandiol; Trimethylolpropan; Ditrimethylolpropan; Pentaerythrit; Dipentaerythrit; cyclischem Trimethylolpropanformal; Trimethylolpropanallylethern; Dipropylenglykol; Dipropylenglykolmethylether; Tripropylenglykol; Tripropylenglykolmethylether; Triethylenglykol; Triethylenglykolmethylether; Triethylenglykoldimethylether; Tetraethylenglykol; Tetraethylenglykolmethylether und Tetraethylenglykoldimethylether auswählt.
  8. Verfahren nach einem der Ansprüche 1 bis 7, bei dem man das Sekundärbindemittel aus der Gruppe bestehend aus Acryl- und Methacrylhomo- und -copolymeren, Polystyrol, Poly(vinylacetat) und Poly(2-ethyl-2-oxazolin) auswählt.
  9. Verfahren nach einem der Ansprüche 1 bis 7, bei dem man das Sekundärbindemittel aus der Gruppe bestehend aus Polymeren, die als einpolymerisierte Einheiten Methylmethacrylat, Ethylacrylat, Isobutylmethacrylat, tert.-Butylaminoethylmethacrylat, Acrylsäure und Methacrylsäure enthalten, auswählt.
  10. Verfahren nach einem der Ansprüche 1 bis 9, bei dem man das Gewichtsverhältnis des gesamten Primärbindemittelmaterials zum Sekundärbindemittelmaterial in der Bindemittelzusammensetzung auf höchstens 10:1 einstellt.
  11. Verfahren nach einem der Ansprüche 1 bis 10, bei dem man das zur Herstellung eines Teils verwendete teilchenförmige Material in einer Menge von mindestens 40 Volumenprozent, bezogen auf die Gesamtmischung, einsetzt.
  12. Verfahren nach einem der Ansprüche 1 bis 11, bei dem man das anorganische teilchenförmige Material aus der Gruppe bestehend aus Keramiken, Metallen und Cermets auswählt.
  13. Verfahren nach einem der Ansprüche 1 bis 12, bei dem man das Erhitzen in Schritt (c) innerhalb von 12 Stunden durchführt.
  14. Verfahren nach einem der Ansprüche 1 bis 13, bei dem man ferner in Schritt (c) die Maximaltemperatur weniger als 180 Minuten lang hält.
  15. Bindemittelzusammensetzung zur Fertigung von Teilen aus anorganischem teilchenförmigem Material, dadurch gekennzeichnet, daß sie enthält:
    a) ein Primärbindemittel aus einer ersten und einer zweiten Komponente, wobei die erste Komponente aus der Gruppe bestehend aus Trimethylolpropan, Ditrimethylolpropan, Neopentylglykol, Pentaerythrit und Dipenta-erythrit und die zweite Komponente aus der Gruppe bestehend aus C2-C20-1,2-Diolen; C3-C20-1,2-Polyolen; C3-C20-1,3-Diolen; C4-C20-1,3-Polyolen; C2-C6-Alkylenoxiden; Polymeren, die als einpolymerisierte Einheiten C2-C6-Alkylenoxide enthalten; C2-C6-Alkylenoxid-Oligomeren; C1-C4-Ethern von Polymeren, die als einpolymerisierte Einheiten C2-C6-Alkylenoxide enthalten; C1-C4-Ethern von C2-C6-Alkylenoxid-Oligomeren; Poly(hydroxyalkylencarbonaten) und Polyvinylalkohol stammt; und
    b) ein Sekundärbindemittel aus der Gruppe bestehend aus Acryl- und Methacrylhomo- und -copolymeren, Polystyrol, Poly(vinylacetat) und Poly(2-ethyl-2-oxazolin).
  16. Verfahren zur Herstellung eines extrudierten Teils aus einem oder mehreren teilchenförmigen anorganischen Materialien, bei dem man durch Mischen eines oder mehrerer teilchenförmiger anorganischer Materialien mit einem Bindemittel einen Einsatzstoff herstellt und daraus durch Einspeisen des Einsatzstoffs in einen Extruder mit einer Düse, Pressen des Einsatzstoffs durch die Düse zur Herstellungen eines Extrudats und Aushärtung des Extrudats bei Raumtemperatur ein Teil herstellt, dadurch gekennzeichnet, daß man:
    a) als Bindemittel eine durch Mischen eines Primärbindemittels mit einem Sekundärbindemittel hergestellte Bindemittelzusammensetzung einsetzt, wobei das Primärbindemittel bei der Zersetzungstemperatur des Sekundärbindemittels einen Dampfdruck von mindestens 1 Torr (133,3 Pa) aufweist;
    b) den Einsatzstoff durch Mischen der Bindemittelzusammensetzung mit einem oder mehreren teilchenförmigen anorganischen Materialien bei einer Temperatur oberhalb des Schmelzpunkts der Bindemittelzusammensetzung herstellt;
    c) einen Extruder mit einer Schnecke und einer Düse verwendet und
    d) des Extrudat durch Erhitzen des Einsatzstoffes auf eine Temperatur, die ausreicht, um den Einsatzstoff zu verflüssigen, und Pressen des Einsatzstoffs durch die Düse herstellt;
    e) die Bindemittelzusammensetzung durch Erhitzen des Teils mit einer Geschwindigkeit von 1°C pro Minute bis 10°C pro Minute aus dem Teil austreibt.
EP96306635A 1995-09-29 1996-09-12 Verfahren zum Formen von Teilen aus anorganischen Pulvern Expired - Lifetime EP0765848B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US449895P 1995-09-29 1995-09-29
US4498 1995-09-29

Publications (2)

Publication Number Publication Date
EP0765848A1 EP0765848A1 (de) 1997-04-02
EP0765848B1 true EP0765848B1 (de) 2000-01-05

Family

ID=21711083

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96306635A Expired - Lifetime EP0765848B1 (de) 1995-09-29 1996-09-12 Verfahren zum Formen von Teilen aus anorganischen Pulvern

Country Status (20)

Country Link
US (1) US5723083A (de)
EP (1) EP0765848B1 (de)
JP (1) JPH09131715A (de)
KR (1) KR970015523A (de)
CN (1) CN1080710C (de)
AT (1) ATE188457T1 (de)
AU (1) AU719113B2 (de)
BR (1) BR9603932A (de)
CA (1) CA2186215A1 (de)
DE (1) DE69605999T2 (de)
DK (1) DK0765848T3 (de)
ES (1) ES2143145T3 (de)
IL (1) IL119257A (de)
MX (1) MX9604358A (de)
NO (1) NO963915L (de)
NZ (1) NZ299647A (de)
PT (1) PT765848E (de)
RU (1) RU2169056C2 (de)
SG (1) SG44057A1 (de)
TW (1) TW506954B (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6221289B1 (en) 1998-08-07 2001-04-24 Core-Tech, Inc. Method of making ceramic elements to be sintered and binder compositions therefor
US6680101B1 (en) * 1999-04-28 2004-01-20 Ngk Insulators, Ltd. Molded honeycomb material and process for production thereof
US6548013B2 (en) 2001-01-24 2003-04-15 Scimed Life Systems, Inc. Processing of particulate Ni-Ti alloy to achieve desired shape and properties
DE102005059099A1 (de) * 2005-12-08 2007-06-14 Ceramtec Ag Innovative Ceramic Engineering Feinkristalline Al2O3-Keramik
CN101224497B (zh) * 2007-01-17 2010-05-26 富准精密工业(深圳)有限公司 动压轴承制造方法
US9034210B2 (en) * 2007-12-05 2015-05-19 Epcos Ag Feedstock and method for preparing the feedstock
US20100178194A1 (en) * 2009-01-12 2010-07-15 Accellent, Inc. Powder extrusion of shaped sections
WO2011149401A1 (en) * 2010-05-26 2011-12-01 Seco Tools Ab Method for producing cemented carbide products
RU2538743C2 (ru) * 2012-07-31 2015-01-10 Рафаиль Исмагильевич Шайдулин Способ изготовления изделий из порошков соединений ряда карбидов и связующая композиция для осуществления способа
DE102013113043A1 (de) * 2013-11-26 2015-05-28 Sitek-Spikes Gmbh & Co. Kg Gleitschutzstift und Verfahren zur Herstellung eines Gleitschutzstiftes
RU2600647C2 (ru) * 2015-01-27 2016-10-27 Общество с ограниченной ответственностью "ИНТЕХ-М" Способ получения трехмерных керамических изделий

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3330892A (en) * 1964-07-24 1967-07-11 Corning Glass Works Molding comminuted nonplastic inorganic material
JPS6337165A (ja) * 1986-07-31 1988-02-17 Color Chem Kogyo Kk バインダ−組成物
US4765950A (en) * 1987-10-07 1988-08-23 Risi Industries, Inc. Process for fabricating parts from particulate material
JPH01294584A (ja) * 1988-05-20 1989-11-28 Sakai Chem Ind Co Ltd セラミツクハニカム構造体の製造方法
US5059388A (en) * 1988-10-06 1991-10-22 Sumitomo Cement Co., Ltd. Process for manufacturing sintered bodies
JPH02302357A (ja) * 1988-12-24 1990-12-14 Ngk Insulators Ltd セラミックス射出成形材料及びこれを用いた射出成形方法
JPH0647684B2 (ja) * 1989-01-20 1994-06-22 川崎製鉄株式会社 射出成形体の脱脂方法
US5602197A (en) * 1989-05-30 1997-02-11 Corning Incorporated Reversible polymer gel binders for powder forming
US5248712A (en) * 1990-12-21 1993-09-28 Takeda Chemical Industries, Ltd. Binders for forming a ceramics sheet and applications thereof
WO1992022509A1 (en) * 1991-06-18 1992-12-23 Hexcel Corporation Polymeric ceramic binder compositions
JPH05196201A (ja) * 1992-01-16 1993-08-06 Aisin Aw Co Ltd P/f効果を利用した蒸気原動機
JPH05238601A (ja) * 1992-02-26 1993-09-17 Sharp Corp 光検出手段を備えた原稿自動供給装置
DE69307172T2 (de) * 1992-03-16 1997-04-24 Kawasaki Steel Co Bindersystem für den Gebrauch beim Spritzgiessen von sinterfähigen Pulvern und dieses Bindersystem enthaltende Formmasse
US5366679A (en) * 1992-05-27 1994-11-22 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for thermal debinding and sintering of a workpiece
DE4227419A1 (de) * 1992-08-19 1994-02-24 Bayer Ag Thermoplastische Formmassen zur Herstellung von anorganischen Sinterformteilen, sowie Verfahren zur Herstellung von anorganischen Sinterformteilen
JP3201011B2 (ja) * 1992-10-23 2001-08-20 株式会社村田製作所 積層型電子部品用セラミックグリーンシート成形用バインダ
JP3367178B2 (ja) * 1992-12-09 2003-01-14 株式会社日立製作所 セラミック成形用有機バインダー、その製法及びこれを用いたセラミック基板
US5380474A (en) * 1993-05-20 1995-01-10 Sandia Corporation Methods for patterned deposition on a substrate
NL9400879A (nl) * 1994-05-27 1996-01-02 Univ Delft Tech Werkwijze voor het vervaardigen van gevormde voorwerpen uit metallische of keramische poederdeeltjes alsmede bindersysteem dat geschikt is om daarbij te worden gebruikt.
JP2846260B2 (ja) * 1994-11-28 1999-01-13 インダストリアル・テクノロジー・リサーチ・インスティテュート 粉末射出成形による精密金属部品製造用高性能結合剤/成形剤組成物

Also Published As

Publication number Publication date
NO963915L (no) 1997-04-01
US5723083A (en) 1998-03-03
DE69605999D1 (de) 2000-02-10
DK0765848T3 (da) 2000-06-26
ES2143145T3 (es) 2000-05-01
EP0765848A1 (de) 1997-04-02
JPH09131715A (ja) 1997-05-20
AU6564796A (en) 1997-04-10
CA2186215A1 (en) 1997-03-30
MX9604358A (es) 1997-08-30
CN1080710C (zh) 2002-03-13
IL119257A (en) 2000-07-16
CN1157277A (zh) 1997-08-20
IL119257A0 (en) 1996-12-05
PT765848E (pt) 2000-06-30
BR9603932A (pt) 1998-06-09
DE69605999T2 (de) 2000-07-27
NZ299647A (en) 1999-02-25
TW506954B (en) 2002-10-21
ATE188457T1 (de) 2000-01-15
NO963915D0 (no) 1996-09-19
AU719113B2 (en) 2000-05-04
SG44057A1 (en) 1997-11-14
RU2169056C2 (ru) 2001-06-20
KR970015523A (ko) 1997-04-28

Similar Documents

Publication Publication Date Title
US5362791A (en) Thermoplastic compositions for producing metallic moldings
EP0765848B1 (de) Verfahren zum Formen von Teilen aus anorganischen Pulvern
JP3043441B2 (ja) セラミック成形体の製造用の熱可塑性材料
AU741599B2 (en) Injection molding of structural zirconia-based materials by an aqueous process
US4624812A (en) Injection moldable ceramic composition containing a polyacetal binder and process of molding
US4906424A (en) Reaction injection molding of ceramic or metallic greenbodies
JP2003531293A (ja) 金属およびセラミック成形体製造用の無機粉末担体
EP0500682A4 (en) Process for removing polyacetal binder from molded ceramic green bodies
MXPA96004358A (en) Method for forming parts of particulate material inorgan
EP0114746B1 (de) Bindemittel auf der Basis von Polyacetalen zum Spritzgiessen von Keramiken
CN1490276A (zh) 精密陶瓷零部件的材料配方及其注射成型制备方法
EP0584613B1 (de) Thermoplastische Formmassen zur Herstellung von anorganischen Sinterformteilen sowie Verfahren zur Herstellung von anorganischen Sinterformteilen
NL1011310C2 (nl) Bindersysteem voor een PIM-proces.
JPH0244882B2 (de)
JPS591743B2 (ja) 射出成形或は押出し成形用組成物
JP2513905B2 (ja) セラミックス射出成形方法及びそれに用いる成形型
DE3737638C2 (de)
JP3804108B2 (ja) セラミック焼結体の製造方法
JPH0820803A (ja) 焼結体の製造方法
JPH02145704A (ja) 成形用組成物
JPH0210790B2 (de)
JPH08290975A (ja) セラミックス組成物、コア材及びセラミックス製品の製造方法
JPH04327216A (ja) セラミックス線材の製造方法
JPH11322441A (ja) 無機粉末成形体の製造方法および無機粉末成形体
JPH05148007A (ja) セラミツクス製品の製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960920

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

17Q First examination report despatched

Effective date: 19970516

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CARPENTER TECHNOLOGY CORPORATION

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000105

REF Corresponds to:

Ref document number: 188457

Country of ref document: AT

Date of ref document: 20000115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69605999

Country of ref document: DE

Date of ref document: 20000210

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2143145

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20000331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20010911

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20010917

Year of fee payment: 6

Ref country code: IE

Payment date: 20010917

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20010918

Year of fee payment: 6

Ref country code: FI

Payment date: 20010918

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20010926

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20010928

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20011010

Year of fee payment: 6

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020912

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020912

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020912

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020913

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20020917

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020926

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020930

Year of fee payment: 7

Ref country code: CH

Payment date: 20020930

Year of fee payment: 7

BERE Be: lapsed

Owner name: *CARPENTER TECHNOLOGY CORP.

Effective date: 20020930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030331

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20030331

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030913

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030924

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20031127

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040401

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040528

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040912

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050912